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ow, RussiaAbstra
t: We 
onsider the 
lass of optimal 
ontrol problemslinear in the 
ontrol, and study a singular extremal. If the La-grange multipliers are unique, the quadrati
 order optimality 
on-ditions have the form of sign de�niteness of a quadrati
 fun
tional(the se
ond variation of Lagrange fun
tion) with totally zero Leg-endre 
oe�
ient. Using the Goh transformation, we 
onvert it to afun
tional possibly satisfying the strengthened Legendre 
ondition,involving also an additional parameter, and by applying the Hestenesapproa
h, determine its sign de�niteness in terms of the 
onjugatepoint, i.e. give Ja
obi type 
onditions.Keywords: singular extremal, Goh transformation, Legendrequadrati
 form, Euler�Ja
obi equation, 
onjugate point1. Quadrati
 order 
onditions of optimality1.1. The problem under studyConsider the following optimal 
ontrol problem on a �xed time interval [t0, t1] :Problem A : 



ẋ = f0(t, x) + F (t, x)u, (1)

u ∈ U(t), (2)

ηj(p) = 0, j = 1, . . . , µ, (3)

ϕi(p) ≤ 0, i = 1, . . . , ν, (4)

J = ϕ0(p) → min, (5)where x ∈ IRn, u ∈ IRr, p = (x(t0), x(t1)) ∈ IR2n, the fun
tion x(t) isabsolutely 
ontinuous, u(t) is measurable and essentially bounded. The datafun
tions ηj , ϕi are assumed to be twi
e smooth; f0 , F are 
ontinuous andhave jointly 
ontinuous �rst and se
ond derivatives w.r.t. x. (The problem on
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286 A.V. DMITRUKa non�xed time interval 
an be easily redu
ed to problem A by passing to a newtime variable.)Let be given an admissible pro
ess (x0, u0) with u0(t) taking values stri
tlyinside U(t), whi
h means that
∃ ε > 0 su
h that u0(t) +Bε(0) ⊂ U(t) a.e. on [t0, t1] . (6)Without loss of generality, assume also that ϕi(p

0) = 0 for all i = 0, 1, . . . , ν,hen
e all the inequality 
onstraints are a
tive. Assume that the pro
ess (x0, u0)satis�es the Maximum Prin
iple (whi
h is equivalent in this 
ase to the Euler�Lagrange (EL) equation), whi
h says that there exist multipliers α0, . . . , αν ≥
0, β, ψ(t), not all equal to zero and su
h that, 
omposing the Pontryaginfun
tion H = ψ (f0(t, x)+F (t, x)u) and the terminal Lagrange fun
tion l(p) =∑ν

i=0 αi ϕi(p) +
∑µ

j=1 βj ηj(p), we should obtain the following relations:
ψ̇ = −Hx(ψ, x0, u0), ψ(t0) = lx0

(p0) , ψ(t1) = −lx1
(p0) ,

Hu(ψ, x0, u0) = ψ(t)F (t, x0(t)) = 0.The last relation means that we have a totally singular extremal. The questionis: what are further (higher order) ne
essary and su�
ient 
onditions for thegiven pro
ess (x0, u0) to be optimal in one or another sense? This question wasstudied by many authors for more than 40 years, sin
e early 1960s (see Kelley,Kopp, Moyer, 1967, and later referen
es in Dmitruk, 1997). For problem A itwas 
ompletely solved by the author in a series of papers, Dmitruk (1977, 1978,1983, 1987-88, 1992, 1994, 1997), for the two types of minimum: the weak andthe so-
alled Pontryagin minima. In those papers the author obtained "adjointpairs" of ne
essary and su�
ient 
onditions of a spe
ial quadrati
 order typi-
al for problem A. The ne
essary 
ondition 
onsists of nonnegativity, and thesu�
ient 
ondition 
onsists of positive de�niteness of a quadrati
 fun
tional (orof the maximum of a family of quadrati
 fun
tionals) on a 
one in the spa
eof variations. In this paper we will show how one 
an pass from these "ba-si
" quadrati
 order 
onditions to Ja
obi type 
onditions in terms of 
onjugatepoints, thus will propose a pro
edure for verifying these "basi
" 
onditions.Our approa
h is similar to that in the 
lassi
al 
al
ulus of variations (CCV)� obtaining 
onditions in terms of quadrati
 fun
tionals and then analyzingtheir sign de�niteness, and di�ers mainly by the fa
t that here the quadrati
fun
tionals have totally zero Legendre 
oe�
ient. After some transformationthey 
an be 
onverted into fun
tionals possibly satisfying the strengthened Leg-endre 
ondition, but involving additional parameters, and this spe
i�
ity shouldbe properly taken into a

ount. (Another approa
h based on methods of di�er-ential geometry is pursued in Stefani, 2003, 2004, for parti
ular 
ases of problemA with a s
alar 
ontrol, where 
onditions for a strong minimum are proposed.)To simplify the exposition, we assume here that the 
olle
tion of Lagrangemultipliers for the given pro
ess (x0, u0) is unique, up to normalization, with
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α0 > 0, so we 
an set α0 = 1. (The "basi
" quadrati
 order 
onditions were ob-tained in the 
ited papers without this assumption.) This, in parti
ular, impliesthat equality 
onstraints (1), (3) near the pro
ess (x0, u0) are nondegenerate atthe �rst order, or, in other words, the system (1), (3) is �rst-order 
ontrollableat (x0, u0).1.2. Quadrati
 order 
onditionsTo formulate the "basi
" quadrati
 order 
onditions of optimality, we have tode�ne the following obje
ts: a) the quadrati
 fun
tional (quadrati
 form), b)the 
one of 
riti
al variations, and 
) the estimating quadrati
 fun
tional (orderof minimum).Denote by W = ACn×Lr

∞
the spa
e of all pairs w = (x, u), x ∈ ACn, u ∈

Lr
∞

on the given time interval [t0, t1] .a) The quadrati
 form. The existing 
olle
tion (here unique) of La-grange multipliers generates the 
orresponding Lagrange fun
tion
L(x, u) = l(x0, x1) +

∫ t1

t0

ψ(t) (ẋ− f0(t, x) − F (t, x)u)) dt,and its se
ond variation at (x0, u0) ∈W :

Ω(x̄, ū) = d2L[x0, u0] (x̄, ū) = (l′′p̄, p̄) −

∫ t1

t0

[(Hxxx̄, x̄) + 2(x̄, Hxuū)] dt ;whi
h is a quadrati
 fun
tional w.r.t. w̄ = (x̄, ū). Note that this quadrati
 formdoes not 
ontain "the main", Legendre term with ū2, whi
h is dire
tly 
ausedby the linearity of the state equation in u and the assumption (6), and whi
himmediately puts us out of the framework of the 
lassi
al Ja
obi theory, thatessentially assumes the presen
e of this term with a stri
tly positive 
oe�
ient(the strengthened Legendre 
ondition).b) The 
one of 
riti
al variations. The above quadrati
 fun
tionalshould be 
onsidered not on the whole spa
e W, but only on the so-
alled 
oneof 
riti
al variations K, whi
h is given by linearization of all 
onstraints andthe 
ost fun
tional of the problem at the referen
e pro
ess (x0, u0) :

˙̄x = f ′

0x x̄+ F ′

x x̄ u
0 + F ū, (7)

η′j p̄ = 0, j = 1, . . . , µ, ϕ′

i p̄ ≤ 0, i = 0, 1, . . . , ν. (8)For 
onvenien
e in further study, let us simplify 
onditions (8) as mu
h as pos-sible. First, for any i with αi > 0 we 
an repla
e here the inequality ϕ′

i p̄ ≤ 0by the equality ϕ′

i p̄ = 0. In parti
ular, we 
an take ϕ′

0 p̄ = 0, sin
e we assume
α0 = 1. Moreover, then we 
an delete this equation altogether, be
ause (dueto the EL equation) it is a linear 
ombination of all other obtained equations



288 A.V. DMITRUKin (8) and system (7). If, after all su
h repla
ements, only one inequality in(8) remains, we 
an also delete it. This last tri
k is justi�ed by the fa
t thatthe sign de�niteness of a quadrati
 form on a half-spa
e is equivalent to that onthe whole spa
e. However, in the general 
ase, a �nite number of inequalities
ϕ′

i p̄ ≤ 0 
orresponding to αi = 0 may remain.
) The order of minimum. Now, de�ne the following estimating quadrati
fun
tional, that we regard as a quadrati
 order of minimum:
γ(x̄, ū) = |x̄(t0)|

2 + |ȳ(t1)|
2 +

∫ t1

t0

|ȳ(t)|2 dt, (9)where ˙̄y = ū , ȳ(t0) = 0. (10)One 
an see that this estimating fun
tional in
ludes an additional "arti�
ial"state variable ȳ (to be more exa
t, the variation of an arti�
ial state variable
y, satisfying the equation ẏ = u, y(t0) = 0, whi
h is not expli
itly introdu
ed,sin
e the variable y itself will not be used in what follows), and does notexpli
itly in
lude the 
ontrol variation ū ; it in
ludes the last only impli
itly,through ȳ.Now we are ready to formulate the quadrati
 order 
onditions of optimalityfor problem A. Let us start with the weak minimality, by whi
h we mean theminimality w.r.t. the norm ||w||′ = ||x||C + ||u||∞ . In this 
ase, sin
e u0(t)lies stri
tly inside U(t), the in
lusion 
onstraint u ∈ U is inessential, so we 
annegle
t it.Theorem 1 a) Let w0 = (x0, u0) provide a weak minimum in problem A.Then

Ω(w̄) ≥ 0 for all w̄ ∈ K. (11)
b) Suppose that for some a > 0

Ω(w̄) ≥ a γ(w̄) for all w̄ ∈ K (12)(i.e., Ω is positive de�nite on K with respe
t to γ). Then w0 = (x0, u0)provides a weak minimum in problem A.As one 
an see, these ne
essary and su�
ient 
onditions 
onstitute a pairof 
onditions with a minimal gap between them; we 
all them an adjoint pairof 
onditions. In this sense, these 
onditions are quite similar to those in the�nite-dimensional analysis and CCV.Part (a) of this theorem is a parti
ular 
ase of the ne
essary 
onditions inthe optimal 
ontrol problem with general nonlinear state equation ẋ = f(t, x, u)(a
tually, in the general problem of CCV with additional inequality 
onstraints(4)). These general ne
essary 
onditions were obtained in Levitin, Milyutin,Osmolovskii (1978). Part (b) was proved in Dmitruk (1977, 1978), solving thusthe question of obtaining su�
ient 
onditions for this non
lassi
al 
ase.
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olle
tion of Lagrange multipliers is not unique, then, for anysu
h 
olle
tion and the 
orresponding se
ond variation of the Lagrange fun
tion,part b) of Theorem 1 still holds true (see Dmitruk, 1977, 1978).Along with the notion of weak minimum, we 
onsider also the notion ofPontryagin minimum, proposed by A.Ya.Dubovitskii and A.A.Milyutin. Anadmissible pro
ess w0 = (x0, u0) is said to provide a Pontryagin minimum inproblem A if for any number N it provides a lo
al minimum w.r.t. the norm
||x||C + ||u||1 in problem A with additional 
onstraint |u(t)| ≤ N. This type ofminimum lies obviously between the weak and strong minima, and it turned outto be very 
onvenient in the study of higher order 
onditions (see, e.g., Milyutin,Osmolovskii, 1998).The 
onditions for a Pontryagin minimum of order (9) are obtained inDmitruk (1983, 1987-88, 1992, 1994) under the additional assumption thatthe fun
tions f0 , F have jointly 
ontinuous third derivatives w.r.t. x. These
onditions have the same form (11), (12) with an additional requirement on
oe�
ients of the third variation of the Lagrange fun
tion with referen
e to the
onstraint u ∈ U, whi
h 
annot be negle
ted in this 
ase. Here we do notwrite out this requirement; the details and proofs see in the above papers. (Ifdim u = 1, this additional requirement holds trivially, hen
e the 
onditions fora Pontryagin minimum 
oin
ide with those for a weak minimum.)Anyway, for both types of minimum we arrive at 
onditions (11) and (12).Our goal in this paper is to propose a pro
edure for verifying these 
onditions.1.3. The linear-quadrati
 situationHaving obtained 
onditions (11), (12), we fa
e a natural question: how one 
anverify them? First of all, let us state the situation we arrive at.We have a quadrati
 form of the type

Ω(w̄) = g(x̄(t0), x̄(t1)) +

t1∫

t0

(Qx̄, x̄) + 2(Cx̄, ū) dt, (13)where g is a �nite-dimensional quadrati
 form in IR2n and the matri
es Q, Care of appropriate dimensions, and we have a 
one K ⊂W given by 
onstraintsof the type
˙̄x = A(t)x̄+ F (t)ū, (14)
ai x̄(t0) + bi x̄(t1) = 0, i = 1, . . . , µ, (15)
a′j x̄(t0) + b′j x̄(t1) ≤ 0, j = 1, . . . , ν, (16)where ai, bi, a

′

j, b
′

j ∈ IRn are some ve
tors, the matri
es Q(t), A(t) havemeasurable bounded entries, and C(t), F (t) have Lips
hitz 
ontinuous entries.(In fa
t, Q(t) = −Hxx , C(t) = −2Hux , A(t) is the 
oe�
ient at x̄ in (7), all
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al
ulated along w0(t), F (t) = F (t, x0(t)), but from now on, we do not needthese parti
ular expressions.) Our aim is to determine whether the estimate(12) holds with some a > 0 or a ≥ 0.This is a linear-quadrati
 situation, whi
h results from the quadrati
 orderstudy of the referen
e extremal pro
ess in problem A. Having stated this sit-uation, we 
an forget the initial problem A from now on, leaving only spe
i�
features of Ω and K. Re
all that in CCV the question of sign de�nitenessof a quadrati
 form is solved by the well-known Ja
obi 
onditions about the
onjugate (or fo
al) points. However, this approa
h does not work in our 
ase,be
ause the key assumption of the Ja
obi theory, the strengthened Legendre
ondition, is not satis�ed. So, what to do then?To over
ome this obsta
le, we use a simple transformation, probably �rstproposed in Goh (1966), whi
h is the following 
hange of state variables:
x̄ 7→ (ξ̄, ȳ), x̄ = ξ̄ + F ȳ.So, the state variable x̄ is now repla
ed by two state variables, ξ̄ and ȳ .In view of (10) and (14), ξ̄ obeys the dynami
s
˙̄ξ = Aξ̄ +Bȳ, where B = AF − Ḟ , (17)and the initial 
ondition ξ̄(t0) = x̄(t0). An important feature is that equation(17) does not 
ontain ū ! The 
ontrol variation ū now 
omes, in the simplestway, only into Eq. (10) for ȳ. These two fa
ts make it possible to obtain someni
e properties of the fun
tional Ω.First of all, we see that after the above transformation, Ω 
an be redu
edto the form:
Ω = g(ξ̄(t0), ξ̄(t1) + F (t1)ȳ(t1)) + (C(t1)ξ̄(t1), ȳ(t1))+

+

t1∫

t0

(Qξ̄, ξ̄) + 2(P ξ̄, ȳ) + (Rȳ, ȳ) + (CF ȳ, ū) dt,where P (t), R(t) are some matri
es with measurable bounded entries. Theterm (Cξ̄, ū) = (Cξ̄, ˙̄y) was integrated by parts in order to ex
lude ū, leavingthus only one term in Ω 
ontaining ū, i.e., (CF ȳ, ū). A remarkable fa
tdis
overed by Goh is that this last term 
an also be integrated by parts. Heproved that, if Ω ≥ 0 on K, then the matrix CF = −HuxF is symmetri
 (thene
essary Goh 
ondition of equality type), hen
e this term 
an be integrated.Namely, for any symmetri
 absolutely 
ontinuous matrix S(t), one 
an write
d
dt

(Sȳ, ȳ) = (Ṡȳ, ȳ) + 2(Sȳ, ū), hen
e
2

t1∫

t0

(Sȳ, ū) dt = (Sȳ, ȳ)
∣∣t1
t0
−

t1∫

t0

(Ṡȳ, ȳ) dt,



Ja
obi type 
onditions for singular extremals 291so Ω (with Lips
hitz 
ontinuous S = CF ) is redu
ed to the form
Ω = g̃(ξ̄(t0), ξ̄(t1), ȳ(t1)) +

t1∫

t0

(Qξ̄, ξ̄) + 2(P ξ̄, ȳ) + (Rȳ, ȳ) dt, (18)with a new measurable bounded matrix R(t) and a new terminal quadrati
 form
g̃ in the spa
e IR2n+r. We do not write here the expressions for all 
oe�
ientsin (18) through initial ones, whi
h 
an be easily done if ne
essary. The pra
ti
eshows that, in solving 
on
rete problems, one need not use those expressions;it is easier to perform the Goh transformation in ea
h situation, rather than to
al
ulate the new matri
es de�ning the quadrati
 form in terms of the old onesby means of general formulae.The 
one K in the new variables is given by the di�erential equations (10),(17), and the terminal 
onstraints

ai ξ̄(t0) + bi (ξ̄(t1) + F ȳ(t1)) = 0, i = 1, . . . , µ, (19)
a′j ξ̄(t0) + b′j (ξ̄(t1) + F ȳ(t1)) ≤ 0, j = 1, . . . , ν. (20)Thus, we arrive at a situation, where both the investigated quadrati
 formand the order of minimum depend only on ξ̄ and ȳ, 
onne
ted by equation(17) and terminal relations (19), (20), but do not expli
itly depend on ū. The
ontrol variation ū 
omes only in the state equation (10) for ȳ, whi
h in fa
tjust means that ȳ is an arbitrary Lips
hitz 
ontinuous fun
tion with initialvalue ȳ(t0) = 0.1.4. Extension of the spa
e of 
riti
al variationsNow, we note that the spa
e of Lips
hitz fun
tions, even with zero initial value,is dense in the spa
e L2[t0, t1], and the integral part of Ω is 
ontinuous w.r.t.

||ȳ||2 , hen
e we 
an 
onsider ȳ ∈ Lr
2[t0, t1], while the terminal value ȳ(t1) inthe endpoint quadrati
 form g̃ should be repla
ed by a parameter h̄ ∈ IRr,sin
e the variety of pairs (ȳ(·), ȳ(t1)), where ȳ(·) is a Lips
hitz fun
tion withzero initial value, is dense in the spa
e Lr

2[t0, t1] × IRr.Thus, we 
ome to a fun
tional
Ω̃(ξ̄(t0), ȳ, h̄) = g̃(ξ̄(t0), ξ̄(t1), h̄)) +

t1∫

t0

(Qξ̄, ξ̄) + 2(P ξ̄, ȳ) + (Rȳ, ȳ) dt, (21)where ȳ ∈ Lr
2[t0, t1], h̄ ∈ IRr, and ξ̄ is expressed through ȳ by equation (17)with an arbitrary initial 
ondition ξ̄(t0). This new quadrati
 form is de�ned onthe extended spa
e W̃ = IRn × Lr

2 × IRr with elements (ξ̄(t0), ȳ(·), h̄) and isobviously 
ontinuous w.r.t. the norm |ξ̄(t0)| + ||ȳ||2 + |h|. The extended 
one
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K̃ in this spa
e is given by equation (17) and the terminal 
onstraints

ai ξ̄(t0) + bi (ξ̄(t1) + F h̄) = 0, i = 1, . . . , µ, (22)
a′j ξ̄(t0) + b′j (ξ̄(t1) + F h̄) ≤ 0, j = 1, . . . , ν. (23)What remains to be 
he
ked is that this new 
one K̃ 
ontains the old 
one

K, given by (17), (19), (20), as a dense subset. This fa
t is a parti
ular 
ase ofthe following general assertion, whi
h is of independent interest.Lemma 1 (on denseness) Let in a lo
ally 
onvex linear topologi
al spa
e Xbe given a �nite-fa
ed 
one C, and a linear variety (algebrai
 subspa
e) L densein X. Then the 
one C ∩ L is dense in C .Proof. Consider �rst the 
ase when the 
one C is a subspa
e given by oneequation (p, x) = 0, p ∈ X∗, p 6= 0. Take any point x0 ∈ C and its 
onvexneighborhood O(x0). We have to show that ∃x ∈ C ∩ L ∩ O(x0). Sin
e theset (p, x) < 0 is open, its interse
tion with O(x0) is open, too, and obviouslynonempty, hen
e it 
ontains a point x1 from the set L, be
ause the last oneis dense in X. Similarly, the interse
tion of the set (p, x) > 0 with O(x0)
ontains a point x2 ∈ L. Sin
e O(x0) is 
onvex, it 
ontains the whole segment
[x1, x2], that also lies in L, sin
e the last one is a linear variety. But thissegment obviously 
ontains a point x su
h that (p, x) = 0, whi
h then belongsto C and to L ∩ O(x0), q.e.d.Now, let C be an arbitrary �nite-fa
ed 
one, given by inequality 
onstraints
(qj , x) ≤ 0, j = 1, . . . , ν. Suppose �rst, that ∃ x̂ ∈ C su
h that all (qj , x̂) < 0,hen
e x̂ ∈ intC. Take any x0 ∈ C and any its neighborhood O(x0). We haveto �nd a point x ∈ C ∩ O(x0) ∩ L. We know that, for any ε > 0, the point
xε = x0 + εx̂ lies in intC (a simple property of 
onvex 
ones), and ∃ ε > 0su
h that this point lies also in O(x0). Thus, the open set intC ∩ O(x0) isnonempty, and then it 
ontains a point x from a dense set L, q.e.d.Suppose now that the above point x̂ ∈ intC does not exist, i.e., the stri
tinequality 
onstraints do not interse
t. If some qj = 0, we 
an remove j -thinequality, so we assume that all qj 6= 0. In this 
ase, by the Dubovitskii�Milyutin theorem, there exist multipliers αj ≥ 0, j = 1, . . . , ν, not all zero,su
h that the following EL equation holds: α1 q1 + . . .+αν qν = 0. Take any jwith αj > 0; let it be j = ν. Then, for all x ∈ C we a
tually have (qν , x) = 0,not just ≤ 0. (Otherwise, if x ∈ C and (qν , x) < 0, one should multiply the ELequation by this x and take into a

ount that all other terms (qj , x) ≤ 0, whilethe sum equals 0, a 
ontradi
tion.) This means that the 
one C 
an be given bythe 
onstraints (qj , x) ≤ 0, j = 1, . . . , ν − 1, (qν , x) = 0. But, passing to thesubspa
e (qν , x) = 0 we obtain in it, as was shown above, a dense linear varietyand a 
one given by a smaller number ν − 1 of inequality 
onstraints. Theequality (qν , x) = 0 is thus removed. Applying the indu
tion arguments, wearrive at the situation when either all the inequality 
onstraints are transformed,
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onditions for singular extremals 293one by one, into equalities and then removed, or the stri
t inequalities have anonempty interse
tion. Sin
e the last 
ase is already 
onsidered, the proof is
omplete.In our situation we have X = IRn×Lr
2×IRr, L = { (ξ̄0, ȳ(·), ȳ(t1)) | ξ̄0 ∈IRn, ȳ is a Lips
hitz fun
tion }, and C = K̃ .1.5. Passing to a new 
ontrolFrom Lemma 1 and the 
ontinuity of Ω̃ in the extended spa
e it follows thatthe sign de�niteness of Ω on K w.r.t. γ is equivalent to that of Ω̃ on K̃w.r.t. the same γ.But now, looking at the new fun
tional Ω̃ and the 
one K̃, we noti
e thatthe 
ontrol ū 
ompletely disappeared, and the role of 
ontrol is now taken bythe variable ȳ ∈ L2 , sin
e it does not obey any di�erential equation, so therole of state variable is left only for ξ̄. A

epting this, we then noti
e that Ω̃now 
ontains the Legendre term w.r.t. the new 
ontrol, (Rȳ, ȳ), and therefore,the nonnegativity of Ω̃ on K̃ immediately implies the Legendre 
ondition:

R(t) ≥ 0 a.e. on [t0, t1]. This is the se
ond ne
essary Goh 
ondition, ofinequality type, in the 
ase of one-dimensional 
ontrol obtained earlier by H.J.Kelley (see Kelley, Kopp, Moyer, 1967). (To be pre
ise, Goh, 1966, proved his
onditions for a parti
ular 
ase of problem A without inequality 
onstraints (4),hen
e for K being a subspa
e. For the 
ase of 
one, the Goh 
onditions, bothof equality and inequality type, were proved in Dmitruk, 1977, 1978.)The order of minimum γ now 
ontains the square of the 
ontrol variation,exa
tly as in CCV (see Levitin, Milyutin, Osmolovskii, 1978, and Milyutin,Osmolovskii, 1998). If we hope to obtain the positive de�niteness of Ω̃ w.r.t.
γ, we must assume at least the strengthened Legendre 
ondition w.r.t. the new
ontrol:

R(t) ≥ const · I a.e. on [t0, t1], const > 0, (24)where I is the identity matrix. In what follows, we do assume it holds. (In this
ase Ω̃ is 
alled a Legendre quadrati
 fun
tional, Hestenes, 1951).Thus, we a
tually 
ome to a situation, in whi
h we should determine thesign de�niteness of a quadrati
 fun
tional Ω̃ of the form (21), satisfying thestrengthened Legendre 
ondition, on a 
one K̃ given by (17), (22), (23). Thedi�eren
e from CCV is in the following two features: a) K̃ is a 
one, not asubspa
e, and b) Ω̃ and relations (22), (23) in
lude an additional parameter
h̄. Our further aim is to develop Ja
obi type 
onditions for this 
ase. To simplifythe exposition, let us assume here that the inequalities (23) are absent, i.e. K̃is a subspa
e. Re
all that this indeed is the 
ase if at least all but one multipliers
αi > 0. (Ja
obi type 
onditions for the 
ase of a general quadrati
 form on a
one are obtained in Dmitruk, 1981, 1984.)
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obi type 
onditions for the sign de�niteness of aquadrati
 fun
tional2.1. Linear-quadrati
 situation with a parameterStating the situation (17), (21), (22), let us pass on
e again to a simpler andmore 
onvenient notation, by 
hanging (ξ̄, ȳ, h̄) 7−→ (x, u, h). Then we have aquadrati
 form (denoted again by Ω) of the type
Ω = g(x(t0), x(t1), h)) +

t1∫

t0

(Qx, x) + 2(Px, u) + (Ru, u) dt, (25)satisfying (24), that should be 
onsidered on a subspa
e K in the spa
e ofvariables (x(t0), u, h) ∈ IRn × Lr
2 × IRr given by a linear di�erential equation

ẋ = Ax+Bu (26)and terminal equality 
onstraints of the form
aix(t0) + bix(t1) + cih = 0, i = 1, . . . ,m. (27)Our task is to verify the sign de�niteness of Ω on K w.r.t. the quadrati
 order
γ(x, u, h) = |x(t0)|

2 + |h|2 +

t1∫

t0

|u(t)|2dt, (28)whi
h is the square of norm in the spa
e IRn × Lr
2 × IRr. The pro
edure ofthis veri�
ation is based on the abstra
t approa
h to Ja
obi theory proposedin Hestenes (1951) and depends on the spe
i�
ity of terminal 
onstraints. Ifthe terminal 
onstraints are in the general form (27), this pro
edure is very
umbersome; it will be treated by the author elsewhere. Here we 
onsider twomost important 
ases, where equations (27) result from the problem A with atleast one endpoint �xed. The spe
i�
ity of su
h terminal 
onstraints allows oneto make this pro
edure simpler.Note that the absen
e of formal symmetry between these 
ases is 
ausedby the fa
t that the order γ and the Goh transformation are not symmetri
alw.r.t. the left and the right endpoints.2.2. The left endpoint �xedThis means that (15) reads x̄(t0) = 0, bix̄(t1) = 0, whi
h in (19) yields

ξ̄(t0) = 0, bi(ξ̄(t1) + F ȳ(t1)) = 0, and so, (27) 
an be represented in the form
x(t0) = 0, (29)
Λx(t1) +Nh = 0, (30)
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es Λ, N of dimensions m× n, m× r. (Note that this last xhas nothing in 
ommon with the initial x ! ) We 
an even allow now arbitrarydimensions for u and h : dim u = r, dim h = q, not ne
essarily equal (so,dimN = m × q ). Note that here all 
omponents of x(t0), both essential andinessential, automati
ally disappear from γ, sin
e x(t0) = 0.The terminal quadrati
 form g 
an be represented as
g(x(t1), h) = (Sxxx(t1), x(t1)) + 2(Shxx(t1), h) + (Shhh, h), (31)where Sxx , Shx , Shh are matri
es of 
orresponding dimensions.2.3. The Hestenes s
hemeWe have to study Ω of the form (25), (31) with respe
t to the quadrati
 order(28) under the relations (26), (29), (30).Let us �x the terminal time t1 and vary initial time t0 . The smaller is t0 ,the larger is the interval [t0, t1], and the broader is the set of triples x(t), u(t), hsatisfying (26), (29), (30), be
ause any su
h triple 
an be naturally extended tothe larger interval by zero value of x(t) and u(t). Moreover, sin
e h does not
ome into the integrand in (25), Ω 
onsidered at any triple for an initial interval

[t0, t1], takes the same value at this triple extended to the larger interval, thus Ωhas more 
han
es to be negative on the larger interval. So, the sign de�nitenessof Ω monotoni
ally depends on t0 , and this is a key point for appli
ation ofthe Hestenes approa
h, that will allow us to de�ne a point t∗0 
onjugate to t1 .Note that, sin
e x(t0) = 0, the state variable x(t) on the interval [t0, t1] isuniquely determined by u(t) from equation (26), and so, Ω uniquely dependson (u, h). Set T = t1 − t0 . For any s ∈ [0, T ] de�ne t′0 = t1 − s and 
onsiderthe Hilbert spa
e Hs 
onsisting of elements (u, h) ∈ Lr
2[t

′

0, t1] × IRq su
h thatthe 
orresponding solution to (26) with x(t′0) = 0 has x(t1) satisfying (30).(The 
hange of parameters t′0 7→ s is taken for the sake of uni�
ation of theHestenes s
heme.)The spa
e Hs obviously expands as s grows: if s′ < s′′, then Hs′ ⊂ Hs′′with the natural embedding. Moreover, it 
ontinuously depends on s in thefollowing sense:
Hs =

⋂

s′>s

Hs′ and Hs =
⋃

s′<s

Hs′ .For s = 0 we have a �nite-dimensional spa
e H0 = {0} × IRq.Re
all that a quadrati
 form is said to be positive de�nite on a subspa
e ifit is estimated from below by the square of norm on this subspa
e.Suppose that Ω is positive de�nite on H0 . Then, a

ording to Hestenes(1951) (see also Dmitruk, 1976, 1982, 1984; Zeidan, 1994; Stefani, Zezza, 1997;Stefani, 2003, 2004; Rosenblueth, 2003), we should �nd a minimal s > 0, forwhi
h the fun
tional Ω has a nonzero stationary point on Hs . Denoting this
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an say that Ω is positive de�nite on Hs for any s < s∗,and Ω ≥ 0 on Hs∗ ; moreover, there is a nonzero pair (u, h) ∈ Hs∗ su
h that
Ω(u, h) = 0. (Obviously, this pair is a stationary point of Ω on Hs∗ .)(For the detailed proof see the above papers. It is based on the following keyfa
ts valid for the Legendre quadrati
 forms: a) if Ω(u, h) > 0 for all nonzero
(u, h) ∈ Hs , then Ω is positive de�nite on Hs , and b) if Ω is positive de�niteon Hs , then it remains positive de�nite on Hs′ for some s′ > s. Also, we usethe following simple fa
t: if (u, h) is a stationary point of Ω on a subspa
e,then Ω(u, h) = 0.)The point t∗0 = t1 − s∗ is said to be 
onjugate to t1 .2.4. The Euler�Ja
obi equationTo write out the stationarity equation, let us impose the following assumptionon the 
ontrol system (26), (29), (30):A1) For any t′0 < t1 the system (26), (29), (30) is 
ontrollable on [t′0, t1],i.e., the mapping Γ : (u, h) 7−→ Λx(t1) + Nh, where x(t) satis�es (26) with
x(t′0) = 0, is a surje
tion: ImΓ = IRm.Note that this system is assuredly 
ontrollable on the initial interval [t0, t1],sin
e we removed from (8) at least the 
ondition ϕ′

0 p̄ = 0. If the remainingsystem is un
ontrollable, there would exist Lagrange multipliers that provide theEL equation without ϕ0 , whi
h is impossible, be
ause we assume the Lagrangemultipliers in Problem A at w0 to be unique and have α0 > 0. AssumptionA1 requires that the above system is 
ontrollable for any t′0 < t1 , not only forthe initially given t0 .This requirement 
an also be formulated in a dual form: if a Lips
hitz
n− ve
tor fun
tion ψ(t) and a ve
tor β ∈ IRm satisfy the relations

−ψ̇ = A∗ψ, B∗ψ = 0 on [t′0, t1], (32)
−ψ(t1) = Λ∗β, N∗β = 0, (33)then ψ(t) ≡ 0 and β = 0.Note also that Assumption A1 
an be weakened: if it is somehow knownapriori that Ω > 0 on Hσ for some σ > 0, then it su�
es to require A1 onlyfor all t′0 < t1 − σ.Now, 
onsidering the so-
alled auxiliary problem
Ω(u, h) → min, (u, h) ∈ Hs ,we obtain the following 
ondition: if (u, h) is a stationary point in this prob-lem, then there exist a Lips
hitz n− ve
tor fun
tion ψ(t) and a ve
tor β ∈ IRmsatisfying the following Euler�Lagrange relations (for the linear-quadrati
 
ase
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alled Euler�Ja
obi (EJ) equation) on [t′0, t1], where t′0 = t1− s :
−ψ̇ = A∗ψ −Qx− P ∗u, (34)
B∗ψ − Px−Ru = 0, (35)
−ψ(t1) = Sxxx(t1) + Sxhh+ Λ∗β, (36)
Shxx(t1) + Shhh+N∗β = 0. (37)(They 
an be 
onveniently obtained by the formalism of Maximum Prin
iple:
omposing the Pontryagin fun
tion Π = ψ (Ax+Bu)− 1

2

(
(Qx, x)+ 2(Px, u)+

(Ru, u)
) and the terminal Lagrange fun
tion λ = β(Λx(t1)+Nh)+

1
2 g(x(t1), h),we should write −ψ̇ = Πx , Πu = 0, −ψ(t1) = λx(t1) , λh = 0. Assump-tion A1 allows us to take the multiplier 1/2 at the 
ost Ω.)A quadruple (u(t), h, ψ(t), β) satisfying (26), (29), (30), and (34)�(37) on

[t′0, t1] will be 
alled a solution to EJ equation on [t′0, t1].We have to �nd a maximal t′0 < t1 su
h that the EJ equation on [t′0, t1]has a solution (u, h, ψ, β) with a nonzero pair (u, h). Let us �rst show thatthe nontriviality of the pair (u, h) is equivalent to the nontriviality of the pair
(x, ψ).Lemma 2 Let u, h, x, ψ, β satisfy relations (26), (29), (30), (34)�(37). Then
(u, h) = (0, 0) i� (x, ψ) = (0, 0).Proof. a) If u(t) = 0, then (26), (29) yield x(t) = 0, and then relations (34)�(37) for h = 0 are exa
tly relations (32), (33), whi
h imply ψ(t) = 0, β = 0.b) If (x, ψ) = (0, 0), then (35) yields u(t) = 0, sin
e R is a nondegenerate(positive de�nite) matrix, and (37) is redu
ed to Shhh+N∗β = 0, whi
h meansthat h is a stationary point of Ω = g(0, h) on H0 . Sin
e we assume that Ω > 0on H0 , the only stationary point is h = 0.An important 
onsequen
e of the strengthened Legendre 
ondition (24) isthat equation (35) allows us to represent u = R−1(B∗ψ − Px). Substitutingthis expression into (26) and (34), we obtain a linear system w.r.t. (x, ψ) ofthe general form

ẋ = A(t)x + B(t)ψ,

ψ̇ = C(t)x+ D(t)ψ,
(38)with some n×n−matri
es A,B, C,D. Our task is to �nd a pair (x, ψ) 6= (0, 0)and ve
tors β, h satisfying this system and terminal relations (29), (30), (36),(37) on [t′0, t1] .Sin
e the system (38) is linear and homogeneous, the pair (x, ψ) is nontriviali� (x(t), ψ(t)) 6= (0, 0) ∀ t. Note also that, if ψ(t) ≡ 0, then the �rst equationin (38) with a

ount of (29), i.e. x(t′0) = 0, implies x(t) ≡ 0.
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onjugate pointNote that assumption A1 implies, in parti
ular, that the m× (n+ q)−matrix
||Λ|N || has the full rank m, and so the subspa
e of pairs (x(t1), h) ∈ IRn × IRqsatisfying (30) has dimension n+ q −m .The 
onjugate point t∗0 
an be found by the following pro
edure. Choose abasis

(xi(t1), h
i), i = 1, . . . , n+ q −m, (39)in that subspa
e, and also 
hoose an arbitrary basis β1, . . . , βm in the spa
eof β ∈ IRm. Thus, we have n + q basis ve
tors in the subspa
e of triples

(x(t1), h, β) ∈ IRn+q+m satisfying (30). These basis ve
tors generate n + qve
tors
(xi(t1), h

i, ψi(t1), θ
i), i = 1, . . . , n+ q, (40)where ve
tors ψi(t1) are obtained by (36), and q− dimensional ve
tors θi bythe relation θ = Shxx(t1) + Shhh+N∗β in view of the left-hand side of (37).For ea
h ve
tor (40), we should solve the system (38) ba
kwards in time,starting with the terminal values (xi(t1), ψ

i(t1)), thus obtaining ve
tor-fun
tions
(xi(t), ψi(t)). Adding here the 
onstant ve
tors hi and θi, we obtain ve
tor-fun
tions

(xi(t), hi, ψi(t), θi), i = 1, . . . , n+ q, (41)that form a fundamental family of solutions to system (38) with terminal rela-tions (30), (36). Now, we only have to satisfy relations x(t′0) = 0 and (37).The ve
tor-fun
tions (xi(t), θi), i = 1, . . . , n+ q, from (41) 
ompose (n+
q)× (n+ q)−matrix ||X(t) |Θ ||, and hen
e, the required relations are satis�edfor some solution to system (38), (30), (36) if and only if

det ||X(t′0) |Θ || = 0.The point t∗0 is then the maximal root t′0 < t1 of this equation.If the matrix N : IRq → IRm allows us to use some s
alar relations of (37)to eliminate some 
omponents of β, then the number of basis ve
tors βi 
anbe redu
ed, and we need only pay attention to the remaining s
alar relations of(37). Thus, the matrix ||X(t) |Θ || would have a smaller dimension.In the most favorable 
ase, when rank N = m (hen
e m ≤ q ), the ve
tor β
an be totally expressed through x(t1) and h by some m equations from (37),in the form β = Cx(t1) +Dh with some matri
es C,D. The left hand sides ofremaining q −m equations of (37) 
ompose a redu
ed ve
tor θ̃ of dimension
q′ = q −m. Here we do not need to take an independent basis in the spa
e of
β; instead, we should 
hoose the above basis (xi(t1), h

i), i = 1, . . . , n+ q−m,then de�ne the ve
tors βi = Cxi(t1)+Dh
i, 
al
ulate the 
orresponding ve
tors
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ψi(t1) by (36), and solve the system (38) ba
kwards in time for ea
h terminalvalue (xi(t1), ψ

i(t1)), thus obtaining ve
tor-fun
tions (xi(t), ψi(t)), i =
1 , . . . , n+ q −m. Adding to them the 
orresponding ve
tors hi and θ̃i, weobtain ve
tor-fun
tions

(xi(t), hi, ψi(t), θ̃i), i = 1, . . . , n+ q′.This is a fundamental family of solutions to system (38) with terminal relations(30), (36), (37), and it only remains to satisfy the initial 
ondition x(t0) = 0 and
θ̃ = 0. To do this, we should 
ompose the (n+q′)×(n+q′)−matrix ||X(t) | Θ̃ ||and �nd the maximal t < t1 satisfying the equation det ||X(t) | Θ̃ || = 0. Thiswould be a point t∗0 
onjugate to t1 .In another favorable 
ase, when rank N = q ≤ m, some q s
alar relationsof (30) 
an be used to express h = Dx(t1) with some matrix D, and x(t1)should only satisfy the remaining m′ = m− q equations of (30), whi
h 
an bewritten in the form

Gx(t1) = 0 (42)with some m′ × n−matrix G. The endpoint quadrati
 form g (and then Ω)does not 
ontain h, and so, we have the standard 
lassi
al 
ase with zero leftendpoint x(t0) = 0 and equality 
onstraints (42) for the right endpoint.Assumption A1 takes here the following form: the mapping Γ : u 7−→

Gx(t1), where x(t) is obtained from (26), (29), is a surje
tion: ImΓ = IRm′

.The EJ equation reads here as follows: if u is a stationary point in theproblem Ω(u) → min, u ∈ Hs , then there exist a Lips
hitz n− ve
tor fun
tion
ψ(t) and a ve
tor β ∈ IRm′ satisfying relations (34), (35), and the terminaltransversality 
ondition

−ψ(t1) = Sxx x(t1) + G∗β . (43)Here we may 
hoose a basis xi(t1), i = 1, . . . , n − m′, in the subspa
e ofve
tors x(t1) satisfying (42), add to it a basis βi, i = 1, . . . ,m′, in thespa
e of β ∈ IRm′

, obtaining thus a basis (xi(t1), β
i), i = 1, . . . , n, inthe subspa
e of pairs (x(t1), β) satisfying (42), and then 
al
ulate the 
or-responding ve
tors ψi(t1), i = 1, . . . , n, by (43). Thus, we obtain n ve
tors

(xi(t1), ψ
i(t1), β

i), i = 1, . . . , n, satisfying (42) and (43). For ea
h of theseve
tors, solving the system (38) ba
kwards in time, we obtain ve
tor-fun
tions
(xi(t), ψi(t)), i = 1, . . . , n. Next, 
ompose n × n−matrix X(t) of the ve
-tors xi(t). Then, the 
onjugate point t∗0 is the maximal t < t1 su
h that
detX(t) = 0.2.6. Che
king the nonnegativity of ΩNow, suppose the 
onjugate point t∗0 is somehow found. In a

ordan
e with theabstra
t Ja
obi theory, if t∗0 < t0 , then the quadrati
 fun
tional (25) de�ned



300 A.V. DMITRUKon the interval [t0, t1] is positive de�nite w.r.t. γ on the subspa
e of (x, u, h)satisfying relations (26), (29), (30). However, if t∗0 ∈ (t0, t1), we 
annot, ingeneral, say that Ω has negative values on this subspa
e. In other words, if
s∗ = t1− t

∗

0 is the 
onjugate point for Ω on the one-parameter family of spa
es
Hs , then it 
an happen that Ω is still nonnegative on Hs for some s > s∗(an easy example is given in Dmitruk, 1976). Let s∗∗ be the maximum of su
h
s. Obviously, s∗∗ ≥ s∗. The interval [s∗, s∗∗] is 
alled the 
onjugate (or fo
al)interval. In the 
ase when it is nondegenerate (s∗∗ > s∗), the point s∗ and the
orresponding point t∗0 should better be 
alled the 
losest 
onjugate point, whilethe point s∗∗ and the 
orresponding point t∗∗0 should be 
alled the farthest
onjugate point (with respe
t to s = 0 and t = t1 respe
tively). Fortunately,the farthest 
onjugate point s∗∗ 
an be also determined by using the solutionsto EJ equation, see Hestenes (1951), Dmitruk (1976) (and also Dmitruk, 1981for the general 
ase of �nite-fa
ed 
one K). In the most favorable 
ase thesetwo points 
oin
ide: s∗∗ = s∗, and there is no need to �nd the point s∗∗ if thepoint s∗ is already found.To guarantee this 
oin
iden
e, we impose one more assumption on our situ-ation:A2) If a ve
tor-fun
tion ψ(t) satis�es the equations −ψ̇ = A∗ψ, B∗ψ = 0on an interval (t′, t′′), then ψ(t) ≡ 0 on this interval.This is, of 
ourse, rather a strong assumption. It means that the system
ẋ = Ax+Bu is 
ompletely 
ontrollable, i.e., 
ontrollable on any nonzero interval
[t′, t′′] (whi
h means that for any a′, a′′ ∈ IRn there exists a pair (x(t), u(t))satisfying the above system with x(t′) = a′ and x(t′′) = a′′). However, it oftenholds in problems of CCV.One 
an propose a weaker assumption: any nontrivial solution (x, ψ, h, β)to EJ equation on an interval [t′, t1] 
annot remain a solution on a larger interval
[t′′, t1], t

′′ < t′, being extended on [t′′, t′] by setting there x(t) = 0, ψ(t) = 0.However, the weakest assumption, in fa
t equivalent to the 
oin
iden
e s∗∗ =
s∗, and hen
e to t∗∗0 = t∗0 , is as follows: there exists a nontrivial solution
(x, ψ, h, β) to EJ equation on the interval [t∗0, t1] that 
annot be extended toa solution on a larger interval [t′′, t1], t

′′ < t∗0, by setting x(t) = 0, ψ(t) = 0on [t′′, t∗0]. (This equivalen
e is a key assertion proved in Hestenes, 1951. Itis worth noting that the similar assertion holds also true for the 
ase involvingterminal inequality 
onstraints (23), see Dmitruk, 1981.)Under assumptions A1 and A2, if we �nd the 
onjugate point t∗0 , we obtain,like in CCV, the 
omplete information about the sign of quadrati
 fun
tional Ωgiven by (25) and (31): a) if [t0, t1] does not 
ontain a point 
onjugate to t1 ,then Ω is positive de�nite on the subspa
e of (x, u, h) satisfying relations (26),(29), (30); b) if t∗0 ∈ (t0, t1), then Ω has negative values on this subspa
e,and 
) if t∗0 = t0 , then Ω ≥ 0 on this subspa
e, and there exists a nonzeropair (u, h) su
h that Ω(u, h) = 0.Consider now another important 
ase.
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onditions for singular extremals 3012.7. The right endpoint �xedThis 
ase 
an be treated in two ways. In the �rst one, we 
an just redu
e thesituation to the pre
eding 
ase by 
hanging t0 and t1 . The se
ond way is asfollows. Sin
e x(t1) is �xed, for the 
riti
al dire
tions we have x̄(t1) = 0 plussome equality 
onstraints at the left endpoint, G x̄(t0) = 0. After the Gohtransformation we get Gξ̄(t0) = 0, ξ̄(t1) +F (t1)h̄ = 0, and so, equations (27)in the �nal notation have the form
Gx(t0) = 0, x(t1) + F h = 0,where G and F are some matri
es of dimensions m×n and n×r, respe
tively.(Here we 
an negle
t the relation of F with the matrix F (t, x(t)) from theinitial 
ontrol system.)Assume that rank F = r, i.e., the mapping F : IRr → IRn is inje
tive(whi
h is quite realisti
). Then it has a right inverse D : IRn → IRr, DF = I,and so, h 
an be expressed through x(t1) in the form h = Dx(t1), while

x(t1) should satisfy a 
onstraint Λ x(t1) = 0 with some (n−r)×n−matrix Λ.Thus, we have a quadrati
 form Ω of the type (25) with a �nite-dimensionalpart g of the general type
g(x0, x1) = (S00 x0, x0) + 2(S01 x0, x1) + (S11 x1, x1),where S00 , S01 , S11 are some n × n−matri
es, and this form should be 
on-sidered on the spa
e of fun
tions (x(t), u(t)) on [t0, t1] satisfying equation (26)and terminal relations
Gx(t0) = 0, Λ x(t1) = 0, (44)where G and Λ are some matri
es of dimensions m × n and p × n, respe
-tively (with some integer p). So, we a
tually have the general linear-quadrati
situation with both endpoints independently variable. If at least one endpointis zero, say x(t0) = 0 (i.e., rank G = n ), we have 
ompletely the 
lassi
alsituation, so we should vary the point t0 and �nd the 
onjugate point t∗0 bythe standard 
lassi
al pro
edure.However, in the general 
ase, when both endpoints are indeed variable, thesign de�niteness of Ω on [t0, t1] does not depend monotoni
ally on t0 , and so,the implementation of the Hestenes approa
h in this 
ase should be modi�ed.A natural modi�
ation follows the idea (noted e.g. in Dmitruk, 1984) that oneshould vary the support of u(t), but keep the integration over the whole �xedinterval [t0, t1].To be more pre
ise, 
onsider the Hilbert spa
e H = Lr

2[t0, t1] × IRn withelements (u(t), b) su
h that the 
orresponding x(t), determined by equation(26) with initial 
ondition x(t1) = b, satis�es (44). Set T = t1 − t0 . For any
s ∈ [0, T ] de�ne a subspa
e Hs ⊂ H 
onsisting of all (u, b) ∈ H su
h thatsupp u(t) ⊂ [t1 − s, t1], i.e. u(t) = 0 a.e. on [t0, t1 − s]. Obviously, {Hs} is
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ontinuously expanding family of subspa
es, H0 = 0, and HT = H. Thequadrati
 form Ω : H → IR does not depend on s .As before, one should �rst 
he
k that Ω is positive de�nite on H0 , andthen �nd s∗ as the minimal s > 0 for whi
h the fun
tional Ω has a nonzerostationary point on Hs . The di�eren
e from the 
ase with x(t0) = 0 is that,sin
e the integration is taken over the whole initial interval [t0, t1], the EJequation for Ω on Hs should be also 
onsidered on this whole interval, not onlyon [t1 − s, t1]. Alternatively, one 
an redu
e the integration to [t1 − s, t1], butthen one should take into a

ount the 
ontribution of the integrand term (Qx, x)on the "ina
tive" subinterval [t0, t1 − s]. (The other integrand terms, involving
u, give no 
ontribution.) Sin
e x(t) on this subinterval satis�es the equation
ẋ = Ax, then x(t) = Φ(t1 − s, t)x(t1 − s), where Φ is the transition matrixof this equation (Φt(τ, t) = A(t)Φ(τ, t), Φ(τ, τ) = I ), and so, the integralof (Qx, x) is a quadrati
 form of x(t1 − s). Moreover, sin
e x(t0) = Φ(t1 −
s, t0)x(t1 − s), the endpoint quadrati
 form g(x(t0), x(t1)) 
an be expressedthrough x(t1 − s) and x(t1). Thus, the integration in Ω 
an be redu
ed to
[t1−s, t1] at the expense of 
hanging some 
oe�
ients in the endpoint quadrati
form: g(x(t0), x(t1)) 7−→ g̃(x(t1 − s), x(t1)). The �rst relation in (44) 
an bealso expressed in the form Gs x(t1 − s) = 0 with some matrix Gs . A
tually,here one must deal not with a single quadrati
 form Ω, but with a family ofquadrati
 forms Ωs having the same integral part while their endpoint partdepends on the parameter s. The transversality 
onditions in the EJ equationwould then also involve s. For a detailed exposition of this pro
edure see, e.g.,Zeidan (1994), and Stefani, Zezza (1997).Example 1 Consider the following problem:

ẋ1 = x2 + f1(x1, x2), x1(t0) = 0,

ẋ2 = u + f2(x1, x2), x2(t0) = 0,

J = 2s x1(T )x2(T ) +

∫ T

t0

(x2
1 + x2

2 + 2p x2u) dt→ min,where p > 0 and s are parameters, the fun
tions f1 , f2 are twi
e smooth,vanishing at zero together with their �rst and se
ond derivatives, and analyzethe pro
ess w0 : x0
1 = x0

2 = u0 = 0. To represent formally this problem as anexample of problem A, introdu
e an additional state variable x3 satisfying theequation
ẋ3 = x2

1 + x2
2 + 2p x2u, x3(t0) = 0,when
e the 
ost takes the terminal form J = 2s x1(T )x2(T ) + x3(T ) → min .Obviously, the referen
e pro
ess w0 satis�es the MP with a unique (up tonormalization) 
olle
tion of multipliers ψ1 = ψ2 = 0, ψ3 = 1, α0 = 1/2,
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β1 = β2 = 0, β3 = −1, and with the 
orresponding fun
tions

l = α0

(
2s x1(T )x2(T ) + x3(T )

)
+ β1x1(t0) + β2x2(t0) + β3x3(t0),

H = ψ1(x2 + f1) + ψ2(u+ f2) + ψ3(x
2
1 + x2

2 + 2p x2u).The Lagrange fun
tion here is L = l+
∫
ψ3(ẋ3 − (x2

1 +x2
2 + 2p x2u)) dt, and itsse
ond variation at w0 is

Ω(x̄, ū) = 2s x̄1(T ) x̄2(T ) +

∫ T

t0

(x̄2
1 + x̄2

2 + 2p x̄2ū) dt. (45)The 
riti
al subspa
e K is de�ned by the relations
˙̄x1 = x̄2 , x̄1(t0) = 0,

˙̄x2 = ū , x̄2(t0) = 0,

˙̄x3 = 0 , x̄3(t0) = 0,and x̄3(T ) ≤ 0 (linearization of the 
ost). Sin
e the multiplier at the 
ost
α0 > 0, we 
an put x̄3(T ) = 0, when
e the arti�
ial variable x̄3(t) ≡ 0, so weremove it from all relations.Introdu
ing the variable ȳ subje
t to ˙̄y = ū, ȳ(t0) = 0, we should try toestimate Ω from below by γ = ȳ2(t1)+

∫ T

t0
ȳ2 dt for (x̄1, x̄2, ū) ∈ K. Theorem 1says (in view of dimu = 1), that if Ω is positive de�nite in this sense, thereferen
e pro
ess w0 gives a Pontryagin minimum in the problem, and if Ωadmits negative values, w0 does not give even a weak minimum.Perform the Goh transformation by setting x̄1 = ξ̄1 and x̄2 = ξ̄2 + ȳ. Then

˙̄ξ2 = 0, ξ̄2(t0) = 0, hen
e ξ̄2(t) ≡ 0, and we obtain x̄2 = ȳ, ˙̄ξ1 = ȳ, ξ̄1(t0) =
0, while Ω takes the form

Ω =2s ξ̄1(T ) ȳ(T ) +

∫ T

t0

(ξ̄21 + ȳ2 + 2p ȳū) dt =

= p ȳ2(T ) + 2s ξ̄1(T ) ȳ(T ) +

∫ T

t0

(ξ̄21 + ȳ2) dt(we took into a

ount that ∫ T

t0
2ȳū dt = ȳ2(T ) ). The strong Legendre 
onditionis satis�ed here: R(t) ≡ 1.Changing the variables (ξ̄1, ȳ, ȳ(T )) 7−→ (ξ̄1, ȳ, h̄) 7−→ (x, u, h), we �nally
ome to the quadrati
 form

Ω(u, h) = ph2 + 2s x(T )h+

∫ T

t0

(x2 + u2) dt, (46)where ẋ = u, x(t0) = 0,
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h should be estimated by the order γ(u, h) = h2 +
∫ T

t0
u2 dt on the spa
e ofall (u, h) ∈ L2[t0, T ]× IRn. If u(t) ≡ 0 (i.e., (u, h) lies in the spa
e H0), then

Ω = ph2 is really positively de�nite, due to the assumption p > 0. Next, sin
ethe left endpoint is zero, we 
an vary t0 and try to �nd the 
onjugate point
t∗0 . Sin
e the system ẋ = u is obviously 
ompletely 
ontrollable, there are no
onjugate intervals, so it su�
es to �nd just the 
onjugate point t∗0 only.In order to write out the EJ equation, de�ne

Π = ψ u−
1

2
(x2 + u2), λ =

1

2
p h2 + s x(T )h,and so, the 
olle
tion (ψ, x, u, h) should satisfy the relations

ψ̇ = −Πx = x, ψ(T ) = −sh,

ψ − u = 0, λh = ph+ s x(T ) = 0,when
e x(t) should satisfy the equation
ẍ = x, with ẋ(T ) =

s2

p
x(T ).From here we get x(t) = a cosh(t− T ) + b sinh(t− T ), b = s2a/p, and so, thenontrivial solution is, up to normalization:

x(t) = p cosh(t− T ) + s2 sinh(t− T ).We have to �nd the maximal t < T su
h that x(t) = 0, i.e.,
tanh (t− T ) = −

p

s2
. (47)This equation determines the 
onjugate point t∗0 . Obviously, it has a (unique)solution t < T if and only if s2 > p. Moreover, one 
an easily see that, if

|s| → ∞, then t → T − 0, whi
h means that, for any �xed interval [t0, t1]the Ω has negative values if s is su�
iently large. This result is in a gooda

ordan
e with the apriori 
onsiderations of (45): 
hoosing any pro
ess with
x̄1(T ) x̄2(T ) 6= 0 and taking a large enough s, one 
an easily make Ω to benegative.Note that the 
onjugate point does not depend on the sign of s, whi
h 
anbe seen both from (47) and (46): if s 7→ −s, we 
an also 
hange h 7→ −h, and
Ω stays invariant.In parti
ular 
ase, when s2 = p, the 
onjugate point is absent, whi
h meansthat for any t0 < T the fun
tional

Ω(u, h) = s2 h2 + 2sh x(T ) +

∫ T

t0

(x2 + u2) dt (48)
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t 
an be also obtained from the inequality
∫ T

t0

(x2 + u2) dt > x2(T )for all nonzero u(t) (then (48) majorates the square of sh+ x(T ) ), i.e.,
−x2(T ) +

∫ T

t0

(x2 + u2) dt > 0.This inequality follows from the absen
e of 
onjugate point of the quadrati
form in its left hand side, whi
h is of 
lassi
al type. (Here the 
onjugate pointshould satisfy the equation tanh (t− T ) = −1, whi
h has no solution.)A
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