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Abstract: The Pontryagin Maximum Principle and high-order
open-mapping theorems generalize elementary first-derivative tests
to nonlinear optimal control. They provide necessary conditions for
a trajectory-control-pair to be optimal, or sufficient conditions for
local controllability. Sufficient conditions for optimality (and nec-
essary conditions for nonlinear controllability) are harder to obtain.
Like the Legendre-Clebsch condition, they generally take the form
of tests for definiteness of second order derivatives.

Recently, Agrachev introduced an attractive alternative by devel-
oping a notion of curvature of optimal control that generalizes clas-
sical Gauss (and Ricci) curvatures. This theory naturally applies to
systems whose controls take values on a circle or sphere. In this arti-
cle we present initial studies of how this notion of curvature provides
insight into the limiting case when the circles become degenerate el-
lipses in the form of closed intervals. Of particular interest are well
studied accessible, but uncontrollable, nonlinear systems, and sys-
tems that exhibit conjugate points, in which the control takes values
in a closed interval u = (u1,us) € [—1,1] x {0} C R% We focus on
systems that are well-known models for the analysis of small-time
local controllability and time-optimal control.
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1. Introduction

Counsider the problem of deciding whether a trajectory pair (uv*,z*): [0,T] —
U x M™ of a generally nonlinear system & = F(x,u), x € M"™, v e U CR™, is
a time-optimal solution connecting given endpoints x(0) = o and z(T) = zp
lying in an n-dimensional smooth manifold M™, or whether the system is locally
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controllable about this trajectory. The basic approach is to analyze whether the
endpoint map u — x(T;u) (for fixed T, and z) from a set of admissible controls
U to R™, is locally an open map at the reference control u* € U. A typical choice
isU = L'([0,T],U) with U C R™ convex and compact.

The primary tools are derivatives of this map that are based on control
variations and that have desired convexity properties together with correspond-
ing open mapping theorems, compare e. g. Bianchini and Kawski (2003), and
Sussmann (2002, 2004) for selected recent innovations. Conditions such as the
Pontryagin Maximum Principle and its improvements are basically sophisticated
generalizations of the elementary first-derivative test for critical points. As such
they generally provide necessary conditions for a reference control u* to be an
extremal (i. e., a critical point of the endpoint map). The contrapositives of such
statements serve as sufficient conditions for nonlinear local controllability about
the reference trajectory (a*,u*): if the derivative has full rank, then the end-
point map is locally open at the reference trajectory, and the system is locally
controllable about this trajectory.

Sufficient conditions for optimality (and, correspondingly, necessary condi-
tions for nonlinear controllability) are considerably harder to obtain. Like the
classical Legendre-Clebsch condition, these typically generalize tests for definite-
ness of second order derivatives. Other, more geometric arguments that extend
the classical calculus of variations theory of envelopes to optimal control settings
may be found in Sussmann (1986, 1989) and the references therein.

Recently, Agrachev introduced an attractive alternative by developing no-
tions of curvature of optimal control that generalize classical Gauss and Ricci
curvatures (see Agrachev and Sachkov, 2004, and Agrachev, Chtcherbakova,
and Zelenko, 2005). These notions preserve a classical theorem of differential
geometry which asserts that if the curvature is negative along an extremal,
then the extremal is locally optimal. This captures the pictorial notion that
in spaces of negative curvature geodesics move away from each other. In other
words, distinct geodesics emanating from one point can intersect again only if
the curvature is sufficiently positive along the curve segment. Thus, in principle,
in order to conclude local optimality, one only needs to compute the curvature
along an extremal and verify that it is nonnegative (or “not too positive”). In
other words this approach yields sufficient conditions for (local) optimality.

While several general theoretical results utilizing this curvature have been
forthcoming (see Agrachev, Chtcherbakova, and Zelenko, 2005, Agrachev, and
Shcherbakova, 2005, and Serres, 2006), the size and complexity of the formulas
for the curvature in local coordinates have so far severely limited explorations
of this object for specific classes of systems. A significant complication of such
calculations is due to the nature of the curvature being a (scalar) function on
the circle-subbundle (or sphere-subbundle) of the cotangent bundle of the state-
space. In other words, unlike Gaussian curvature which, in the two-dimensional
case, is a scalar function on the state-space, this curvature of optimal control
may at every point have different values in different directions.



Curvature of optimal control: Deformation of scalar-input planar systems 355

The first notable explicit findings for specific classes of systems were obtained
by Serres (2006) who studied Zermelo’s navigation problem. In practical terms,
this is the problem of finding time-optimal controls for a boat with steering
control and with an engine providing relative unit speed but which is subject to
a drift due to currents or wind. Formally consider systems in the plane of the
form

I Ji(zy, 2) +uy subject to "
1
T2

fa(w1, 2) + us u? +ud = 1.

One beautiful result of Serres (2006) is that if the matrix (a;;) € R?*? is self-
adjoint, then extremals of the system with linear drift f;(x) = a;121 4+ a;2z2 are
locally optimal.

For the purpose of visualizing the curvature in this problem we developed
interactive tools that require sizeable computations in the computer algebra
system MAPLE and the numerical engine of MATLAB to obtain intriguing
images that overlaid families of geodesics, geodesic spheres, and color-coded
views of the curvature, selected static images are posted on-line (see Gehrig and
Kawski, 2004). These tools allow one to experiment with various systems and
nicely demonstrate the intricacy of the dependence of the curvature at any point
in the state space on the direction in fibre, and its role in focusing geodesics.
Indeed, one commonly observes multiple changes of sign in the curvature as the
co-state rotates once about the zero-section.

Closely related work by Chitour and Sigalotti (2005) and Sigalotti and Chi-
tour (2006), that in some sense is complementary, studies the “Dubins’ car” on
curved surfaces. This system is very similar to the boat, but instead of an ex-
ternal drift vector field (wind or current) and velocity controls (steering angle),
the control is the rate of change of the steering angle. The drift term is due
to the additional integration. In this case the curvature of the state space is
the given starting point, and the authors investigate the structure of optimal
trajectories.

After this general introduction, the subsequent sections review key defini-
tions and aspects of Agrachev’s curvature, and present an overview of the nature
of the calculations when the control set is deformed from a circle to an interval
via a family of ellipses.

2. Elements of Agrachev’s theory of curvature of optimal
control

This section reviews some elementary definitions, techniques, and results of
Agrachev’s theory. We follow closely the notation and language of Agrachev
and Sachkov (2004). While more recent work by Agrachev, Chtcherbakova,
and Zelenko (2005) extends the theory to higher dimensional settings, we here
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restrict our attention to a special case of systems of the form () on a two
dimensional state space.

Under mild regularity and convexity conditions, one may assume that (lo-
cally in z) the intersection H, of the level set H = H~1(1) of the maximized
Hamiltonian H with each fibre TR? is a simple closed convex curve that does
not contain the origin. A key step is to compute a vertical vector field v on
T*R? that satisfies the identity

L?s = —s+bL,s (2)

where s = pydr; + padzs is the tautological one-form on T*R? restricted to
‘H, and L, denotes the Lie derivative in the direction of the vector field v.
The key requirement is the (negative) unit coefficient of the first term on the
right hand side of ([2)). This identity uniquely determines a vector field v up to
multiplication by —1.

The vector field v may be computed explicitly as follows. Start by introduc-
ing polar coordinates (p1,p2) = (rcos¢g,rsing) on the fibres of T*R2. With
these, the level sets H, are parameterized by the angle ¢ (using that H, does
not pass through the origin and that it is convex), and we write p = p(p).
Differentiating twice, and using the linear independence of p and p’, decompose
the second derivative with respect to ¢ as a linear combination

P'(p) = ar(p)p(p) + az(p)p' (). (3)

Next perform a change of parameters 6 = 6(p) so that
2
a(e) - (2) = -1 (4)

Up to translation and orientation this condition uniquely determines the new
parameter 6, which, abusing notation, is such that

p"(0) = —p(0) + a2(0)p'(6). (5)

Consequently, with either choice of sign, v = % = \/% % is the desired

vertical field. Next combine this field with the Hamiltonian field / and their Lie
bracket to obtain a moving frame

Vi =w, ‘/2:[075]7 Va=h (6)

on the level surface H~1(1) C T*R2. It is straightforward to verify their inde-
pendence at all points on H. One also readily verifies that the Lie derivatives of
the fields in this frame in the direction of the Hamiltonian vector field h satisfy

(Vi) = =Va, [h,Va] =kVi, [h, V3] =0 (7)

where k is a scalar function on H and is called the curvature of the control system
@). This frame is particularly convenient for writing the Jacobi equation along
an extremal (x¢,p;) on H. More specifically, in this moving frame the matrix
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representation I'(t) of the operator e’ 24 h satisfies the linear differential equation

D(t) =T(t) - A(t) (8)
with initial condition I'(0) = I3x3 where the coefficient matrix is given by

0 k(ze,pe) O
Alty=| -1 0 0. 9)
0 0 0

A time ¢. > 0 s, by definition, a conjugate time for an extremal (x;, p;) if the in-
tersection of the vertical subspace Ily = T, (T} R?) with its image By II, under
the flow B; defined by the Jacobi equation is strictly larger than the subspace
of constant solutions of the Jacobi equation. Such an instant ¢, corresponds to
a nontrivial solution of the scalar boundary value problem

g+ key =0, y(O) = y(tc) =0. (10)

It is clear from elementary differential equations that nontrivial solutions do not
exist when x < 0 for all times along an extremal (x,p;). Moreover, in the case
of not necessarily negative curvature, standard integral estimates yield lower
bounds on the first positive conjugate time ¢..

Summarizing, in order to apply this sufficiency criterion for local optimality,
i. e., for the absence of conjugate points, the main steps in the calculation are

e find the change of parameters 8 = 0(p) so that (@) holds,
e calculate the curvature from [ﬁ, [ﬁ, v]] = —kv, and

o verify that k < 0 along an extremal, or find bounds for the integral of
along the extremal if x > 0 for some t.

As simple as these foregoing calculations appear, they quickly lead to large
formulas, even for very simple system data fi; and f;. The case of a linear
field flaiml + f2aim2 = (CL11{E1 + Glszz)aiml + (azlfbl + GQQIQ)% with constant
ai; € R was analyzed in detail by Serres (2006), while our simulations and visu-
alization efforts concentrated on quadratic and globally bounded fields such as
e. g (f1, f2) = (0,sechz) (Gehrig and Kawski, 2004). Aside from the expected
appearance of various products of derivatives of the drift (f1, f2), impressive is
the complicated nature of the combination of higher harmonics cos j6 and sin j6
for j = 1,2,3,4 in the formulas for the curvature x which routinely allows the
curvature at one point in the base to change sign a large number of times as the
direction varies.

3. Deformations of the control set

The main focus of this article is the investigation of how curvature and conju-
gate points change when the set of controlled velocities {(u1,eus): u? +u3 = 1}
is continuously deformed into the interval I = [—1, 1]. For computational conve-
nience we implement this by adding the parameter ¢ into the controlled vector
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field as follows, leaving the set of control values U = S* the same, and consider
systems of the form

{ 1 = filz1,x2) +w subject to (11)

By = fo(x1,22) +cus u? +ud=1.

Of particular interest are deformations of the systems

{”:51 . (12)

To ' + eug
and
.fl = —Zo+ U
{ :1'52 = I1+ U2 (13)

which are well understood in the limiting single-input case of ¢ = 0. We are
interested in how their properties arise as limits of deformations of the cor-
responding systems of the form (II)). The first family of systems is small-time
locally controllable if and only if m is odd. If m is even, the reachable sets exhibit
well-known fold-overs (see Hermes, 1967) with consequent appearance of con-
jugate points (compare Sussmann, 1989). The second system is the controlled
harmonic oscillator whose switching curves consisting of two infinite families of
semicircles are standard examples in textbooks on optimal control.

Due to the continuity of the map from controls u(-) € U C L([0,T],S!)
to trajectories z(-;u) € C([0,T],R?), it is clear that as e varies from 1 to 0
the corresponding trajectories vary continuously. Given the absence of nontri-
vial singular extremals in the systems ([[2) and (I3), the bang-bang extremals
of these systems are approximated by continuously (in time) varying optimal
controls. One expects, and this is confirmed in simulations, that these optimal
controls change from comparatively slowly varying to rapid transitions as e
decreases from one to near zero. Fig. 1 shows the typical evolution of the co-
state in polar coordinates. In this figure, the angle ¢ is not yet the geometric
object € identified in the curvature formula, yet the curves still nicely exhibit
the qualitative evolution of the direction of the co-state.

This work was motivated by the possibility of using the well-defined curva-
ture for determining conjugate points and optimal extremals for systems with
small-values of € > 0, and by passing to the limit to conclude respective prop-
erties of the limiting systems whose control sets are compact intervals. Relying
on suitable continuity and structural stability arguments, this can be justified
rigorously under suitable hypotheses (e. g. isolated switching times). For a de-
tailed discussion of conjugate points for bang-bang extremals for systems whose
control set is a line-segment, or more generally, a cube (see Schittler, 1990, and
Sussmann, 1986). Evidently, without further technical hypotheses one cannot
conclude that the existence or non-existence of conjugate points is preserved by
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Figure 1. Time evolution of angle ¢ for (I2) with m =2, ¢ =0.2, T = 3.5.

the limit as ¢ — 0. However, for specific systems of interest such conclusions
may be warranted. In this particular work the main thrust is not the general
abstract theorem, but to actually test the computational feasibility of this ap-
proach by analyzing deformations of specific systems, in particular deformations
of the well-understood ones listed above, and explore what information can be
extracted from these. In some sense the main result is a negative one as the size
of the ensuing formulas for the curvature of the deformed systems far exceeds
all expectations. This observation leads one to conclude that for typical systems
similar to those of form ([I2)) or (I3) (with more complicated right hand sides)
this approach via deformations might not be practical as compared to a direct
analysis of the limiting system. This, of course, does not rule out conclusions
about the properties of the limiting system obtained from general properties of
the deformed systems.

Nonetheless, the curvature calculations are feasible with the use of a com-
puter algebra system, and aside from using these to visualize the interplay of
curvature, extremal trajectories, and geodesic spheres (see Gehrig and Kawski,
2004), these also were the basis for numerical simulation of the rotation of the
vertical field along extremal trajectories, compare Fig. 2. Due to inherent limita-
tions of this hard-copy special issue article, we will in the sequel only summarize
the initial calculations which suggest the resulting size of the formulas for the
curvature (but also their expected manageability using computer algebra) and
provide still-images taken from the computed animations. Samples of both the
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Figure 2. The curvature and its primitive as functions of time along extremal
of system ([I2) with m =2, ¢ =1, p(0) = (0.94,/0.34)

full computations and live animations of the deformations of the structures of
extremal trajectories will be made available online at the first author’s WWW-
site.

We begin our calculations for the general system (IIl), and specialize later
to the deformed power integrator (I2) and the deformed controlled harmonic
oscillator (I3). Following the general approach outlined in Section 2, we form the
Hamiltonian and compute the maximizing controls. We suppress dependencies
such as fi(z1,22) and simply write f; etc. when it will not cause confusion.
The control dependent Hamiltonian H,, is

Hy(2,p) = p1(u1 + f1) + p2(euz + f2). (14)

Subject to the constraint u3+u3 = 1, at each point (x,p) € T*R? with p # 0 this
control dependent Hamiltonian H, is maximized by the uniquely determined
control values

* P1 Ep2

U] = —— —_—.
N N R

Upon introduction of polar coordinates (p1,p2) = (rcose,rsing) in the
fibres, the maximized Hamiltonian becomes:

and us5 = (15)

H*(z,rcosp,rsing) = flrcos<p+f2rsin<p+r\/cos2<p+52sin2g0. (16)
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Note that in the special case of ¢ = 1 (no deformation, studied in detail in
e. g. Serres, 2006) the last term is constant equal to one, which much simplifies
all subsequent calculations.

In the general case of ¢ € [0, 1] the Hamiltonian vector field in polar coordi-
nates is

- cos 0
h == fl —|— 90 > [
Vicos2 g +e2sin @ ) 911

2 .

€“sin 0

+ | f2+ Ld — | 5 -
Vcos? o+ e2sin’ ¢ | 02

— (cos2 cp% + sin? cp% + cos @ sin @ (% + %>) r 4

0x1 0xo Or1  Oxo or

) dfo df1 ) ofi  0f 0

2 Of2 o OJ1 oi  0f2\) O
<sm 7 Ox1 oSy O COSPEILY (8901 Ory ) ) B¢

Note that there is some redundancy in this formula as the Hamiltonian vector
field is tangent to the three dimensional level surfaces of the Hamiltonian, and
one could express the radial component as a function of the angle ¢. However,
in the formula stated here, the direction % is interpreted in terms of polar
coordinates on the entire fibre T, R2. This format is convenient for subsequent
calculations of the double Lie bracket for the curvature using a computer algebra
system.

Not to be confused with the above, also use the angle ¢ to parameterize the
intersection of the level sets H~!(1) of the Hamiltonian with the fibres. (Of
course, to this corresponds a different meaning of the symbol %.) To avoid
possible misinterpretations, write this curve as p(¢) = (o(p) cosp, o(p) sin).
From the equation H(zx,0(¢) cosp, o(p) sing) = 1 one obtains the explicit
formula

1

a frcosp + fosing 4+ 1/cos? g + e2sin’ ¢

o(p) (17)

To determine the change of parameters to the distinguished angular variable 6,
2

calculate the coefficient a1 = — Cgll—“g in the linear combination of the second

derivative p”(¢) = a1p(p) 4+ a2p’ (). A simple calculation yields

" 7\ 2
alzg——2<3> —1. (18)

0 0

In the previously studied undeformed case e = 1 the square root evaluates to
one, much simplifying all subsequent work, and from
o = (fising — facosy) (19)

"

o' = 200 (fising — facosp) + 0°(ficosp + fasing) (20)
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straightforward simplifications yield a; = —p. Hence in the undeformed case
2
¢ = 1, from the condition a; (%) = —1, the desired vertical vector field is
1

20~ V1+ ficosp+ fasing e

In the general case with deformations 0 < ¢ < 1 analogous calculations
are readily performed using a computer algebra system, and the details of the
intermediate formulas are of little interest by themselves. After simplifications
one obtains

o _ c .2
9 JNIAF ficosp + fasing) 7%

(22)

where A = \/cos? ¢ + 2 sin? .
The next step in the calculation is to compute the curvature x from some
component of the double bracket identity

(B, [h,v]] = —ko. (23)

In the undeformed case ¢ = 1 this is a cumbersome calculation by hand but
quite straightforward using a recent version of a computer algebra system. We
note that just a few years ago, MAPLE release 8 could not simplify the resulting
rational expression in the components f1, fo, their first two partial derivatives,
and trigonometric terms involving cos j¢ and sin j with j taking values from 0
to 4. Newer releases, relying especially on improved Grébner bases tools reduce
the quotient of originally 782 terms and 23 terms in numerator and denominator,
respectively, to the polynomial expression that was given by Serres (2006). For
particular systems such as the undeformed systems (I2) and (I3) in the case of
€ = 1 these reduce much further to expressions that are amenable to detailed
analysis.

However, for the general parameter-dependent case of 0 < € < 1 even the
newest release 12 of MAPLE does not yield simplifications that provide much
structural insight, nor are suitable for reproduction here. Nonetheless, the ex-
pressions are still useful for qualitative studies and for simulations of, e. g., the
evolution (rotation) of the 3-frame on the surface H~!(1), i. e., in the time-
varying second order differential equation (I0). Compare Fig. 1 for a closely
related plot of the time evolution of the angle of the co-state for system (I2])
with m = 2 due to the curvature. The plots of the special variable 6 along
extremals are qualitatively similar, compare Fig. 2.

We now concentrate on specific systems, and present selected formulas and
graphical results of some simulations. First consider deformations of the uncon-
trollable quadratic planar system

. 11",'1 = U1
Ve { iy = % +euy. (24)
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In this case, the Hamiltonian and distinguished vertical vector fields reduce
to

fl _ COos @ . 81 (25)
2 2 qin2 1
\/cosga +ecsin” ¢
€sin
+ I%—FS' id — ~6%2
Vcosp? +e2sin?
—z178in 2y - % — x1(1 — cos2¢p) - %
and
3
% = -2 where, A= \/cos2 0+ e2sin®p.  (26)

VAIA F 2Zsing) ¢

For the iterated Lie brackets and for the curvature x we have not been able
to achieve significant simplifications, and the formulas remain basically only
amenable to numerical studies, very unlike the case of ¢ = 1 which allows
analytic approaches, ruling out the existence of conjugate points or finding lower
bounds for the time of the first conjugate point. In that special case of no
deformation € = 1, the curvature is given by the simple formula

k= —Isin(p)— 1 sin(3p) — 27 (& — 3 cos(2¢)+ 2 cos(4e)). (27)

Fig. 2 provides a typical picture for the curvature and its integral as functions
of time along an extremal, showing the times when the image B; IIy of the
distinguished vertical subspace Iy = T, (T R?) has rotated by =, yielding
a nontrivial intersection and thus a conjugate point. Numerical simulations
indicate that as e — 0, as expected, the peaks of k(t) become narrower and
sharper, and correspondingly its primitive converging pointwise to a piecewise
continuous function (compare Agrachev and Sachkov, 2004).

The corresponding typical portraits of families of projections of extremals
into the state-space and the geodesic spheres are presented in Figs. 3 and 4. For
small final times T and € =~ 1, the reachable sets are almost perfect spheres. As
time T increases, or the deformation parameter ¢ decreases, the reachable sets
and structure of the extremals approach the familiar image of the reachable set of
system (24) that is characterized by a sequence of fold-overs and corresponding
emergence of conjugate points beyond which the extremals are no longer optimal
(compare Hermes, 1967).

Fig. 3 illustrates the effect of the drift for larger times which breaks the sym-
metry of the perfect sphere of the driftless case. Fig. 4 illustrates the emergence
of the first fold-overs.

Note that systems of form (I2) possess symmetries in the form of homogene-
ity with respect to families of dilations. Consequently, the reachable sets reflect
these symmetry properties for corresponding times and deformations. More
specifically, one may fix a time T and vary only the deformation parameter &, or
vice versa. Except for the limiting case of € = 0 and rescaling of the state-space,
the corresponding reachable sets and families of extremals will exhibit the same
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for observing the structural properties such as folds and conjugate points.
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Specifically, in the case of exponent m = 2 in system (I2) define the rescaling
and families of dilations

As(zy,13) = (0z1,0%29), and (28)
(ul, U2)6’5 (t) = (5’[1,1 (5t), 65’&2 (5t)) . (29)

One easily verifies that the corresponding trajectories (- ;u) of system X° in

24) satisty
2 (0T;u’) = As(x*(T;u)) . (30)

Figure 5. Reachable set at 7' = 27 of system (I3) with € = 0.5

For the deformed, controlled harmonic oscillator ([I3]) there are no conjugate
points for any value of ¢ € (0,1]. For ¢ = 1 all extremals remain uniformly
spaced with co-state uniformly rotating around the circle. For e = 0 one has
the familiar picture of switching surfaces made up of families of semi-circles.
For values of 0 < € < 1 one can nicely observe the emergence of zones of more
densely packed extremals which uniformly converge to the well-known switching
curves as € — 0, compare Fig. 5.

4. Summary and conclusion

We initiated the study of how the theory of curvature of optimal control, which
was originally formulated for control sets that are spheres, may be used to
gain insight into the structure of optimal controls, and, in particular, absence
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or presence of conjugate points for systems whose controls take values in an
interval. The approach implements a classical method of fattening the line
segment of admissible controls and continuously deforming it into a family of
ellipses. While the size of the formulas obtained was beyond any expectations,
and so far precludes analytic investigation in the general case, the formulas
nonetheless are suitable for numerical simulations and qualitative studies that
confirm expectations.
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