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ẋ = f0(t, x) + F (t, x)u, (1)

u ∈ U(t), (2)

ηj(p) = 0, j = 1, . . . , µ, (3)

ϕi(p) ≤ 0, i = 1, . . . , ν, (4)

J = ϕ0(p) → min, (5)where x ∈ IRn, u ∈ IRr, p = (x(t0), x(t1)) ∈ IR2n, the funtion x(t) isabsolutely ontinuous, u(t) is measurable and essentially bounded. The datafuntions ηj , ϕi are assumed to be twie smooth; f0 , F are ontinuous andhave jointly ontinuous �rst and seond derivatives w.r.t. x. (The problem on
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286 A.V. DMITRUKa non�xed time interval an be easily redued to problem A by passing to a newtime variable.)Let be given an admissible proess (x0, u0) with u0(t) taking values stritlyinside U(t), whih means that
∃ ε > 0 suh that u0(t) +Bε(0) ⊂ U(t) a.e. on [t0, t1] . (6)Without loss of generality, assume also that ϕi(p

0) = 0 for all i = 0, 1, . . . , ν,hene all the inequality onstraints are ative. Assume that the proess (x0, u0)satis�es the Maximum Priniple (whih is equivalent in this ase to the Euler�Lagrange (EL) equation), whih says that there exist multipliers α0, . . . , αν ≥
0, β, ψ(t), not all equal to zero and suh that, omposing the Pontryaginfuntion H = ψ (f0(t, x)+F (t, x)u) and the terminal Lagrange funtion l(p) =∑ν

i=0 αi ϕi(p) +
∑µ

j=1 βj ηj(p), we should obtain the following relations:
ψ̇ = −Hx(ψ, x0, u0), ψ(t0) = lx0

(p0) , ψ(t1) = −lx1
(p0) ,

Hu(ψ, x0, u0) = ψ(t)F (t, x0(t)) = 0.The last relation means that we have a totally singular extremal. The questionis: what are further (higher order) neessary and su�ient onditions for thegiven proess (x0, u0) to be optimal in one or another sense? This question wasstudied by many authors for more than 40 years, sine early 1960s (see Kelley,Kopp, Moyer, 1967, and later referenes in Dmitruk, 1997). For problem A itwas ompletely solved by the author in a series of papers, Dmitruk (1977, 1978,1983, 1987-88, 1992, 1994, 1997), for the two types of minimum: the weak andthe so-alled Pontryagin minima. In those papers the author obtained "adjointpairs" of neessary and su�ient onditions of a speial quadrati order typi-al for problem A. The neessary ondition onsists of nonnegativity, and thesu�ient ondition onsists of positive de�niteness of a quadrati funtional (orof the maximum of a family of quadrati funtionals) on a one in the spaeof variations. In this paper we will show how one an pass from these "ba-si" quadrati order onditions to Jaobi type onditions in terms of onjugatepoints, thus will propose a proedure for verifying these "basi" onditions.Our approah is similar to that in the lassial alulus of variations (CCV)� obtaining onditions in terms of quadrati funtionals and then analyzingtheir sign de�niteness, and di�ers mainly by the fat that here the quadratifuntionals have totally zero Legendre oe�ient. After some transformationthey an be onverted into funtionals possibly satisfying the strengthened Leg-endre ondition, but involving additional parameters, and this spei�ity shouldbe properly taken into aount. (Another approah based on methods of di�er-ential geometry is pursued in Stefani, 2003, 2004, for partiular ases of problemA with a salar ontrol, where onditions for a strong minimum are proposed.)To simplify the exposition, we assume here that the olletion of Lagrangemultipliers for the given proess (x0, u0) is unique, up to normalization, with



Jaobi type onditions for singular extremals 287
α0 > 0, so we an set α0 = 1. (The "basi" quadrati order onditions were ob-tained in the ited papers without this assumption.) This, in partiular, impliesthat equality onstraints (1), (3) near the proess (x0, u0) are nondegenerate atthe �rst order, or, in other words, the system (1), (3) is �rst-order ontrollableat (x0, u0).1.2. Quadrati order onditionsTo formulate the "basi" quadrati order onditions of optimality, we have tode�ne the following objets: a) the quadrati funtional (quadrati form), b)the one of ritial variations, and ) the estimating quadrati funtional (orderof minimum).Denote by W = ACn×Lr

∞
the spae of all pairs w = (x, u), x ∈ ACn, u ∈

Lr
∞

on the given time interval [t0, t1] .a) The quadrati form. The existing olletion (here unique) of La-grange multipliers generates the orresponding Lagrange funtion
L(x, u) = l(x0, x1) +

∫ t1

t0

ψ(t) (ẋ− f0(t, x) − F (t, x)u)) dt,and its seond variation at (x0, u0) ∈W :

Ω(x̄, ū) = d2L[x0, u0] (x̄, ū) = (l′′p̄, p̄) −

∫ t1

t0

[(Hxxx̄, x̄) + 2(x̄, Hxuū)] dt ;whih is a quadrati funtional w.r.t. w̄ = (x̄, ū). Note that this quadrati formdoes not ontain "the main", Legendre term with ū2, whih is diretly ausedby the linearity of the state equation in u and the assumption (6), and whihimmediately puts us out of the framework of the lassial Jaobi theory, thatessentially assumes the presene of this term with a stritly positive oe�ient(the strengthened Legendre ondition).b) The one of ritial variations. The above quadrati funtionalshould be onsidered not on the whole spae W, but only on the so-alled oneof ritial variations K, whih is given by linearization of all onstraints andthe ost funtional of the problem at the referene proess (x0, u0) :

˙̄x = f ′

0x x̄+ F ′

x x̄ u
0 + F ū, (7)

η′j p̄ = 0, j = 1, . . . , µ, ϕ′

i p̄ ≤ 0, i = 0, 1, . . . , ν. (8)For onveniene in further study, let us simplify onditions (8) as muh as pos-sible. First, for any i with αi > 0 we an replae here the inequality ϕ′

i p̄ ≤ 0by the equality ϕ′

i p̄ = 0. In partiular, we an take ϕ′

0 p̄ = 0, sine we assume
α0 = 1. Moreover, then we an delete this equation altogether, beause (dueto the EL equation) it is a linear ombination of all other obtained equations



288 A.V. DMITRUKin (8) and system (7). If, after all suh replaements, only one inequality in(8) remains, we an also delete it. This last trik is justi�ed by the fat thatthe sign de�niteness of a quadrati form on a half-spae is equivalent to that onthe whole spae. However, in the general ase, a �nite number of inequalities
ϕ′

i p̄ ≤ 0 orresponding to αi = 0 may remain.) The order of minimum. Now, de�ne the following estimating quadratifuntional, that we regard as a quadrati order of minimum:
γ(x̄, ū) = |x̄(t0)|

2 + |ȳ(t1)|
2 +

∫ t1

t0

|ȳ(t)|2 dt, (9)where ˙̄y = ū , ȳ(t0) = 0. (10)One an see that this estimating funtional inludes an additional "arti�ial"state variable ȳ (to be more exat, the variation of an arti�ial state variable
y, satisfying the equation ẏ = u, y(t0) = 0, whih is not expliitly introdued,sine the variable y itself will not be used in what follows), and does notexpliitly inlude the ontrol variation ū ; it inludes the last only impliitly,through ȳ.Now we are ready to formulate the quadrati order onditions of optimalityfor problem A. Let us start with the weak minimality, by whih we mean theminimality w.r.t. the norm ||w||′ = ||x||C + ||u||∞ . In this ase, sine u0(t)lies stritly inside U(t), the inlusion onstraint u ∈ U is inessential, so we anneglet it.Theorem 1 a) Let w0 = (x0, u0) provide a weak minimum in problem A.Then

Ω(w̄) ≥ 0 for all w̄ ∈ K. (11)
b) Suppose that for some a > 0

Ω(w̄) ≥ a γ(w̄) for all w̄ ∈ K (12)(i.e., Ω is positive de�nite on K with respet to γ). Then w0 = (x0, u0)provides a weak minimum in problem A.As one an see, these neessary and su�ient onditions onstitute a pairof onditions with a minimal gap between them; we all them an adjoint pairof onditions. In this sense, these onditions are quite similar to those in the�nite-dimensional analysis and CCV.Part (a) of this theorem is a partiular ase of the neessary onditions inthe optimal ontrol problem with general nonlinear state equation ẋ = f(t, x, u)(atually, in the general problem of CCV with additional inequality onstraints(4)). These general neessary onditions were obtained in Levitin, Milyutin,Osmolovskii (1978). Part (b) was proved in Dmitruk (1977, 1978), solving thusthe question of obtaining su�ient onditions for this nonlassial ase.



Jaobi type onditions for singular extremals 289Remark 1 If the olletion of Lagrange multipliers is not unique, then, for anysuh olletion and the orresponding seond variation of the Lagrange funtion,part b) of Theorem 1 still holds true (see Dmitruk, 1977, 1978).Along with the notion of weak minimum, we onsider also the notion ofPontryagin minimum, proposed by A.Ya.Dubovitskii and A.A.Milyutin. Anadmissible proess w0 = (x0, u0) is said to provide a Pontryagin minimum inproblem A if for any number N it provides a loal minimum w.r.t. the norm
||x||C + ||u||1 in problem A with additional onstraint |u(t)| ≤ N. This type ofminimum lies obviously between the weak and strong minima, and it turned outto be very onvenient in the study of higher order onditions (see, e.g., Milyutin,Osmolovskii, 1998).The onditions for a Pontryagin minimum of order (9) are obtained inDmitruk (1983, 1987-88, 1992, 1994) under the additional assumption thatthe funtions f0 , F have jointly ontinuous third derivatives w.r.t. x. Theseonditions have the same form (11), (12) with an additional requirement onoe�ients of the third variation of the Lagrange funtion with referene to theonstraint u ∈ U, whih annot be negleted in this ase. Here we do notwrite out this requirement; the details and proofs see in the above papers. (Ifdim u = 1, this additional requirement holds trivially, hene the onditions fora Pontryagin minimum oinide with those for a weak minimum.)Anyway, for both types of minimum we arrive at onditions (11) and (12).Our goal in this paper is to propose a proedure for verifying these onditions.1.3. The linear-quadrati situationHaving obtained onditions (11), (12), we fae a natural question: how one anverify them? First of all, let us state the situation we arrive at.We have a quadrati form of the type

Ω(w̄) = g(x̄(t0), x̄(t1)) +

t1∫

t0

(Qx̄, x̄) + 2(Cx̄, ū) dt, (13)where g is a �nite-dimensional quadrati form in IR2n and the matries Q, Care of appropriate dimensions, and we have a one K ⊂W given by onstraintsof the type
˙̄x = A(t)x̄+ F (t)ū, (14)
ai x̄(t0) + bi x̄(t1) = 0, i = 1, . . . , µ, (15)
a′j x̄(t0) + b′j x̄(t1) ≤ 0, j = 1, . . . , ν, (16)where ai, bi, a

′

j, b
′

j ∈ IRn are some vetors, the matries Q(t), A(t) havemeasurable bounded entries, and C(t), F (t) have Lipshitz ontinuous entries.(In fat, Q(t) = −Hxx , C(t) = −2Hux , A(t) is the oe�ient at x̄ in (7), all



290 A.V. DMITRUKalulated along w0(t), F (t) = F (t, x0(t)), but from now on, we do not needthese partiular expressions.) Our aim is to determine whether the estimate(12) holds with some a > 0 or a ≥ 0.This is a linear-quadrati situation, whih results from the quadrati orderstudy of the referene extremal proess in problem A. Having stated this sit-uation, we an forget the initial problem A from now on, leaving only spei�features of Ω and K. Reall that in CCV the question of sign de�nitenessof a quadrati form is solved by the well-known Jaobi onditions about theonjugate (or foal) points. However, this approah does not work in our ase,beause the key assumption of the Jaobi theory, the strengthened Legendreondition, is not satis�ed. So, what to do then?To overome this obstale, we use a simple transformation, probably �rstproposed in Goh (1966), whih is the following hange of state variables:
x̄ 7→ (ξ̄, ȳ), x̄ = ξ̄ + F ȳ.So, the state variable x̄ is now replaed by two state variables, ξ̄ and ȳ .In view of (10) and (14), ξ̄ obeys the dynamis
˙̄ξ = Aξ̄ +Bȳ, where B = AF − Ḟ , (17)and the initial ondition ξ̄(t0) = x̄(t0). An important feature is that equation(17) does not ontain ū ! The ontrol variation ū now omes, in the simplestway, only into Eq. (10) for ȳ. These two fats make it possible to obtain somenie properties of the funtional Ω.First of all, we see that after the above transformation, Ω an be reduedto the form:
Ω = g(ξ̄(t0), ξ̄(t1) + F (t1)ȳ(t1)) + (C(t1)ξ̄(t1), ȳ(t1))+

+

t1∫

t0

(Qξ̄, ξ̄) + 2(P ξ̄, ȳ) + (Rȳ, ȳ) + (CF ȳ, ū) dt,where P (t), R(t) are some matries with measurable bounded entries. Theterm (Cξ̄, ū) = (Cξ̄, ˙̄y) was integrated by parts in order to exlude ū, leavingthus only one term in Ω ontaining ū, i.e., (CF ȳ, ū). A remarkable fatdisovered by Goh is that this last term an also be integrated by parts. Heproved that, if Ω ≥ 0 on K, then the matrix CF = −HuxF is symmetri (theneessary Goh ondition of equality type), hene this term an be integrated.Namely, for any symmetri absolutely ontinuous matrix S(t), one an write
d
dt

(Sȳ, ȳ) = (Ṡȳ, ȳ) + 2(Sȳ, ū), hene
2

t1∫

t0

(Sȳ, ū) dt = (Sȳ, ȳ)
∣∣t1
t0
−

t1∫

t0

(Ṡȳ, ȳ) dt,



Jaobi type onditions for singular extremals 291so Ω (with Lipshitz ontinuous S = CF ) is redued to the form
Ω = g̃(ξ̄(t0), ξ̄(t1), ȳ(t1)) +

t1∫

t0

(Qξ̄, ξ̄) + 2(P ξ̄, ȳ) + (Rȳ, ȳ) dt, (18)with a new measurable bounded matrix R(t) and a new terminal quadrati form
g̃ in the spae IR2n+r. We do not write here the expressions for all oe�ientsin (18) through initial ones, whih an be easily done if neessary. The pratieshows that, in solving onrete problems, one need not use those expressions;it is easier to perform the Goh transformation in eah situation, rather than toalulate the new matries de�ning the quadrati form in terms of the old onesby means of general formulae.The one K in the new variables is given by the di�erential equations (10),(17), and the terminal onstraints

ai ξ̄(t0) + bi (ξ̄(t1) + F ȳ(t1)) = 0, i = 1, . . . , µ, (19)
a′j ξ̄(t0) + b′j (ξ̄(t1) + F ȳ(t1)) ≤ 0, j = 1, . . . , ν. (20)Thus, we arrive at a situation, where both the investigated quadrati formand the order of minimum depend only on ξ̄ and ȳ, onneted by equation(17) and terminal relations (19), (20), but do not expliitly depend on ū. Theontrol variation ū omes only in the state equation (10) for ȳ, whih in fatjust means that ȳ is an arbitrary Lipshitz ontinuous funtion with initialvalue ȳ(t0) = 0.1.4. Extension of the spae of ritial variationsNow, we note that the spae of Lipshitz funtions, even with zero initial value,is dense in the spae L2[t0, t1], and the integral part of Ω is ontinuous w.r.t.

||ȳ||2 , hene we an onsider ȳ ∈ Lr
2[t0, t1], while the terminal value ȳ(t1) inthe endpoint quadrati form g̃ should be replaed by a parameter h̄ ∈ IRr,sine the variety of pairs (ȳ(·), ȳ(t1)), where ȳ(·) is a Lipshitz funtion withzero initial value, is dense in the spae Lr

2[t0, t1] × IRr.Thus, we ome to a funtional
Ω̃(ξ̄(t0), ȳ, h̄) = g̃(ξ̄(t0), ξ̄(t1), h̄)) +

t1∫

t0

(Qξ̄, ξ̄) + 2(P ξ̄, ȳ) + (Rȳ, ȳ) dt, (21)where ȳ ∈ Lr
2[t0, t1], h̄ ∈ IRr, and ξ̄ is expressed through ȳ by equation (17)with an arbitrary initial ondition ξ̄(t0). This new quadrati form is de�ned onthe extended spae W̃ = IRn × Lr

2 × IRr with elements (ξ̄(t0), ȳ(·), h̄) and isobviously ontinuous w.r.t. the norm |ξ̄(t0)| + ||ȳ||2 + |h|. The extended one
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K̃ in this spae is given by equation (17) and the terminal onstraints

ai ξ̄(t0) + bi (ξ̄(t1) + F h̄) = 0, i = 1, . . . , µ, (22)
a′j ξ̄(t0) + b′j (ξ̄(t1) + F h̄) ≤ 0, j = 1, . . . , ν. (23)What remains to be heked is that this new one K̃ ontains the old one

K, given by (17), (19), (20), as a dense subset. This fat is a partiular ase ofthe following general assertion, whih is of independent interest.Lemma 1 (on denseness) Let in a loally onvex linear topologial spae Xbe given a �nite-faed one C, and a linear variety (algebrai subspae) L densein X. Then the one C ∩ L is dense in C .Proof. Consider �rst the ase when the one C is a subspae given by oneequation (p, x) = 0, p ∈ X∗, p 6= 0. Take any point x0 ∈ C and its onvexneighborhood O(x0). We have to show that ∃x ∈ C ∩ L ∩ O(x0). Sine theset (p, x) < 0 is open, its intersetion with O(x0) is open, too, and obviouslynonempty, hene it ontains a point x1 from the set L, beause the last oneis dense in X. Similarly, the intersetion of the set (p, x) > 0 with O(x0)ontains a point x2 ∈ L. Sine O(x0) is onvex, it ontains the whole segment
[x1, x2], that also lies in L, sine the last one is a linear variety. But thissegment obviously ontains a point x suh that (p, x) = 0, whih then belongsto C and to L ∩ O(x0), q.e.d.Now, let C be an arbitrary �nite-faed one, given by inequality onstraints
(qj , x) ≤ 0, j = 1, . . . , ν. Suppose �rst, that ∃ x̂ ∈ C suh that all (qj , x̂) < 0,hene x̂ ∈ intC. Take any x0 ∈ C and any its neighborhood O(x0). We haveto �nd a point x ∈ C ∩ O(x0) ∩ L. We know that, for any ε > 0, the point
xε = x0 + εx̂ lies in intC (a simple property of onvex ones), and ∃ ε > 0suh that this point lies also in O(x0). Thus, the open set intC ∩ O(x0) isnonempty, and then it ontains a point x from a dense set L, q.e.d.Suppose now that the above point x̂ ∈ intC does not exist, i.e., the stritinequality onstraints do not interset. If some qj = 0, we an remove j -thinequality, so we assume that all qj 6= 0. In this ase, by the Dubovitskii�Milyutin theorem, there exist multipliers αj ≥ 0, j = 1, . . . , ν, not all zero,suh that the following EL equation holds: α1 q1 + . . .+αν qν = 0. Take any jwith αj > 0; let it be j = ν. Then, for all x ∈ C we atually have (qν , x) = 0,not just ≤ 0. (Otherwise, if x ∈ C and (qν , x) < 0, one should multiply the ELequation by this x and take into aount that all other terms (qj , x) ≤ 0, whilethe sum equals 0, a ontradition.) This means that the one C an be given bythe onstraints (qj , x) ≤ 0, j = 1, . . . , ν − 1, (qν , x) = 0. But, passing to thesubspae (qν , x) = 0 we obtain in it, as was shown above, a dense linear varietyand a one given by a smaller number ν − 1 of inequality onstraints. Theequality (qν , x) = 0 is thus removed. Applying the indution arguments, wearrive at the situation when either all the inequality onstraints are transformed,



Jaobi type onditions for singular extremals 293one by one, into equalities and then removed, or the strit inequalities have anonempty intersetion. Sine the last ase is already onsidered, the proof isomplete.In our situation we have X = IRn×Lr
2×IRr, L = { (ξ̄0, ȳ(·), ȳ(t1)) | ξ̄0 ∈IRn, ȳ is a Lipshitz funtion }, and C = K̃ .1.5. Passing to a new ontrolFrom Lemma 1 and the ontinuity of Ω̃ in the extended spae it follows thatthe sign de�niteness of Ω on K w.r.t. γ is equivalent to that of Ω̃ on K̃w.r.t. the same γ.But now, looking at the new funtional Ω̃ and the one K̃, we notie thatthe ontrol ū ompletely disappeared, and the role of ontrol is now taken bythe variable ȳ ∈ L2 , sine it does not obey any di�erential equation, so therole of state variable is left only for ξ̄. Aepting this, we then notie that Ω̃now ontains the Legendre term w.r.t. the new ontrol, (Rȳ, ȳ), and therefore,the nonnegativity of Ω̃ on K̃ immediately implies the Legendre ondition:

R(t) ≥ 0 a.e. on [t0, t1]. This is the seond neessary Goh ondition, ofinequality type, in the ase of one-dimensional ontrol obtained earlier by H.J.Kelley (see Kelley, Kopp, Moyer, 1967). (To be preise, Goh, 1966, proved hisonditions for a partiular ase of problem A without inequality onstraints (4),hene for K being a subspae. For the ase of one, the Goh onditions, bothof equality and inequality type, were proved in Dmitruk, 1977, 1978.)The order of minimum γ now ontains the square of the ontrol variation,exatly as in CCV (see Levitin, Milyutin, Osmolovskii, 1978, and Milyutin,Osmolovskii, 1998). If we hope to obtain the positive de�niteness of Ω̃ w.r.t.
γ, we must assume at least the strengthened Legendre ondition w.r.t. the newontrol:

R(t) ≥ const · I a.e. on [t0, t1], const > 0, (24)where I is the identity matrix. In what follows, we do assume it holds. (In thisase Ω̃ is alled a Legendre quadrati funtional, Hestenes, 1951).Thus, we atually ome to a situation, in whih we should determine thesign de�niteness of a quadrati funtional Ω̃ of the form (21), satisfying thestrengthened Legendre ondition, on a one K̃ given by (17), (22), (23). Thedi�erene from CCV is in the following two features: a) K̃ is a one, not asubspae, and b) Ω̃ and relations (22), (23) inlude an additional parameter
h̄. Our further aim is to develop Jaobi type onditions for this ase. To simplifythe exposition, let us assume here that the inequalities (23) are absent, i.e. K̃is a subspae. Reall that this indeed is the ase if at least all but one multipliers
αi > 0. (Jaobi type onditions for the ase of a general quadrati form on aone are obtained in Dmitruk, 1981, 1984.)



294 A.V. DMITRUK2. Jaobi type onditions for the sign de�niteness of aquadrati funtional2.1. Linear-quadrati situation with a parameterStating the situation (17), (21), (22), let us pass one again to a simpler andmore onvenient notation, by hanging (ξ̄, ȳ, h̄) 7−→ (x, u, h). Then we have aquadrati form (denoted again by Ω) of the type
Ω = g(x(t0), x(t1), h)) +

t1∫

t0

(Qx, x) + 2(Px, u) + (Ru, u) dt, (25)satisfying (24), that should be onsidered on a subspae K in the spae ofvariables (x(t0), u, h) ∈ IRn × Lr
2 × IRr given by a linear di�erential equation

ẋ = Ax+Bu (26)and terminal equality onstraints of the form
aix(t0) + bix(t1) + cih = 0, i = 1, . . . ,m. (27)Our task is to verify the sign de�niteness of Ω on K w.r.t. the quadrati order
γ(x, u, h) = |x(t0)|

2 + |h|2 +

t1∫

t0

|u(t)|2dt, (28)whih is the square of norm in the spae IRn × Lr
2 × IRr. The proedure ofthis veri�ation is based on the abstrat approah to Jaobi theory proposedin Hestenes (1951) and depends on the spei�ity of terminal onstraints. Ifthe terminal onstraints are in the general form (27), this proedure is veryumbersome; it will be treated by the author elsewhere. Here we onsider twomost important ases, where equations (27) result from the problem A with atleast one endpoint �xed. The spei�ity of suh terminal onstraints allows oneto make this proedure simpler.Note that the absene of formal symmetry between these ases is ausedby the fat that the order γ and the Goh transformation are not symmetrialw.r.t. the left and the right endpoints.2.2. The left endpoint �xedThis means that (15) reads x̄(t0) = 0, bix̄(t1) = 0, whih in (19) yields

ξ̄(t0) = 0, bi(ξ̄(t1) + F ȳ(t1)) = 0, and so, (27) an be represented in the form
x(t0) = 0, (29)
Λx(t1) +Nh = 0, (30)



Jaobi type onditions for singular extremals 295with some matries Λ, N of dimensions m× n, m× r. (Note that this last xhas nothing in ommon with the initial x ! ) We an even allow now arbitrarydimensions for u and h : dim u = r, dim h = q, not neessarily equal (so,dimN = m × q ). Note that here all omponents of x(t0), both essential andinessential, automatially disappear from γ, sine x(t0) = 0.The terminal quadrati form g an be represented as
g(x(t1), h) = (Sxxx(t1), x(t1)) + 2(Shxx(t1), h) + (Shhh, h), (31)where Sxx , Shx , Shh are matries of orresponding dimensions.2.3. The Hestenes shemeWe have to study Ω of the form (25), (31) with respet to the quadrati order(28) under the relations (26), (29), (30).Let us �x the terminal time t1 and vary initial time t0 . The smaller is t0 ,the larger is the interval [t0, t1], and the broader is the set of triples x(t), u(t), hsatisfying (26), (29), (30), beause any suh triple an be naturally extended tothe larger interval by zero value of x(t) and u(t). Moreover, sine h does notome into the integrand in (25), Ω onsidered at any triple for an initial interval

[t0, t1], takes the same value at this triple extended to the larger interval, thus Ωhas more hanes to be negative on the larger interval. So, the sign de�nitenessof Ω monotonially depends on t0 , and this is a key point for appliation ofthe Hestenes approah, that will allow us to de�ne a point t∗0 onjugate to t1 .Note that, sine x(t0) = 0, the state variable x(t) on the interval [t0, t1] isuniquely determined by u(t) from equation (26), and so, Ω uniquely dependson (u, h). Set T = t1 − t0 . For any s ∈ [0, T ] de�ne t′0 = t1 − s and onsiderthe Hilbert spae Hs onsisting of elements (u, h) ∈ Lr
2[t

′

0, t1] × IRq suh thatthe orresponding solution to (26) with x(t′0) = 0 has x(t1) satisfying (30).(The hange of parameters t′0 7→ s is taken for the sake of uni�ation of theHestenes sheme.)The spae Hs obviously expands as s grows: if s′ < s′′, then Hs′ ⊂ Hs′′with the natural embedding. Moreover, it ontinuously depends on s in thefollowing sense:
Hs =

⋂

s′>s

Hs′ and Hs =
⋃

s′<s

Hs′ .For s = 0 we have a �nite-dimensional spae H0 = {0} × IRq.Reall that a quadrati form is said to be positive de�nite on a subspae ifit is estimated from below by the square of norm on this subspae.Suppose that Ω is positive de�nite on H0 . Then, aording to Hestenes(1951) (see also Dmitruk, 1976, 1982, 1984; Zeidan, 1994; Stefani, Zezza, 1997;Stefani, 2003, 2004; Rosenblueth, 2003), we should �nd a minimal s > 0, forwhih the funtional Ω has a nonzero stationary point on Hs . Denoting this



296 A.V. DMITRUKvalue by s∗, we an say that Ω is positive de�nite on Hs for any s < s∗,and Ω ≥ 0 on Hs∗ ; moreover, there is a nonzero pair (u, h) ∈ Hs∗ suh that
Ω(u, h) = 0. (Obviously, this pair is a stationary point of Ω on Hs∗ .)(For the detailed proof see the above papers. It is based on the following keyfats valid for the Legendre quadrati forms: a) if Ω(u, h) > 0 for all nonzero
(u, h) ∈ Hs , then Ω is positive de�nite on Hs , and b) if Ω is positive de�niteon Hs , then it remains positive de�nite on Hs′ for some s′ > s. Also, we usethe following simple fat: if (u, h) is a stationary point of Ω on a subspae,then Ω(u, h) = 0.)The point t∗0 = t1 − s∗ is said to be onjugate to t1 .2.4. The Euler�Jaobi equationTo write out the stationarity equation, let us impose the following assumptionon the ontrol system (26), (29), (30):A1) For any t′0 < t1 the system (26), (29), (30) is ontrollable on [t′0, t1],i.e., the mapping Γ : (u, h) 7−→ Λx(t1) + Nh, where x(t) satis�es (26) with
x(t′0) = 0, is a surjetion: ImΓ = IRm.Note that this system is assuredly ontrollable on the initial interval [t0, t1],sine we removed from (8) at least the ondition ϕ′

0 p̄ = 0. If the remainingsystem is unontrollable, there would exist Lagrange multipliers that provide theEL equation without ϕ0 , whih is impossible, beause we assume the Lagrangemultipliers in Problem A at w0 to be unique and have α0 > 0. AssumptionA1 requires that the above system is ontrollable for any t′0 < t1 , not only forthe initially given t0 .This requirement an also be formulated in a dual form: if a Lipshitz
n− vetor funtion ψ(t) and a vetor β ∈ IRm satisfy the relations

−ψ̇ = A∗ψ, B∗ψ = 0 on [t′0, t1], (32)
−ψ(t1) = Λ∗β, N∗β = 0, (33)then ψ(t) ≡ 0 and β = 0.Note also that Assumption A1 an be weakened: if it is somehow knownapriori that Ω > 0 on Hσ for some σ > 0, then it su�es to require A1 onlyfor all t′0 < t1 − σ.Now, onsidering the so-alled auxiliary problem
Ω(u, h) → min, (u, h) ∈ Hs ,we obtain the following ondition: if (u, h) is a stationary point in this prob-lem, then there exist a Lipshitz n− vetor funtion ψ(t) and a vetor β ∈ IRmsatisfying the following Euler�Lagrange relations (for the linear-quadrati ase



Jaobi type onditions for singular extremals 297they are also alled Euler�Jaobi (EJ) equation) on [t′0, t1], where t′0 = t1− s :
−ψ̇ = A∗ψ −Qx− P ∗u, (34)
B∗ψ − Px−Ru = 0, (35)
−ψ(t1) = Sxxx(t1) + Sxhh+ Λ∗β, (36)
Shxx(t1) + Shhh+N∗β = 0. (37)(They an be onveniently obtained by the formalism of Maximum Priniple:omposing the Pontryagin funtion Π = ψ (Ax+Bu)− 1

2

(
(Qx, x)+ 2(Px, u)+

(Ru, u)
) and the terminal Lagrange funtion λ = β(Λx(t1)+Nh)+

1
2 g(x(t1), h),we should write −ψ̇ = Πx , Πu = 0, −ψ(t1) = λx(t1) , λh = 0. Assump-tion A1 allows us to take the multiplier 1/2 at the ost Ω.)A quadruple (u(t), h, ψ(t), β) satisfying (26), (29), (30), and (34)�(37) on

[t′0, t1] will be alled a solution to EJ equation on [t′0, t1].We have to �nd a maximal t′0 < t1 suh that the EJ equation on [t′0, t1]has a solution (u, h, ψ, β) with a nonzero pair (u, h). Let us �rst show thatthe nontriviality of the pair (u, h) is equivalent to the nontriviality of the pair
(x, ψ).Lemma 2 Let u, h, x, ψ, β satisfy relations (26), (29), (30), (34)�(37). Then
(u, h) = (0, 0) i� (x, ψ) = (0, 0).Proof. a) If u(t) = 0, then (26), (29) yield x(t) = 0, and then relations (34)�(37) for h = 0 are exatly relations (32), (33), whih imply ψ(t) = 0, β = 0.b) If (x, ψ) = (0, 0), then (35) yields u(t) = 0, sine R is a nondegenerate(positive de�nite) matrix, and (37) is redued to Shhh+N∗β = 0, whih meansthat h is a stationary point of Ω = g(0, h) on H0 . Sine we assume that Ω > 0on H0 , the only stationary point is h = 0.An important onsequene of the strengthened Legendre ondition (24) isthat equation (35) allows us to represent u = R−1(B∗ψ − Px). Substitutingthis expression into (26) and (34), we obtain a linear system w.r.t. (x, ψ) ofthe general form

ẋ = A(t)x + B(t)ψ,

ψ̇ = C(t)x+ D(t)ψ,
(38)with some n×n−matries A,B, C,D. Our task is to �nd a pair (x, ψ) 6= (0, 0)and vetors β, h satisfying this system and terminal relations (29), (30), (36),(37) on [t′0, t1] .Sine the system (38) is linear and homogeneous, the pair (x, ψ) is nontriviali� (x(t), ψ(t)) 6= (0, 0) ∀ t. Note also that, if ψ(t) ≡ 0, then the �rst equationin (38) with aount of (29), i.e. x(t′0) = 0, implies x(t) ≡ 0.



298 A.V. DMITRUK2.5. Equation for the onjugate pointNote that assumption A1 implies, in partiular, that the m× (n+ q)−matrix
||Λ|N || has the full rank m, and so the subspae of pairs (x(t1), h) ∈ IRn × IRqsatisfying (30) has dimension n+ q −m .The onjugate point t∗0 an be found by the following proedure. Choose abasis

(xi(t1), h
i), i = 1, . . . , n+ q −m, (39)in that subspae, and also hoose an arbitrary basis β1, . . . , βm in the spaeof β ∈ IRm. Thus, we have n + q basis vetors in the subspae of triples

(x(t1), h, β) ∈ IRn+q+m satisfying (30). These basis vetors generate n + qvetors
(xi(t1), h

i, ψi(t1), θ
i), i = 1, . . . , n+ q, (40)where vetors ψi(t1) are obtained by (36), and q− dimensional vetors θi bythe relation θ = Shxx(t1) + Shhh+N∗β in view of the left-hand side of (37).For eah vetor (40), we should solve the system (38) bakwards in time,starting with the terminal values (xi(t1), ψ

i(t1)), thus obtaining vetor-funtions
(xi(t), ψi(t)). Adding here the onstant vetors hi and θi, we obtain vetor-funtions

(xi(t), hi, ψi(t), θi), i = 1, . . . , n+ q, (41)that form a fundamental family of solutions to system (38) with terminal rela-tions (30), (36). Now, we only have to satisfy relations x(t′0) = 0 and (37).The vetor-funtions (xi(t), θi), i = 1, . . . , n+ q, from (41) ompose (n+
q)× (n+ q)−matrix ||X(t) |Θ ||, and hene, the required relations are satis�edfor some solution to system (38), (30), (36) if and only if

det ||X(t′0) |Θ || = 0.The point t∗0 is then the maximal root t′0 < t1 of this equation.If the matrix N : IRq → IRm allows us to use some salar relations of (37)to eliminate some omponents of β, then the number of basis vetors βi anbe redued, and we need only pay attention to the remaining salar relations of(37). Thus, the matrix ||X(t) |Θ || would have a smaller dimension.In the most favorable ase, when rank N = m (hene m ≤ q ), the vetor βan be totally expressed through x(t1) and h by some m equations from (37),in the form β = Cx(t1) +Dh with some matries C,D. The left hand sides ofremaining q −m equations of (37) ompose a redued vetor θ̃ of dimension
q′ = q −m. Here we do not need to take an independent basis in the spae of
β; instead, we should hoose the above basis (xi(t1), h

i), i = 1, . . . , n+ q−m,then de�ne the vetors βi = Cxi(t1)+Dh
i, alulate the orresponding vetors
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ψi(t1) by (36), and solve the system (38) bakwards in time for eah terminalvalue (xi(t1), ψ

i(t1)), thus obtaining vetor-funtions (xi(t), ψi(t)), i =
1 , . . . , n+ q −m. Adding to them the orresponding vetors hi and θ̃i, weobtain vetor-funtions

(xi(t), hi, ψi(t), θ̃i), i = 1, . . . , n+ q′.This is a fundamental family of solutions to system (38) with terminal relations(30), (36), (37), and it only remains to satisfy the initial ondition x(t0) = 0 and
θ̃ = 0. To do this, we should ompose the (n+q′)×(n+q′)−matrix ||X(t) | Θ̃ ||and �nd the maximal t < t1 satisfying the equation det ||X(t) | Θ̃ || = 0. Thiswould be a point t∗0 onjugate to t1 .In another favorable ase, when rank N = q ≤ m, some q salar relationsof (30) an be used to express h = Dx(t1) with some matrix D, and x(t1)should only satisfy the remaining m′ = m− q equations of (30), whih an bewritten in the form

Gx(t1) = 0 (42)with some m′ × n−matrix G. The endpoint quadrati form g (and then Ω)does not ontain h, and so, we have the standard lassial ase with zero leftendpoint x(t0) = 0 and equality onstraints (42) for the right endpoint.Assumption A1 takes here the following form: the mapping Γ : u 7−→

Gx(t1), where x(t) is obtained from (26), (29), is a surjetion: ImΓ = IRm′

.The EJ equation reads here as follows: if u is a stationary point in theproblem Ω(u) → min, u ∈ Hs , then there exist a Lipshitz n− vetor funtion
ψ(t) and a vetor β ∈ IRm′ satisfying relations (34), (35), and the terminaltransversality ondition

−ψ(t1) = Sxx x(t1) + G∗β . (43)Here we may hoose a basis xi(t1), i = 1, . . . , n − m′, in the subspae ofvetors x(t1) satisfying (42), add to it a basis βi, i = 1, . . . ,m′, in thespae of β ∈ IRm′

, obtaining thus a basis (xi(t1), β
i), i = 1, . . . , n, inthe subspae of pairs (x(t1), β) satisfying (42), and then alulate the or-responding vetors ψi(t1), i = 1, . . . , n, by (43). Thus, we obtain n vetors

(xi(t1), ψ
i(t1), β

i), i = 1, . . . , n, satisfying (42) and (43). For eah of thesevetors, solving the system (38) bakwards in time, we obtain vetor-funtions
(xi(t), ψi(t)), i = 1, . . . , n. Next, ompose n × n−matrix X(t) of the ve-tors xi(t). Then, the onjugate point t∗0 is the maximal t < t1 suh that
detX(t) = 0.2.6. Cheking the nonnegativity of ΩNow, suppose the onjugate point t∗0 is somehow found. In aordane with theabstrat Jaobi theory, if t∗0 < t0 , then the quadrati funtional (25) de�ned



300 A.V. DMITRUKon the interval [t0, t1] is positive de�nite w.r.t. γ on the subspae of (x, u, h)satisfying relations (26), (29), (30). However, if t∗0 ∈ (t0, t1), we annot, ingeneral, say that Ω has negative values on this subspae. In other words, if
s∗ = t1− t

∗

0 is the onjugate point for Ω on the one-parameter family of spaes
Hs , then it an happen that Ω is still nonnegative on Hs for some s > s∗(an easy example is given in Dmitruk, 1976). Let s∗∗ be the maximum of suh
s. Obviously, s∗∗ ≥ s∗. The interval [s∗, s∗∗] is alled the onjugate (or foal)interval. In the ase when it is nondegenerate (s∗∗ > s∗), the point s∗ and theorresponding point t∗0 should better be alled the losest onjugate point, whilethe point s∗∗ and the orresponding point t∗∗0 should be alled the farthestonjugate point (with respet to s = 0 and t = t1 respetively). Fortunately,the farthest onjugate point s∗∗ an be also determined by using the solutionsto EJ equation, see Hestenes (1951), Dmitruk (1976) (and also Dmitruk, 1981for the general ase of �nite-faed one K). In the most favorable ase thesetwo points oinide: s∗∗ = s∗, and there is no need to �nd the point s∗∗ if thepoint s∗ is already found.To guarantee this oinidene, we impose one more assumption on our situ-ation:A2) If a vetor-funtion ψ(t) satis�es the equations −ψ̇ = A∗ψ, B∗ψ = 0on an interval (t′, t′′), then ψ(t) ≡ 0 on this interval.This is, of ourse, rather a strong assumption. It means that the system
ẋ = Ax+Bu is ompletely ontrollable, i.e., ontrollable on any nonzero interval
[t′, t′′] (whih means that for any a′, a′′ ∈ IRn there exists a pair (x(t), u(t))satisfying the above system with x(t′) = a′ and x(t′′) = a′′). However, it oftenholds in problems of CCV.One an propose a weaker assumption: any nontrivial solution (x, ψ, h, β)to EJ equation on an interval [t′, t1] annot remain a solution on a larger interval
[t′′, t1], t

′′ < t′, being extended on [t′′, t′] by setting there x(t) = 0, ψ(t) = 0.However, the weakest assumption, in fat equivalent to the oinidene s∗∗ =
s∗, and hene to t∗∗0 = t∗0 , is as follows: there exists a nontrivial solution
(x, ψ, h, β) to EJ equation on the interval [t∗0, t1] that annot be extended toa solution on a larger interval [t′′, t1], t

′′ < t∗0, by setting x(t) = 0, ψ(t) = 0on [t′′, t∗0]. (This equivalene is a key assertion proved in Hestenes, 1951. Itis worth noting that the similar assertion holds also true for the ase involvingterminal inequality onstraints (23), see Dmitruk, 1981.)Under assumptions A1 and A2, if we �nd the onjugate point t∗0 , we obtain,like in CCV, the omplete information about the sign of quadrati funtional Ωgiven by (25) and (31): a) if [t0, t1] does not ontain a point onjugate to t1 ,then Ω is positive de�nite on the subspae of (x, u, h) satisfying relations (26),(29), (30); b) if t∗0 ∈ (t0, t1), then Ω has negative values on this subspae,and ) if t∗0 = t0 , then Ω ≥ 0 on this subspae, and there exists a nonzeropair (u, h) suh that Ω(u, h) = 0.Consider now another important ase.



Jaobi type onditions for singular extremals 3012.7. The right endpoint �xedThis ase an be treated in two ways. In the �rst one, we an just redue thesituation to the preeding ase by hanging t0 and t1 . The seond way is asfollows. Sine x(t1) is �xed, for the ritial diretions we have x̄(t1) = 0 plussome equality onstraints at the left endpoint, G x̄(t0) = 0. After the Gohtransformation we get Gξ̄(t0) = 0, ξ̄(t1) +F (t1)h̄ = 0, and so, equations (27)in the �nal notation have the form
Gx(t0) = 0, x(t1) + F h = 0,where G and F are some matries of dimensions m×n and n×r, respetively.(Here we an neglet the relation of F with the matrix F (t, x(t)) from theinitial ontrol system.)Assume that rank F = r, i.e., the mapping F : IRr → IRn is injetive(whih is quite realisti). Then it has a right inverse D : IRn → IRr, DF = I,and so, h an be expressed through x(t1) in the form h = Dx(t1), while

x(t1) should satisfy a onstraint Λ x(t1) = 0 with some (n−r)×n−matrix Λ.Thus, we have a quadrati form Ω of the type (25) with a �nite-dimensionalpart g of the general type
g(x0, x1) = (S00 x0, x0) + 2(S01 x0, x1) + (S11 x1, x1),where S00 , S01 , S11 are some n × n−matries, and this form should be on-sidered on the spae of funtions (x(t), u(t)) on [t0, t1] satisfying equation (26)and terminal relations
Gx(t0) = 0, Λ x(t1) = 0, (44)where G and Λ are some matries of dimensions m × n and p × n, respe-tively (with some integer p). So, we atually have the general linear-quadratisituation with both endpoints independently variable. If at least one endpointis zero, say x(t0) = 0 (i.e., rank G = n ), we have ompletely the lassialsituation, so we should vary the point t0 and �nd the onjugate point t∗0 bythe standard lassial proedure.However, in the general ase, when both endpoints are indeed variable, thesign de�niteness of Ω on [t0, t1] does not depend monotonially on t0 , and so,the implementation of the Hestenes approah in this ase should be modi�ed.A natural modi�ation follows the idea (noted e.g. in Dmitruk, 1984) that oneshould vary the support of u(t), but keep the integration over the whole �xedinterval [t0, t1].To be more preise, onsider the Hilbert spae H = Lr

2[t0, t1] × IRn withelements (u(t), b) suh that the orresponding x(t), determined by equation(26) with initial ondition x(t1) = b, satis�es (44). Set T = t1 − t0 . For any
s ∈ [0, T ] de�ne a subspae Hs ⊂ H onsisting of all (u, b) ∈ H suh thatsupp u(t) ⊂ [t1 − s, t1], i.e. u(t) = 0 a.e. on [t0, t1 − s]. Obviously, {Hs} is



302 A.V. DMITRUKa ontinuously expanding family of subspaes, H0 = 0, and HT = H. Thequadrati form Ω : H → IR does not depend on s .As before, one should �rst hek that Ω is positive de�nite on H0 , andthen �nd s∗ as the minimal s > 0 for whih the funtional Ω has a nonzerostationary point on Hs . The di�erene from the ase with x(t0) = 0 is that,sine the integration is taken over the whole initial interval [t0, t1], the EJequation for Ω on Hs should be also onsidered on this whole interval, not onlyon [t1 − s, t1]. Alternatively, one an redue the integration to [t1 − s, t1], butthen one should take into aount the ontribution of the integrand term (Qx, x)on the "inative" subinterval [t0, t1 − s]. (The other integrand terms, involving
u, give no ontribution.) Sine x(t) on this subinterval satis�es the equation
ẋ = Ax, then x(t) = Φ(t1 − s, t)x(t1 − s), where Φ is the transition matrixof this equation (Φt(τ, t) = A(t)Φ(τ, t), Φ(τ, τ) = I ), and so, the integralof (Qx, x) is a quadrati form of x(t1 − s). Moreover, sine x(t0) = Φ(t1 −
s, t0)x(t1 − s), the endpoint quadrati form g(x(t0), x(t1)) an be expressedthrough x(t1 − s) and x(t1). Thus, the integration in Ω an be redued to
[t1−s, t1] at the expense of hanging some oe�ients in the endpoint quadratiform: g(x(t0), x(t1)) 7−→ g̃(x(t1 − s), x(t1)). The �rst relation in (44) an bealso expressed in the form Gs x(t1 − s) = 0 with some matrix Gs . Atually,here one must deal not with a single quadrati form Ω, but with a family ofquadrati forms Ωs having the same integral part while their endpoint partdepends on the parameter s. The transversality onditions in the EJ equationwould then also involve s. For a detailed exposition of this proedure see, e.g.,Zeidan (1994), and Stefani, Zezza (1997).Example 1 Consider the following problem:

ẋ1 = x2 + f1(x1, x2), x1(t0) = 0,

ẋ2 = u + f2(x1, x2), x2(t0) = 0,

J = 2s x1(T )x2(T ) +

∫ T

t0

(x2
1 + x2

2 + 2p x2u) dt→ min,where p > 0 and s are parameters, the funtions f1 , f2 are twie smooth,vanishing at zero together with their �rst and seond derivatives, and analyzethe proess w0 : x0
1 = x0

2 = u0 = 0. To represent formally this problem as anexample of problem A, introdue an additional state variable x3 satisfying theequation
ẋ3 = x2

1 + x2
2 + 2p x2u, x3(t0) = 0,whene the ost takes the terminal form J = 2s x1(T )x2(T ) + x3(T ) → min .Obviously, the referene proess w0 satis�es the MP with a unique (up tonormalization) olletion of multipliers ψ1 = ψ2 = 0, ψ3 = 1, α0 = 1/2,
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β1 = β2 = 0, β3 = −1, and with the orresponding funtions

l = α0

(
2s x1(T )x2(T ) + x3(T )

)
+ β1x1(t0) + β2x2(t0) + β3x3(t0),

H = ψ1(x2 + f1) + ψ2(u+ f2) + ψ3(x
2
1 + x2

2 + 2p x2u).The Lagrange funtion here is L = l+
∫
ψ3(ẋ3 − (x2

1 +x2
2 + 2p x2u)) dt, and itsseond variation at w0 is

Ω(x̄, ū) = 2s x̄1(T ) x̄2(T ) +

∫ T

t0

(x̄2
1 + x̄2

2 + 2p x̄2ū) dt. (45)The ritial subspae K is de�ned by the relations
˙̄x1 = x̄2 , x̄1(t0) = 0,

˙̄x2 = ū , x̄2(t0) = 0,

˙̄x3 = 0 , x̄3(t0) = 0,and x̄3(T ) ≤ 0 (linearization of the ost). Sine the multiplier at the ost
α0 > 0, we an put x̄3(T ) = 0, whene the arti�ial variable x̄3(t) ≡ 0, so weremove it from all relations.Introduing the variable ȳ subjet to ˙̄y = ū, ȳ(t0) = 0, we should try toestimate Ω from below by γ = ȳ2(t1)+

∫ T

t0
ȳ2 dt for (x̄1, x̄2, ū) ∈ K. Theorem 1says (in view of dimu = 1), that if Ω is positive de�nite in this sense, thereferene proess w0 gives a Pontryagin minimum in the problem, and if Ωadmits negative values, w0 does not give even a weak minimum.Perform the Goh transformation by setting x̄1 = ξ̄1 and x̄2 = ξ̄2 + ȳ. Then

˙̄ξ2 = 0, ξ̄2(t0) = 0, hene ξ̄2(t) ≡ 0, and we obtain x̄2 = ȳ, ˙̄ξ1 = ȳ, ξ̄1(t0) =
0, while Ω takes the form

Ω =2s ξ̄1(T ) ȳ(T ) +

∫ T

t0

(ξ̄21 + ȳ2 + 2p ȳū) dt =

= p ȳ2(T ) + 2s ξ̄1(T ) ȳ(T ) +

∫ T

t0

(ξ̄21 + ȳ2) dt(we took into aount that ∫ T

t0
2ȳū dt = ȳ2(T ) ). The strong Legendre onditionis satis�ed here: R(t) ≡ 1.Changing the variables (ξ̄1, ȳ, ȳ(T )) 7−→ (ξ̄1, ȳ, h̄) 7−→ (x, u, h), we �nallyome to the quadrati form

Ω(u, h) = ph2 + 2s x(T )h+

∫ T

t0

(x2 + u2) dt, (46)where ẋ = u, x(t0) = 0,
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∫ T

t0
u2 dt on the spae ofall (u, h) ∈ L2[t0, T ]× IRn. If u(t) ≡ 0 (i.e., (u, h) lies in the spae H0), then

Ω = ph2 is really positively de�nite, due to the assumption p > 0. Next, sinethe left endpoint is zero, we an vary t0 and try to �nd the onjugate point
t∗0 . Sine the system ẋ = u is obviously ompletely ontrollable, there are noonjugate intervals, so it su�es to �nd just the onjugate point t∗0 only.In order to write out the EJ equation, de�ne

Π = ψ u−
1

2
(x2 + u2), λ =

1

2
p h2 + s x(T )h,and so, the olletion (ψ, x, u, h) should satisfy the relations

ψ̇ = −Πx = x, ψ(T ) = −sh,

ψ − u = 0, λh = ph+ s x(T ) = 0,whene x(t) should satisfy the equation
ẍ = x, with ẋ(T ) =

s2

p
x(T ).From here we get x(t) = a cosh(t− T ) + b sinh(t− T ), b = s2a/p, and so, thenontrivial solution is, up to normalization:

x(t) = p cosh(t− T ) + s2 sinh(t− T ).We have to �nd the maximal t < T suh that x(t) = 0, i.e.,
tanh (t− T ) = −

p

s2
. (47)This equation determines the onjugate point t∗0 . Obviously, it has a (unique)solution t < T if and only if s2 > p. Moreover, one an easily see that, if

|s| → ∞, then t → T − 0, whih means that, for any �xed interval [t0, t1]the Ω has negative values if s is su�iently large. This result is in a goodaordane with the apriori onsiderations of (45): hoosing any proess with
x̄1(T ) x̄2(T ) 6= 0 and taking a large enough s, one an easily make Ω to benegative.Note that the onjugate point does not depend on the sign of s, whih anbe seen both from (47) and (46): if s 7→ −s, we an also hange h 7→ −h, and
Ω stays invariant.In partiular ase, when s2 = p, the onjugate point is absent, whih meansthat for any t0 < T the funtional

Ω(u, h) = s2 h2 + 2sh x(T ) +

∫ T

t0

(x2 + u2) dt (48)
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∫ T

t0

(x2 + u2) dt > x2(T )for all nonzero u(t) (then (48) majorates the square of sh+ x(T ) ), i.e.,
−x2(T ) +

∫ T

t0
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