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vol. 37 (2008) No. 2Corre
tness of a 
onstrained 
ontrol Mayer's problemfor a 
lass of singularly perturbedfun
tional-di�erential systems∗byValery Y. GlizerDepartment of Mathemati
s, Ort Braude CollegeP.O. Box 78, Karmiel 21982, IsraelAbstra
t: A Mayer's problem for a singularly perturbed 
on-trolled system with the general type of a small state delay is 
on-sidered. The 
ontrol is subje
t to geometri
al 
onstraints. The 
ostfun
tional is a fun
tion of the terminal value of the slow state vari-able. A simpler parameter-free optimal 
ontrol problem (the redu
edproblem) is asso
iated with the original problem. A 
onvergen
e ofthe optimal value of the 
ost fun
tional in the original problem tothe optimal value of the 
ost fun
tional in the redu
ed problem, asa parameter of singular perturbation tends to zero, is established.An asymptoti
 suboptimality of the optimal 
ontrol of the redu
edproblem in the original problem is shown. These results are extendedto some more general optimal 
ontrol problems. An illustrative ex-ample is presented.Keywords: fun
tional-di�erential system, time delay, Mayer'sproblem, bounded 
ontrol, singular perturbation, 
orre
tness, sub-optimal 
ontrol.1. Introdu
tionControl problems for singularly perturbed systems are studied extensively forabout four re
ent de
ades. Most of publi
ations in the topi
 are devoted toanalysis of undelayed dynami
s 
ontrol problems (see e.g. Artstein, 2005; Dmi-triev and Kurina, 2006; Dont
hev, 1983; Dont
hev and Zolezzi, 1993; Gaji
 andLim, 2001; Kokotovi
, Khalil and O'Reilly, 1999; Naidu, 2002, and referen
estherein). Control problems for singularly perturbed delayed systems are studiedmu
h less (see e.g. Dmitriev and Kurina, 2006; Fridman, 1990, 2006; Glizer,1998, 2000, 2004, 2005, 2006, 2007; Kopeikina, 1989; Lin-Chen and Goodall,2004; Reddy and Sannuti, 1974; Slavov, 1995, and referen
es therein).
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330 V.Y. GLIZEROne of the important issues, arising in 
ontrol theory, is optimization of a
ontrolled system with respe
t to a given performan
e index. The ri
h literatureis devoted to studying this issue for singularly perturbed undelayed systems withun
onstrained 
ontrols (see e.g. Kokotovi
, Khalil and O'Reilly, 1999; Gaji
 andLim, 2001, and referen
es therein) and 
onstrained 
ontrols (see e.g. Dont
hev,1983; Dont
hev and Zolezzi, 1993, and referen
es therein) by using the 
on
eptof separation of time s
ales and the order redu
tion approa
h. For the analysisof optimal 
ontrol problems with singularly perturbed undelayed dynami
s, notallowing for appli
ation of the order redu
tion approa
h, the method, based onthe notion of limit distributions of 
ontrol and fast state variable on the fasttime s
ale, was developed in a number of works (see e.g. Artstein, 2005, andreferen
es therein).Optimal 
ontrol problems for singularly perturbed systems with delays werestudied only in several works. The problems with un
onstrained 
ontrols were
onsidered in Fridman (1990), Glizer (1998, 2000, 2007), Reddy and Sannuti(1974) (the 
ase of small delay) and in Glizer (2005, 2006) (the 
ase of nons-mall delay). To our best knowledge, optimal 
ontrol problems with 
onstrained
ontrols for singularly perturbed delayed systems were not studied in literature.In this paper, we 
onsider an optimal 
ontrol problem with a pres
ribedduration for a singularly perturbed time-dependent system with the generaltype of delay in state variables. The system is linear with respe
t to the states.The initial 
onditions for this system are given. The 
ontrol is 
onstrained. The
ost fun
tional is a fun
tion of the terminal value of the slow state variable. Thedelay is small of order of the small parameter ε > 0 multiplying a part of thederivatives in the system.Singularly perturbed systems with small delays of order of the small mul-tiplier for a part of the derivatives are highly signi�
ant for the domain offun
tional-di�erential equations (see e.g. Artstein and Slemrod, 2001; Fridman,1996; Glizer, 2003; Halanay, 1966; Mitropol'skii, Fod
huk and Klev
huk, 1986,and referen
es therein), in 
ontrol theory (see e.g. Fridman, 1990, 2006; Glizer,1998, 2000, 2004, 2007; Reddy and Sannuti, 1974, and referen
es therein), andin various appli
ations (see e.g. Lange and Miura, 1994; Lizana, 1999; Reddyand Sannuti, 1975, and referen
es therein). Singularly perturbed systems withnonsmall delays also have a 
onsiderable importan
e in theory and appli
ations(see e.g. Cooke and Meyer, 1966; Don
hev and Slavov, 1995, 1997; Glizer, 2005,2006; Hale and Tanaka, 2000; Kopeikina, 1989; Magalhaes, 1984; Mallet-Paretand Nussbaum, 1989, and referen
es therein). It should be noted that the meth-ods of analysis of singularly perturbed systems with small and nonsmall delaysessentially di�er.For the problem 
onsidered in the paper, an asymptoti
 behavior (as ε → +0)of the optimal value of the 
ost fun
tional is studied. This study is 
arried outby an extension of the order redu
tion approa
h to su
h a 
lass of problems.Namely, �rst, a simpler ε-free optimal 
ontrol problem (the redu
ed one) is as-so
iated with the original problem. Se
ond, it is shown that the optimal value of
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tness of a 
onstrained 
ontrol Mayer's problem 331the 
ost fun
tional of the latter 
onverges to the optimal value of the 
ost fun
-tional of the former, while ε → +0. Su
h a 
onvergen
e means the 
orre
tness ofthe singularly perturbed optimal 
ontrol problem 
onsidered in the paper. Anestimate of the di�eren
e between the optimal values of the 
ost fun
tional inthe original and redu
ed problems also is obtained. As a 
onsequen
e of theseresults, it is shown that the optimal 
ontrol of the redu
ed problem 
an serveas a suboptimal 
ontrol in the original problem for all su�
iently small valuesof ε, i.e., robustly with respe
t to this parameter.The paper is organized as follows. In the next se
tion, the problem is formu-lated rigorously. Se
tion 3 is devoted to some preliminary results. Main resultsare presented in Se
tion 4. An illustrative example is 
onsidered in Se
tion 5.In Se
tion 6, some extensions of the main results are dis
ussed. Se
tions 7 and8 are devoted to proofs of the lemmas presented in Se
tion 3.The following notations are applied in the paper:1. En is the n-dimensional real Eu
lidean spa
e.2. The Eu
lidean norm of either a matrix or a ve
tor is denoted as ‖ · ‖.3. In denotes the n-dimensional identity matrix.4. The prime, as an upper index, denotes the transposition either of a matrix
A, (A′

) or of a ve
tor x, (x′ ).5. 
ol(x, y), where x ∈ En, y ∈ Em, denotes the 
olumn blo
k-ve
tor ofthe dimension n + m with the upper blo
k x and the lower blo
k y, i.e.,
ol(x, y) = (x
′

, y
′

)
′ .2. Problem formulation and main assumptions2.1. Original problemConsider the following system

dx(t)/dt =

∫ 0

−h

[

dηA1(t, η)
]

x(t + εη) +

∫ 0

−h

[

dηA2(t, η)
]

y(t + εη)

+ B1(t, u(t)), t ∈ [0, T ], (1)
εdy(t)/dt =

∫ 0

−h

[

dηA3(t, η)
]

x(t + εη) +

∫ 0

−h

[

dηA4(t, η)
]

y(t + εη)

+ B2(t, u(t)), t ∈ [0, T ], (2)where x(t) ∈ En, y(t) ∈ Em, u(t) ∈ Er (u is a 
ontrol); ε > 0 is a smallparameter; A1(t, η), A2(t, η), A3(t, η) and A4(t, η) are matri
es of 
orrespondingdimensions; B1(t, u) and B2(t, u) are ve
tors of 
orresponding dimensions; h > 0is a given 
onstant and T > 0 is a given time instant, both independent of ε.Note that x(·) and y(·) are 
alled the slow and fast state variables, respe
-tively, of the system (1)-(2).In the sequel, we assume:



332 V.Y. GLIZERA1. The matrix-valued fun
tions Ai(t, η), (i = 1, ..., 4) are given for (t, η) ∈
[0, T ]× (−∞, +∞) and satisfy the 
onditions:
(a) Ai(t, η) = 0, (i = 1, ..., 4), ∀(t, η) ∈ [0, T ]× [0, +∞);
(b) Ai(t, η) = Ai(t,−h), (i = 1, ..., 4), ∀(t, η) ∈ [0, T ]× (−∞,−h];
(
) Ak(t, η), (k = 1, 2), are 
ontinuously di�erentiable with respe
t to t ∈ [0, T ]uniformly in η ∈ (−∞, +∞);
(d) Al(t, η), (l = 3, 4), are twi
e 
ontinuously di�erentiable with respe
t to
t ∈ [0, T ] uniformly in η ∈ (−∞, +∞);
(e) for ea
h t ∈ [0, T ], Ai(t, η), (i = 1, ..., 4), are 
ontinuous from the left withrespe
t to η ∈ (−h, 0);
(f) Ai(t, η) and ∂Ai(t, η)/∂t, (i = 1, ..., 4), have bounded variations with respe
tto η on the interval [−h, 0] uniformly in t ∈ [0, T ];
(g) ∂2Al(t, η)/∂t2, (l = 3, 4), have bounded variations with respe
t to η on theinterval [−h, 0] uniformly in t ∈ [0, T ].A2. The ve
tor-valued fun
tions Bj(t, u), (j = 1, 2), are de�ned for (t, u) ∈
[0, T ]× DB, where DB ⊆ Er is a given set.For (1)-(2), the initial 
onditions are given as

x(τ) = ϕx(τ), y(τ) = ϕy(τ), τ ∈ [−εh, 0), (3)
x(0) = x0, y(0) = y0, (4)where ϕx(τ) and ϕy(τ) are given ve
tor-valued fun
tions; x0 and y0 are givenve
tors. In the sequel, we assume:A3. There exists a positive 
onstant ε0, su
h that the ve
tor-valued fun
tions

ϕx(τ) and ϕy(τ) are 
ontinuously di�erentiable for τ ∈ [−ε0h, 0].The admissible 
ontrols are measurable fun
tions for t ∈ [0, T ] satisfying thein
lusion
u(t) ∈ Du, t ∈ [0, T ], (5)where Du ⊆ DB is a given set. The set of all admissible 
ontrols u(t) is denotedby U . The performan
e index, evaluating the 
ontrol pro
ess, is
J(u(t))

△
= F

(

x(T )
)

→ min
u(t)∈U

, (6)where F (x) is a given s
alar fun
tion de�ned for x ∈ En.In the sequel, we assume:A4. ‖Bj(t, u)‖ ≤ cB ∀(t, u) ∈ [0, T ] × Du, (j = 1, 2), where cB > 0 is some
onstant.A5. The fun
tion F (x) is 
ontinuous and has 
ontinuous �rst-order partialderivatives for x ∈ En.The problem (1)-(6) is 
alled the Original Optimal Control Problem (OOCP).



Corre
tness of a 
onstrained 
ontrol Mayer's problem 3332.2. Redu
ed problemSetting formally ε = 0 in (1)-(2), and redenoting x by x̄, y by ȳ and u by ū, weobtain the system
dx̄(t)/dt = Ā1(t)x̄(t) + Ā2(t)ȳ(t) + B1(t, ū(t)), (7)
0 = Ā3(t)x̄(t) + Ā4(t)ȳ(t) + B2(t, ū(t)), (8)where
Āi(t) =

∫ 0

−h

dηA(t, η), i = 1, ..., 4. (9)Consider the following matrix depending on t and a 
omplex parameter λ

W (t, λ) =

∫ 0

−h

exp(λη)dηA4(t, η). (10)In the sequel, we assume:A6. All roots λ of the equation det[W (t, λ) − λIm] = 0 lie inside the left-handhalf-plane for all t ∈ [0, T ].Due to (9) and (10), W (t, 0) = Ā4(t) ∀t ∈ [0, T ] yielding, by using theassumption A6,
det Ā4(t) 6= 0 ∀t ∈ [0, T ]. (11)Thus, by using (11), we 
an eliminate y from (7)-(8), whi
h yields the fol-lowing system
dx̄(t)/dt = Ā0(t)x̄(t) + B̄0(t, ū(t)), t ∈ [0, T ], (12)where
Ā0(t) = Ā1(t) − Ā2(t)Ā

−1
4 (t)Ā3(t), (13)

B̄0(t, ū) = B1(t, ū) − Ā2(t)Ā
−1
4 (t)B2(t, ū). (14)For (12), the initial 
ondition and the performan
e index are, respe
tively,

x̄(0) = x0, (15)
J̄(ū(t))

△
= F

(

x̄(T )
)

→ min
ū(t)∈U

. (16)The problem (12)-(16) is 
alled the Redu
ed Optimal Control Problem (ROCP).It 
an be seen that the ROCP is mu
h simpler than the OOCP. The ROCP isof a lower dimension, it is delay-free and it is ε-free.



334 V.Y. GLIZER2.3. Obje
tives of the paperThe obje
tives of the paper are the following:(1) to establish the 
onvergen
e of the optimal value of the 
ost fun
tional inthe OOCP to the optimal value of the 
ost fun
tional in the ROCP for ε → +0,i.e., to establish the 
orre
tness of the OOCP;(2) to estimate the di�eren
e between the optimal values of the 
ost fun
tionalin the OOCP and ROCP;(3) to establish the suboptimality of the ROCP optimal 
ontrol in the OOCPfor all su�
iently small ε > 0, i.e., robustly with respe
t to this parameter.3. Preliminary resultsConsider the blo
k matrix
A(t, η, ε) =

(

A1(t, η) A2(t, η)
(1/ε)A3(t, η) (1/ε)A4(t, η)

)

. (17)Let, for a given ε > 0, the ((n + m) × (n + m)
)-matrix Ψ(t, s, ε) be thesolution of the problem

∂Ψ(t, s, ε)/∂t =

∫ 0

−h

[

dηA(t, η, ε)
]

Ψ(t + εη, s, ε), 0 ≤ s < t ≤ T, (18)
Ψ(t, s, ε) = 0, t < s; Ψ(s, s, ε) = In+m. (19)It is 
lear that Ψ(t, s, ε) is the fundamental matrix solution of the homogeneousversion (Bj(t, u) ≡ 0, (j = 1, 2)) of the system (1)-(2).Let the n × n-matrix Ψ̄(t, s) be the solution of the problem
∂Ψ̄(t, s)/∂t = Ā0(t)Ψ̄(t, s), 0 ≤ s < t ≤ T, (20)
Ψ̄(s, s) = In. (21)The matrix Ψ̄(t, s) is the fundamental matrix solution of the homogeneous ver-sion (B̄0(t, ū) ≡ 0) of the system (12).Let the m × m-matrix Ψ̃(ξ, s) be the solution of the problem
∂Ψ̃(ξ, s)/∂ξ =

∫ 0

−h

[

dηA4(s, η)
]

Ψ̃(ξ + η, s), 0 ≤ s ≤ T, ξ > 0, (22)
Ψ̃(ξ, s) = 0, ξ < 0; Ψ̃(0, s) = Im, 0 ≤ s ≤ T. (23)Due to the assumption A6 and results of Hale and Lunel (1993), the matrix

Ψ̃(ξ, s) satis�es the inequality
‖Ψ̃(ξ, s)‖ ≤ a exp(−βξ), 0 ≤ s ≤ T, ξ ≥ 0. (24)



Corre
tness of a 
onstrained 
ontrol Mayer's problem 335Remark 1 In (24) and in the sequel, a and β denote some positive 
onstantsindependent of ε.Lemma 1 Let Ψ1(t, s, ε), Ψ2(t, s, ε), Ψ3(t, s, ε) and Ψ4(t, s, ε) be the upper left-hand, upper right-hand, lower left-hand and lower right-hand blo
ks of the matrix
Ψ(t, s, ε) of the dimensions n×n, n×m, m×n and m×m, respe
tively. Then,under the assumptions A1 and A6, there exists a number ε1 > 0, su
h that theseblo
ks satisfy the following inequalities for all ε ∈ (0, ε1] and 0 ≤ s ≤ t ≤ T :

‖Ψ1(t, s, ε) − Ψ̄(t, s)‖ ≤ aε, (25)
‖Ψ2(t, s, ε) + εΨ̄(t, s)Ā2(s)Ā

−1
4 (s)‖ ≤ aε

[

ε + exp
(

− β(t − s)/ε
)]

, (26)
‖Ψ3(t, s, ε) + Ā−1

4 (t)Ā3(t)Ψ̄(t, s)‖ ≤ a
[

ε + exp
(

− β(t − s)/ε
)]

, (27)
∥

∥

∥
Ψ4(t, s, ε) − Ψ̃

(

(t − s)/ε, s
)∥

∥

∥
≤ aε. (28)The proof of the lemma is presented in Se
tion 7Let for any ε ∈ (0, ε0], z(t, ε) = 
ol(x(t, ε), y(t, ε)

), t ∈ [0, T ] be the solutionof the original singularly perturbed system (1)-(2) with a given u(t) ∈ U , andthe initial 
onditions (3)-(4). Due to the assumption A4, the de�nition of theset U of 
ontrol fun
tions and results of Hale and Lunel (1993), this solutionexists and is unique. Let for the same u(t) as in z(t, ε), x̄(t), t ∈ [0, T ] be thesolution of the redu
ed system (12) with ū(t), repla
ed by u(t), and the initial
ondition (15). This solution also exists and is unique.Lemma 2 Under the assumptions A1-A4 and A6, the following inequalities aresatis�ed for all ε ∈ (0, ε2], (ε2 ≤ min{ε0, ε1}), and all u(t) ∈ U :
‖x(t, ε)‖ ≤ a, ‖y(t, ε)‖ ≤ a, t ∈ [0, T ], (29)
‖x̄(t)‖ ≤ a, t ∈ [0, T ], (30)
‖x(t, ε) − x̄(t)‖ ≤ aε, t ∈ [0, T ], (31)where a > 0 is some 
onstant independent of both ε and u(t).The proof of the lemma is presented in Se
tion 8.4. Main resultsDenote in the OOCP, for a given ε ∈ (0, ε0],
J∗

ε
△
= inf

u(t)∈U
J(u(t)), (32)and in the ROCP

J̄∗ △
= inf

ū(t)∈U
J̄(ū(t)). (33)



336 V.Y. GLIZERTheorem 1 Let the assumptions A1-A6 be valid. Then,
|J∗

ε − J̄∗| ≤ aε ∀ε ∈ (0, ε2], (34)where the positive 
onstant ε2 is de�ned in Lemma 2.Proof. First of all, let us note that, by Lemma 2 and the assumption A5,
J∗

ε > −∞ ∀ε ∈ (0, ε2], (35)
J̄∗ > −∞. (36)Due to (32) and (35), for a given ε ∈ (0, ε2], there exist sequen
es {up(t)},

(up(t) ∈ U, p = 1, 2, ...), and {δp}, (δp ≥ 0, p = 1, 2, ...),
lim

p→+∞
δp = 0, (37)su
h that in the OOCP

J(up(t)) = J∗
ε + δp, p = 1, 2, ... . (38)Similarly, due to (33) and (36), there exist sequen
es {ūp(t)}, (ūp(t) ∈ U, p =

1, 2, ...), and {δ̄p}, (δ̄p ≥ 0, p=1, 2, ...),
lim

p→+∞
δ̄p = 0, (39)su
h that in the ROCP

J̄(ūp(t)) = J̄∗ + δ̄p, p = 1, 2, ... . (40)Let us �x any ε ∈ (0, ε2] and any p ∈ {1, 2, ...}. Then, using Lemma 2, theequations (6) and (16), and the assumption A5, one has dire
tly
|J(up(t)) − J̄(up(t))| ≤ aε, |J(ūp(t)) − J̄(ūp(t))| ≤ aε, (41)where a > 0 is some 
onstant independent of both ε ∈ (0, ε2] and p ∈ {1, 2, ...}.Substitution of (38) and (40) into (41) yields, after a simple algebra
−aε− δp ≤ J∗

ε − J̄(up(t)) ≤ aε − δp, (42)
−aε + δ̄p ≤ −J̄∗ + J(ūp(t)) ≤ aε + δ̄p. (43)By virtue of (32) and (33), we have the inequalities
J∗

ε − J(ūp(t)) ≤ 0, (44)
0 ≤ −J̄∗ + J̄(up(t)). (45)By adding the left-hand inequality in (42) and the inequality (45) we get
−aε− δp ≤ J∗

ε − J̄∗. (46)



Corre
tness of a 
onstrained 
ontrol Mayer's problem 337Similarly, by adding the right-hand inequality in (43) and inequality (44) we get
J∗

ε − J̄∗ ≤ aε + δ̄p. (47)The inequalities (46) and (47) dire
tly lead to the inequality
|J∗

ε − J̄∗| ≤ aε + νp, νp = max{δp, δ̄p}. (48)The inequality (48) is valid for any ε ∈ (0, ε2] and p ∈ {1, 2, ...}, while the
onstant a is independent of these ε and p. Moreover, due to (37) and (39),
limp→+∞ νp = 0. The latter, along with (48), leads to the hypothesis of thetheorem.Following the de�nition of 
orre
tness of optimal 
ontrol problems with sin-gularly perturbed undelayed dynami
s (see Dont
hev, 1983), we say that theOOCP is posed 
orre
tly if limε→+0 J∗

ε = J̄∗. As a dire
t 
onsequen
e of The-orem 1, we have the following 
orollary.Corollary 1 Under the assumptions A1-A6, the OOCP is posed 
orre
tly.In the sequel of this se
tion, we assume:A7. The ROCP has a solution, and ū∗(t) is its optimal 
ontrol.Under the assumption A7, we obtain that in the ROCP
J̄∗ = J̄(ū∗(t)). (49)Let Jε(ū

∗(t)) be the value of the 
ost fun
tional in the OOCP for u(t) = ū∗(t).Theorem 2 Let the assumptions A1-A7 be valid. Then,
0 ≤ Jε(ū

∗(t)) − J∗
ε ≤ aε ∀ε ∈ (0, ε2], (50)where the positive 
onstant ε2 is the same as in Lemma 2 and Theorem 1.Proof. From Lemma 2, the equations (6),(16),(49) and the assumption A5, oneobtains the following inequality for all ε ∈ (0, ε2]: |Jε(ū

∗(t)) − J̄∗| ≤ aε. Thisinequality, along with (34), yields for all ε ∈ (0, ε2]: |Jε(ū
∗(t)) − J∗

ε | ≤ aε. Thelatter and the inequality J∗
ε ≤ Jε(ū

∗(t)) lead to the statement of theorem.Remark 2 Theorem 2 implies that the 
ontrol u(t) = ū∗(t) is asymptoti
allysuboptimal in the OOCP, i.e., it is suboptimal for all su�
iently small ε > 0.Remark 3 The proofs of Theorems 1 and 2 are based neither on ne
essary noron su�
ient optimality 
onditions for both the OOCP and the ROCP. Moreover,these proofs do not use any assumption on the OOCP solution existen
e.



338 V.Y. GLIZER5. ExampleConsider the following parti
ular 
ase of the OOCP with s
alar slow and faststate variables, and with a s
alar 
ontrol:
dx(t)/dt = −x(t)− 3x(t− ε)+ 2y(t)+ y(t− ε)+ (t− 5)u(t), t ∈ [0, 2], (51)
εdy(t)/dt = 3x(t)− x(t− ε)− 4y(t)+ 2y(t− ε)+ (t +2)u(t), t ∈ [0, 2], (52)
x(τ) = τ, y(τ) = τ2, τ ∈ [−ε, 0), (53)
x(0) = 1, y(0) = 2, (54)
|u(t)| ≤ 1, t ∈ [0, 2], (55)
J(u(t))

△
= −x(2) → min

u(t):|u(t)|≤1
. (56)Comparing (51)-(52) with (1)-(2), one obtains that for (51)-(52) the matrix-valued fun
tions Ai(t, η), (i = 1, ..., 4) be
ome s
alar ones independent of t, i.e.,

Ai(t, η) ≡ Ai(η), t ∈ [0, 2], (i = 1, ..., 4), and these fun
tions have the form
A1(η) =







2, −∞ < η ≤ −1,
−1, −1 < η < 0,
0, η ≥ 0,

A2(η) =







1, −∞ < η ≤ −1,
2, −1 < η < 0,
0, η ≥ 0,

(57)
A3(η) =







4, −∞ < η ≤ −1,
3, −1 < η < 0,
0, η ≥ 0,

A4(η) =







−6, −∞ < η ≤ −1,
−4, −1 < η < 0,

0, η ≥ 0.
(58)The ROCP, asso
iated with the OOCP (51)-(56) has the form

dx̄(t)/dt = −x̄(t) + (2.5t − 2)ū(t), t ∈ [0, 2]; x̄(0) = 1, (59)
|ū(t)| ≤ 1, t ∈ [0, 2], (60)
J̄(ū(t))

△
= −x̄(2) → min

ū(t):|ū(t)|≤1
. (61)It is obtained dire
tly that the ROCP has the unique solution. The optimal
ontrol and the optimal value of the 
ost fun
tional are ū∗(t) = sign(2.5t − 2)and J̄∗ = J̄(ū∗(t)) = −1.532. The OOCP also has the unique solution. InTable 1, the optimal value J∗

ε of the 
ost fun
tional (56) in the OOCP, as wellas the ratio ∆J∗
ε = |J∗

ε − J̄∗|/ε, are presented for various values of ε. Itis seen that, for de
reasing ε, the ratio ∆J∗
ε in
reases. However, this in
reaseslows down. Numeri
al 
al
ulations have shown that maxε∈(0,0.1] ∆J∗

ε = 1.987,meaning that in this example, ε2 = 0.1 and a = 2 provide for the ful�llment ofTheorem 1. In Table 2, the value of Jε(ū
∗(t)), as well as the ratio ∆Jε(ū

∗(t)) =
(Jε(ū

∗(t)) − J∗
ε )/ε, are presented for various values of ε. It 
an be seen that,for de
reasing ε, the ratio ∆Jε(ū

∗(t)) de
reases. Numeri
al 
al
ulations haveshown that maxε∈(0,0.1] ∆Jε(ū
∗(t)) = 4.104, whi
h means that in this example,

ε2 = 0.1 and a = 4.11 provide for the ful�llment of Theorem 2. The results ofboth tables also show that in this example, J̄∗ is a better approximation of J∗
εthan Jε(ū

∗(t)).
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onstrained 
ontrol Mayer's problem 339Table 1. Values of J∗
ε and ∆J∗

ε

ε 0.1 0.08 0.06 0.04 0.02
J∗

ε - 1.427 - 1.429 - 1.440 - 1.462 - 1.493
∆J∗

ε 1.050 1.294 1.536 1.768 1.959Table 2. Values of Jε(ū
∗(t)) and ∆Jε(ū

∗(t))
ε 0.1 0.08 0.06 0.04 0.02

Jε(ū
∗(t)) - 1.017 - 1.111 - 1.210 - 1.314 - 1.422

∆Jε(ū
∗(t)) 4.104 3.975 3.833 3.686 3.5716. Some extensionsIn this se
tion, we 
onsider some extensions of the results of Se
tion 4.6.1. Mayer's problem with an intermediary 
ost fun
tionalConsider the optimal 
ontrol problem 
onsisting of the dynami
s equations (1)-(2), initial 
onditions (3)-(4), 
ontrol 
onstraint (5) and the performan
e index

JI(u(t))
△
= G

(

x(t1), x(t2), ..., x(tN )
)

→ min
u(t)∈U

, (62)where G(x1, x2, ..., xN ) is a given s
alar fun
tion for x1 ∈ En, x2 ∈ En, ...,
xN ∈ En; 0 < t1 < t2 < ... < tN = T are given time instants; U is the set ofadmissible 
ontrols de�ned in Se
tion 2.1. Similarly to Se
tion 2.1, this problemis 
alled original.Remark 4 A 
ost fun
tional of type (62) is 
alled intermediary (see e.g. Bern-hard, 1979). Optimal 
ontrol problems and di�erential games with intermediary
ost fun
tionals were studied in a number of works (see e.g. Bernhard, 1979; Ha-genaars, Imura and Nijmeijer, 2004; Lukoyanov and Reshetova, 1998; Turetsky,1999).In the sequel, we assume:A8. The fun
tion G(x1, x2, ..., xN ) is 
ontinuous and has 
ontinuous partialderivatives for x1 ∈ En, x2 ∈ En, ..., xN ∈ En.Setting formally ε = 0 in the original problem (1)-(5),(62), one obtains,similarly to Se
tion 2.2, the optimal 
ontrol problem 
onsisting of the dynami
sequation (12), initial 
ondition (15) and the performan
e index

J̄I(ū(t))
△
= G

(

x̄(t1), x̄(t2), ..., x̄(tN )
)

→ min
ū(t)∈U

. (63)Similarly to Se
tion 2.2, this problem is 
alled redu
ed.



340 V.Y. GLIZERDenote in the original problem (1)-(5),(62), for a given ε ∈ (0, ε0],
J∗

I,ε
△
= inf

u(t)∈U
JI(u(t)), (64)and in the redu
ed problem (12),(15),(63)

J̄∗
I

△
= inf

ū(t)∈U
J̄I(ū(t)). (65)Theorem 3 Let the assumptions A1-A4,A6,A8 be valid. Then,

|J∗
I,ε − J̄∗

I | ≤ aε ∀ε ∈ (0, ε2], (66)where the positive 
onstant ε2 is de�ned in Lemma 2.Proof. The theorem is proved similarly to Theorem 1.Like in Se
tion 4, one obtains the 
orre
tness of the problem (1)-(5),(62).Now, we assume:A9. The redu
ed problem (12),(15),(63) has a solution, and ū∗
I(t) is its optimal
ontrol.Let JI,ε(ū

∗
I(t)) be the value of the 
ost fun
tional in the original problem(1)-(5),(62) for u(t) = ū∗

I(t).Theorem 4 Let the assumptions A1-A4,A6,A8,A9 be valid. Then,
0 ≤ JI,ε(ū

∗
I(t)) − J∗

I,ε ≤ aε ∀ε ∈ (0, ε2], (67)where the positive 
onstant ε2 is the same as in Lemma 2 and Theorem 3.Proof. The theorem is proved similarly to Theorem 2.Note that Theorem 4 implies the asymptoti
 suboptimality of the 
ontrol
ū∗

I(t) in the original problem (1)-(5),(62).6.2. Bolza's problem with an intermediary 
ost fun
tionalConsider the optimal 
ontrol problem 
onsisting of the dynami
s equations (1)-(2), initial 
onditions (3)-(4), 
ontrol 
onstraint (5) and the performan
e index
JBI(u(t))

△
= G

(

x(t1), x(t2), ..., x(tN )
)

+

∫ T

0

(

f
′

(t)x(t) + g
′

(t)y(t) + h(t, u(t))
)

dt → min
u(t)∈U

, (68)where f(t) and g(t) are given ve
tor-valued fun
tions; h(t, u) is a given s
alarfun
tion. Like in Se
tion 6.1, this problem is 
alled original.
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tness of a 
onstrained 
ontrol Mayer's problem 341In the sequel, we assume:A10. The ve
tor-valued fun
tions f(t) and g(t) are 
ontinuously di�erentiablefor t ∈ [0, T ].A11. The fun
tion h(t, u) is de�ned and bounded for (t, u) ∈ [0, T ]×Du, wherethe set Du is introdu
ed in Se
tion 2.1 (see (5)).Let us introdu
e the new state variable
v(t) =

∫ t

0

(

f
′

(t)x(t) + g
′

(t)y(t) + h(t, u(t))
)

dt, t ∈ [0, T ]. (69)This state variable satis�es the di�erential equation
dv(t)/dt = f

′

(t)x(t) + g
′

(t)y(t) + h(t, u(t)), t ∈ [0, T ] (70)and the initial 
ondition
v(0) = 0. (71)Note that the equation (70) 
an be rewritten in the equivalent form
dv(t)/dt =

∫ 0

−h

[

dηf
′

1(t, η)
]

x(t + εη)

+

∫ 0

−h

[

dηg
′

1(t, η)
]

y(t + εη) + h(t, u(t)), (72)where f1(t, η) = f(t)θ(η), g1(t, η) = g(t)θ(η), (t, η) ∈ [0, T ]× (−∞, +∞), and
θ(η) =

{

1, −∞ < η < 0,
0, η ≥ 0.

(73)Thus, by using (69),(71) and (72), one 
an transform the optimal 
ontrolproblem (1)-(5),(68) to an equivalent one. This new optimal 
ontrol problem
onsists of the dynami
s equations (1)-(2) and (72), the initial 
onditions (3)-(4)and (71), the 
ontrol 
onstraint (5) and the performan
e index
JI(u(t))

△
= G

(

x(t1), x(t2), ..., x(tN )
)

+ v(tN ) → min
u(t)∈U

. (74)It 
an be seen dire
tly that the problem (1)-(5),(71),(72),(74) is the Mayer'sproblem with an intermediary 
ost fun
tional and singularly perturbed dynam-i
s, i.e., it is of the type 
onsidered in Se
tion 6.1.Setting formally ε = 0 in the problem (1)-(5),(68) yields a redu
ed problem,asso
iated with (1)-(5),(68). This redu
ed problem 
onsists of the dynami
sequation (12), initial 
ondition (15) and the following performan
e index
J̄BI

△
= G

(

x̄(t1), x̄(t2), ..., x̄(tN )
)

+

∫ T

0

(

f
′

0(t)x̄(t) + h0(t, ū(t))
)

dt → min
ū(t)∈U

, (75)



342 V.Y. GLIZERwhere f0(t) = f(t)−Ā
′

3(t)
(

Ā−1
4 (t)

)
′

g(t), h0(t, ū) = h(t, ū)−g′(t)Ā−1
4 (t)B2(t, ū).Similarly, by setting formally ε = 0 in the problem (1)-(5),(71),(72),(74), oneobtains a redu
ed problem, asso
iated with (1)-(5),(71),(72),(74). This redu
edproblem 
onsists of the dynami
s equations (12) and

dv̄(t)/dt = f
′

0(t)x̄(t) + h0(t, ū(t)), t ∈ [0, T ], (76)the initial 
onditions (15) and
v̄(0) = 0, (77)and the performan
e index
J̄I(ū(t))

△
= G

(

x̄(t1), x̄(t2), ..., x̄(tN )
)

+ v̄(tN ) → min
ū(t)∈U

. (78)By introdu
ing the new state variable
v̄(t) =

∫ t

0

(

f
′

0(t)x̄(t) + h0(t, ū(t))
)

dt, t ∈ [0, T ], (79)we obtain the equivalen
e of the problems (12),(15),(75) and (12),(15),(76)-(78).Denote in the original problem (1)-(5),(68), for a given ε ∈ (0, ε0],
J∗

BI,ε
△
= inf

u(t)∈U
JBI(u(t)), (80)and in the redu
ed problem (12),(15),(75)

J̄∗
BI

△
= inf

ū(t)∈U
J̄BI(ū(t)). (81)Theorem 5 Let the assumptions A1-A4,A6,A8,A10,A11 be valid. Then,

|J∗
BI,ε − J̄∗

BI | ≤ aε ∀ε ∈ (0, ε2], (82)where the positive 
onstant ε2 is de�ned in Lemma 2.Proof. The statement of the theorem follows dire
tly from the equivalen
e of theproblems (1)-(5),(68) and (1)-(5),(71),(72),(74), the equivalen
e of the redu
edproblems (12),(15),(75) and (12),(15),(76)-(78), and Theorem 3.Theorem 5 implies that the original problem (1)-(5),(68) is posed 
orre
tly.Now, we assume:A12. The redu
ed problem (12),(15),(75) has a solution, and ū∗
BI(t) is itsoptimal 
ontrol.Let JBI,ε(ū

∗
BI(t)) be the value of the 
ost fun
tional in the original problem(1)-(5),(68) for u(t) = ū∗

BI(t). Similarly to Theorems 2 and 4, we obtain thefollowing theorem.
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tness of a 
onstrained 
ontrol Mayer's problem 343Theorem 6 Let the assumptions A1-A4,A6,A8,A10-A12 be valid. Then,
0 ≤ JBI,ε(ū

∗
BI(t)) − J∗

BI,ε ≤ aε ∀ε ∈ (0, ε2], (83)where the positive 
onstant ε2 is the same as in Lemma 2 and Theorem 5.Theorem 6 implies the asymptoti
 suboptimality of the 
ontrol ū∗
BI(t) in theoriginal problem (1)-(5),(68).7. Proof of Lemma 1First, we prove the inequalities (25) and (27). By using the initial value problem(18)-(19) for the matrix Ψ(t, s, ε), as well as the blo
k form of this matrix andthe blo
k form (17) of the matrix A(t, η, ε), one 
an write down the initial valueproblem for the matri
es Ψ1(t, s, ε) and Ψ3(t, s, ε) as follows

ε(k−1)/2∂Ψk(t, s, ε)/∂t =

∫ 0

−h

[

dηAk(t, η)
]

Ψ1(t + εη, s, ε)

+

∫ 0

−h

[

dηAk+1(t, η)
]

Ψ3(t + εη, s, ε), k = 1, 3, 0 ≤ s < t ≤ T, (84)
Ψ1(t, s, ε) = 0, Ψ3(t, s, ε) = 0, t < s, (85)
Ψ1(s, s, ε) = In, Ψ3(s, s, ε) = 0. (86)Sin
e ε is a small positive parameter, (84)-(86) is an initial value problem fora singularly perturbed di�erential system with the general type of delay. Thedelay is small of order of the small multiplier ε for a part of the derivatives inthe system. A problem, limited to (84)-(86), was 
onsidered in Glizer (2003)where its asymptoti
 solution has been 
onstru
ted and justi�ed. The di�eren
ebetween the problem in Glizer (2003) and (84)-(86) is that the initial 
onditionsof the former are 
ontinuous, while the initial 
onditions of the latter have abreak at t = s. Nevertheless, the results of Glizer (2003) are dire
tly extendedto (84)-(86). By virtue of these results, there exists a positive 
onstant ε11 su
hthat ∀ε ∈ (0, ε11], the matri
es Ψk(t, s, ε), (k = 1, 3) 
an be represented as
Ψk(t, s, ε) = Ψ̄k0(t, s) + Ψb

k0(ξs, s) + Ok(t, s, ε), 0 ≤ s ≤ t ≤ T, (87)where ξs = (t − s)/ε; the matri
es Ψ̄10(t, s) and Ψ̄30(t, s) have the form
Ψ̄10(t, s) = Ψ̄(t, s), Ψ̄30(t, s) = −Ā−1

4 (t)Ā3(t)Ψ̄(t, s), 0 ≤ s ≤ t ≤ T, (88)the matrix Ψb
10(ξs, s) ≡ 0, ξs ≥ 0, 0 ≤ s ≤ t ≤ T , while the matrix Ψb

30(ξs, s),for 0 ≤ s ≤ t ≤ T , satis�es the initial value problem
∂Ψb

30(ξs, s)/∂ξs =

∫ 0

−h

[

dηA4(s, η)
]

Ψb
30(ξs + η, s), ξs > 0, (89)

Ψb
30(ξs, s) = −Ψ̄30(s, s), ξs ≤ 0; (90)
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Ok(t, s, ε), (k = 1, 3), are known matri
es satisfying the inequalities

‖Ok(t, s, ε)‖ ≤ aε, 0 ≤ s ≤ t ≤ T. (91)By virtue of the assumption A6 and results of Hale and Lunel (1993), oneobtains that the solution of (89)-(90) exists, is unique and satis�es the inequality
‖Ψb

30(ξs, s)‖ ≤ a exp(−βξs), 0 ≤ s ≤ t ≤ T, ξs ≥ 0. (92)Finally, the equations (87) and (88), and the inequalities (91) and (92) yielddire
tly the inequalities (25) and (27) for all ε ∈ (0, ε11].Now, let pro
eed to the proof of the inequalities (26) and (28). Similarly to(84)-(86), we have the initial value problem for the matri
es Ψl(t, s, ε), (l = 2, 4)

ε(l−2)/2∂Ψl(t, s, ε)/∂t =

∫ 0

−h

[

dηAl−1(t, η)
]

Ψ2(t + εη, s, ε)

+

∫ 0

−h

[

dηAl(t, η)
]

Ψ4(t + εη, s, ε), l = 2, 4, 0 ≤ s < t ≤ T, (93)
Ψ2(t, s, ε) = 0, Ψ4(t, s, ε) = 0, t < s, (94)
Ψ2(s, s, ε) = 0, Ψ4(s, s, ε) = Im. (95)Similarly to (87), one 
an obtain the following representations of the matri
es

Ψl(t, s, ε), (l = 2, 4) for all ε ∈ (0, ε12] with some positive ε12:
Ψl(t, s, ε) = Ψb

l0(ξs, s) + ε
(

Ψ̄l1(t, s) + Ψb
l1(ξs, s)

)

+ Ol(t, s, ε), (96)where 0 ≤ s ≤ t ≤ T ; the matri
es Ψb
l0(ξs, s), (l = 1, 2) have the form

Ψb
20(ξs, s) = 0, Ψb

40(ξs, s) = Ψ̃(ξs, s), 0 ≤ s ≤ t ≤ T, ξs ≥ 0; (97)the matri
es Ψ̄21(t, s) and Ψ̄41(t, s) satisfy the system
∂Ψ̄21(t, s)/∂t = Ā1(t)Ψ̄21(t, s) + Ā2(t)Ψ̄41(t, s), 0 ≤ s < t ≤ T, (98)
Ψ̄21(s, s) =

∫ +∞

0

[
∫ 0

−h

[

dηA2(s, η)
]

Ψ̃(σ + η)

]

dσ, (99)
0 = Ā3(t)Ψ̄21(t, s) + Ā4(t)Ψ̄41(t, s), 0 ≤ s ≤ t ≤ T ; (100)the matrix Ψb

21(ξs, s), for 0 ≤ s ≤ t ≤ T , satis�es the initial value problem
∂Ψb

21(ξs, s)/∂ξs =

∫ 0

−h

[

dηA2(s, η)
]

Ψ̃(ξs + η, s), ξs > 0, (101)
Ψb

21(0, s) = −

∫ +∞

0

[
∫ 0

−h

[

dηA2(s, η)
]

Ψ̃(σ + η)

]

dσ; (102)
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tness of a 
onstrained 
ontrol Mayer's problem 345the matrix Ψb
41(ξs, s), for 0 ≤ s ≤ t ≤ T , satis�es the initial value problem

∂Ψb
41(ξs, s)/∂ξs =

∫ 0

−h

[

dηA3(s, η)
]

Ψb
21(ξs + η) +

∫ 0

−h

[

dηA4(s, η)
]

Ψb
41(ξs + η)

+ ξs

∫ 0

−h

[

dη

(

∂A4(s, η)/∂s
)]

Ψ̃(ξs + η), ξs > 0, (103)
Ψb

41(ξs, s) = −Ψ̄41(s, s), ξs ≤ 0; (104)
Ol(t, s, ε), (l = 2, 4), are known matri
es satisfying the inequalities

‖Ol(t, s, ε)‖ ≤ aε2, 0 ≤ s ≤ t ≤ T. (105)Consider the system (98)-(100). Note that, due to (24) and (97), the integralin (99) 
onverges. Now, using (11),(13) and (20)-(21) we get for 0 ≤ s ≤ t ≤ T

Ψ̄21(t, s) = Ψ̄(t, s)Ψ̄21(s, s), Ψ̄41(t, s) = −Ā−1
4 (t)Ā3(t)Ψ̄21(t, s), (106)meaning the boundedness of Ψ̄41(t, s) for 0 ≤ s ≤ t ≤ T .Pro
eed to the problem (101)-(102). For 0 ≤ s ≤ t ≤ T , this problem hasthe unique solution

Ψb
21(ξs, s) = −

∫ +∞

ξs

[
∫ 0

−h

[

dηA2(s, η)
]

Ψ̃(σ + η, s)

]

dσ, ξs ≥ 0, (107)yielding, by using (24) and (97), the estimate
‖Ψb

21(ξs, s)‖ ≤ a exp(−βξs), 0 ≤ s ≤ t ≤ T, ξs ≥ 0. (108)By virtue of the assumption A6, the equation (97), the inequalities (24),(108)and the results of Hale and Lunel (1993), there exists a unique solution of theproblem (103)-(104), and this solution satis�es the inequality
‖Ψb

41(ξs, s)‖ ≤ a exp(−βξs), 0 ≤ s ≤ t ≤ T, ξs ≥ 0. (109)Now, using the expression ξs = (t − s)/ε, the equations (96) for l = 4 and(97), the inequalities (105) for l = 4 and (109), as well as the boundedness of
Ψ̄41(t, s), we obtain dire
tly the inequality (28) for all ε ∈ (0, ε12]. Similarly,by using the expression for ξs, the equations (96) for l = 2 and (106), theinequalities (105) for l = 2 and (108), as well as the fa
t that Ψb

20(ξs, s) ≡ 0, weobtain the following inequality for all ε ∈ (0, ε12] and 0 ≤ s ≤ t ≤ T :
‖Ψ2(t, s, ε) − εΨ̄(t, s)Ψ̄21(s, s)‖ ≤ aε

[

ε + exp
(

− β(t − s)/ε
)]

. (110)To 
omplete the proof of (26), we transform equivalently the matrix Ψ̄21(s, s)given by (99). For this purpose, we transform the equation (22). Its integrationwith respe
t to ξ on the interval [0, +∞), and using (23),(24) and (97), yield
−Im =

∫ +∞

0

[
∫ 0

−h

[

dηA4(s, η)
]

Ψ̃(ξ + η, s)

]

dξ. (111)



346 V.Y. GLIZERDue to (24) and (97), the integral in (111) 
onverges absolutely. Hen
e, by theFubini Theorem, we 
an 
hange the order of integration in this integral. Thus,
−Im =

∫ 0

−h

[

dηA4(s, η)
]

∫ +∞

0

Ψ̃(ξ + η, s)dξ. (112)The transformation of variables ξ = σ − η in the improper integral leads to
−Im =

∫ 0

−h

[

dηA4(s, η)
]

∫ +∞

η

Ψ̃(σ, s)dσ. (113)Now, (23) and the fa
t that η ∈ [−h, 0] imply
−Im =

∫ 0

−h

[

dηA4(s, η)
]

∫ +∞

0

Ψ̃(σ, s)dσ, (114)yielding, by virtue of (9) and (11),
∫ +∞

0

Ψ̃(σ, s)dσ = −Ā−1
4 (s). (115)Similarly to the transformation of the right-hand side in (111) to the right-hand side in (114), one 
an transform the expression (99) for Ψ̄21(s, s) as follows

Ψ̄21(s, s) = Ā2(s)

∫ +∞

0

Ψ̃(σ, s)dσ. (116)Finally, substitution of (115) into (116), and then of the resulting expressioninto (110) yields dire
tly the inequality (26) for all ε ∈ (0, ε12]. Setting ε1 =
min{ε11, ε12} 
ompletes the proof of the lemma.8. Proof of Lemma 2We begin with the proof of (29). We introdu
e the blo
k ve
tors

B(t, u) =

(

B1(t, u)
B2(t, u)

)

, ϕ(τ) =

(

ϕx(τ)
ϕy(τ)

)

, z0 =

(

x0

y0

)

, (117)and blo
k matri
es
Eε =

(

In 0
0 (1/ε)Im

)

, A(t, η) =

(

A1(t, η) A2(t, η)
A3(t, η) A4(t, η)

)

. (118)Then, using the variation of 
onstant formula (see Hale and Lunel, 1993) we get
z(t, ε) = Ψ(t, 0, ε)z0 +

∫ εh

0

Ψ(t, ω, ε)Eε

(

∫ −ω/ε

−h

[

dηA(ω, η)
]

ϕ(ω + εη)

)

dω

+

∫ t

0

Ψ(t, s, ε)EεB(s, u(s))ds, t ∈ [0, T ]. (119)
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tness of a 
onstrained 
ontrol Mayer's problem 347Using the blo
k form of Ψ(t, s, ε) and (117)-(119), one 
an write down theblo
ks x(t, ε) and y(t, ε) of the ve
tor z(t, ε) as follows
x(t, ε) = Ψ1(t, 0, ε)x0 + Ψ2(t, 0, ε)y0

+

∫ εh

0

{

Ψ1(t, ω, ε)

(

∫ −ω/ε

−h

[

dηA1(ω, η)
]

ϕx(ω + εη)

+

∫ −ω/ε

−h

[

dηA2(ω, η)
]

ϕy(ω + εη)

)

+ (1/ε)Ψ2(t, ω, ε)

(

∫ −ω/ε

−h

[

dηA3(ω, η)
]

ϕx(ω + εη)

+

∫ −ω/ε

−h

[

dηA4(ω, η)
]

ϕy(ω + εη)

)}

dω

+

∫ t

0

(

Ψ1(t, s, ε)B1(s, u(s)) + (1/ε)Ψ2(t, s, ε)B2(s, u(s))
)

ds, (120)
y(t, ε) = Ψ3(t, 0, ε)x0 + Ψ4(t, 0, ε)y0

+

∫ εh

0

{

Ψ3(t, ω, ε)

(

∫ −ω/ε

−h

[

dηA1(ω, η)
]

ϕx(ω + εη)

+

∫ −ω/ε

−h

[

dηA2(ω, η)
]

ϕy(ω + εη)

)

+ (1/ε)Ψ4(t, ω, ε)

(

∫ −ω/ε

−h

[

dηA3(ω, η)
]

ϕx(ω + εη)

+

∫ −ω/ε

−h

[

dηA4(ω, η)
]

ϕy(ω + εη)

)}

dω

+

∫ t

0

(

Ψ3(t, s, ε)B1(s, u(s)) + (1/ε)Ψ4(t, s, ε)B2(s, u(s))
)

ds. (121)The inequalities (24) and (25)-(28) yield the following estimates of the ma-tri
es Ψi(t, s, ε), (i = 1, ..., 4) for all ε ∈ (0, ε1] and 0 ≤ s ≤ t ≤ T :
‖Ψk(t, s, ε)‖ ≤ a, k = 1, 3, (122)
‖Ψ2(t, s, ε)‖ ≤ aε, ‖Ψ4(t, s, ε)‖ ≤ a

[

ε + exp
(

− β(t − s)/ε
)]

. (123)Now, using the assumptions A1-A4, the de�nition of the set U , the equations(85) and (94), and the inequalities (122) and (123) we obtain the inequalities(29). The inequality (30) is proved similarly by using the following expression
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x̄(t) = Ψ̄(t, 0)x0 +

∫ t

0

Ψ̄(t, s)B̄0(s, u(s))ds, t ∈ [0, T ]. (124)We pro
eed to the proof of (31), based on some analysis of (120). First,note that, for ω ∈ [0, εh], the term ω/ε varies from 0 to h. For ω ∈ [0, εh] and
η ∈ [−h,−ω/ε], the term ω + εη varies in the interval [−h, 0]. Hen
e, due to theassumptions A1 and A3, the following inequalities hold for all ε ∈ (0, ε0]:

∥

∥

∥

∥

∥

∫ −ω/ε

−h

[

dηAk(ω, η)
]

ϕx(ω + εη)

∥

∥

∥

∥

∥

≤ a, k = 1, 3, ω ∈ [0, εh], (125)
∥

∥

∥

∥

∥

∫ −ω/ε

−h

[

dηAl(ω, η)
]

ϕy(ω + εη)

∥

∥

∥

∥

∥

≤ a, l = 2, 4, ω ∈ [0, εh]. (126)Using the inequality (25), the �rst inequalities in (122),(123) and the in-equalities (125),(126), we obtain the following inequalities for all ε ∈ (0, ε2]:
∥

∥

∥
Ψ1(t, 0, ε)x0 − Ψ̄(t, 0)x0

∥

∥

∥
≤ aε,

∥

∥

∥
Ψ2(t, 0, ε)y0

∥

∥

∥
≤ aε, t ∈ [0, T ], (127)

∥

∥

∥

∥

∥

∫ εh

0

Ψ1(t, ω, ε)

(

∫ −ω/ε

−h

[

dηA1(ω, η)
]

ϕx(ω + εη)

+

∫ −ω/ε

−h

[

dηA2(ω, η)
]

ϕy(ω + εη)

)

dω

∥

∥

∥

∥

∥

≤ aε, t ∈ [0, T ], (128)
∥

∥

∥

∥

∥

∫ εh

0

(1/ε)Ψ2(t, ω, ε)

(

∫ −ω/ε

−h

[

dηA3(ω, η)
]

ϕx(ω + εη)

+

∫ −ω/ε

−h

[

dηA4(ω, η)
]

ϕy(ω + εη)

)

dω

∥

∥

∥

∥

∥

≤ aε, t ∈ [0, T ]. (129)Now, we analyze the last integral term in (120). By subtra
ting the integralpart in the expression (124) for x̄(t) from this term and using (14), we obtain
G(t, ε)

△
=

∫ t

0

(

Ψ1(t, s, ε)B1(s, u(s)) + (1/ε)Ψ2(t, s, ε)B2(s, u(s))
)

ds

−

∫ t

0

Ψ̄(t, s)B̄0(s, u(s))ds =

∫ t

0

(

Ψ1(t, s, ε) − Ψ̄(t, s)
)

B1(s, u(s))ds

+

∫ t

0

(

(1/ε)Ψ2(t, s, ε) + Ψ̄(t, s)Ā2(s)Ā
−1
4 (s)

)

B2(s, u(s))ds. (130)
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‖G(t, ε)‖ ≤ aε, t ∈ [0, T ], (131)where a > 0 is some 
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