
Control and Cybernetics

vol. 37 (2008) No. 2Curvature of optimal 
ontrol:Deformation of s
alar-input planar systems∗ †byMatthias Kawski and Parnell Ted MaxwellDepartment of Mathemati
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sArizona State UniversityTempe, AZ 85287, USAAbstra
t: The Pontryagin Maximum Prin
iple and high-orderopen-mapping theorems generalize elementary �rst-derivative teststo nonlinear optimal 
ontrol. They provide ne
essary 
onditions fora traje
tory-
ontrol-pair to be optimal, or su�
ient 
onditions forlo
al 
ontrollability. Su�
ient 
onditions for optimality (and ne
-essary 
onditions for nonlinear 
ontrollability) are harder to obtain.Like the Legendre-Clebs
h 
ondition, they generally take the formof tests for de�niteness of se
ond order derivatives.Re
ently, Agra
hev introdu
ed an attra
tive alternative by devel-oping a notion of 
urvature of optimal 
ontrol that generalizes 
las-si
al Gauss (and Ri

i) 
urvatures. This theory naturally applies tosystems whose 
ontrols take values on a 
ir
le or sphere. In this arti-
le we present initial studies of how this notion of 
urvature providesinsight into the limiting 
ase when the 
ir
les be
ome degenerate el-lipses in the form of 
losed intervals. Of parti
ular interest are wellstudied a

essible, but un
ontrollable, nonlinear systems, and sys-tems that exhibit 
onjugate points, in whi
h the 
ontrol takes valuesin a 
losed interval u = (u1, u2) ∈ [−1, 1] × {0} ⊆ R
2. We fo
us onsystems that are well-known models for the analysis of small-timelo
al 
ontrollability and time-optimal 
ontrol.Keywords: optimal 
ontrol, 
urvature.1. Introdu
tionConsider the problem of de
iding whether a traje
tory pair (u∗, x∗) : [0, T ] 7→

U × Mn of a generally nonlinear system ẋ = F (x, u), x ∈ Mn, u ∈ U ⊆ R
m, isa time-optimal solution 
onne
ting given endpoints x(0) = x0 and x(T ) = xTlying in an n-dimensional smooth manifold Mn, or whether the system is lo
ally

∗Submitted: February 2008; A

epted: August 2008.
†This work was partially supported by the National S
ien
e Foundation throughthe grant DMS 05-09030.



354 M. KAWSKI, P. MAXWELL
ontrollable about this traje
tory. The basi
 approa
h is to analyze whether theendpoint map u 7→ x(T ; u) (for �xed T , and x0) from a set of admissible 
ontrols
U to R

n, is lo
ally an open map at the referen
e 
ontrol u∗ ∈ U . A typi
al 
hoi
eis U = L1([0, T ], U) with U ⊆ R
m 
onvex and 
ompa
t.The primary tools are derivatives of this map that are based on 
ontrolvariations and that have desired 
onvexity properties together with 
orrespond-ing open mapping theorems, 
ompare e. g. Bian
hini and Kawski (2003), andSussmann (2002, 2004) for sele
ted re
ent innovations. Conditions su
h as thePontryagin Maximum Prin
iple and its improvements are basi
ally sophisti
atedgeneralizations of the elementary �rst-derivative test for 
riti
al points. As su
hthey generally provide ne
essary 
onditions for a referen
e 
ontrol u∗ to be anextremal (i. e., a 
riti
al point of the endpoint map). The 
ontrapositives of su
hstatements serve as su�
ient 
onditions for nonlinear lo
al 
ontrollability aboutthe referen
e traje
tory (x∗, u∗): if the derivative has full rank, then the end-point map is lo
ally open at the referen
e traje
tory, and the system is lo
ally
ontrollable about this traje
tory.Su�
ient 
onditions for optimality (and, 
orrespondingly, ne
essary 
ondi-tions for nonlinear 
ontrollability) are 
onsiderably harder to obtain. Like the
lassi
al Legendre-Clebs
h 
ondition, these typi
ally generalize tests for de�nite-ness of se
ond order derivatives. Other, more geometri
 arguments that extendthe 
lassi
al 
al
ulus of variations theory of envelopes to optimal 
ontrol settingsmay be found in Sussmann (1986, 1989) and the referen
es therein.Re
ently, Agra
hev introdu
ed an attra
tive alternative by developing no-tions of 
urvature of optimal 
ontrol that generalize 
lassi
al Gauss and Ri

i
urvatures (see Agra
hev and Sa
hkov, 2004, and Agra
hev, Cht
herbakova,and Zelenko, 2005). These notions preserve a 
lassi
al theorem of di�erentialgeometry whi
h asserts that if the 
urvature is negative along an extremal,then the extremal is lo
ally optimal. This 
aptures the pi
torial notion thatin spa
es of negative 
urvature geodesi
s move away from ea
h other. In otherwords, distin
t geodesi
s emanating from one point 
an interse
t again only ifthe 
urvature is su�
iently positive along the 
urve segment. Thus, in prin
iple,in order to 
on
lude lo
al optimality, one only needs to 
ompute the 
urvaturealong an extremal and verify that it is nonnegative (or �not too positive�). Inother words this approa
h yields su�
ient 
onditions for (lo
al) optimality.While several general theoreti
al results utilizing this 
urvature have beenforth
oming (see Agra
hev, Cht
herbakova, and Zelenko, 2005, Agra
hev, andSh
herbakova, 2005, and Serres, 2006), the size and 
omplexity of the formulasfor the 
urvature in lo
al 
oordinates have so far severely limited explorationsof this obje
t for spe
i�
 
lasses of systems. A signi�
ant 
ompli
ation of su
h
al
ulations is due to the nature of the 
urvature being a (s
alar) fun
tion onthe 
ir
le-subbundle (or sphere-subbundle) of the 
otangent bundle of the state-spa
e. In other words, unlike Gaussian 
urvature whi
h, in the two-dimensional
ase, is a s
alar fun
tion on the state-spa
e, this 
urvature of optimal 
ontrolmay at every point have di�erent values in di�erent dire
tions.



Curvature of optimal 
ontrol: Deformation of s
alar-input planar systems 355The �rst notable expli
it �ndings for spe
i�
 
lasses of systems were obtainedby Serres (2006) who studied Zermelo's navigation problem. In pra
ti
al terms,this is the problem of �nding time-optimal 
ontrols for a boat with steering
ontrol and with an engine providing relative unit speed but whi
h is subje
t toa drift due to 
urrents or wind. Formally 
onsider systems in the plane of theform
{

ẋ1 = f1(x1, x2) + u1 subje
t to
ẋ2 = f2(x1, x2) + u2 u2

1
+ u2

2
= 1.

(1)One beautiful result of Serres (2006) is that if the matrix (aij) ∈ R
2×2 is self-adjoint, then extremals of the system with linear drift fi(x) = ai1x1 + ai2x2 arelo
ally optimal.For the purpose of visualizing the 
urvature in this problem we developedintera
tive tools that require sizeable 
omputations in the 
omputer algebrasystem MAPLE and the numeri
al engine of MATLAB to obtain intriguingimages that overlaid families of geodesi
s, geodesi
 spheres, and 
olor-
odedviews of the 
urvature, sele
ted stati
 images are posted on-line (see Gehrig andKawski, 2004). These tools allow one to experiment with various systems andni
ely demonstrate the intri
a
y of the dependen
e of the 
urvature at any pointin the state spa
e on the dire
tion in �bre, and its role in fo
using geodesi
s.Indeed, one 
ommonly observes multiple 
hanges of sign in the 
urvature as the
o-state rotates on
e about the zero-se
tion.Closely related work by Chitour and Sigalotti (2005) and Sigalotti and Chi-tour (2006), that in some sense is 
omplementary, studies the �Dubins' 
ar� on
urved surfa
es. This system is very similar to the boat, but instead of an ex-ternal drift ve
tor �eld (wind or 
urrent) and velo
ity 
ontrols (steering angle),the 
ontrol is the rate of 
hange of the steering angle. The drift term is dueto the additional integration. In this 
ase the 
urvature of the state spa
e isthe given starting point, and the authors investigate the stru
ture of optimaltraje
tories.After this general introdu
tion, the subsequent se
tions review key de�ni-tions and aspe
ts of Agra
hev's 
urvature, and present an overview of the natureof the 
al
ulations when the 
ontrol set is deformed from a 
ir
le to an intervalvia a family of ellipses.2. Elements of Agra
hev's theory of 
urvature of optimal
ontrolThis se
tion reviews some elementary de�nitions, te
hniques, and results ofAgra
hev's theory. We follow 
losely the notation and language of Agra
hevand Sa
hkov (2004). While more re
ent work by Agra
hev, Cht
herbakova,and Zelenko (2005) extends the theory to higher dimensional settings, we here
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t our attention to a spe
ial 
ase of systems of the form (1) on a twodimensional state spa
e.Under mild regularity and 
onvexity 
onditions, one may assume that (lo-
ally in x) the interse
tion Hx of the level set H = H−1(1) of the maximizedHamiltonian H with ea
h �bre T ∗
x R

2 is a simple 
losed 
onvex 
urve that doesnot 
ontain the origin. A key step is to 
ompute a verti
al ve
tor �eld v on
T ∗

R
2 that satis�es the identity
L2

vs = −s + bLvs (2)where s = p1dx1 + p2dx2 is the tautologi
al one-form on T ∗
R

2 restri
ted to
H, and Lv denotes the Lie derivative in the dire
tion of the ve
tor �eld v.The key requirement is the (negative) unit 
oe�
ient of the �rst term on theright hand side of (2). This identity uniquely determines a ve
tor �eld v up tomultipli
ation by −1.The ve
tor �eld v may be 
omputed expli
itly as follows. Start by introdu
-ing polar 
oordinates (p1, p2) = (r cosϕ, r sin ϕ) on the �bres of T ∗

R
2. Withthese, the level sets Hx are parameterized by the angle ϕ (using that Hx doesnot pass through the origin and that it is 
onvex), and we write p = p(ϕ).Di�erentiating twi
e, and using the linear independen
e of p and p′, de
omposethe se
ond derivative with respe
t to ϕ as a linear 
ombination

p′′(ϕ) = a1(ϕ)p(ϕ) + a2(ϕ)p′(ϕ). (3)Next perform a 
hange of parameters θ = θ(ϕ) so that
a1(ϕ) ·

(

dθ
dϕ

)2

= −1. (4)Up to translation and orientation this 
ondition uniquely determines the newparameter θ, whi
h, abusing notation, is su
h that
p′′(θ) = −p(θ) + a2(θ)p

′(θ). (5)Consequently, with either 
hoi
e of sign, v = ∂
∂θ

= ±1√
−a1

∂
∂ϕ

is the desiredverti
al �eld. Next 
ombine this �eld with the Hamiltonian �eld ~h and their Liebra
ket to obtain a moving frame
V1 = v, V2 = [v,~h], V3 = ~h (6)on the level surfa
e H−1(1) ⊆ T ∗

R
2. It is straightforward to verify their inde-penden
e at all points on H. One also readily veri�es that the Lie derivatives ofthe �elds in this frame in the dire
tion of the Hamiltonian ve
tor �eld ~h satisfy

[~h, V1] = −V2, [~h, V2] = κV1, [~h, V3] = 0 (7)where κ is a s
alar fun
tion onH and is 
alled the 
urvature of the 
ontrol system(1). This frame is parti
ularly 
onvenient for writing the Ja
obi equation alongan extremal (xt, pt) on H. More spe
i�
ally, in this moving frame the matrix
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ontrol: Deformation of s
alar-input planar systems 357representation Γ(t) of the operator et ad~h satis�es the linear di�erential equation
Γ̇(t) = Γ(t) · A(t) (8)with initial 
ondition Γ(0) = I3×3 where the 
oe�
ient matrix is given by
A(t) =





0 κ(xt, pt) 0
−1 0 0
0 0 0



 . (9)A time tc > 0 is, by de�nition, a 
onjugate time for an extremal (xt, pt) if the in-terse
tion of the verti
al subspa
e Π0 = Tp0
(T ∗

x0
R

2) with its image Btc
Π0 underthe �ow Bt de�ned by the Ja
obi equation is stri
tly larger than the subspa
eof 
onstant solutions of the Ja
obi equation. Su
h an instant tc 
orresponds toa nontrivial solution of the s
alar boundary value problem

ÿ + κty = 0, y(0) = y(tc) = 0. (10)It is 
lear from elementary di�erential equations that nontrivial solutions do notexist when κ ≤ 0 for all times along an extremal (xt, pt). Moreover, in the 
aseof not ne
essarily negative 
urvature, standard integral estimates yield lowerbounds on the �rst positive 
onjugate time tc.Summarizing, in order to apply this su�
ien
y 
riterion for lo
al optimality,i. e., for the absen
e of 
onjugate points, the main steps in the 
al
ulation are
• �nd the 
hange of parameters θ = θ(ϕ) so that (4) holds,
• 
al
ulate the 
urvature from [~h, [~h, v]] = −κv, and
• verify that κ ≤ 0 along an extremal, or �nd bounds for the integral of κalong the extremal if κ ≥ 0 for some t.As simple as these foregoing 
al
ulations appear, they qui
kly lead to largeformulas, even for very simple system data f1 and f2. The 
ase of a linear�eld f1

∂
∂x1

+ f2
∂

∂x2

= (a11x1 + a12x2)
∂

∂x1

+ (a21x1 + a22x2)
∂

∂x2

with 
onstant
aij ∈ R was analyzed in detail by Serres (2006), while our simulations and visu-alization e�orts 
on
entrated on quadrati
 and globally bounded �elds su
h ase. g. (f1, f2) = (0, sechx) (Gehrig and Kawski, 2004). Aside from the expe
tedappearan
e of various produ
ts of derivatives of the drift (f1, f2), impressive isthe 
ompli
ated nature of the 
ombination of higher harmoni
s cos jθ and sin jθfor j = 1, 2, 3, 4 in the formulas for the 
urvature κ whi
h routinely allows the
urvature at one point in the base to 
hange sign a large number of times as thedire
tion varies.3. Deformations of the 
ontrol setThe main fo
us of this arti
le is the investigation of how 
urvature and 
onju-gate points 
hange when the set of 
ontrolled velo
ities {(u1, εu2) : u2

1
+u2

2
= 1}is 
ontinuously deformed into the interval I = [−1, 1]. For 
omputational 
onve-nien
e we implement this by adding the parameter ε into the 
ontrolled ve
tor



358 M. KAWSKI, P. MAXWELL�eld as follows, leaving the set of 
ontrol values U = S1 the same, and 
onsidersystems of the form
{

ẋ1 = f1(x1, x2) + u1 subje
t to
ẋ2 = f2(x1, x2) + εu2 u2

1
+ u2

2
= 1.

(11)Of parti
ular interest are deformations of the systems
{

ẋ1 = u1

ẋ2 = xm
1

+ εu2

(12)and
{

ẋ1 = −x2 + u1

ẋ2 = x1 + εu2

(13)whi
h are well understood in the limiting single-input 
ase of ε = 0. We areinterested in how their properties arise as limits of deformations of the 
or-responding systems of the form (11). The �rst family of systems is small-timelo
ally 
ontrollable if and only if m is odd. If m is even, the rea
hable sets exhibitwell-known fold-overs (see Hermes, 1967) with 
onsequent appearan
e of 
on-jugate points (
ompare Sussmann, 1989). The se
ond system is the 
ontrolledharmoni
 os
illator whose swit
hing 
urves 
onsisting of two in�nite families ofsemi
ir
les are standard examples in textbooks on optimal 
ontrol.Due to the 
ontinuity of the map from 
ontrols u(·) ∈ U ⊆ L1([0, T ], S1)to traje
tories x(·; u) ∈ C([0, T ], R2), it is 
lear that as ε varies from 1 to 0the 
orresponding traje
tories vary 
ontinuously. Given the absen
e of nontri-vial singular extremals in the systems (12) and (13), the bang-bang extremalsof these systems are approximated by 
ontinuously (in time) varying optimal
ontrols. One expe
ts, and this is 
on�rmed in simulations, that these optimal
ontrols 
hange from 
omparatively slowly varying to rapid transitions as εde
reases from one to near zero. Fig. 1 shows the typi
al evolution of the 
o-state in polar 
oordinates. In this �gure, the angle ϕ is not yet the geometri
obje
t θ identi�ed in the 
urvature formula, yet the 
urves still ni
ely exhibitthe qualitative evolution of the dire
tion of the 
o-state.This work was motivated by the possibility of using the well-de�ned 
urva-ture for determining 
onjugate points and optimal extremals for systems withsmall-values of ε > 0, and by passing to the limit to 
on
lude respe
tive prop-erties of the limiting systems whose 
ontrol sets are 
ompa
t intervals. Relyingon suitable 
ontinuity and stru
tural stability arguments, this 
an be justi�edrigorously under suitable hypotheses (e. g. isolated swit
hing times). For a de-tailed dis
ussion of 
onjugate points for bang-bang extremals for systems whose
ontrol set is a line-segment, or more generally, a 
ube (see S
hättler, 1990, andSussmann, 1986). Evidently, without further te
hni
al hypotheses one 
annot
on
lude that the existen
e or non-existen
e of 
onjugate points is preserved by
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Figure 1. Time evolution of angle ϕ for (12) with m = 2, ε = 0.2, T = 3.5.the limit as ε −→ 0. However, for spe
i�
 systems of interest su
h 
on
lusionsmay be warranted. In this parti
ular work the main thrust is not the generalabstra
t theorem, but to a
tually test the 
omputational feasibility of this ap-proa
h by analyzing deformations of spe
i�
 systems, in parti
ular deformationsof the well-understood ones listed above, and explore what information 
an beextra
ted from these. In some sense the main result is a negative one as the sizeof the ensuing formulas for the 
urvature of the deformed systems far ex
eedsall expe
tations. This observation leads one to 
on
lude that for typi
al systemssimilar to those of form (12) or (13) (with more 
ompli
ated right hand sides)this approa
h via deformations might not be pra
ti
al as 
ompared to a dire
tanalysis of the limiting system. This, of 
ourse, does not rule out 
on
lusionsabout the properties of the limiting system obtained from general properties ofthe deformed systems.Nonetheless, the 
urvature 
al
ulations are feasible with the use of a 
om-puter algebra system, and aside from using these to visualize the interplay of
urvature, extremal traje
tories, and geodesi
 spheres (see Gehrig and Kawski,2004), these also were the basis for numeri
al simulation of the rotation of theverti
al �eld along extremal traje
tories, 
ompare Fig. 2. Due to inherent limita-tions of this hard-
opy spe
ial issue arti
le, we will in the sequel only summarizethe initial 
al
ulations whi
h suggest the resulting size of the formulas for the
urvature (but also their expe
ted manageability using 
omputer algebra) andprovide still-images taken from the 
omputed animations. Samples of both the
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Figure 2. The 
urvature and its primitive as fun
tions of time along extremalof system (12) with m = 2, ε = 1, p(0) = (0.94,
√

0.34)full 
omputations and live animations of the deformations of the stru
tures ofextremal traje
tories will be made available online at the �rst author's WWW-site.We begin our 
al
ulations for the general system (11), and spe
ialize laterto the deformed power integrator (12) and the deformed 
ontrolled harmoni
os
illator (13). Following the general approa
h outlined in Se
tion 2, we form theHamiltonian and 
ompute the maximizing 
ontrols. We suppress dependen
iessu
h as f1(x1, x2) and simply write f1 et
. when it will not 
ause 
onfusion.The 
ontrol dependent Hamiltonian Hu is
Hu(x, p) = p1(u1 + f1) + p2(εu2 + f2). (14)Subje
t to the 
onstraint u2

1
+u2

2
= 1, at ea
h point (x, p) ∈ T ∗

R
2 with p 6= 0 this
ontrol dependent Hamiltonian Hu is maximized by the uniquely determined
ontrol values

u∗
1

=
p1

√

p2
1
+ ε2p2

2

and u∗
2

=
εp2

√

p2
1

+ ε2p2
2

. (15)Upon introdu
tion of polar 
oordinates (p1, p2) = (r cosϕ, r sin ϕ) in the�bres, the maximized Hamiltonian be
omes:
H∗(x, r cosϕ, r sin ϕ) = f1r cosϕ + f2r sin ϕ + r

√

cos2 ϕ + ε2 sin2 ϕ . (16)
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ontrol: Deformation of s
alar-input planar systems 361Note that in the spe
ial 
ase of ε = 1 (no deformation, studied in detail ine. g. Serres, 2006) the last term is 
onstant equal to one, whi
h mu
h simpli�esall subsequent 
al
ulations.In the general 
ase of ε ∈ [0, 1] the Hamiltonian ve
tor �eld in polar 
oordi-nates is
~h =

(

f1 +
cosϕ

√

cos2 ϕ + ε2 sin2 ϕ

)

∂

∂x1

+

(

f2 +
ε2 sin ϕ

√

cos2 ϕ + ε2 sin2 ϕ

)

∂

∂x2

−
(

cos2 ϕ
∂f1

∂x1

+ sin2 ϕ
∂f2

∂x2

+ cosϕ sin ϕ

(

∂f2

∂x1

+
∂f1

∂x2

))

r
∂

∂r

+

(

sin2 ϕ
∂f2

∂x1

− cos2 ϕ
∂f1

∂x2

+ cosϕ sin ϕ

(

∂f1

∂x1

− ∂f2

∂x2

))

∂

∂ϕ
.Note that there is some redundan
y in this formula as the Hamiltonian ve
tor�eld is tangent to the three dimensional level surfa
es of the Hamiltonian, andone 
ould express the radial 
omponent as a fun
tion of the angle ϕ. However,in the formula stated here, the dire
tion ∂

∂ϕ
is interpreted in terms of polar
oordinates on the entire �bre TxR

2. This format is 
onvenient for subsequent
al
ulations of the double Lie bra
ket for the 
urvature using a 
omputer algebrasystem.Not to be 
onfused with the above, also use the angle ϕ to parameterize theinterse
tion of the level sets H−1(1) of the Hamiltonian with the �bres. (Of
ourse, to this 
orresponds a di�erent meaning of the symbol ∂
∂ϕ

.) To avoidpossible misinterpretations, write this 
urve as p(ϕ) = (̺(ϕ) cosϕ, ̺(ϕ) sin ϕ).From the equation H(x, ̺(ϕ) cosϕ, ̺(ϕ) sin ϕ) ≡ 1 one obtains the expli
itformula̺
(ϕ) =

1

f1 cosϕ + f2 sin ϕ +
√

cos2 ϕ + ε2 sin2 ϕ
. (17)To determine the 
hange of parameters to the distinguished angular variable θ,
al
ulate the 
oe�
ient a1 = −

(

dϕ
dθ

)2 in the linear 
ombination of the se
ondderivative p′′(ϕ) = a1p(ϕ) + a2p
′(ϕ). A simple 
al
ulation yields

a1 =
̺′′

̺
− 2

(

̺′

̺

)2

− 1. (18)In the previously studied undeformed 
ase ε = 1 the square root evaluates toone, mu
h simplifying all subsequent work, and from
̺′ = ̺2(f1 sin ϕ − f2 cosϕ) (19)
̺′′ = 2̺̺′(f1 sin ϕ − f2 cosϕ) + ̺2(f1 cosϕ + f2 sin ϕ) (20)



362 M. KAWSKI, P. MAXWELLstraightforward simpli�
ations yield a1 = −̺. Hen
e in the undeformed 
ase
ε = 1, from the 
ondition a1

(

dθ
dϕ

)2

= −1, the desired verti
al ve
tor �eld is
v = ∂

∂θ
=

1√
1 + f1 cosϕ + f2 sin ϕ

∂
∂ϕ

. (21)In the general 
ase with deformations 0 < ε < 1 analogous 
al
ulationsare readily performed using a 
omputer algebra system, and the details of theintermediate formulas are of little interest by themselves. After simpli�
ationsone obtains
∂
∂θ

=
ε

√

∆3(∆ + f1 cosϕ + f2 sin ϕ)
· ∂

∂ϕ
(22)where ∆ =

√

cos2 ϕ + ε2 sin2 ϕ.The next step in the 
al
ulation is to 
ompute the 
urvature κ from some
omponent of the double bra
ket identity
[~h, [~h, v]] = −κv. (23)In the undeformed 
ase ε = 1 this is a 
umbersome 
al
ulation by hand butquite straightforward using a re
ent version of a 
omputer algebra system. Wenote that just a few years ago, MAPLE release 8 
ould not simplify the resultingrational expression in the 
omponents f1, f2, their �rst two partial derivatives,and trigonometri
 terms involving cos jϕ and sin jϕ with j taking values from 0to 4. Newer releases, relying espe
ially on improved Gróbner bases tools redu
ethe quotient of originally 782 terms and 23 terms in numerator and denominator,respe
tively, to the polynomial expression that was given by Serres (2006). Forparti
ular systems su
h as the undeformed systems (12) and (13) in the 
ase of

ε = 1 these redu
e mu
h further to expressions that are amenable to detailedanalysis.However, for the general parameter-dependent 
ase of 0 < ε < 1 even thenewest release 12 of MAPLE does not yield simpli�
ations that provide mu
hstru
tural insight, nor are suitable for reprodu
tion here. Nonetheless, the ex-pressions are still useful for qualitative studies and for simulations of, e. g., theevolution (rotation) of the 3-frame on the surfa
e H−1(1), i. e., in the time-varying se
ond order di�erential equation (10). Compare Fig. 1 for a 
loselyrelated plot of the time evolution of the angle of the 
o-state for system (12)with m = 2 due to the 
urvature. The plots of the spe
ial variable θ alongextremals are qualitatively similar, 
ompare Fig. 2.We now 
on
entrate on spe
i�
 systems, and present sele
ted formulas andgraphi
al results of some simulations. First 
onsider deformations of the un
on-trollable quadrati
 planar system
Σε :

{

ẋ1 = u1

ẋ2 = x2
1 + εu2 .

(24)
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alar-input planar systems 363In this 
ase, the Hamiltonian and distinguished verti
al ve
tor �elds redu
eto
~h =

cosϕ
√

cosϕ2 + ε2 sin2 ϕ
· ∂

∂x1

(25)
+

(

x2

1
+ ε · ε sinϕ

√

cosϕ2 + ε2 sin2 ϕ

)

· ∂
∂x2

−x1r sin 2ϕ · ∂
∂r

− x1(1 − cos 2ϕ) · ∂
∂ϕand

∂
∂θ

=
ε

√

∆3(∆ + x2 sinϕ)
· ∂

∂ϕ
where, ∆ =

√

cos2 ϕ + ε2 sin2 ϕ. (26)For the iterated Lie bra
kets and for the 
urvature κ we have not been ableto a
hieve signi�
ant simpli�
ations, and the formulas remain basi
ally onlyamenable to numeri
al studies, very unlike the 
ase of ε = 1 whi
h allowsanalyti
 approa
hes, ruling out the existen
e of 
onjugate points or �nding lowerbounds for the time of the �rst 
onjugate point. In that spe
ial 
ase of nodeformation ε = 1, the 
urvature is given by the simple formula
κ = −9

4
sin(ϕ)− 1

4
sin(3ϕ)−x2

1(
21

8
−3 cos(2ϕ)+ 3

8
cos(4ϕ)). (27)Fig. 2 provides a typi
al pi
ture for the 
urvature and its integral as fun
tionsof time along an extremal, showing the times when the image Btc

Π0 of thedistinguished verti
al subspa
e Π0 = Tp0
(T ∗

x0
R

2) has rotated by π, yieldinga nontrivial interse
tion and thus a 
onjugate point. Numeri
al simulationsindi
ate that as ε −→ 0, as expe
ted, the peaks of κ(t) be
ome narrower andsharper, and 
orrespondingly its primitive 
onverging pointwise to a pie
ewise
ontinuous fun
tion (
ompare Agra
hev and Sa
hkov, 2004).The 
orresponding typi
al portraits of families of proje
tions of extremalsinto the state-spa
e and the geodesi
 spheres are presented in Figs. 3 and 4. Forsmall �nal times T and ε ≈ 1, the rea
hable sets are almost perfe
t spheres. Astime T in
reases, or the deformation parameter ε de
reases, the rea
hable setsand stru
ture of the extremals approa
h the familiar image of the rea
hable set ofsystem (24) that is 
hara
terized by a sequen
e of fold-overs and 
orrespondingemergen
e of 
onjugate points beyond whi
h the extremals are no longer optimal(
ompare Hermes, 1967).Fig. 3 illustrates the e�e
t of the drift for larger times whi
h breaks the sym-metry of the perfe
t sphere of the driftless 
ase. Fig. 4 illustrates the emergen
eof the �rst fold-overs.Note that systems of form (12) possess symmetries in the form of homogene-ity with respe
t to families of dilations. Consequently, the rea
hable sets re�e
tthese symmetry properties for 
orresponding times and deformations. Morespe
i�
ally, one may �x a time T and vary only the deformation parameter ε, orvi
e versa. Ex
ept for the limiting 
ase of ε = 0 and res
aling of the state-spa
e,the 
orresponding rea
hable sets and families of extremals will exhibit the same
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–2

2

–2 2

Figure 3. Rea
hable set at T = 2 of system (12) with m = 2, ε = 1

Figure 4. Rea
hable set at T = 2 of system (12) with m = 2, ε = 0.2qualitative properties. The 
hoi
e of pairs (T, ε) su
h as in Fig. 1 is thus mainlyguided by aestheti
 reasons, with main fo
us on an aspe
t ratio that is suitablefor observing the stru
tural properties su
h as folds and 
onjugate points.
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i�
ally, in the 
ase of exponent m = 2 in system (12) de�ne the res
alingand families of dilations
∆δ(x1, x2) = (δx1, δ

2x2), and (28)
(u1, u2)

δ,ε(t) = (δu1(δt), εδu2(δt)) . (29)One easily veri�es that the 
orresponding traje
tories xε(· ; u) of system Σε in(24) satisfy
x1(δT ; uδ,ε) = ∆δ(x

ε(T ; u)) . (30)

Figure 5. Rea
hable set at T = 5

2
π of system (13) with ε = 0.5For the deformed, 
ontrolled harmoni
 os
illator (13) there are no 
onjugatepoints for any value of ε ∈ (0, 1]. For ε = 1 all extremals remain uniformlyspa
ed with 
o-state uniformly rotating around the 
ir
le. For ε = 0 one hasthe familiar pi
ture of swit
hing surfa
es made up of families of semi-
ir
les.For values of 0 < ε < 1 one 
an ni
ely observe the emergen
e of zones of moredensely pa
ked extremals whi
h uniformly 
onverge to the well-known swit
hing
urves as ε −→ 0, 
ompare Fig. 5.4. Summary and 
on
lusionWe initiated the study of how the theory of 
urvature of optimal 
ontrol, whi
hwas originally formulated for 
ontrol sets that are spheres, may be used togain insight into the stru
ture of optimal 
ontrols, and, in parti
ular, absen
e
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e of 
onjugate points for systems whose 
ontrols take values in aninterval. The approa
h implements a 
lassi
al method of fattening the linesegment of admissible 
ontrols and 
ontinuously deforming it into a family ofellipses. While the size of the formulas obtained was beyond any expe
tations,and so far pre
ludes analyti
 investigation in the general 
ase, the formulasnonetheless are suitable for numeri
al simulations and qualitative studies that
on�rm expe
tations.A
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