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Abstract: We consider the class of optimal control problems
linear in the control, and study a singular extremal. If the La-
grange multipliers are unique, the quadratic order optimality con-
ditions have the form of sign definiteness of a quadratic functional
(the second variation of Lagrange function) with totally zero Leg-
endre coefficient. Using the Goh transformation, we convert it to a
functional possibly satisfying the strengthened Legendre condition,
involving also an additional parameter, and by applying the Hestenes
approach, determine its sign definiteness in terms of the conjugate
point, i.e. give Jacobi type conditions.
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1. Quadratic order conditions of optimality
1.1. The problem under study

Cousider the following optimal control problem on a fixed time interval [to, 1] :

&= fo(t,z) + F(t,z)u, (1)
u e U(t), (2)
Problem A : nilp)=0, j=1,...,p4, (3)
wilp) <0, i=1,...,v, (4)
J = @o(p) — min, ()

where z € R", u € R", p = (z(ty),z(t1)) € R®, the function z(t) is
absolutely continuous, u(t) is measurable and essentially bounded. The data
functions 7;, ¢; are assumed to be twice smooth; fo, F' are continuous and
have jointly continuous first and second derivatives w.r.t. . (The problem on
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a nonfixed time interval can be easily reduced to problem A by passing to a new
time variable.)

Let be given an admissible process (z%,u") with u°(t) taking values strictly
inside U(t), which means that

Je >0 suchthat w’(t) + B.(0) C U(t) a.e. on [to, t1]. (6)

Without loss of generality, assume also that ¢;(p°) =0 for all i = 0,1,...,v,
hence all the inequality constraints are active. Assume that the process (z°,u°)
satisfies the Maximum Principle (which is equivalent in this case to the Euler—
Lagrange (EL) equation), which says that there exist multipliers «g,...,a, >
0, B, ¥(t), not all equal to zero and such that, composing the Pontryagin
function H = ¢ (fo(t,z)+F(t,x)u) and the terminal Lagrange function I(p) =

> @i @i(p) + X-5_) Bimi(p), we should obtain the following relations:

1/'} = _Hm(wv'rovuo)a 1/’(150) = lmo(po)v 1/’(151) = _lml (po)v
Hy (v, 2% u®) = (t) F(t,2°(t)) = 0.

The last relation means that we have a totally singular extremal. The question
is: what are further (higher order) necessary and sufficient conditions for the
given process (z°,u%) to be optimal in one or another sense? This question was
studied by many authors for more than 40 years, since early 1960s (see Kelley,
Kopp, Moyer, 1967, and later references in Dmitruk, 1997). For problem A it
was completely solved by the author in a series of papers, Dmitruk (1977, 1978,
1983, 1987-88, 1992, 1994, 1997), for the two types of minimum: the weak and
the so-called Pontryagin minima. In those papers the author obtained "adjoint
pairs" of necessary and sufficient conditions of a special quadratic order typi-
cal for problem A. The necessary condition consists of nonnegativity, and the
sufficient condition consists of positive definiteness of a quadratic functional (or
of the maximum of a family of quadratic functionals) on a cone in the space
of variations. In this paper we will show how one can pass from these "ba-
sic" quadratic order conditions to Jacobi type conditions in terms of conjugate
points, thus will propose a procedure for verifying these "basic" conditions.
Our approach is similar to that in the classical calculus of variations (CCV)
— obtaining conditions in terms of quadratic functionals and then analyzing
their sign definiteness, and differs mainly by the fact that here the quadratic
functionals have totally zero Legendre coefficient. After some transformation
they can be converted into functionals possibly satisfying the strengthened Leg-
endre condition, but involving additional parameters, and this specificity should
be properly taken into account. (Another approach based on methods of differ-
ential geometry is pursued in Stefani, 2003, 2004, for particular cases of problem
A with a scalar control, where conditions for a strong minimum are proposed.)
To simplify the exposition, we assume here that the collection of Lagrange

multipliers for the given process (z",u°) is unique, up to normalization, with
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ap > 0, sowe can set ap = 1. (The "basic" quadratic order conditions were ob-
tained in the cited papers without this assumption.) This, in particular, implies
that equality constraints (1), (3) near the process (z°,u°) are nondegenerate at
the first order, or, in other words, the system (1), (3) is first-order controllable

at (20, u).

1.2. Quadratic order conditions

To formulate the "basic" quadratic order conditions of optimality, we have to
define the following objects: a) the quadratic functional (quadratic form), b)
the cone of critical variations, and c¢) the estimating quadratic functional (order
of minimum).

Denote by W = AC™x L” the space of all pairs w = (x,u), € AC™, u€
L”_ on the given time interval [to,t1].

a) The quadratic form. The existing collection (here unique) of La-
grange multipliers generates the corresponding Lagrange function

L(z,u) = l(zg, x1) + ' P(t) (& — fo(t,x) — F(t,x)u)) dt,

to

and its second variation at (z°,u®) € W :

ty
Qz,a) = d*L[2°,u") (z,a) = (I"p,p) — / [(HyoZ, T) + 2(Z, Hpyut)] dt;

to
which is a quadratic functional w.r.t. @ = (Z,a). Note that this quadratic form
does not contain "the main", Legendre term with %2, which is directly caused
by the linearity of the state equation in « and the assumption (6), and which
immediately puts us out of the framework of the classical Jacobi theory, that
essentially assumes the presence of this term with a strictly positive coefficient

(the strengthened Legendre condition).

b) The cone of critical variations. The above quadratic functional
should be considered not on the whole space W, but only on the so-called cone
of critical variations K, which is given by linearization of all constraints and
the cost functional of the problem at the reference process (2%, u") :

= fl, o+ F.zu’ + Fa, (7)
77_;13:07 j:]‘""7u7 SO’/LZ;SO7 i:0’17"'7y' (8)

For convenience in further study, let us simplify conditions (8) as much as pos-
sible. First, for any ¢ with a; > 0 we can replace here the inequality ¢;p <0
by the equality ¢} p = 0. In particular, we can take ¢ p =0, since we assume
ap = 1. Moreover, then we can delete this equation altogether, because (due
to the EL equation) it is a linear combination of all other obtained equations
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in (8) and system (7). If, after all such replacements, only one inequality in
(8) remains, we can also delete it. This last trick is justified by the fact that
the sign definiteness of a quadratic form on a half-space is equivalent to that on
the whole space. However, in the general case, a finite number of inequalities
;P <0 corresponding to a; =0 may remain.

¢) The order of minimum. Now, define the following estimating quadratic
functional, that we regard as a quadratic order of minimum:

(E,1) = [2to) + [5(t)]? + / )Pt (9)

to

where = u, g(to) = 0. (10)

One can see that this estimating functional includes an additional "artificial"
state variable y (to be more exact, the variation of an artificial state variable
y, satisfying the equation § = u, y(t9) =0, which is not explicitly introduced,
since the variable y itself will not be used in what follows), and does not
explicitly include the control variation u; it includes the last only implicitly,
through ¥.

Now we are ready to formulate the quadratic order conditions of optimality
for problem A. Let us start with the weak minimality, by which we mean the
minimality w.r.t. the norm ||w||" = [[z[|c + |[ul|s . In this case, since u(t)
lies strictly inside U(t), the inclusion constraint u € U is inessential, so we can
neglect it.

THEOREM 1 a) Let w® = (2°,u°) provide a weak minimum in problem A.
Then

Q(w) > 0 forall we K. (11)
b) Suppose that for some a >0
Q(w) > avy(w) forall weK (12)

(i.e., 0 is positive definite on K with respect to ). Then w® = (2°,u°)
provides a weak minimum in problem A.

As one can see, these necessary and sufficient conditions constitute a pair
of conditions with a minimal gap between them; we call them an adjoint pair
of conditions. In this sense, these conditions are quite similar to those in the
finite-dimensional analysis and CCV.

Part (a) of this theorem is a particular case of the necessary conditions in
the optimal control problem with general nonlinear state equation @ = f(¢,z, u)
(actually, in the general problem of CCV with additional inequality constraints
(4)). These general necessary conditions were obtained in Levitin, Milyutin,
Osmolovskii (1978). Part (b) was proved in Dmitruk (1977, 1978), solving thus
the question of obtaining sufficient conditions for this nonclassical case.
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REMARK 1 If the collection of Lagrange multipliers is not unique, then, for any
such collection and the corresponding second variation of the Lagrange function,
part b) of Theorem 1 still holds true (see Dmitruk, 1977, 1978).

Along with the notion of weak minimum, we consider also the notion of
Pontryagin minimum, proposed by A.Ya.Dubovitskii and A.A.Milyutin. An
admissible process w® = (z°,u°) is said to provide a Pontryagin minimum in
problem A if for any number N it provides a local minimum w.r.t. the norm
[lz||c+||ul]1 in problem A with additional constraint |u(t)] < N. This type of
minimum lies obviously between the weak and strong minima, and it turned out
to be very convenient in the study of higher order conditions (see, e.g., Milyutin,
Osmolovskii, 1998).

The conditions for a Pontryagin minimum of order (9) are obtained in
Dmitruk (1983, 1987-88, 1992, 1994) under the additional assumption that
the functions fy, F' have jointly continuous third derivatives w.r.t. x. These
conditions have the same form (11), (12) with an additional requirement on
coefficients of the third variation of the Lagrange function with reference to the
constraint uw € U, which cannot be neglected in this case. Here we do not
write out this requirement; the details and proofs see in the above papers. (If
dim » = 1, this additional requirement holds trivially, hence the conditions for
a Pontryagin minimum coincide with those for a weak minimum.)

Anyway, for both types of minimum we arrive at conditions (11) and (12).
Our goal in this paper is to propose a procedure for verifying these conditions.

1.3. The linear-quadratic situation

Having obtained conditions (11), (12), we face a natural question: how one can
verify them? First of all, let us state the situation we arrive at.
We have a quadratic form of the type

t1

Q(w) = g(z(to), Z(t1)) + /(Q:E,:E) +2(Cz,u) dt, (13)
to
where ¢ is a finite-dimensional quadratic form in R?" and the matrices Q, C

are of appropriate dimensions, and we have a cone K C W given by constraints
of the type

z = A(t)z + F(t)u, (14)
azi(t0)+bz‘f(t1):05 Zzlvvluv (]‘5)
a Z(to) + b (1) <0, j=1...,1, (16)

where a;, b;, aj, b; € R" are some vectors, the matrices Q(t), A(t) have
measurable bounded entries, and C(t), F(t) have Lipschitz continuous entries.
(In fact, Q(t) = —Hyzy, C(t) = —2H,y, A(t) isthe coefficient at z in (7), all
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calculated along w®(t), F(t) = F(t,z%(t)), but from now on, we do not need
these particular expressions.) Our aim is to determine whether the estimate
(12) holds with some a >0 or a > 0.

This is a linear-quadratic situation, which results from the quadratic order
study of the reference extremal process in problem A. Having stated this sit-
uation, we can forget the initial problem A from now on, leaving only specific
features of 2 and K. Recall that in CCV the question of sign definiteness
of a quadratic form is solved by the well-known Jacobi conditions about the
conjugate (or focal) points. However, this approach does not work in our case,
because the key assumption of the Jacobi theory, the strengthened Legendre
condition, is not satisfied. So, what to do then?

To overcome this obstacle, we use a simple transformation, probably first
proposed in Goh (1966), which is the following change of state variables:

(), z=E+Fy

So, the state variable Z is now replaced by two state variables, € and 7.
In view of (10) and (14), £ obeys the dynamics

g: A€ + By, where B = AF — F, (17)

and the initial condition £(to) = Z(to). An important feature is that equation
(17) does not contain @! The control variation % now comes, in the simplest
way, only into Eq. (10) for §. These two facts make it possible to obtain some
nice properties of the functional ).

First of all, we see that after the above transformation, 2 can be reduced
to the form:

Q = g(&(to), &(tr) + F(t1)y(t1)) + (C(t1)E(t1), §(t1))+

ty
+ / (QE.€) + 2PE.g) + (Ry.g) + (CF g, ) dt,

to

where P(t), R(t) are some matrices with measurable bounded entries. The
term (CE, @) = (CE,§j) was integrated by parts in order to exclude i, leaving
thus only one term in Q containing @, i.e., (CFg,u). A remarkable fact
discovered by Goh is that this last term can also be integrated by parts. He
proved that, if Q2 > 0 on K, then the matrix CF = —H,, F' is symmetric (the
necessary Goh condition of equality type), hence this term can be integrated.
Namely, for any symmetric absolutely continuous matrix S(t), one can write
£(59,9) = (59,9) + 2(Sy, @), hence

tl tl

2 [(sp.mdt= (sp.ly) - [Sn.d



Jacobi type conditions for singular extremals 291

so Q (with Lipschitz continuous S = CF') is reduced to the form

ty

Q= §(E(to), &(tr), 7(t1)) + / (QE.6) +2(PE,g) + (Ry, 3) dt, (18)

to

with a new measurable bounded matrix R(¢) and a new terminal quadratic form
§ in the space R®*"™. We do not write here the expressions for all coefficients
in (18) through initial ones, which can be easily done if necessary. The practice
shows that, in solving concrete problems, one need not use those expressions;
it is easier to perform the Goh transformation in each situation, rather than to
calculate the new matrices defining the quadratic form in terms of the old ones
by means of general formulae.

The cone K in the new variables is given by the differential equations (10),
(17), and the terminal constraints

a; (o) + b (E(t1) + Fy(ty)) =0, i=1,...,u, (19)

Thus, we arrive at a situation, where both the investigated quadratic form
and the order of minimum depend only on ¢ and 7, connected by equation
(17) and terminal relations (19), (20), but do not explicitly depend on @. The
control variation @ comes only in the state equation (10) for g, which in fact

just means that ¢ is an arbitrary Lipschitz continuous function with initial
value g(tp) = 0.

1.4. Extension of the space of critical variations

Now, we note that the space of Lipschitz functions, even with zero initial value,
is dense in the space Ls[to, 1], and the integral part of Q is continuous w.r.t.
[|7|l2, hence we can consider § € L}[tg,t1], while the terminal value 7(¢1) in
the endpoint quadratic form § should be replaced by a parameter h € R",
since the variety of pairs (g(-), 7(t1)), where g(-) is a Lipschitz function with
zero initial value, is dense in the space Lj[tg,t1] x R".

Thus, we come to a functional

t1

Q(é(to), Ys B) = g(g(to)vg(tl)v B)) + /(Qg7 g) + 2(Pga g) + (Rgag) dt, (21)

to

where 7 € L[to,t1], h € R", and ¢ is expressed through 7 by equation (17)

with an arbitrary initial condition £(¢y). This new quadratic form is defined on

the extended space W = R" x L5 x R" with elements (£(to),7(-),h) and is
obviously continuous w.r.t. the norm [£(¢0)| + ||7||2 + |h|- The extended cone
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K in this space is given by equation (17) and the terminal constraints

a; E(to) +b; (E(t) + Fh) =0, i=1,...,u, (22)
a E(to) + b (E(t1) + F h) <0, j=1,...,v. (23)

What remains to be checked is that this new cone K contains the old cone
K, given by (17), (19), (20), as a dense subset. This fact is a particular case of
the following general assertion, which is of independent interest.

LEMMA 1 (ON DENSENESS)  Let in a locally convez linear topological space X
be given a finite-faced cone C, and a linear variety (algebraic subspace) L dense
in X. Then the cone C'NL is dense in C.

Proof. Consider first the case when the cone C' is a subspace given by one
equation (p,z) =0, p€ X*, p+#0. Take any point zo € C' and its convex
neighborhood O(zp). We have to show that 3z € C'N LN O(xp). Since the
set (p,z) < 0 is open, its intersection with O(z() is open, too, and obviously
nonempty, hence it contains a point z; from the set L, because the last one
is dense in X. Similarly, the intersection of the set (p,z) > 0 with O(x)
contains a point xe € L. Since O(x¢) is convex, it contains the whole segment
[x1, 2], that also lies in L, since the last one is a linear variety. But this
segment obviously contains a point z such that (p,x) =0, which then belongs
to C and to LN O(xg), g.e.d.

Now, let C' be an arbitrary finite-faced cone, given by inequality constraints
(gj,x) <0, j=1,...,v. Suppose first, that 3& € C such that all (¢g;,2) <0,
hence & € int C. Take any xp € C' and any its neighborhood O(zy). We have
to find a point z € C N O(zp) N L. We know that, for any ¢ > 0, the point
ze = o + & lies in int C' (a simple property of convex cones), and Je > 0
such that this point lies also in O(zp). Thus, the open set int C' N O(xg) is
nonempty, and then it contains a point x from a dense set L, g.e.d.

Suppose now that the above point & € int C' does not exist, i.e., the strict
inequality constraints do not intersect. If some ¢; = 0, we can remove j-th
inequality, so we assume that all g; # 0. In this case, by the Dubovitskii-
Milyutin theorem, there exist multipliers o; > 0, j = 1,...,v, not all zero,
such that the following EL equation holds: «3¢1 +...+a, g, = 0. Take any j
with «; > 0; let it be j = v. Then, for all x € C' we actually have (g,,z) =0,
not just < 0. (Otherwise, if z € C and (g,,x) < 0, one should multiply the EL
equation by this = and take into account that all other terms (g;,x) < 0, while
the sum equals 0, a contradiction.) This means that the cone C' can be given by
the constraints (¢;,z) <0, j=1,...,v—1, (g,x)=0. But, passing to the
subspace (g,,z) =0 we obtain in it, as was shown above, a dense linear variety
and a cone given by a smaller number v — 1 of inequality constraints. The
equality (g,,z) = 0 is thus removed. Applying the induction arguments, we
arrive at the situation when either all the inequality constraints are transformed,
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one by one, into equalities and then removed, or the strict inequalities have a
nonempty intersection. Since the last case is already considered, the proof is
complete. -

In our situation we have X = R"xLyxR", L={(&,7(:),5(t1)) | & €
R", 7 is a Lipschitz function }, and C =K.

1.5. Passing to a new control

From Lemma 1 and the continuity of Q in the extended space it follows that
the sign definiteness of  on K w.r.t. v is equivalent to that of Q on K
w.r.t. the same ~. _ B

But now, looking at the new functional €2 and the cone K, we notice that
the control @ completely disappeared, and the role of control is now taken by
the variable § € La, since it does not obey any differential equation, so the
role of state variable is left only for €. Accepting this, we then notice that
now contains the Legendre term w.r.t. the new control, (Rg,¥), and therefore,
the nonnegativity of Q on K immediately implies the Legendre condition:
R(t) > 0 ae. on [to,t1]. This is the second necessary Goh condition, of
inequality type, in the case of one-dimensional control obtained earlier by H.J.
Kelley (see Kelley, Kopp, Moyer, 1967). (To be precise, Goh, 1966, proved his
conditions for a particular case of problem A without inequality constraints (4),
hence for K being a subspace. For the case of cone, the Goh conditions, both
of equality and inequality type, were proved in Dmitruk, 1977, 1978.)

The order of minimum < now contains the square of the control variation,
exactly as in CCV (see Levitin, Milyutin, Osmolovskii, 1978, and Milyutin,
Osmolovskii, 1998). If we hope to obtain the positive definiteness of Q w.rt.
v, we must assume at least the strengthened Legendre condition w.r.t. the new
control:

R(t) > const - I a.e. on [to, 1], const > 0, (24)

where I is the identity matrix. In what follows, we do assume it holds. (In this
case () is called a Legendre quadratic functional, Hestenes, 1951).

Thus, we actually come to a situation, in which we should determine the
sign definiteness of a quadratic functional Q of the form (21), satisfying the
strengthened Legendre condition, on a cone K given by (17), (22), (23). The
difference from CCV is in the following two features: a) K is a cone, not a
subspace, and b) € and relations (22), (23) include an additional parameter
h.

Our further aim is to develop Jacobi type conditions for this case. To simplify
the exposition, let us assume here that the inequalities (23) are absent, i.e. K
is a subspace. Recall that this indeed is the case if at least all but one multipliers
a; > 0. (Jacobi type conditions for the case of a general quadratic form on a
cone are obtained in Dmitruk, 1981, 1984.)
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2. Jacobi type conditions for the sign definiteness of a
quadratic functional

2.1. Linear-quadratic situation with a parameter

Stating the situation (17), (21), (22), let us pass once again to a simpler and
more convenient notation, by changing (§,4,h) — (z,u,h). Then we have a
quadratic form (denoted again by ) of the type

Q= g(z(to),x(t1), h)) + /(Qx,x) + 2(Px,u) + (Ru,u) dt, (25)

satisfying (24), that should be considered on a subspace K in the space of
variables (x(tg),u,h) € R" x L x R" given by a linear differential equation

i = Ax + Bu (26)
and terminal equality constraints of the form
aix(t0)+bix(t1)+cih20, i1=1,...,m. (27)

Our task is to verify the sign definiteness of  on K w.r.t. the quadratic order
ty
v, uh) = Ja(to)* + [A* + / |u(t)[Pdt, (28)
to

which is the square of norm in the space R"™ x L5 x R". The procedure of
this verification is based on the abstract approach to Jacobi theory proposed
in Hestenes (1951) and depends on the specificity of terminal constraints. If
the terminal constraints are in the general form (27), this procedure is very
cumbersome; it will be treated by the author elsewhere. Here we consider two
most important cases, where equations (27) result from the problem A with at
least one endpoint fixed. The specificity of such terminal constraints allows one
to make this procedure simpler.

Note that the absence of formal symmetry between these cases is caused
by the fact that the order v and the Goh transformation are not symmetrical
w.r.t. the left and the right endpoints.

2.2. The left endpoint fixed
This means that (15) reads Z(tp) = 0, 0;Z(t1) = 0, which in (19) yields

&(to) =0, bi(E(t1) + Fy(t1)) =0, and so, (27) can be represented in the form

z(to) = 0, (29)
Az(t) + Nh =0, (30)
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with some matrices A, N of dimensions m x n, m x r. (Note that this last x
has nothing in common with the initial 2!) We can even allow now arbitrary
dimensions for v and h: dimwu =, dimh = ¢, not necessarily equal (so,
dim N = m x ¢). Note that here all components of z(ty), both essential and
inessential, automatically disappear from -y, since x(to) = 0.

The terminal quadratic form ¢ can be represented as

g(l‘(tl), h) = (Swwx(tl)v x(tl)) + 2(Sh1$(t1), h) + (Shhh7 h)v (31)

where Sz, She, Spn are matrices of corresponding dimensions.

2.3. The Hestenes scheme

We have to study € of the form (25), (31) with respect to the quadratic order
(28) under the relations (26), (29), (30).

Let us fix the terminal time ¢; and vary initial time ¢y. The smaller is ¢q,
the larger is the interval [to, ¢1], and the broader is the set of triples x(t),u(t), h
satisfying (26), (29), (30), because any such triple can be naturally extended to
the larger interval by zero value of x(t) and u(t). Moreover, since h does not
come into the integrand in (25), © considered at any triple for an initial interval
[to, t1], takes the same value at this triple extended to the larger interval, thus 2
has more chances to be negative on the larger interval. So, the sign definiteness
of Q monotonically depends on ty, and this is a key point for application of
the Hestenes approach, that will allow us to define a point ¢} conjugate to ¢; .

Note that, since x(tp) = 0, the state variable x(t) on the interval [to, t1] is
uniquely determined by w(t) from equation (26), and so, 2 uniquely depends
on (u,h). Set T =t; —to. For any s € [0,T] define ¢, =¢; —s and consider
the Hilbert space Hy consisting of elements (u,h) € L5[ty, t1] X R? such that
the corresponding solution to (26) with x(t() = 0 has x(t1) satisfying (30).
(The change of parameters t), — s is taken for the sake of unification of the
Hestenes scheme.)

The space Hs obviously expands as s grows: if s’ <s”, then Hy C Hgr
with the natural embedding. Moreover, it continuously depends on s in the
following sense:

H, = ﬂHs/ and  H, = UH

s'>s s'<s

For s =0 we have a finite-dimensional space Hy = {0} x RY.

Recall that a quadratic form is said to be positive definite on a subspace if
it is estimated from below by the square of norm on this subspace.

Suppose that Q is positive definite on Hy. Then, according to Hestenes
(1951) (see also Dmitruk, 1976, 1982, 1984; Zeidan, 1994; Stefani, Zezza, 1997;
Stefani, 2003, 2004; Rosenblueth, 2003), we should find a minimal s > 0, for
which the functional €2 has a nonzero stationary point on Hg. Denoting this
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value by s*, we can say that €0 is positive definite on H, for any s < s,
and Q>0 on H,-; moreover, there is a nonzero pair (u,h) € Hg- such that
Q(u, h) = 0. (Obviously, this pair is a stationary point of Q on Hg- .)

(For the detailed proof see the above papers. It is based on the following key
facts valid for the Legendre quadratic forms: a) if (u,h) > 0 for all nonzero
(u,h) € Hy, then Q is positive definite on H, and b)if Q is positive definite
on H,, then it remains positive definite on Hy for some s’ > s. Also, we use
the following simple fact: if (u,h) is a stationary point of € on a subspace,
then Q(u,h) =0.)

The point tj =t — s* is said to be conjugate to t; .

2.4. The Euler—Jacobi equation

To write out the stationarity equation, let us impose the following assumption
on the control system (26), (29), (30):

A1) For any t, < t1 the system (26), (29), (30) is controllable on [t{, 1],
i.e., the mapping I : (u,h) — Az(t;) + Nh, where x(t) satisfies (26) with
z(ty) = 0, is a surjection: ImI = R™.

Note that this system is assuredly controllable on the initial interval [to, 1],
since we removed from (8) at least the condition ¢{p = 0. If the remaining
system is uncontrollable, there would exist Lagrange multipliers that provide the
EL equation without ¢g, which is impossible, because we assume the Lagrange
multipliers in Problem A at w® to be unique and have ag > 0. Assumption
A1 requires that the above system is controllable for any ¢, < ¢1, not only for
the initially given tg .

This requirement can also be formulated in a dual form: if a Lipschitz
n— vector function (t) and a vector § € R™ satisfy the relations

—1) = A*, B*p =0 on [t),ti1], (32)

then 9(t) =0 and g =0.

Note also that Assumption Al can be weakened: if it is somehow known
apriori that © > 0 on H, for some o > 0, then it suffices to require Al only
for all t) <t; —o.

Now, considering the so-called auxiliary problem

Q(u, h) — min, (u,h) € Hs,

we obtain the following condition: if (u,h) is a stationary point in this prob-
lem, then there exist a Lipschitz n— vector function (t) and a vector G € R™
satisfying the following Euler—Lagrange relations (for the linear-quadratic case
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they are also called Euler—Jacobi (EJ) equation) on [t[, 1], where t[ =t —s:

—1) = A% — Qu — P*u, (34)
B* — Pz — Ru =0, (35)
—Y(t1) = Szax(t1) + Senh + A™B, (36)
Shml'(tl) + Spph+ N*3 = 0. (37)

(They can be conveniently obtained by the formalism of Maximum Principle:
composing the Pontryagin function II = ¢ (Az + Bu) — % ((Qx, x)+ 2(Px,u) +
(Ru,u)) and the terminal Lagrange function A = 3(Az(t1)+Nh)+3 g(z(t1), h),
we should write —i = II,, II, =0, —Y(t1) = Aat;), An = 0. Assump-
tion A1 allows us to take the multiplier 1/2 at the cost €.)

A quadruple (u(t),h, ¥(t),8) satisfying (26), (29), (30), and (34)—(37) on
[to,t1] will be called a solution to EJ equation on [t{, #1].

We have to find a maximal t{; < t; such that the EJ equation on [t(, ]
has a solution (u,h, ¥, 3) with a nonzero pair (u,h). Let us first show that
the nontriviality of the pair (u,h) is equivalent to the nontriviality of the pair

(, ).

LEMMA 2 Let u,h,z, ¥, 3 satisfy relations (26), (29), (30), (34)-(37). Then
(u,h) = (0,0) #f (z,4) = (0,0).

Proof. a) If u(t) =0, then (26), (29) yield x(t) =0, and then relations (34)—
(37) for h =0 are exactly relations (32), (33), which imply #(t) =0, 5 =0.

b) If (z,v) = (0,0), then (35) yields u(t) =0, since R is a nondegenerate
(positive definite) matrix, and (37) is reduced to Spph+N*G = 0, which means
that h is a stationary point of Q = g(0,h) on Hp. Since we assume that Q > 0
on Hj, the only stationary point is h = 0. [

An important consequence of the strengthened Legendre condition (24) is
that equation (35) allows us to represent v = R~!(B*¢ — Pz). Substituting
this expression into (26) and (34), we obtain a linear system w.r.t. (z,v) of
the general form

& = A(t)z + B(t)w,
) = C(t)x + D(t)¢,

with some n x n— matrices A, B,C,D. Our task is to find a pair (x,1) # (0,0)
and vectors [, h satisfying this system and terminal relations (29), (30), (36),
(37) on [tg,t1]

Since the system (38) is linear and homogeneous, the pair (z,) is nontrivial
iff (z(¢),%(t)) # (0,0) Vt. Note also that, if 1(t) =0, then the first equation
in (38) with account of (29), i.e. z(t;) =0, implies z(t) = 0.
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2.5. Equation for the conjugate point

Note that assumption Al implies, in particular, that the m x (n + ¢)— matrix
[|AIN]| has the full rank m, and so the subspace of pairs (z(t1),h) € R" x R?
satisfying (30) has dimension n+q—m.

The conjugate point ¢j can be found by the following procedure. Choose a
basis

(z'(t1), h), 1=1,...,n+q—m, (39)

in that subspace, and also choose an arbitrary basis 8',...,3™ in the space
of € R™. Thus, we have n + ¢ basis vectors in the subspace of triples
(z(t1), h, B) € R" 7™ satisfying (30). These basis vectors generate n + ¢
vectors

(z'(t1), h', 9 (t1), 6%, i=1,...,n+gq, (40)

where vectors 1(t;) are obtained by (36), and ¢— dimensional vectors 6° by
the relation 6 = Spyx(t1) + Spnh + N*G  in view of the left-hand side of (37).

For each vector (40), we should solve the system (38) backwards in time,
starting with the terminal values (x%(t1),*(t1)), thus obtaining vector-functions
(z%(t),*(t)). Adding here the constant vectors h' and 6, we obtain vector-
functions

(@' (), h" 91 (1), 0"),  i=1,....n+q, (41)

that form a fundamental family of solutions to system (38) with terminal rela-
tions (30), (36). Now, we only have to satisfy relations z(t;) =0 and (37).

The vector-functions (z%(t),6"), i =1,...,n+¢q, from (41) compose (n +
q) X (n+¢)— matrix || X(t)|© ||, and hence, the required relations are satisfied
for some solution to system (38), (30), (36) if and only if

det|| X (ty)|© ] = 0.

The point t§ is then the maximal root ¢ < ¢; of this equation.

If the matrix N : R? — R™ allows us to use some scalar relations of (37)
to eliminate some components of 3, then the number of basis vectors 3¢ can
be reduced, and we need only pay attention to the remaining scalar relations of
(37). Thus, the matrix || X (¢)|© || would have a smaller dimension.

In the most favorable case, when rank N = m (hence m < q), the vector
can be totally expressed through x(¢;) and h by some m equations from (37),
in the form § = Cxz(t1)+ Dh with some matrices C, D. The left hand sides of
remaining g — m equations of (37) compose a reduced vector 0 of dimension
¢’ = ¢g —m. Here we do not need to take an independent basis in the space of
; instead, we should choose the above basis (2¢(t1),h?), i =1,...,n+q—m,
then define the vectors 3¢ = Cz(t;)+ Dh?, calculate the corresponding vectors
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¥i(t1) by (36), and solve the system (38) backwards in time for each terminal
value (z'(t1), ¥'(t1)), thus obtaining vector-functions (z'(t), ¥'(t)), i =
1,...,n+q—m. Adding to them the corresponding vectors h’ and 6, we
obtain vector-functions

(@i(t),h', 0i(1),6°),  i=1,...,n+dq.

This is a fundamental family of solutions to system (38) with terminal relations
(30), (36), (37), and it only remains to satisfy the initial condition z(tg) =0 and
6 = 0. To do this, we should compose the (n+¢’) X (n+¢')— matrix || X ()| O ||
and find the maximal t < ¢, satisfying the equation det || X (¢)|© || = 0. This
would be a point t; conjugate to ¢; .

In another favorable case, when rank N = q < m, some ¢ scalar relations
of (30) can be used to express h = Dz(t1) with some matrix D, and z(¢1)
should only satisfy the remaining m’ = m — ¢ equations of (30), which can be
written in the form

Ga(ty) =0 (42)

with some m’ x n—matrix G. The endpoint quadratic form ¢ (and then )
does not contain h, and so, we have the standard classical case with zero left
endpoint z(ty) =0 and equality constraints (42) for the right endpoint.

Assumption Al takes here the following form: the mapping T : v —
Gx(t1), where x(t) is obtained from (26), (29), is a surjection: ImT = R™ .
The EJ equation reads here as follows: if u is a stationary point in the
problem Q(u) — min, u € Hy, then there exist a Lipschitz n— vector function
¥(t) and a vector f§ € R satisfying relations (34), (35), and the terminal
transversality condition

—(t1) = Sezx(t1) + G*B. (43)

Here we may choose a basis z‘(t;), i = 1,...,n —m’, in the subspace of
vectors x(t1) satisfying (42), add to it a basis 3¢, i = 1,...,m/, in the
space of B € R™, obtaining thus a basis (2i(t1),B%), i = 1,...,n, in
the subspace of pairs (z(t1),3) satisfying (42), and then calculate the cor-
responding vectors ¥i(t1), i =1,...,n, by (43). Thus, we obtain n vectors
(z'(t1), ¥ (t1), "), i = 1,...,n, satisfying (42) and (43). For each of these
vectors, solving the system (38) backwards in time, we obtain vector-functions
(xi(t),¥(t)), i=1,...,n. Next, compose n x n—matrix X (t) of the vec-
tors x'(t). Then, the conjugate point ¢} is the maximal ¢ < t; such that
det X(t) = 0.

2.6. Checking the nonnegativity of ()

Now, suppose the conjugate point t; is somehow found. In accordance with the
abstract Jacobi theory, if t§ < ¢o, then the quadratic functional (25) defined



300 A.V. DMITRUK

on the interval [to,t1] is positive definite w.r.t.y on the subspace of (x,u,h)
satisfying relations (26), (29), (30). However, if ¢ € (to,t1), we cannot, in
general, say that {2 has negative values on this subspace. In other words, if
s* =t —t§ is the conjugate point for {2 on the one-parameter family of spaces
H,, then it can happen that € is still nonnegative on H; for some s > s*
(an easy example is given in Dmitruk, 1976). Let s** be the maximum of such
s. Obviously, s** > s*. The interval [s*,s**] is called the conjugate (or focal)
interval. In the case when it is nondegenerate (s** > s*), the point s* and the
corresponding point ¢ should better be called the closest conjugate point, while
the point s** and the corresponding point tj* should be called the farthest
conjugate point (with respect to s =0 and ¢ = t; respectively). Fortunately,
the farthest conjugate point s** can be also determined by using the solutions
to EJ equation, see Hestenes (1951), Dmitruk (1976) (and also Dmitruk, 1981
for the general case of finite-faced cone K). In the most favorable case these
two points coincide: s** = s*, and there is no need to find the point s** if the
point s* is already found.

To guarantee this coincidence, we impose one more assumption on our situ-
ation:

A2) If a vector-function 1) (t) satisfies the equations —¢) = A*y), B*1) =0
on an interval (¢,t"), then ¢(¢) =0 on this interval.

This is, of course, rather a strong assumption. It means that the system
& = Ax+ Bu is completely controllable, i.e., controllable on any nonzero interval
[t/,t"] (which means that for any a',a” € R" there exists a pair (z(t),u(t))
satisfying the above system with (') = o/ and z(t”) = a”). However, it often
holds in problems of CCV.

One can propose a weaker assumption: any nontrivial solution (z,,h, ()
to EJ equation on an interval [¢,¢;] cannot remain a solution on a larger interval
[t",t1], t"”" < t', being extended on [t”,t'] by setting there z(t) =0, ¥(t) = 0.
However, the weakest assumption, in fact equivalent to the coincidence s** =
s*, and hence to t;* = tj, is as follows: there exists a nontrivial solution
(x,¢,h,3) to EJ equation on the interval [t§,t¢1] that cannot be extended to
a solution on a larger interval [t”,t1], " < t§, by setting x(t) = 0, ¥(t) =0
on [t",t§]. (This equivalence is a key assertion proved in Hestenes, 1951. It
is worth noting that the similar assertion holds also true for the case involving
terminal inequality constraints (23), see Dmitruk, 1981.)

Under assumptions Al and A2, if we find the conjugate point ¢, we obtain,
like in CCV, the complete information about the sign of quadratic functional
given by (25) and (31): a) if [to, t1] does not contain a point conjugate to t1,
then Q is positive definite on the subspace of (x,u, h) satisfying relations (26),
(29), (30); b) if t§ € (to,t1), then Q has negative values on this subspace,
and c¢) if t§ =to, then © > 0 on this subspace, and there exists a nonzero
pair (u,h) such that Q(u,h) = 0.

Consider now another important case.



Jacobi type conditions for singular extremals 301

2.7. The right endpoint fixed

This case can be treated in two ways. In the first one, we can just reduce the
situation to the preceding case by changing ¢ty and ¢;. The second way is as
follows. Since x(t1) is fixed, for the critical directions we have Z(t;) = 0 plus
some equality constraints at the left endpoint, G Z(t9) = 0. After the Goh
transformation we get G&(to) =0, &(t1) + F(t1)h = 0, and so, equations (27)
in the final notation have the form

Gl‘(to)zo, {E(tl)—l—Fh:O,

where G and F' are some matrices of dimensions m xn and n xr, respectively.
(Here we can neglect the relation of F with the matrix F(¢,2(t)) from the
initial control system.)

Assume that rank F = r, i.e., the mapping F : R" — R" is injective
(which is quite realistic). Then it has a right inverse D : R® — R", DF =1,
and so, h can be expressed through z(¢;) in the form h = Dx(t1), while
x(t1) should satisfy a constraint A z(t;) = 0 with some (n—7) X n— matrix A.
Thus, we have a quadratic form Q of the type (25) with a finite-dimensional
part g of the general type

g(xo, 1) = (Soo Zo, xo) + 2(So1 xo, x1) + (S11 21, 21),

where Sgo, So1, S11 are some n X n— matrices, and this form should be con-
sidered on the space of functions (z(t),u(t)) on [to,t1] satisfying equation (26)
and terminal relations

Gl‘(to) = 0, Al‘(tl) = O, (44)

where G and A are some matrices of dimensions m x n and p X n, respec-
tively (with some integer p). So, we actually have the general linear-quadratic
situation with both endpoints independently variable. If at least one endpoint
is zero, say x(tp) = 0 (i.e., rankG = n), we have completely the classical
situation, so we should vary the point ¢, and find the conjugate point ¢§ by
the standard classical procedure.

However, in the general case, when both endpoints are indeed variable, the
sign definiteness of  on [tg, t1] does not depend monotonically on to, and so,
the implementation of the Hestenes approach in this case should be modified.
A natural modification follows the idea (noted e.g. in Dmitruk, 1984) that one
should vary the support of u(t), but keep the integration over the whole fixed
interval [to,t1].

To be more precise, consider the Hilbert space H = Lj[to,t1] x R" with
elements (u(t),b) such that the corresponding x(t), determined by equation
(26) with initial condition z(t1) = b, satisfies (44). Set T =t; —to. For any
s € [0,T] define a subspace Hs C H consisting of all (u,b) € H such that
supp u(t) C [t1 — s,t1], i.e. u(t) =0 a.e. on [tg,t; — s]. Obviously, {Hs} is
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a continuously expanding family of subspaces, Hy = 0, and Hp = H. The
quadratic form 2 :’H — R does not depend on s.

As before, one should first check that € is positive definite on Hy, and
then find s* as the minimal s > 0 for which the functional 2 has a nonzero
stationary point on Hg. The difference from the case with z(tg) = 0 is that,
since the integration is taken over the whole initial interval [to,#1], the EJ
equation for €2 on Hg should be also considered on this whole interval, not only
on [ty — s,t1]. Alternatively, one can reduce the integration to [t; — s,t1], but
then one should take into account the contribution of the integrand term (Qz, x)
on the "inactive" subinterval [to,t; — s]. (The other integrand terms, involving
u, give no contribution.) Since x(t) on this subinterval satisfies the equation
& = Az, then z(t) = ®(t; — s,t)x(t1 — s), where ® is the transition matrix
of this equation ( ®:(r,t) = A(t) ®(r,t), P(7,7) = I), and so, the integral
of (Qz,z) is a quadratic form of z(¢; — s). Moreover, since x(tg) = ®(¢t; —
s,to) x(t1 — s), the endpoint quadratic form g(z(tp),x(t1)) can be expressed
through z(t; —s) and x(t1). Thus, the integration in 2 can be reduced to
[t1 —s,t1] at the expense of changing some coefficients in the endpoint quadratic
form: g(z(to),z(t1)) — g(z(t1 — s),2(t1)). The first relation in (44) can be
also expressed in the form Ggz(t; — s) = 0 with some matrix G5. Actually,
here one must deal not with a single quadratic form 2, but with a family of
quadratic forms € having the same integral part while their endpoint part
depends on the parameter s. The transversality conditions in the EJ equation
would then also involve s. For a detailed exposition of this procedure see, e.g.,
Zeidan (1994), and Stefani, Zezza (1997).

ExaMPLE 1  Consider the following problem:

#1=x2 + fi(zr,22),  x:(to) =0,
1.32 = u + fQ(I'l,I'Q), xz(to) = 07

T
J=2sx1(T) zo(T) + / (22 + 22 + 2p xou) dt — min,

to

where p > 0 and s are parameters, the functions f;, fo are twice smooth,
vanishing at zero together with their first and second derivatives, and analyze
the process w’ : 29 = 29 = 4% = 0. To represent formally this problem as an
example of problem A, introduce an additional state variable x3 satisfying the

equation
T3 = x% + 3:% + 2p zaou, x3(tg) =0,

whence the cost takes the terminal form J = 2sx1(T) 22(T) + x5(T) — min.

Obviously, the reference process w® satisfies the MP with a unique (up to

normalization) collection of multipliers ¥ =12 =0, 3 =1, ag=1/2,
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01 =pP2=0, (3=—1, and with the corresponding functions

l=agp (28 x1(T) z2(T) + 3 (T)) + Biz1(to) + Bazma(to) + Bsxs(to),

H = ¢1(za+ f1) + Ya(u+ fo) + ¢3(a] + 25 + 2pzou).
The Lagrange function here is £ = [+ [¢3(d3 — (2% + 23 + 2pxou)) dt, and its
second variation at w® is

T
Oz, 0) =257 (T) Zo(T) + / (z3 + 73 + 2p T20) dt. (45)
to

The critical subspace K is defined by the relations

T = T, 71(tg) = 0,
Iy =1, Za(to) =0,
3 =0, Z3(to) =0,

and Z3(T) < 0 (linearization of the cost). Since the multiplier at the cost
ag >0, we can put Z3(T) = 0, whence the artificial variable Z3(t) =0, so we
remove it from all relations.

Introducing the variable 4 subject to 4 = i, %(to) = 0, we should try to
estimate ) from below by v = 32 (tl)—i—ft:g y*dt for (Z1,%2,u) € K. Theorem 1
says (in view of dimu = 1), that if Q is positive definite in this sense, the
reference process w’ gives a Pontryagin minimum in the problem, and if
admits negative values, w® does not give even a weak minimum.
 Perform the Goh transformation by setting z; = & and Iy = &+7. Then
& =0, &(to) =0, hence &(t) =0, and we obtain o =3, & =9, & (ty) =
0, while Q takes the form

T
0 =26, (T) §(T) +/ (@ 4 5 + 2pyu) di =

to

T
—pgP(T) + 25 & (T) §(T) + / (@ + ) dt

to

(we took into account that ft:g 2y dt = 52(T) ). The strong Legendre condition
is satisfied here: R(t) = 1.

Changing the variables (&1, 7, 9(T)) — (£1,9,h) — (z,u,h), we finally
come to the quadratic form

T
Q(u,h) = ph® + 2s2(T) h + / (2% 4 u?) dt, (46)

to
where T =u, x(to) =0,
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which should be estimated by the order v(u,h) = h?+ ftf u?dt on the space of
all (u,h) € Lafto, T)xR". If u(t) =0 (i.e., (u,h) lies in the space Hp), then
Q = ph? is really positively definite, due to the assumption p > 0. Next, since
the left endpoint is zero, we can vary tg and try to find the conjugate point
5. Since the system & = w is obviously completely controllable, there are no
conjugate intervals, so it suffices to find just the conjugate point ¢; only.

In order to write out the EJ equation, define
Lo o 2 Lo
H=@[Ju—§(x + u?), )\=§ph + sx(T) h,

and so, the collection (¢, z,u,h) should satisfy the relations

=11, =z, O(T) = —sh,
Y —u=0, A =ph+sz(T) =0,

whence z(t) should satisfy the equation

82

¥ =u, with  %(T) = — «(T).
p

From here we get x(t) = a cosh(t — T) + b sinh(t — T'), b= s%a/p, and so, the
nontrivial solution is, up to normalization:

x(t) = p cosh(t — T) + s sinh(t — T).
We have to find the maximal ¢ < T such that z(t) =0, i.e.,

mm@—T)z—g. (47)
This equation determines the conjugate point tj;. Obviously, it has a (unique)
solution ¢ < 7T if and only if s> > p. Moreover, one can easily see that, if
|s|] — oo, then ¢ — T — 0, which means that, for any fixed interval [to,?1]
the € has negative values if s is sufficiently large. This result is in a good
accordance with the apriori considerations of (45): choosing any process with
Z1(T)Z2(T) # 0 and taking a large enough s, one can easily make £ to be
negative.

Note that the conjugate point does not depend on the sign of s, which can
be seen both from (47) and (46): if s — —s, we can also change h — —h, and
Q) stays invariant.

In particular case, when s = p, the conjugate point is absent, which means
that for any ¢y < T the functional

T
Qu, h) = s*h? + 2shz(T) + / (z? +u?)dt (48)

to
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is positive definite. This fact can be also obtained from the inequality

T
/ (? +u?)dt > 2*(T)

to

for all nonzero u(t) (then (48) majorates the square of sh + x(T)), i.e.,

—2%(T) + /T(:E2 +u?)dt > 0.

to

This inequality follows from the absence of conjugate point of the quadratic
form in its left hand side, which is of classical type. (Here the conjugate point
should satisfy the equation tanh (¢t —7T) = —1, which has no solution.)
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