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Abstract: A Mayer’s problem for a singularly perturbed con-
trolled system with the general type of a small state delay is con-
sidered. The control is subject to geometrical constraints. The cost
functional is a function of the terminal value of the slow state vari-
able. A simpler parameter-free optimal control problem (the reduced
problem) is associated with the original problem. A convergence of
the optimal value of the cost functional in the original problem to
the optimal value of the cost functional in the reduced problem, as
a parameter of singular perturbation tends to zero, is established.
An asymptotic suboptimality of the optimal control of the reduced
problem in the original problem is shown. These results are extended
to some more general optimal control problems. An illustrative ex-
ample is presented.
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1. Introduction

Control problems for singularly perturbed systems are studied extensively for
about four recent decades. Most of publications in the topic are devoted to
analysis of undelayed dynamics control problems (see e.g. Artstein, 2005; Dmi-
triev and Kurina, 2006; Dontchev, 1983; Dontchev and Zolezzi, 1993; Gajic and
Lim, 2001; Kokotovic, Khalil and O’Reilly, 1999; Naidu, 2002, and references
therein). Control problems for singularly perturbed delayed systems are studied
much less (see e.g. Dmitriev and Kurina, 2006; Fridman, 1990, 2006; Glizer,
1998, 2000, 2004, 2005, 2006, 2007; Kopeikina, 1989; Lin-Chen and Goodall,
2004; Reddy and Sannuti, 1974; Slavov, 1995, and references therein).
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One of the important issues, arising in control theory, is optimization of a
controlled system with respect to a given performance index. The rich literature
is devoted to studying this issue for singularly perturbed undelayed systems with
unconstrained controls (see e.g. Kokotovic, Khalil and O’Reilly, 1999; Gajic and
Lim, 2001, and references therein) and constrained controls (see e.g. Dontchev,
1983; Dontchev and Zolezzi, 1993, and references therein) by using the concept
of separation of time scales and the order reduction approach. For the analysis
of optimal control problems with singularly perturbed undelayed dynamics, not
allowing for application of the order reduction approach, the method, based on
the notion of limit distributions of control and fast state variable on the fast
time scale, was developed in a number of works (see e.g. Artstein, 2005, and
references therein).

Optimal control problems for singularly perturbed systems with delays were
studied only in several works. The problems with unconstrained controls were
considered in Fridman (1990), Glizer (1998, 2000, 2007), Reddy and Sannuti
(1974) (the case of small delay) and in Glizer (2005, 2006) (the case of nons-
mall delay). To our best knowledge, optimal control problems with constrained
controls for singularly perturbed delayed systems were not studied in literature.

In this paper, we consider an optimal control problem with a prescribed
duration for a singularly perturbed time-dependent system with the general
type of delay in state variables. The system is linear with respect to the states.
The initial conditions for this system are given. The control is constrained. The
cost functional is a function of the terminal value of the slow state variable. The
delay is small of order of the small parameter £ > 0 multiplying a part of the
derivatives in the system.

Singularly perturbed systems with small delays of order of the small mul-
tiplier for a part of the derivatives are highly significant for the domain of
functional-differential equations (see e.g. Artstein and Slemrod, 2001; Fridman,
1996; Glizer, 2003; Halanay, 1966; Mitropol’skii, Fodchuk and Klevchuk, 1986,
and references therein), in control theory (see e.g. Fridman, 1990, 2006; Glizer,
1998, 2000, 2004, 2007; Reddy and Sannuti, 1974, and references therein), and
in various applications (see e.g. Lange and Miura, 1994; Lizana, 1999; Reddy
and Sannuti, 1975, and references therein). Singularly perturbed systems with
nonsmall delays also have a considerable importance in theory and applications
(see e.g. Cooke and Meyer, 1966; Donchev and Slavov, 1995, 1997; Glizer, 2005,
2006; Hale and Tanaka, 2000; Kopeikina, 1989; Magalhaes, 1984; Mallet-Paret
and Nussbaum, 1989, and references therein). It should be noted that the meth-
ods of analysis of singularly perturbed systems with small and nonsmall delays
essentially differ.

For the problem considered in the paper, an asymptotic behavior (as e — +0)
of the optimal value of the cost functional is studied. This study is carried out
by an extension of the order reduction approach to such a class of problems.
Namely, first, a simpler e-free optimal control problem (the reduced one) is as-
sociated with the original problem. Second, it is shown that the optimal value of
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the cost functional of the latter converges to the optimal value of the cost func-
tional of the former, while ¢ — +0. Such a convergence means the correctness of
the singularly perturbed optimal control problem considered in the paper. An
estimate of the difference between the optimal values of the cost functional in
the original and reduced problems also is obtained. As a consequence of these
results, it is shown that the optimal control of the reduced problem can serve
as a suboptimal control in the original problem for all sufficiently small values
of ¢, i.e., robustly with respect to this parameter.

The paper is organized as follows. In the next section, the problem is formu-
lated rigorously. Section 3 is devoted to some preliminary results. Main results
are presented in Section 4. An illustrative example is considered in Section 5.
In Section 6, some extensions of the main results are discussed. Sections 7 and
8 are devoted to proofs of the lemmas presented in Section 3.

The following notations are applied in the paper:

. E™ is the n-dimensional real Euclidean space.

. The Euclidean norm of either a matrix or a vector is denoted as || - ||.

. I, denotes the n-dimensional identity matrix.

. The prime, as an upper index, denotes the transposition either of a matrix
A, (A" or of a vector z, ().

5. col(x,y), where z € E™ y € E™, denotes the column block-vector of

the dimension n 4+ m with the upper block = and the lower block y, i.e.,

’

col(z,y) = (x ,y/)/.

=~ W N =

2. Problem formulation and main assumptions
2.1. Original problem

Consider the following system

de(t)/dt = L Oh [y vt m)|(t +2m) + L Oh [y A2t )|yt + en)
+ By(t,u(t), te][0,T)], (1)
cdy(t) it = [ Oh [y attm]ate+em + [ Oh [y st )] y(t + <)
+ Ba(t,u(t)), tel0,T], (2)

where z(t) € E™, y(t) € E™, u(t) € E" (u is a control); ¢ > 0 is a small
parameter; A1 (t,n), Aa2(t,n), As(t,n) and A4(t,n) are matrices of corresponding
dimensions; Bi(¢,u) and Ba(t,u) are vectors of corresponding dimensions; h > 0
is a given constant and 7" > 0 is a given time instant, both independent of ¢.

Note that x(-) and y(-) are called the slow and fast state variables, respec-
tively, of the system (1)-(2).

In the sequel, we assume:
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A1l. The matrix-valued functions A;(t,n), (i = 1,...,4) are given for (t,n) €
[0,T] x (=00, +00) and satisfy the conditions:
(a) Ailt,n) = 0, (i = 1,..,4), ¥(t,n) € [0,T] x [0, +00);
( ) Az( ) A (tv _h)a (7’ =1, "'74)7 V(fﬂ?) € [OvT] X (—OO, _h]5
(c) Ag(t,n), (k = 1,2), are continuously differentiable with respect to ¢ € [0, 7]
uniformly in n € (—oo, +00);
(d) Ai(t,n), (I = 3,4), are twice continuously differentiable with respect to
t € [0, 7] uniformly in 5 € (—o0, +00);
(e) for each t € [O T), Ai(t,n), (i = 1,...,4), are continuous from the left with
respect to n € (—h,0);
(f) A;(t,n) and 8A (t,m)/0t, (i =1,...,4), have bounded variations with respect
to n on the interval [—h, 0] umformly intel0,T];
(g) 02A,(t,n)/0t?, (I = 3,4), have bounded variations with respect to 7 on the
interval [—h, 0] uniformly in ¢ € [0, T].
A2. The vector-valued functions B;(t,u), (j = 1,2), are defined for (¢,u) €
[0,T] x Dp, where Dp C E" is a given set.

For (1)-(2), the initial conditions are given as

‘T(T) = Pz (T)v y(T) = (py(T)v TE [_Ehv 0)7 (3)
2(0) = 0, y(0) = yo, (4)

where ¢, (7) and ¢, (7) are given vector-valued functions; x¢ and yo are given
vectors. In the sequel, we assume:

A3. There exists a positive constant g, such that the vector-valued functions
@, (7) and ¢, (7) are continuously differentiable for 7 € [—g¢h, 0].

The admissible controls are measurable functions for ¢ € [0, T] satisfying the
inclusion

u(t) € D,, telo,T), (5)

where D,, C Dp is a given set. The set of all admissible controls u(t) is denoted
by U. The performance index, evaluating the control process, is

J(u(t)) = F(x(T)) — ulél)lélU (6)

where F(z) is a given scalar function defined for x € E™.

In the sequel, we assume:
A4. |B;(t,u)|| < e Y(t,u) € [0,T] x Dy, (j =1,2), where cg > 0 is some
constant.

A5. The function F(z) is continuous and has continuous first-order partial
derivatives for z € E™.

The problem (1)-(6) is called the Original Optimal Control Problem (OOCP).
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2.2. Reduced problem

Setting formally e = 0 in (1)-(2), and redenoting x by Z, y by § and u by @, we
obtain the system

dz(t)/dt = Ay (t)z(t) + A2()y(t) + Ba(t, u(t)), (7)
0= A3(t)(t) + As(t)g(t) + Ba(t, a(t)), (8)
where
0
At) :/_hd,,A(t,n), i=1,..4 )

Consider the following matrix depending on ¢ and a complex parameter A

0
W(t,)\):/ exp(An)dy Aa(t,n). (10)

—h

In the sequel, we assume:

A6. All roots X of the equation det[W (¢, A\) — AL, ] = 0 lie inside the left-hand
half-plane for all ¢ € [0, 7.

Due to (9) and (10), W(¢,0) = A4(t) Vt € [0,7] yielding, by using the
assumption A6,

det A4(t) #0 VYt €[0,T). (11)

Thus, by using (11), we can eliminate y from (7)-(8), which yields the fol-
lowing system

dz(t)/dt = Ag(t)z(t) + Bo(t,u(t)), t€0,T], (12)
where

Ap(t) = Ay () — As(D AT (D) A3(t), (13)

By(t,u) = By (t,a) — Aa(t) A (t) Ba(t, @). (14)

For (12), the initial condition and the performance index are, respectively,
#(0) = o, (15)

N :
J(a(t)) & F(x(T)) ~ min . (16)
The problem (12)-(16) is called the Reduced Optimal Control Problem (ROCP).

It can be seen that the ROCP is much simpler than the OOCP. The ROCP is
of a lower dimension, it is delay-free and it is e-free.
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2.3. Objectives of the paper

The objectives of the paper are the following;:

(1) to establish the convergence of the optimal value of the cost functional in
the OOCP to the optimal value of the cost functional in the ROCP for ¢ — +0,
i.e., to establish the correctness of the OOCP;

(2) to estimate the difference between the optimal values of the cost functional
in the OOCP and ROCP;

(3) to establish the suboptimality of the ROCP optimal control in the OOCP
for all sufficiently small € > 0, i.e., robustly with respect to this parameter.

3. Preliminary results

Consider the block matrix

_( Ault,n) Ax(t,n)
At = (3500 Al ) an

Let, for a given € > 0, the ((n +m) x (n+ m))—matrix U(t,s,e) be the
solution of the problem
0
0V (t,s,e)/0t = / [dnA(t,n,e)}\I/(t—F en,s,e), 0<s<t<T, (18)
—h
U(t,s,e)=0, t<s; V(s,8,6)=lhim. (19)

It is clear that W(t, s,¢) is the fundamental matrix solution of the homogeneous
version (B;(t,u) =0, (j = 1,2)) of the system (1)-(2).
Let the n x n-matrix W(t, s) be the solution of the problem

0W(t,s) /ot = Ag(t)¥(t,s), 0<s<t<T, (20)
U(s,s) = 1I,. (21)

The matrix W(t, s) is the fundamental matrix solution of the homogeneous ver-
sion (Bo(t,u) = 0) of the system (12).
Let the m x m-matrix ¥ (&, s) be the solution of the problem

~ 0 ~
DU, 5)/0¢ = /7,1 Ay Aa(s,m) | #(E+m,5), 0<s<T, €50, (22)

W(E,s)=0, £€<0; U(0,s)=1I, 0<s<T. (23)

Due to the assumption A6 and results of Hale and Lunel (1993), the matrix
U (¢, s) satisfies the inequality

(&, s)]| < aexp(—BE), 0<s<T, £>0. (24)
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REMARK 1 In (24) and in the sequel, a and 3 denote some positive constants
independent of €.

LEMMA 1 Let Uy(t, s,¢), Ualt,s,e), Us(t,s,e) and Vy(t, s,e) be the upper left-
hand, upper right-hand, lower left-hand and lower right-hand blocks of the matriz
U(t,s,e) of the dimensions n X n, n x m, m xn and m x m, respectively. Then,
under the assumptions Al and A6, there exists a number e1 > 0, such that these
blocks satisfy the following inequalities for all e € (0,e1] and 0 < s <t < T:

191 (t,5,) = (L, s)|| < ae,

(25)
[Wa(t, s,) + eT(t, 8) Az (s) A7 L (5)] < ag[s+exp(—ﬁ(t—s)/5)], (26)
19s(t,5,2) + A7 (O A U(E )| S ale+exp (- Bl -s)/e)],  (27)
H\I/4(t,s,5) ((t— s)/e, S)H < ae. (28)

The proof of the lemma is presented in Section 7

Let for any € € (0,¢9], 2(t, &) = col(m(t,s),y(t, 6)), t € [0,T] be the solution
of the original singularly perturbed system (1)-(2) with a given u(t) € U, and
the initial conditions (3)-(4). Due to the assumption A4, the definition of the
set U of control functions and results of Hale and Lunel (1993), this solution
exists and is unique. Let for the same wu(t) as in z(¢,¢), Z(t), t € [0,T] be the
solution of the reduced system (12) with @(t), replaced by u(t), and the initial
condition (15). This solution also exists and is unique.

LEMMA 2 Under the assumptions A1-A4 and A6, the following inequalities are
satisfied for all € € (0,e2], (2 < min{eg,e1}), and all u(t) € U:

lz(t,e)| <a, [yt ) <a, te€0,T], (29)
12| <a, te€l0,T], (30)
lx(t,e) — Z(t)]| < ae, te€][0,T], (31)

where a > 0 is some constant independent of both € and u(t).

The proof of the lemma is presented in Section 8.

4. Main results

Denote in the OOCP, for a given ¢ € (0, &),

A
Jr = f J(u(t 2
SE nf (). (32)

and in the ROCP

= inf  J(a(t)).
2 e ) (33)
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THEOREM 1 Let the assumptions A1-A6 be valid. Then,
|J* — J*| <as Ve € (0,eq], (34)
where the positive constant €2 is defined in Lemma 2.
Proof. First of all, let us note that, by Lemma 2 and the assumption A5,
JI > —00 Ve e (0,e2], (35)
J* > —c0. (36)

Due to (32) and (35), for a given € € (0, 2], there exist sequences {u,(t)},
(up(t) el, p=1,2, )a and {510}7 (511 >0, p=12, )7

lim 6, =0, (37)

p——+o0
such that in the OOCP
Jup)) = J2 48y 1,20 (39)

Similarly, due to (33) and (36), there exist sequences {u,(t)}, (4,(t) € U, p =
17 25 )7 and {520}7 (517 2 07 pzla 27 )7

lim 6, =0, (39)

p——+0o0
such that in the ROCP
J(u,(t)) =J +0,, p=1,2,.... (40)

Let us fix any € € (0,e2] and any p € {1,2,...}. Then, using Lemma 2, the
equations (6) and (16), and the assumption A5, one has directly

[T (up(t)) = T(up(t))] < ae, | J(w@p(t)) — J(@p(1))] < ac, (41)

where a > 0 is some constant independent of both € € (0,e2] and p € {1,2,...}.
Substitution of (38) and (40) into (41) yields, after a simple algebra

—ag — 8p < JI — J(up(t)) < ae — 6y, (42)
—ag + 6, < —J* + J(u,(t)) < ac + 5. (43)
By virtue of (32) and (33), we have the inequalities

JI = J(uy(t)) <0, (44)
0 < —J* + J(uy(t)). (45)

By adding the left-hand inequality in (42) and the inequality (45) we get
—ag — 6, < JF — J*. (46)
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Similarly, by adding the right-hand inequality in (43) and inequality (44) we get
JF—J" <as+6p. (47)
The inequalities (46) and (47) directly lead to the inequality
|JX — J*| < ac+vp, v, =max{dy, 0} (48)

The inequality (48) is valid for any € € (0,e2] and p € {1,2,...}, while the
constant a is independent of these ¢ and p. Moreover, due to (37) and (39),
lim, ;o vp = 0. The latter, along with (48), leads to the hypothesis of the
theorem. L]

Following the definition of correctness of optimal control problems with sin-
gularly perturbed undelayed dynamics (see Dontchev, 1983), we say that the
OOCP is posed correctly if lim._, 1o J* = J*. As a direct consequence of The-
orem 1, we have the following corollary.

COROLLARY 1 Under the assumptions A1-A6, the OOCP is posed correctly.

In the sequel of this section, we assume:

A7. The ROCP has a solution, and u*(¢) is its optimal control.
Under the assumption A7, we obtain that in the ROCP

J* = J(u*(t)). (49)
Let J.(u*(t)) be the value of the cost functional in the OOCP for u(t) = @*(t).
THEOREM 2 Let the assumptions A1-A7 be valid. Then,

0< Jo(u"(t)) = J: <ae Ve € (0,eq], (50)
where the positive constant €y is the same as in Lemma 2 and Theorem 1.
Proof. From Lemma 2, the equations (6),(16),(49) and the assumption A5, one
obtains the following inequality for all € € (0,e3]: |J-(a*(t)) — J*| < ae. This

inequality, along with (34), yields for all € € (0,¢e2]: |Jo(a*(t)) — J*| < ae. The
latter and the inequality JZ < J.(@*(t)) lead to the statement of theorem. m

REMARK 2 Theorem 2 implies that the control u(t) = u*(t) is asymptotically
suboptimal in the OOCP, i.e., it is suboptimal for all sufficiently small € > 0.

REMARK 3 The proofs of Theorems 1 and 2 are based neither on necessary nor
on sufficient optimality conditions for both the OOCP and the ROCP. Moreover,
these proofs do not use any assumption on the OOCP solution existence.



338 V.Y. GLIZER

5. Example

Consider the following particular case of the OOCP with scalar slow and fast
state variables, and with a scalar control:

dz(t)/dt = —x(t) —3z(t —e) + 2y(t) + y(t —e) + (t —5)u(t), t €[0,2], (51)
edy(t )/dt =3x(t) —z(t—e) —4dy(t)+ 2yt —e) + (t+2)u(t), t €[0,2], (52)
z(7) = y(r) =7°, 7€[-¢,0), (53)
z(0) = y(0) =2, (54)
lu(t)] < t €10,2], (55)
J(u(t)) —z(2) - min (56)

u(®):|u(t)| <1
Comparing (51)-(52) with (1)-(2), one obtains that for (51)-(52) the matrix-
valued functions A;(t,n), (i =1, ...,4) become scalar ones independent of ¢, i.e.,
Ai(t,n) = Ai(n), t €10,2], (i = 1,...,4), and these functions have the form

2, —oo<n< -1, 1, —oco<n<—1,
Ai(n) =¢ -1, —1<n<0, Ag(n) =4 2, —1<n<0, (57)
0, n=0, 0, n=0,
4, —oco<n<—1, 6, —oco<n<-—1,
As(n) =4 3, —1<n<0, 4, —-1<n<0, (58)
0, n >0, 0, n > 0.
The ROCP, associated with the OOCP (51)-(56) has the form
dz(t)/dt = —z(t) + (2.5 — 2)u(?), [ 2 #(0)=1, (59)
lu(t) <1, tel0,2], (60)
J@at) 2 -z(2) »  min . (61)

a(t):|a(t)|<1

It is obtained directly that the ROCP has the unique solution. The optimal
control and the optimal value of the cost functional are a*(t) = sign(2.5¢t — 2)
and J* = J(u*(t)) = —1.532. The OOCP also has the unique solution. In
Table 1, the optimal value J* of the cost functional (56) in the OOCP, as well
as the ratio AJ* = |J* — J*|/e, are presented for various values of e. It
is seen that, for decreasing ¢, the ratio AJ? increases. However, this increase
slows down. Numerical calculations have shown that max.¢g,0.1) AJZ = 1.987,
meaning that in this example, e2 = 0.1 and a = 2 provide for the fulfillment of
Theorem 1. In Table 2, the value of J.(a*(¢)), as well as the ratio AJ.(a*(t)) =
(Je(u*(t)) — JX)/e, are presented for various values of €. It can be seen that,
for decreasing e, the ratio AJ.(a*(t)) decreases. Numerical calculations have
shown that max.¢o,0.1) AJ:(u*(t)) = 4.104, which means that in this example,
g2 = 0.1 and a = 4.11 provide for the fulfillment of Theorem 2. The results of
both tables also show that in this example, J* is a better approximation of .J*
than J.(a*(t)).
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Table 1. Values of J! and AJ;
€ 0.1 0.08 0.06 0.04 0.02
JX -1.427 | -1.429 | - 1.440 | - 1.462 | - 1.493
AJX | 1.050 | 1.294 | 1.536 | 1.768 | 1.959

Table 2. Values of J.(a*(t)) and AJ.(a*(t))

e 0.1 008 | 006 | 0.04 | 002
Jo(@ () | -1.017 |- 1111 | -1.210 | - 1.314 | - 1.422
AJ.(u*(t)) | 4104 | 3975 | 3.833 | 3.686 | 3.571

6. Some extensions

In this section, we consider some extensions of the results of Section 4.

6.1. Mayer’s problem with an intermediary cost functional

Counsider the optimal control problem consisting of the dynamics equations (1)-
(2), initial conditions (3)-(4), control constraint (5) and the performance index

Ji(u(®) 2 G(a(tr),w(t2), - a(tn)) = Jmin (62)

where G(z1,22,...,2n) is a given scalar function for z; € E", 22 € E", ...,
xny € E™ 0 <t) <ty <..<ty =T are given time instants; U is the set of
admissible controls defined in Section 2.1. Similarly to Section 2.1, this problem
is called original.

REMARK 4 A cost functional of type (62) is called intermediary (see e.g. Bern-
hard, 1979). Optimal control problems and differential games with intermediary
cost functionals were studied in a number of works (see e.g. Bernhard, 1979; Ha-
genaars, Imura and Nigmeyjer, 2004; Lukoyanov and Reshetova, 1998; Turetsky,
1999).

In the sequel, we assume:

A8. The function G(z1,z2,...,zx) is continuous and has continuous partial
derivatives for 1 € E™, zo € E™, ..., xy € E™.

Setting formally ¢ = 0 in the original problem (1)-(5),(62), one obtains,
similarly to Section 2.2, the optimal control problem consisting of the dynamics
equation (12), initial condition (15) and the performance index

Ji(a(t) & G(:E(tl), Z(t2), ...,:E(tN)) ~ min (63)

Similarly to Section 2.2, this problem is called reduced.



340 V.Y. GLIZER

Denote in the original problem (1)-(5),(62), for a given € € (0, g,

A
Ji.= inf Jr(u(t 64
P2 it Ti(u() (64)

and in the reduced problem (12),(15),(63)

N
Ji = 71(1t1t)1£UJ[(u(t)). (65)

THEOREM 3 Let the assumptions A1-A4,A6,A8 be valid. Then,
|J7 .= Jil <ae Ve e (0,6, (66)
where the positive constant €2 is defined in Lemma 2.

Proof. The theorem is proved similarly to Theorem 1. [

Like in Section 4, one obtains the correctness of the problem (1)-(5),(62).
Now, we assume:

A9. The reduced problem (12),(15),(63) has a solution, and @}(t) is its optimal
control.
Let Jrc(u}(t)) be the value of the cost functional in the original problem

(1)-(5),(62) for u(t) = u}(t).

THEOREM 4 Let the assumptions A1-A4,A6,A8,A9 be valid. Then,
0<Jre(ur(t)) —Ji. <ae Vee (0,e), (67)

where the positive constant o is the same as in Lemma 2 and Theorem 3.

Proof. The theorem is proved similarly to Theorem 2. [

Note that Theorem 4 implies the asymptotic suboptimality of the control
@j(t) in the original problem (1)-(5),(62).
6.2. Bolza’s problem with an intermediary cost functional

Consider the optimal control problem consisting of the dynamics equations (1)-
(2), initial conditions (3)-(4), control constraint (5) and the performance index

Ter(u(t)) 2 G(aj(tl),x(tz), ...,x(tN))
T ’ ’ .
+ /0 (f (t)x(t) + g (O)y(t) + h(t,u(t)))dt — min , (68)

u(t)eU

where f(t) and g(t) are given vector-valued functions; h(t,u) is a given scalar
function. Like in Section 6.1, this problem is called original.
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In the sequel, we assume:

A10. The vector-valued functions f(¢) and g(t) are continuously differentiable
for t € [0,T].
A11. The function h(t,u) is defined and bounded for (¢,u) € [0,T] x D,,, where
the set D, is introduced in Section 2.1 (see (5)).

Let us introduce the new state variable

t ’ !
o)) = [ (£ 020+ 9 Ou(o) + e ule))dt, e 0.7, (69)
0

This state variable satisfies the differential equation

do(t)/dt = [ ()x(t) + g (y(t) + h(t,u(t), t€[0,T] (70)
and the initial condition

v(0) = 0. (71)

Note that the equation (70) can be rewritten in the equivalent form
0
() = | [asiem]eteren
4 [ Jdagite]ute+ em + bt uto), (72)
—h

where fl(tﬂ?) = f(t)e(n)a gl(tﬂ?) = g(t)o(ﬁ): (tﬂ?) € [OvT] X (—OO, +OO): and

0(n) = { (1) —?70;07 < (73)

Thus, by using (69),(71) and (72), one can transform the optimal control
problem (1)-(5),(68) to an equivalent one. This new optimal control problem
consists of the dynamics equations (1)-(2) and (72), the initial conditions (3)-(4)
and (71), the control constraint (5) and the performance index

Ti(u(t) 2 G(a(tr), alt2), ... w(tn)) + vlt) — i, (74)

It can be seen directly that the problem (1)-(5),(71),(72),(74) is the Mayer’s
problem with an intermediary cost functional and singularly perturbed dynam-
ics, i.e., it is of the type considered in Section 6.1.

Setting formally € = 0 in the problem (1)-(5),(68) yields a reduced problem,
associated with (1)-(5),(68). This reduced problem consists of the dynamics
equation (12), initial condition (15) and the following performance index

Jp1 2 G(i’(tl)a z(t2), .., f(tN))

+ /OT (f(;(t):f(t) +h0(t,ﬁ(t)))dt — min , (75)

u(t)eU
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’
/

where fo(t) = £()~ A5(t) (A1) 9(t), holt, @) = h(t, 5)~g' (1) A7 () Balt, 0).

Similarly, by setting formally € = 0 in the problem (1)-(5),(71),(72),(74), one
obtains a reduced problem, associated with (1)-(5),(71),(72),(74). This reduced
problem consists of the dynamics equations (12) and

do(t)/dt = f,(t)Z(t) + ho(t, u(t)), te[0,T), (76)

the initial conditions (15) and

0(0) =0, (77)
and the performance index
= N _ _ _ .
Jr(a(t)) = G(x(tl),x(tg), ...,:E(tN)) +0(ty) — min . (78)
u(t)eU
By introducing the new state variable
t
o) = [ (#5020 + hott,u(e)ar, ¢ € [0.7) (79)
0

we obtain the equivalence of the problems (12),(15),(75) and (12),(15),(76)-(78).
Denote in the original problem (1)-(5),(68), for a given € € (0, g,

. A
Jpre = u(lg)liU Jpr(u(t)), (80)

and in the reduced problem (12),(15),(75)

P AN = _
Jgr = ﬂ(ltI)léUJBl(u(t))' (81)

THEOREM 5 Let the assumptions A1-A4,A6,A8,A10,A11 be valid. Then,
|Jg,1€ — Jh| <ae Ve € (0,eq), (82)
where the positive constant €2 is defined in Lemma 2.

Proof. The statement of the theorem follows directly from the equivalence of the
problems (1)-(5),(68) and (1)-(5),(71),(72),(74), the equivalence of the reduced
problems (12),(15),(75) and (12),(15),(76)-(78), and Theorem 3. ]

Theorem 5 implies that the original problem (1)-(5),(68) is posed correctly.
Now, we assume:

A12. The reduced problem (12),(15),(75) has a solution, and @j,(t) is its
optimal control.

Let Jpr(ug;(t)) be the value of the cost functional in the original problem
(1)-(5),(68) for u(t) = uf,(t). Similarly to Theorems 2 and 4, we obtain the
following theorem.
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THEOREM 6 Let the assumptions A1-A4,A6,A8,A10-A12 be valid. Then,
0 < Jpr.(up;(t)) — Jpre <ae Ve € (0, &3], (83)
where the positive constant o is the same as in Lemma 2 and Theorem 5.

Theorem 6 implies the asymptotic suboptimality of the control @}, (¢) in the
original problem (1)-(5),(68).

7. Proof of Lemma 1

First, we prove the inequalities (25) and (27). By using the initial value problem
(18)-(19) for the matrix W(t, s, ), as well as the block form of this matrix and
the block form (17) of the matrix A(¢,7,€), one can write down the initial value
problem for the matrices ¥4 (¢, s,e) and U5(t, s, ) as follows

0

6(k—1)/28\11k(t,5,5)/8t:/ [d,,Ak(t,n)}\Ill(tﬂLEmS,E)
h

0
+ / {dnAkH(t,n)} Us(t+en,s,e), k=13 0<s<t<T, (84)

—h
Uq(t,s,e) =0, Ws3(t,s,e)=0, t<s, (85)
Uy(s,s,6) =1I,, Vs(s,s,e)=0. (86)

Since ¢ is a small positive parameter, (84)-(86) is an initial value problem for
a singularly perturbed differential system with the general type of delay. The
delay is small of order of the small multiplier ¢ for a part of the derivatives in
the system. A problem, limited to (84)-(86), was considered in Glizer (2003)
where its asymptotic solution has been constructed and justified. The difference
between the problem in Glizer (2003) and (84)-(86) is that the initial conditions
of the former are continuous, while the initial conditions of the latter have a
break at ¢ = s. Nevertheless, the results of Glizer (2003) are directly extended
to (84)-(86). By virtue of these results, there exists a positive constant €11 such
that Ve € (0,e11], the matrices Uy (¢, s,¢), (k =1,3) can be represented as

Uty s,6) = Uro(t, s) + Uoo(&s, 8) + Onlt, s,6), 0<s<t<T, (87)
where & = (t — s)/e; the matrices W1(t, s) and Ws(t, s) have the form

Uig(t,s) = U(t,s), Uso(t,s) = —A; (t)A3(1)V(t,s), 0<s<t<T, (88)
the matrix U9, (&,8) =0, & > 0,0 < s <t < T, while the matrix ¥4,(¢,, s),

for 0 < s <t < T, satisfies the initial value problem

0
0¥ (60:5)/06 = [ [ Asts.m] Wl 409 & >0, (39)

‘I’go(fm S) = _@30(57 5)7 fs < 05 (90)
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Ok (t,s,¢), (k= 1,3), are known matrices satisfying the inequalities
|Ok(t, s,6)|| <ae, 0<s<t<T. (91)

By virtue of the assumption A6 and results of Hale and Lunel (1993), one
obtains that the solution of (89)-(90) exists, is unique and satisfies the inequality

195 (s 8)| < aexp(=E,), 0<s<t<T, &2>0. (92)

Finally, the equations (87) and (88), and the inequalities (91) and (92) yield
directly the inequalities (25) and (27) for all € € (0,e14].

Now, let proceed to the proof of the inequalities (26) and (28). Similarly to
(84)-(86), we have the initial value problem for the matrices ¥;(¢, s,¢), (I = 2,4)

0

c=2/29\, (1, 5,¢) /Ot = / [dnAl,l (t, n)} Wo(t+em, 5,€)
h

0
+/ {dnAl(t,n)} Uy(t+en,s,e), 1=24, 0<s<t<T, (93)
—h
Uo(t,s,e) =0, Wy(t,s,e)=0, t<s, (94)
\112(57 575) = Oa \114(55 S, 6) = Ip. (95)

Similarly to (87), one can obtain the following representations of the matrices
U (t, s,e), (I =2,4) for all € € (0, e12] with some positive £12:

Wit 5,2) = Who(&, ) +(Pu(t, 5) + Ph (€ 9)) + Ol 5,), (96)
where 0 < s <t < T} the matrices ¥}, (&, s), (I = 1,2) have the form

W3o(€es) =0, Wig(&e,s) =U(€ws), 0<s<t<T, &>0;  (97)
the matrices Vo (,s) and Wy (¢, s) satisfy the system

OWai(t,s)/0t = A1 (t)War(t,s) + Az () W41 (t,s), 0<s<t<T, (98)

s (s,5) = /O +°O [ / Oh [y o5 W0 + n)} do, (99)

0= A3(t)War(t,s) + As(t)Vai(t,s), 0<s<t<T; (100)

the matrix W, (&, s), for 0 < s < t < T, satisfies the initial value problem

0

DU, (6. 5)/06, = /

a9 40 0) 6> 0, (101)

\1/31(0,5)__/0+00 UO {dnAQ(S,n)}\iJ(U—I—n)] do; (102)

—h
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the matrix W4, (&, s), for 0 < s <t < T, satisfies the initial value problem

OV} (6..9)/06 = | Oh ol ] Whtee -+ [ Oh [y Aa(s,m) | W (& 4+ )
ve | Oh (41 (044(s,m)/05) [F(e + ). & >0, (103)
UG (& 8) = —Wa(s,5), & <0; (104)

O(t, s,¢), (I =2,4), are known matrices satisfying the inequalities
10i(t, s,8)|| < as?, 0<s<t<T. (105)

Consider the system (98)-(100). Note that, due to (24) and (97), the integral
in (99) converges. Now, using (11),(13) and (20)-(21) we get for 0 < s <t <T

\1121@, S) = \i/(t, S)@Ql(s, S), \1141@, S) = —AZI (t)Ag (t)\I/21 (t, S), (106)

meaning the boundedness of Wy (t,s) for 0 < s <t < T.
Proceed to the problem (101)-(102). For 0 < s < ¢ < T, this problem has
the unique solution

W5 (&, 5) __/joo UO [dnAg(s,n)}‘Il(a+n,s)} do, £>0, (107)

—h
yielding, by using (24) and (97), the estimate
195, (€, 9)l| < aexp(=B8), 0<s<t<T, &>0. (108)

By virtue of the assumption A6, the equation (97), the inequalities (24),(108)
and the results of Hale and Lunel (1993), there exists a unique solution of the
problem (103)-(104), and this solution satisfies the inequality

W% (&5, )] < aexp(—fE), 0<s<t<T, & >0. (109)

Now, using the expression £ = (t — s)/e, the equations (96) for [ = 4 and
(97), the inequalities (105) for [ = 4 and (109), as well as the boundedness of
Wy (t, s), we obtain directly the inequality (28) for all ¢ € (0,e12]. Similarly,
by using the expression for &, the equations (96) for I = 2 and (106), the
inequalities (105) for [ = 2 and (108), as well as the fact that U, (&s,s) = 0, we

obtain the following inequality for all € € (0,e12) and 0 < s <t < T:
s (t, 5, ) — (¢, 8) T (s, 8)|| < ae [a +exp ( — Bt - s)/a)]. (110)

To complete the proof of (26), we transform equivalently the matrix Wo, (s, s)
given by (99). For this purpose, we transform the equation (22). Its integration
with respect to £ on the interval [0,400), and using (23),(24) and (97), yield

~ln = /0 N [ / 0 [dnA4<s,n>}@<f+n,s>} 3 (111)

—h
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Due to (24) and (97), the integral in (111) converges absolutely. Hence, by the
Fubini Theorem, we can change the order of integration in this integral. Thus,

0 +oo B
to= [ [tAitsin)] [ (e noie (12)
—h 0
The transformation of variables £ = ¢ — 7 in the improper integral leads to
0 +oo B
I = / [d,,A4(s, n)} / ¥(0, 8)do. (113)
_h n
Now, (23) and the fact that n € [—h, 0] imply
0 +oo B
I = / [y Aa(s,m)] / ¥(0, 5)do, (114)
—h 0

yielding, by virtue of (9) and (11),

+oo
/ (o, s)do = —A;(s). (115)
0

Similarly to the transformation of the right-hand side in (111) to the right-
hand side in (114), one can transform the expression (99) for W9 (s, s) as follows

Ton (5, 5) = Ao(s) /O " $(0,5)do. (116)

Finally, substitution of (115) into (116), and then of the resulting expression
into (110) yields directly the inequality (26) for all ¢ € (0,e12]. Setting &1 =
min{e1, 12} completes the proof of the lemma.

8. Proof of Lemma 2

We begin with the proof of (29). We introduce the block vectors

Bi(t, u) ( P (7) ) ( o )
B(t,u) = , = , = , 117
co=( 5 ) wo=(50) ==() @
and block matrices
In 0 Al (tu 77) A2 (tu 77) >
E. — . A(tn) = . 118
( 0 (1/e)In ) (t:m) ( As(t,n) As(t,n) (118)
Then, using the variation of constant formula (see Hale and Lunel, 1993) we get

—w/e

z(t,e) = U(t,0,e)z0 + /O€h U(t,w,e)E. (/

[dnA(% 77)} plw+ m)) dw
—h

+/t U(t,s,e)E.B(s,u(s))ds, te][0,T]. (119)
0
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Using the block form of U(t,s,e) and (117)-(119), one can write down the
blocks x(t,e) and y(t,e) of the vector z(¢,¢) as follows

x(t,e) = W1 (t,0,e)xo + Yot 0,€)yo

+/Oah {\I/l(t,w,s) </;w/a [dnAl(w,n)}%(eran)

+ / e [dnAz (w, n)} py(w + 577))

—h

+ (1/e)Us(t,w,e) (/:/E {dnA3(w,n)} oz (w+en)

+ /hw/s [dnA4(w, n)} oy(w + gn)) } dw

+/0 (\Ill(t, s,€)Bi(s,u(s)) + (1/e)Wy(t, s, 6)B2(s,u(s)))ds, (120)

y(tv E) = \113(t7 05 E)IE() + ‘114(t5 07 E)yO

o[ foa [ Bt

n / - [dnAz (w, n)} py(w + 877)>

—h

+ (1/e)Uy(t,w,e) (/_:«’/8 {dnA3(w,n)} oz (w +en)

+ /:0/5 [dnA4(w, 77)} oy (w + 577)) } dw

t
+/ (\Ifg(t,s,s)Bl(s,u(s)) + (1/5)\114(t,S,E)Bg(s,u(s))>d8. (121)
0
The inequalities (24) and (25)-(28) yield the following estimates of the ma-
trices U, (¢, s,¢), (i =1,...,4) forall e € (0,e1] and 0 < s <t < T:
[Wk(t,s,6)| <a, k=13, (122)

1Wa(t, s,2)|| < ae,  |[Walt,s,e)]| < a[a +exp ( —B(t - s)/a)]. (123)

Now, using the assumptions A1-A4, the definition of the set U, the equations
(85) and (94), and the inequalities (122) and (123) we obtain the inequalities
(29). The inequality (30) is proved similarly by using the following expression
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for Z(t):
z(t) = W(t,0)xo —|—/0 U(t,s)Bo(s,u(s))ds, te0,T). (124)

We proceed to the proof of (31), based on some analysis of (120). First,
note that, for w € [0,eh], the term w/e varies from 0 to h. For w € [0,eh] and
1 € [—h, —w/e], the term w4+ en varies in the interval [—h, 0]. Hence, due to the
assumptions Al and A3, the following inequalities hold for all £ € (0, &¢):

H/_WE {dnAk(w,n)} or(wten)|<a, k=1,3, we]0,¢eh], (125)
—h

H/W/E {dnAz(w,ﬁﬂ@y(w +en)||<a, 1=2,4, wel0,eh] (126)
—h

Using the inequality (25), the first inequalities in (122),(123) and the in-
equalities (125),(126), we obtain the following inequalities for all ¢ € (0, £2]:

H\Ifl(t,O,s)xo - \If(t,O):EOH < ae, H\Ifg(t,O,a)yoH <ae, te0,T],

(127)
| /;h Uy (t,w,e) (/_:”/5 {dnAl(w,n)}gaz(w +en)
+/hw/€ [dnA2(w,77)} py(w +577)> dw| < ae, te0,T], (128)
/Osh(l/E)WQ(t’Wa £) (/W/E [dnAS(w,n)} oz(w+en)
+/h‘”/5 {dnAzx(w,ﬁ)} 0y (w + 517)) dw|| < ae, te[0,T). (129)

Now, we analyze the last integral term in (120). By subtracting the integral
part in the expression (124) for z(¢) from this term and using (14), we obtain

G(t,e) 2 /Ot (klll(t, s,e)Bi(s,u(s)) + (1/5)\112(t,s,E)Bg(s,u(s)))dS
_/th/(t, $)Bo(s, u(s))ds = /Ot (\Ill(t,s,s) (4, s))Bl(s,u(s))ds

+~/0 ((1/5)\112(t,s,6) + @(t,s)Ag(s)Agl(s))Bg(s,u(s))ds. (130)
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Using the assumptions A2 and A4, the definition of the set U, and the inequal-
ities (25) and (26), we get the following estimate of G(t,¢) for all € € (0, e3]:

IG(t.e)l| < ae, te[0,T], (131)

where a > 0 is some constant independent of both € and u(t) € U. Finally, the
equations (120),(130) and the inequalities (127)-(129),(131) yield (31).
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