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.atAbstra
t: An optimal 
ontrol problem for 2d and 3d Stokesequations is investigated with pointwise inequality 
onstraints onthe state and the 
ontrol. The paper is 
on
erned with the full dis-
retization of the 
ontrol problem allowing for di�erent types of dis-
retization of both the 
ontrol and the state. For instan
e, pie
ewiselinear and 
ontinuous approximations of the 
ontrol are in
luded inthe present theory. Under 
ertain assumptions on the L∞-error ofthe �nite element dis
retization of the state, error estimates for the
ontrol are derived whi
h 
an be seen to be optimal sin
e their or-der of 
onvergen
e 
oin
ides with the one of the interpolation error.The assumptions of the L∞-�nite-element-error 
an be veri�ed fordi�erent numeri
al settings. Finally the results of two numeri
alexperiments are presented.Keywords: linear-quadrati
 optimal 
ontrol problems, Stokesequations, state 
onstraints, numeri
al approximation, �nite ele-ments1. Introdu
tionThis paper is 
on
erned with the �nite element dis
retization for the followinglinear quadrati
 optimal 
ontrol problem subje
t to the Stokes equations and
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252 J. C. DE LOS REYES, C. MEYER, B. VEXLERadditional 
onstraints on the 
ontrol and the state:
(P)







minimize J(v, u) :=
1

2

∫

Ω

|v − z|2
Rd dx+

α

2

∫

Ω

|u|2
Rd dxsubje
t to −∆ v + ∇p = u in Ω

∇ · v = 0 in Ω

v = 0 on Γ := ∂Ωand v ∈ K ⊂ L∞(Ω′)d

a ≤ u(x) ≤ b a.e. in Ω,where u denotes the 
ontrol, v and p are velo
ity and pressure, respe
tively, and
z is the given desired state. Furthermore, Ω ⊂ R

d, d = 2, 3 is a bounded domainwith boundary Γ and α > 0 is a given number. Moreover, a, b ∈ R
d are givenve
tors, whereas K denotes a 
losed and 
onvex subset of L∞(Ω′)d, where Ω′ isa �xed (not ne
essarily proper) subset of Ω. Possible examples for K are box
onstraints for v or restri
tions on the Eu
lidian norm of v, i.e.,

K(1) :=
{
v ∈ L∞(Ω′)d|va ≤ v(x) ≤ vb a.e. in Ω′

}

K(2) :=
{
v ∈ L∞(Ω′)d||v(x)|2

Rd ≤ ̺ a.e. in Ω′
}with given bounds va, vb ∈ R

d, and ̺ > 0. In view of the no-slip 
onditions onthe boundary, it might be reasonable to require the state 
onstraints only in theinterior of Ω. The theory presented is appli
able for both 
ases, i.e. Ω′ 6= Ω and
Ω′ = Ω. We point out that the subsequent analysis 
an be extended to the 
aseof more general 
ontrol 
onstraints, i.e. u ∈ Ku with a nonempty 
onvex subset
Ku ∈ L∞(Ω)d. For a better readability of the paper, we 
on
entrate on box
onstraints for the 
ontrol, while general 
onstraints on the state are 
onsidered.It is well known that, if 
ertain 
onstraint quali�
ations are satis�ed, thenthe generalized Karush-Kuhn-Tu
ker theory allows to derive �rst-order ne
es-sary 
onditions that in
lude the existen
e of Lagrange multipliers asso
iated tothe state 
onstraints in (L∞(Ω′)d)∗, i.e., the dual of L∞(Ω′)d with respe
t tothe inner produ
t of L2(Ω′)d (see Zowe and Kur
yusz, 1979, or Casas, 1993).This la
k of regularity of the multipliers 
ompli
ates the numeri
al analysis ofstate-
onstrained optimal 
ontrol problems. Nevertheless, in the re
ent past,some progress has been a
hieved 
on
erning the �nite element error analysisof state-
onstrained ellipti
 problems. We exemplarily mention Casas (2002),where a semilinear ellipti
 
ontrol problem with �nitely many state 
onstraints is
onsidered, and Casas and Mateos (2002), where 
onvergen
e of a �nite elementdis
retization for state-
onstrained semilinear ellipti
 problems is proved in ageneral setting. Moreover, we refer to De
kelni
k and Hinze (2007 a,b), wherea variational dis
retization of state-
onstrained ellipti
 problems is 
onsidered,and to De
kelni
k, Günther and Hinze (2007) for problems with pointwise 
on-straints on the gradient of the state variable. Furthermore, De
kelni
k and Hinze
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ewise 
onstant approximations of the 
ontrol in thepresen
e of pointwise state 
onstraints and obtained an order of 
onvergen
e of
h| log h| in the two dimensional 
ase and h1/2 in 
ase of three dimensions withrespe
t to the L2-norm on the 
ontrol. Afore, slightly worse results for the samesetting are proven in Meyer (2008) by employing a 
ompletely di�erent analysis.In this paper, we show that the analysis of Meyer (2008) 
an be trans-ferred to the Stokes equations and more general dis
retizations for the 
ontrol,e.g. pie
ewise linear and 
ontinuous ansatz fun
tions. In parti
ular, the use ofmore general ansatz fun
tions, as e.g. pie
ewise linear ones, requires signi�
antmodi�
ation of the theory presented in Meyer (2008), whi
h is performed byusing a parti
ular quasi-interpolant introdu
ed in Carstensen (1999). More-over, to deal with di�erent dis
retization te
hniques for the Stokes equations,we have to allow for dis
rete states whi
h may not be feasible for the 
ontinuousproblem. This 
onstitutes another signi�
ant di�eren
e to the existing theory.The presented analysis 
overs results for di�erent settings su
h as for instan
ethe following: Let Ω ∈ R

2 be a 
onvex polygon and Ω′ be stri
tly 
ontained in
Ω and suppose that the Stokes equations are dis
retized with the Taylor-Hoodelement, while we use pie
ewise linear ansatz fun
tions for the 
ontrol. Thenthere holds for every ε > 0

‖ū− ūh‖L2(Ω)2 + ‖v̄ − v̄h‖H1(Ω)2 + ‖p̄− p̄h‖L2(Ω) ≤ C h1−ε,where (ū, v̄, p̄) is the solution of (P), while (ūh, v̄h, p̄h) denotes the solution ofits dis
rete 
ounterpart.To the authors' best knowledge, this is the �rst note that deals with the dis-
retization error for the optimal 
ontrol of the Stokes equations in the presen
e ofpointwise state 
onstraints. There are several papers 
onsidering �nite elementdis
retizations of the un
onstrained optimal 
ontrol of the Stokes and Navier-Stokes equations (see for instan
e Bo
hev and Gunzburger, 2004; De
kelni
kHinze, 2004; Gunzburger, Hou and Svobodny, 1991a,b), as well as 
ontributionsfor the purely 
ontrol-
onstrained 
ase, Rös
h and Vexler (2006). However, theanalysis in 
ase of pointwise state 
onstraints di�ers signi�
antly from thesesettings sin
e, among other things, optimal L∞-error estimates for the �niteelement dis
retization of the Stokes equations are required.The paper is organized as follows: after stating the main assumptions andknown results for the 
ontinuous problem (P) in the following se
tion, we intro-du
e a general framework for a dis
retization of (P) in Se
tion 3, whi
h 
oversdi�erent 
on
rete dis
rete s
hemes. Thereafter, in Se
tion 4 we dis
uss some spe-
ial interpolation results to be used in Se
tion 5, where a priori error analysisfor the problem under 
onsideration is presented. Finally, Se
tion 6 is devotedto 
on
rete dis
retization s
hemes and their pra
ti
al realization, whereas thenumeri
al examples are presented in Se
tion 7.



254 J. C. DE LOS REYES, C. MEYER, B. VEXLER2. Notation and assumptionsIn all what follows, |z|Rd =
(∑d

i=1 z
2
i

)1/2 denotes the Eu
lidian norm andinequalities of the form z ≤ w with w, z ∈ R
d, are understood 
omponent-wise. Moreover the natural inner produ
t of L2(Ω)d is abbreviated by (·, ·) :=

(·, ·)L2(Ω)d . Furthermore, we introdu
e the Hilbert spa
es
V := H1

0 (Ω)d, L :=
{
p ∈ L2(Ω)|

∫

Ω

p(x) dx = 0
}
.Throughout this arti
le, let σ be a real number satisfying 1 < σ < d/(d − 1).Then we de�ne the 
onjugate exponent by σ′ = σ/(σ − 1). In addition, Wσdenotes the Sobolev spa
e W 1,σ(Ω)d, whereas we set V∞ := L∞(Ω′)d. The dualspa
es asso
iated to Wσ and V∞ with respe
t to the inner produ
t of L2(Ω)dand L2(Ω′)d, respe
tively, are denoted by W ∗

σ and V ∗
∞.Assumption 2.1 On the quantities in (P), we impose the following 
onditions:

• Ω is an open, bounded, simply 
onne
ted Lips
hitz domain Ω ⊂ R
d, d =

2, 3, while Ω′ denotes an open subset of Ω.
• K is a 
losed and 
onvex subset of L∞(Ω′)d

• a, b ∈ R
d with a ≤ b

• z ∈ L2(Ω)d.Let us introdu
e the variational formulation of the Stokes equations by
(∇v,∇ϕ) − (p,∇ · ϕ) + (∇ · v, ψ) = (u, ϕ) ∀ (ϕ, ψ) ∈ V × L. (1)It is well known that, for a given right-hand side u ∈ L2(Ω)d, there exists aunique solution to (1) and the asso
iated solution operator, denoted by G :

u 7→ (v, p), is 
ontinuous from L2(Ω)d to V × L. Moreover, we introdu
e the
ontrol-to-state operator S : L2(Ω)d → V whi
h maps the 
ontrol variable u tothe velo
ity 
omponent of the solution Gu, i.e., S : u 7→ v. Sometimes S and
G are 
onsidered in di�erent spa
es (e.g. L∞(Ω′)d), for simpli
ity also denotedby S and G, respe
tively. Based on the 
ontrol-to-state operator, we de�ne theredu
ed 
ontrol problem by:

(P)







min
u∈L2(Ω)d

f(u) := J(S u, u)s.t. S u ∈ K

a ≤ u(x) ≤ b a.e. in Ω.For the solution operator of the Stokes system, the following mapping propertiesare known. We refer to Brown and Shen (1995, Theorem 2.9) and the referen
estherein.Proposition 2.1 Under the hypothesis on Ω in Assumption 2.1, there is apositive number 2d/(d + 2) ≤ σ̄ < d/(d − 1) su
h that S 
ontinuously maps
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W ∗

σ = (W 1,σ(Ω)d)∗ to W 1,σ′

(Ω)d for all σ ∈ [σ̄, d/(d − 1)[. Hen
e, due to
σ̄′ > d, Sobolev embedding theorems give

S : L2(Ω)d →֒W ∗
σ →W 1,σ′

(Ω)d →֒ V∞ ∀σ ∈ [σ̄, d/(d− 1)[. (2)For the rest of the paper, let σ be a �xed, but arbitrary number in [σ̄, d/(d−
1)[. As already mentioned in the introdu
tion, a 
ertain 
onstraint quali�
a-tion is needed to derive the existen
e of Lagrange multipliers by means of thegeneralized Karush-Kuhn-Tu
ker theory. Here, we rely onAssumption 2.2 (Slater 
ondition) There is a û∈ L∞(Ω)d∩Wσ , satisfying

S û ∈ intK

a ≤ û(x) ≤ b a.e. in Ω.In order to state the ne
essary optimality 
onditions for the solution of (P)we introdu
e the set of admissible 
ontrols, whi
h in
orporates both the 
ontroland the state 
onstraints:
Uad :=

{
u ∈ L∞(Ω)d|a ≤ u(x) ≤ b a.e. in Ω, S u ∈ K

}
.Theorem 2.1 Under Assumption 2.2 there exists a unique solution of (P), de-noted by ū. This solution provides some additional regularity, namely ū ∈ Wσ,and satis�es the following variational inequality

(S ū− z , S u− S ū) + α (ū , u− ū) ≥ 0 ∀ u ∈ Uad (3)where Uad is de�ned as above.Proof. The existen
e and uniqueness result is standard. To show the additionalregularity of ū, we make use of the generalized Karush-Kuhn-Tu
ker theory (seeZowe and Kur
yusz, 1979). To this end, set v̄ = S(ū). Under the Slater 
on-dition in Assumption 2.2, the generalized KKT theory guarantees the existen
eof a Lagrange multiplier µ̄ ∈ V ∗
∞ su
h that ū satis�es

ū = Π[a,b]

{
− 1

α
S∗
(
E2(v̄ − z) + E∞µ̄

)} (4)with the adjoint operator S∗ : (W 1,σ′

(Ω)d)∗ →Wσ (see Proposition 2.1). More-over, E2 : L2(Ω)d → (W 1,σ′

(Ω)d)∗ and E∞ : V ∗
∞ → (W 1,σ′

(Ω)d)∗ are the asso-
iated embedding operators. Furthermore, Π[a,b] denotes the 
omponent- andpointwise proje
tion operator on the interval [a, b]. Sin
e this proje
tion opera-tor mapsWσ to itself, we have ū ∈Wσ. Finally, the derivation of the variationalinequality follows standard arguments.Remark 2.1 We point out that the 
onvergen
e analysis, presented below, doesnot involve dual variables, i.e., the adjoint state or Lagrange multipliers. Inthis 
ontext, the existen
e of Lagrange multipliers is just required to guaranteethe additional regularity of ū whi
h is needed for the derivation of interpolationerror estimates (see Lemmata 4.3 and 4.4 below).
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retizationNow we turn to the dis
retization of (P). First, let us introdu
e a family ofmeshes {Th} with mesh size h > 0. The mesh Th 
onsists of open 
ells T(triangles, tetrahedra, quadrilaterals, hexahedra) su
h that
Ω̄ =

⋃

T∈Th

T̄ful�lling usual assumptions on the �nite element mesh, see, e.g., Brenner andS
ott (1994). Noti
e that this implies that the 
ells lying on the boundary of
Ω may be 
urved if Γ is smooth (see Se
tion 6.1 for details). The mesh size isde�ned by

h := max
T∈Th

hT with hT := diam (T ).With ea
h T ∈ Th, we asso
iate the diameter of the largest ball 
ontained in T ,denoted by RT . We suppose the following regularity assumptions for {Th}:Assumption 3.1 There exist two positive 
onstants ρ and R su
h that
hT

RT
≤ R ,

h

hT
≤ ρhold for all 
ells T ∈ ∪h>0Th.To ea
h mesh, we asso
iate �nite dimensional subspa
es of V and L, denotedby Vh and Lh. The dis
rete 
ounterpart of (1) is then given by

(∇vh,∇ϕh) − (ph,∇ · ϕh) + (∇ · vh, ψh) = (u, ϕh) ∀ (ϕh, ψh) ∈ Vh × Lh (5)with asso
iated solution operator Ghu = (vh, ph) ∈ Vh × Lh. Con
rete 
hoi
esfor the pairs (Vh, Lh), allowing for existen
e of the solution operator Gh, willbe dis
ussed in Se
tion 6. Analogously to the above, we de�ne the dis
rete
ontrol-to-state operator Sh mapping given 
ontrol u to the velo
ity 
omponent
vh of Ghu. In all what follows, we rely on the following 
onditions on Sh, thatwill be veri�ed in Se
tion 6 for di�erent settings.Assumption 3.2 The following error estimates hold true

‖S u− Sh u‖V∞
≤ c δ(h) ‖u‖L∞(Ω)d (6)with some fun
tion δ : R

+ → R
+, satisfying δ(h) → 0 if h ↓ 0, and a 
onstant cindependent of h and u.Next, we turn to the dis
retization of the 
ontrol. To this end, we de�ne theasso
iated ansatz fun
tions.
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h mesh Th there is a family of 
ontrol ansatz fun
tions
onsisting of n ansatz fun
tions φi ∈ L∞(Ω), 1 ≤ i ≤ n. Here, the number n aswell as the ansatz fun
tions themselves are allowed to depend on the mesh andtherefore on the mesh size. Moreover, for every i ∈ {1, ..., n} there holds
ess sup

x∈Ω̄

φi(x) = 1, φi(x) ≥ 0 a.e. in Ω,
n∑

i=1

φi(x) = 1 a.e. in Ω. (7)In addition, we assume that the pat
h ωi := suppφi is a 
onne
ted set of positivemeasure and 
ontained in the union of Mi adja
ent 
ells that share at least one
ommon vertex. Further, there exists a 
onstant M ∈ N, independent of h, su
hthat Mi ≤ M for all i ∈ {1, ..., n}. Finally, ea
h 
ell T ∈ Th is 
ontained in atmost N supports ωi, N independent of h.Remark 3.1 If Ω is a polygon (d = 2) or polyhedron (d = 3), the assumptionson the ansatz fun
tions φi, i = 1, ..., n are 
learly ful�lled for di�erent 
ommon�nite elements su
h as:
• pie
ewise 
onstant elements,
• linear �nite elements in 
ase of triangles and tetrahedrons, respe
tively,
• bi-/trilinear elements for quadrilaterals and hexahedrons, respe
tively.The assumption φi(x) ≥ 0 a.e. in Ω is not needed for the derivation of interpo-lation error estimates, but for the feasibility of interpolated 
ontrols (see Lemma5.5).The dis
rete 
ontrol spa
e is given by Uh := span {φi | 1 ≤ i ≤ n}d. Now weare in the position to de�ne the dis
rete 
ounterpart to (P):

(Ph)







min
uh∈Uh

f(u) := J(Sh uh, uh)s.t. Sh uh ∈ K,

a ≤ uh(x) ≤ b a.e. in Ω.Noti
e that (Ph) is not a fully dis
rete problem, sin
e K and z are not dis-
retized. The dis
retization of K and z is postponed to Se
tion 6.3. One showsby standard arguments:Theorem 3.1 Assume that the feasible set for (Ph) is not empty, i.e., thereexists a dis
rete 
ontrol uh ∈ Uh with a ≤ uh(x) ≤ b a.e. in Ω and Sh uh ∈ K.Then there exists unique solution of (Ph), denoted by ūh ∈ Uh, whi
h satis�esthe following dis
rete variational inequality
(Sh ūh − z , Sh uh − Sh ūh) + α (ūh , uh − ūh) ≥ 0 ∀ uh ∈ Uh

ad (8)with
Uh

ad :=
{
uh ∈ Uh|a ≤ uh(x) ≤ b a.e. in Ω, Sh uh ∈ K

}
.



258 J. C. DE LOS REYES, C. MEYER, B. VEXLER4. Interpolation estimatesIn this se
tion we dis
uss some interpolation estimates for fun
tions in Wσ. Forthe error analysis in the next se
tion we need an interpolation operator whi
hprovides interpolation estimates of optimal order among other things in negativeSobolev norms (see Lemma 4.4) and additionally has the following property:
a ≤ u(x) ≤ b a.e. in Ω ⇒ a ≤ (Πhu)(x) ≤ b a.e. in Ω. (9)To this end we 
onsider the quasi-interpolation operator introdu
ed in Carstensen(1999). For an arbitrary u ∈ L1(Ω), the 
onstru
tion is as follows:
Πhu =

∑

i

πi(u)φi, (10)where πi(u) ∈ R is de�ned by
πi(u) =

∫

ωi
uφi dx

∫

ωi
φi dx

. (11)Analogously, the quasi-interpolation operator for ve
torial quantities is de�ned
omponentwise and for simpli
ity also is denoted by Πh. The property (9) isobviously ful�lled due to the above 
onstru
tion and Assumption 7.In the following we dis
uss error estimates for u − Πhu in di�erent normson the 
omputational domain Ω ⊂ R
d, d = 2, 3. To keep the dis
ussion 
on
ise,we argue for a single 
omponent for the rest of this se
tion. The results forve
torial quantities immediately follow from norm equivalen
e in R

d.Lemma 4.1 For ea
h i ∈ {1, ..., n}, there is a 
onstant ci whi
h may depend ondiam ωi su
h that
‖u− πi(u)‖L2(ωi) ≤ ci ‖∇u‖Ls(ωi) ∀u ∈ W 1,s(ωi)for all 2d

d+2 ≤ s <∞.Remark 4.1 The 
ondition s ≥ 2d
d+2 is required for the embedding W 1,s(ωi) →֒

L2(ωi). There obviously holds:
2d

d+ 2
<

d

d− 1
for d = 2, 3.Proof. Let i ∈ {1, ..., n} be arbitrary. For the proof we use an indire
t argument.If the proposed assertion is false, there exists a sequen
e {uk} ⊂W 1,s(ωi) with

‖uk − πi(uk)‖L2(ωi) = 1 and ‖∇uk‖Ls(ωi) ≤
1

k
∀ k ∈ N.



Optimal 
ontrol of the Stokes equations 259Now, let us 
onsider vk = uk − πi(uk). Sin
e πi(uk) ∈ R by 
onstru
tion, wehave ∇πi(uk) = 0 and therefore
‖vk‖L2(ωi) = 1 and ‖∇vk‖Ls(ωi) ≤

1

k
∀ k ∈ N. (12)Therefore, thanks to s ≤ 2, {vk} is bounded in W 1,s(ωi) and there exists asubsequen
e denoted again by {vk} with

vk ⇀ v in W 1,s(ωi)and therefore
vk → v in Ls(ωi).Due to (12), ∇vk is a Cau
hy sequen
e in Ls(ωi) and therefore
vk → v in W 1,s(ωi).Hen
e, ∇v = 0 and v = const. Moreover there holds by the de�nition of πi:
∫

ωi

vkφi dx = 0,and therefore
∫

ωi

vφi dx = 0,whi
h implies v = 0. Due to the embeddingW 1,s(ωi) →֒ L2(ωi), we have vk → vin L2(ωi) and therefore ‖v‖L2(ωi) = 1. This is a 
ontradi
tion.Lemma 4.2 There is a 
onstant c whi
h is independent of h su
h that
‖u− πi(u)‖L2(ωi) ≤ c hd( 1

2−
1
s )+1 ‖∇u‖Ls(ωi) ∀u ∈ W 1,s(ωi)for all i ∈ {1, ..., n} and all 2d

d+2 ≤ s <∞.Proof. The proof uses the assertion from Lemma 4.1 on a referen
e pat
h ω̂iand a standard transformation argument. For 
onvenien
e of the reader, weshortly sket
h the arguments for a domain with polygonal (d = 2) or polyhedral(d = 3) boundary and the 
ase of triangles and tetrahedra, respe
tively. Let ωibe an arbitrary pat
h 
onsisting of the 
ells T (i)
j , j = 1, ...,Mi. By Assumption3.3, M = maxi{Mi} is bounded independently of h. To ea
h pat
h ωi, weasso
iate a referen
e pat
h ω̂i whose verti
es lie on the surfa
e of the unit ballin R

d. Moreover, it 
onsists of Mi 
ongruent 
ells T̂ (i)
j . Due to Mi ≤ M , thenumber of possible referen
e pat
hes is �nite and they 
an be 
onstru
ted so



260 J. C. DE LOS REYES, C. MEYER, B. VEXLERthat |T̂ (i)
j | is bounded from below and above by 
onstants independent of h (seeBernardi, 1989, Se
tion 4, for the 
onstru
tion of suitable referen
e pat
hes).Now denote by Fi, Fix̂ = x, the bi-Lips
hitz transformation from ω̂i to ωi,and set F (i)

j := Fi|T̂ (i)
j

, i.e. the a�ne-linear transformation from T̂
(i)
j to T (i)

j .Analogously to (11), let π̂i be de�ned by
π̂i(v) :=

∫

ω̂i
φ̂i v dx̂

∫

ω̂i
φ̂i dx̂

=

∫

ω̂i
(φi ◦ Fi) v dx̂
∫

ω̂i
φi ◦ Fi dx̂

,where φ̂i denotes the ansatz fun
tion on ω̂i. Then, due to u ◦Fi ∈ W 1,s(ω̂i), weobtain
‖u− πi(u)‖2

L2(ωi)
=

Mi∑

j=1

|T (i)
j |

|T̂ (i)
j |

∫

T̂
(i)
j

(

u(F
(i)
j x̂) − πi(u)

)2

dx̂

≤ c hd

∫

ω̂i

(
u ◦ Fi − π̂i(u ◦ Fi)

)2
dx̂ ≤ c hd

(
∫

ω̂i

|∇x̂(u ◦ Fi)|sdx̂
) 2

s

≤ c hd

(
Mi∑

j=1

|T̂ (i)
j |

|T (i)
j |

∫

Tj

|∇xu|s
∣
∣
∂x

∂x̂

∣
∣
s
dx

) 2
s

≤ c hd(1− 2
s )+2‖∇u‖2

Ls(ωi)with a 
onstant c > 0 independent of h. If quadrilaterals or hexahedra areused, one argues analogously using suitably de�ned referen
e pat
hes. In 
aseof smooth boundaries, where F (i)
j is not longer a�ne-linear, the result followsfrom similar transformation arguments known from the theory of interpolationon 
urved domains (see Bernardi, 1989, Lemma 2.3).Lemma 4.3 There is a 
onstant c whi
h is independent of h su
h that

‖u− Πhu‖L2(Ω) ≤ c hd( 1
2−

1
s )+1 ‖∇u‖Ls(Ω) ∀u ∈ W 1,s(Ω),with 2d

d+2 ≤ s ≤ 2.Proof. Due to ∑n
i=1 φi ≡ 1 and the de�nition of Πh, we �nd for all v ∈ L2(Ω)

(u− Πhu, v) =

(

u

n∑

i=1

φi −
n∑

i=1

πi(u)φi, v

)

=

n∑

i=1

∫

ωi

(u− πi(u))φi v dx,

≤ c hd( 1
2−

1
s )+1

n∑

i=1

‖∇u‖Ls(ωi) ‖v‖L2(ωi)

≤ c hd( 1
2−

1
s )+1

(
n∑

i=1

‖∇u‖s
Ls(ωi)

)1/s( n∑

i=1

‖v‖s′

L2(ωi)

)1/s′

.
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t that s′

2 ≥ 1 sin
e s ≤ 2, we have
n∑

i=1

‖v‖s′

L2(ωi)
=

n∑

i=1

(

‖v‖2
L2(ωi)

) s′

2 ≤
(

n∑

i=1

‖v‖2
L2(ωi)

) s′

2

.Hen
e,
|(u− Πhu, v)| ≤ c hd( 1

2−
1
s )+1 ‖∇u‖Ls(Ω) ‖v‖L2(Ω).Noti
e that Assumption 3.3 implies ∑n

i=1 ‖∇w‖
q
Lq(ωi)

≤ c ‖∇w‖q
Lq(Ω) for every

w ∈ W 1,q(Ω) and every 1 ≤ q < ∞. Setting v = u − Πhu, we 
omplete theproof.Lemma 4.4 There exists a 
onstant c, independent of h, su
h that
‖u− Πhu‖W 1,s(Ω)∗ ≤ c h2d( 1

2−
1
s )+2 ‖u‖W 1,s(Ω) ∀u ∈W 1,s(Ω)with 2d

d+2 ≤ s ≤ 2.Proof. Similarly to the beginning of the proof of the previous lemma, one hasfor all v ∈W 1,s(Ω):
(u− Πhu, v) =

(

u

n∑

i=1

φi −
n∑

i=1

πi(u)φi, v

)

=

n∑

i=1

∫

ωi

(u− πi(u))φi v dx.The de�nition of πi implies
∫

ωi

(u− πi(u))φi dx = 0,and therefore we 
ontinue with
(u− Πhu, v) =

n∑

i=1

∫

ωi

(u− πi(u))φi (v − πi(v)) dx

≤ c h2d( 1
2−

1
s )+2

n∑

i=1

‖∇u‖Ls(ωi) ‖∇v‖Ls(ωi)

≤ c h2d( 1
2−

1
s )+2

(
n∑

i=1

‖∇u‖s
Ls(ωi)

) 1
s
(

n∑

i=1

‖∇v‖s′

Ls(ωi)

) 1
s′

.Using the fa
t s′

s ≥ 1 sin
e s ≤ 2, we obtain
n∑

i=1

‖∇v‖s′

Ls(ωi)
=

n∑

i=1

(

‖∇v‖s
Ls(ωi)

) s′

s ≤
(

n∑

i=1

‖∇v‖s
Ls(ωi)

) s′

s
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|(u− Πhu, v)| ≤ c h2d( 1

2−
1
s )+2

(
n∑

i=1

‖∇u‖s
Ls(ωi)

) 1
s
(

n∑

i=1

‖∇v‖s
Ls(ωi)

) 1
s

≤ c h2d( 1
2−

1
s )+2 ‖u‖W 1,s(Ω) ‖v‖W 1,s(Ω).This 
ompletes the proof.Lemma 4.5 For every u ∈ L∞(Ω), there holds

‖Πh u‖L∞(Ω) ≤ ‖u‖L∞(Ω).Proof. In view of (11), we obtain
|πi(u)| ≤ ‖u‖L∞(Ω) ∀ i ∈ {1, ..., n}.Together with (7), this implies
∣
∣
∣
∣
∣

n∑

i=1

πi(u)φi(x)

∣
∣
∣
∣
∣
≤ max

i
{|πi(u)|}

n∑

i=1

φi(x) ≤ ‖u‖L∞(Ω) ∀x ∈ Ω,whi
h gives the assertion.5. Convergen
e analysisWith the above results at hand, in parti
ular Lemmata 4.3 and 4.4, one 
anextend the theory from Meyer (2008) to problem (P). The analysis of Meyer(2008) is mainly based on the existen
e of fun
tions ud ∈ Uh and uc ∈ U whi
hare feasible for one of the problems (P) or (Ph), but in some sense 
lose to thesolution of the other problem. In Meyer (2008), the proofs are presented for the
ase of box 
onstraints on the state. With the help of the support fun
tional, thearguments 
an easily be adapted to the more general state 
onstraint in (P).For 
onvenien
e of the reader, this is demonstrated in the following se
tion.We 
hara
terize the 
onvex set K by means of the support fun
tional: sin
ethe interior of K is not empty by Assumption 2.2, the supporting hyperplanetheorem implies
intK =

⋂

µ∈V ∗

∞
, µ6=0

{v ∈ V∞ | 〈µ , v〉V ∗

∞
,V∞

< s(µ)}, (13)where s : V ∗
∞ → R denotes the support fun
tional, i.e. s(µ) = supv∈K〈µ , v〉V ∗

∞
,V∞(see, e.g., Luenberger, 1969). Based on Assumption 2.2, we �nd the followingLemma 5.1 There is a 
onstant τ > 0 su
h that

〈µ , S û〉V ∗

∞
,V∞

≤ s(µ) − τ for all µ ∈ V ∗
∞ with ‖µ‖V ∗

∞
= 1 (14)holds true.
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ontrol of the Stokes equations 263Proof. First, sin
e S û ∈ intK by Assumption 2.2, there exists an r > 0 su
hthat {v ∈ V∞ | ‖v − S û‖V∞
≤ r} ⊂ K. Hen
e, for all w ∈ V∞ with ‖w‖V∞

= 1,we have S û± r w ∈ K. Now let µ with ‖µ‖V ∗

∞
= 1 be arbitrary. Sin
e

‖µ‖V ∗

∞
= sup

‖w‖V∞
=1

|〈µ , w〉V ∗

∞
,V∞

| = 1,there is a ŵ with ‖ŵ‖V∞
= 1 su
h that |〈µ , ŵ〉| ≥ 1/2. For the rest of the proofassume that 〈µ , ŵ〉 ≥ 1/2 and de�ne v̂ := S û+r ŵ. If −〈µ , ŵ〉 ≥ 1/2, the proof
an be 
arried out analogously with v̂ := S û − r ŵ. Clearly, by 
onstru
tion,

v̂ ∈ K su
h that
s(µ) ≥ 〈µ , v̂〉V ∗

∞
,V∞

= 〈µ , S û〉V ∗

∞
,V∞

+ r〈µ , ŵ〉V ∗

∞
,V∞

≥ 〈µ , S û〉V ∗

∞
,V∞

+
r

2
.Hen
e, setting τ = r/2 �nally gives the assertion.Next re
all that σ is a �xed, but arbitrary number in [σ̄, d/(d − 1)[ and

Wσ = W 1,σ(Ω)d.Definition 5.1 Given σ ∈ [σ̄, d/(d− 1)[ and h > 0, we set
η(σ, h) := h2d( 1

2−
1
σ )+2

β(σ, h) := max{η(σ, h), δ(h)},where δ(h) is de�ned as in Assumption 3.2. Moreover, we de�ne
uc := ūh + γcδ(h)(û − ūh)

ud := Πh ū+ γd β(σ, h)(Πh û− Πh ū),with 
onstants γc, γd > 0 de�ned in the subsequent.Lemma 5.2 There exists a 
onstant γc independent of h su
h that the fun
tion
uc is feasible for (P) for all h < h1, where h1 > 0 is 
hosen su�
iently smallso that γc δ(h) ≤ 1.Proof. First we show S uc ∈ K. To this end, let µ ∈ V ∗

∞, µ 6= 0, be arbitraryand de�ne
µ̃ :=

1

‖µ‖V ∗

∞

µ.su
h that ‖µ̃‖V ∗

∞
= 1. Then, by Lemma 5.1, one obtains

〈µ̃ , S uc〉V ∗

∞
,V∞

= (1 − γcδ(h))〈µ̃ , S ūh〉V ∗

∞
,V∞

+ γcδ(h)〈µ̃ , Sû〉V ∗

∞
,V∞

≤ (1 − γcδ(h))
[
〈µ̃ , Sh ūh〉V ∗

∞
,V∞

+ 〈µ̃ , (S − Sh)ūh〉V ∗

∞
,V∞

]
+ γcδ(h)

(
s(µ̃) − τ

)

≤ s(µ̃) − γcδ(h)τ + (1 − γcδ(h))‖µ̃‖V ∗

∞
‖(S − Sh)ūh‖V∞

≤ s(µ̃) − δ(h)
(
γcτ − c(1 − γcδ(h))‖ūh‖L∞(Ω)d

) (15)
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himplies 〈µ̃ , Sh ūh〉 ≤ s(µ̃). In view of the 
ontrol 
onstraints in (P), we obtainfor the se
ond addend in the last inequality
γcτ − c(1 − γcδ(h))‖ūh‖L∞(Ω)d ≥ γcτ − c max{|a|, |b|}su
h that 〈µ̃ , S uc〉 < s(µ̃) is ful�lled if we 
hoose γc > c max{|a|, |b|}/τ . Hen
e,

uc satis�es
〈µ , S uc〉V ∗

∞
,V∞

= ‖µ‖V ∗

∞
〈µ̃ , S uc〉V ∗

∞
,V∞

< ‖µ‖V ∗

∞
s(µ̃) = s(µ),sin
e the support fun
tional is 
learly sublinear. As µ was 
hosen arbitrary, (13)implies S uc ∈ K if γc > c max{|a|, |b|}/τ . Furthermore, if we 
hoose h1 smallenough su
h that γcδ(h) ≤ 1, then uc is a 
onvex linear 
ombination of twofun
tions in {u ∈ L∞(Ω)d | a ≤ u(x) ≤ b a.e. in Ω} and therefore also satis�esthe 
ontrol 
onstraints in (P). Consequently, the assertion holds true.To prove a similar result for the other dire
tion, i.e., the feasibility of ud for(Ph), we need some auxiliary results whi
h are presented in the subsequent.Lemma 5.3 Suppose u ∈Wσ is given. Then

‖S(u− Πh u)‖V∞
≤ c η(σ, h) ‖u‖Wσholds true with a 
onstant c > 0 independent of h.Proof. The mapping properties of S in Proposition 2.1 imply

‖S(u− Πh u)‖V∞
≤ c ‖S‖L(W∗

σ ,W 1,σ′ (Ω)d) ‖u− Πh u‖W∗

σ
≤ c η(σ, h) ‖u‖Wσ

,where we used Lemma 4.4 and the de�nition of η.Lemma 5.4 Let µ̃ ∈ V ∗
∞ with ‖µ̃‖V ∗

∞
= 1 be arbitrary. Then, for every u ∈

Wσ ∩ L∞(Ω)d,
〈µ̃ , Sh Πh u〉V ∗

∞
,V∞

≤ 〈µ̃ , S u〉V ∗

∞
,V∞

+ c β(σ, h)
(
‖u‖Wσ

+ ‖u‖L∞(Ω)d

)is satis�ed with a 
onstant c > 0 independent of h and u.Proof. In view of ‖µ̃‖V ∗

∞
= 1, we �nd

〈µ̃ , Sh Πh u〉V ∗

∞
,V∞

= 〈µ̃ , S u〉V ∗

∞
,V∞

+ 〈µ̃ , S(Πh u− u)〉V ∗

∞
,V∞

+ 〈µ̃ , (Sh − S)Πh u〉V ∗

∞
,V∞

≤ 〈µ̃ , S u〉V ∗

∞
,V∞

+ ‖µ̃‖V ∗

∞

‖S(Πh u− u)‖V∞
+ ‖µ̃‖V ∗

∞

‖(Sh − S)Πh u‖V∞

≤ 〈µ̃ , S u〉V ∗

∞
,V∞

+ c
(
η(σ, h) ‖u‖Wσ

+ δ(h) ‖u‖L∞(Ω)d

)where we used Lemma 5.3, Assumption 3.2, and Lemma 4.5. With the de�nitionof β (see De�nition 5.1), the assertion is veri�ed.
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onstant γd depending on ū and σ, but not on h,su
h that ud is feasible for (Ph) if h < h2, where h2 > 0 is 
hosen so that
γd β(σ, h) ≤ 1.Proof. Let µ ∈ V ∗

∞ again be arbitrary and de�ne µ̃ = µ/‖µ‖V ∗

∞
as in the proofof Lemma 5.2. Similarly to (15), we estimate

〈µ̃ , Sh ud〉V ∗

∞
,V∞

= (1 − γdβ(σ, h))〈µ̃ , Sh Πh ū〉V ∗

∞
,V∞

+ γdβ(σ, h) 〈µ̃ , Sh Πh û〉V ∗

∞
,V∞

≤ (1 − γdβ(σ, h))
[

〈µ̃ , S ū〉V ∗

∞
,V∞

+ c β(σ, h)
(
‖ū‖Wσ

+ ‖ū‖L∞(Ω)d

)]

+γdβ(σ, h)
[

〈µ̃ , S û〉V ∗

∞
,V∞

+ c β(σ, h)
(
‖û‖Wσ

+ ‖û‖L∞(Ω)d

)]

(16)
≤ s(µ̃) − β(σ, h)

[

γdτ − c
(
‖ū‖Wσ

+ ‖ū‖L∞(Ω)d + ‖û‖Wσ
+ ‖û‖L∞(Ω)d

︸ ︷︷ ︸

:= cu

)]

.Hen
e, if we 
hoose γd > c cu/τ , then one obtains 〈µ̃ , Sh ud〉 < s(µ̃) whi
h gives,in turn, Sh ud ∈ K by the same arguments as in the proof of Lemma 5.2. Noti
ethat γd is independent of h, but depends on ‖ū‖Wσ
and therefore on ū and σ.Moreover, we have that

a ≤ (Πhu)(x) ≤ b a.e. in Ω,see (9). Hen
e, the same arguments as in the proof of Lemma 5.2 give
a ≤ ud(x) ≤ b a.e. in Ω,for all h < h2 if h2 is su�
iently small, namely ful�lls γdβ(σ, h) ≤ 1. Sin
e

ud ∈ Uh by 
onstru
tion, we therefore end up with ud ∈ Uh
ad.Now we are in the position to prove our main result whi
h reads as follows:Theorem 5.1 Let ū and ūh denote the optimal solutions of (P) and (Ph), re-spe
tively. Then, under Assumptions 2.1�2.2 and 3.1�3.3, the following estimateholds true for all h < min{h1, h2}

‖ū− ūh‖L2(Ω)d + ‖S ū− Sh ūh‖L2(Ω)d ≤ C
√

max{η(σ, h), δ(h)}with a 
onstant C > 0 whi
h depends on ū and σ, but not on h.Proof. Based on a te
hnique introdu
ed in Falk (1973), it is shown in Meyer(2008) that the variational inequalities (3) and (8) imply for all u ∈ Uad and all
uh ∈ Uh

ad
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α

2
‖ū− ūh‖2

L2(Ω)d +
1

2
‖S ū− Sh ūh‖2

L2(Ω)d

≤ c
[

‖uh − ū‖2
L2(Ω)d +

(
‖ū‖Wσ

+ ‖S ū− z‖L2(Ω)d

)(
‖u− ūh‖W∗

σ
+ ‖uh − ū‖W∗

σ

)

+‖uh − ū‖2
W∗

σ
+ ‖(S − Sh)uh‖2

L2(Ω)d

+‖S ū− z‖L2(Ω)d

(
‖(S − Sh)ūh‖L2(Ω)d + ‖(S − Sh)uh‖L2(Ω)d

)]

. (17)Here, the 
onstant c depends on α, but not on ū, ūh, u, and uh. Thanks toLemmata 5.2 and 5.5, we are allowed to insert u = uc and uh = ud in (17).Then, by means of Lemmata 4.3 and 4.4 and the de�nition of β, we obtain
‖ud − ū‖L2(Ω)d ≤ ‖Πhū− ū‖L2(Ω)d + γd β(σ, h) ‖Πhû− Πhū‖L2(Ω)d

≤ c
(
‖ū‖Wσ

+ ‖û‖Wσ

)
max{

√

η(σ, h), β(σ, h)}
(18)

‖ud − ū‖W∗

σ
≤ ‖Πhū− ū‖W∗

σ
+ γd β(σ, h) ‖Πhû− Πhū‖W∗

σ

≤ c
(
‖ū‖Wσ

+ ‖û‖Wσ

)
β(σ, h).

(19)In 
ase of u = uc, we have
‖uc − ūh‖W∗

σ
≤ c γc δ(h) ‖û− ūh‖W∗

σ
. (20)For the remaining expressions in (17), (6) implies

‖(Sh − S)ud‖L2(Ω)d ≤ c δ(h) ‖Πhū+ γd δ(h)(Πhû− Πhū)‖L∞(Ω)d

≤ c
(
‖ū‖L∞(Ω)d + ‖û‖L∞(Ω)d

)
δ(h)

(21)
‖(Sh − S)ūh‖L2(Ω)d ≤ c δ(h) ‖ūh‖L∞(Ω)d , (22)where we used Lemma 4.5 for the estimation of the right hand side in (21).Noti
e that ū and û are bounded in Wσ and L∞(Ω)d due to Assumption 2.2and Theorem 2.1, whereas ūh is uniformly bounded in L∞(Ω)d due to the 
ontrol
onstraints. Inserting (18)�(22) in (17) �nally implies
α

2
‖ū− ūh‖2

L2(Ω)d +
1

2
‖S ū− Sh ūh‖2

L2(Ω)d

≤ c
[

max{η(σ, h), β(σ, h)2} +
(
‖ū‖Wσ

+ ‖S ū− z‖L2(Ω)d

) (
β(σ, h) + δ(h)

)

+ β(σ, h)2 + δ(h)2 + ‖S ū− z‖L2(Ω)d δ(h)
]

≤ C2 max{η(σ, h), δ(h)}thanks to the de�nition of β. For the last estimate we ta
itly assumed that
β(σ, h) ≤ 1, whi
h is 
learly ful�lled if the mesh size is small enough. Aninspe
tion of the proof yields that C depends on ū and σ, but not on h.
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ontrol of the Stokes equations 267Corollary 5.1 Suppose that, in addition to the assumptions of Theorem 5.1,
‖(Gh −G)u‖H1(Ω)d×L2(Ω) ≤ c ϑ(h) ‖u‖L∞(Ω)dis ful�lled with ϑ : R

+ → R
+, ϑ(h) → 0 as h ↓ 0. Then, (v̄, p̄) = G ū and

(v̄h, p̄h) = Gh ūh satisfy
‖v̄ − v̄h‖H1(Ω)d + ‖p̄− p̄h‖L2(Ω) ≤ C max{ϑ(h),

√

δ(h),
√

η(σ, h)}with a 
onstant C independent of h.Proof. The proof is almost standard. The mapping properties of G imply
‖Gū−Ghūh‖H1(Ω)d×L2(Ω)

≤ ‖G(ū− ūh)‖H1(Ω)d×L2(Ω) + ‖(G−Gh)ūh‖H1(Ω)d×L2(Ω)

≤ ‖G‖L(L2(Ω)d,H1(Ω)d×L2(Ω))‖ū− ūh‖L2(Ω)d + c ϑ(h) ‖ūh‖L∞(Ω)d ,so that Theorem 5.1 yields the assertion.6. Con
rete numeri
al settingsIn the subsequent, several 
ontrol problems and dis
retization te
hniques aredis
ussed that are 
overed by the above theory. The 
riti
al point is to verify(6) for a 
on
rete dis
retization su
h that δ(h), i.e., the L∞-error of the �niteelement approximation, is not worse than η(σ, h), i.e., the interpolation error.To keep the dis
ussion 
on
ise, we restri
t ourselves to dis
retization s
hemesthat ful�ll the dis
rete inf-sup 
ondition so that there is no need for stabilization.We rely on the following assumptions:Assumption 6.1 The spa
es Vh ⊂ V and Lh ⊂ L satisfy the following 
ondi-tions
• There is a number k ∈ N, k ≥ 1, su
h that

Vh ⊂ C(Ω̄)d, Pk(T )d ⊆ Vh|T , Pk−1(T ) ⊆ Lh|T ∀ T ∈ Th. (23)Consequently, there exist interpolation operators ivh and iph that ful�ll stan-dard approximation properties. In parti
ular, if t ∈ {0, 1} and q, r, s ∈
[1,∞] are given su
h that W 2,r(Ω) →֒ W t,q(Ω) and W 1,s(Ω) →֒ Lq(Ω),then there holds:
‖∇t(v − ivh v)‖Lq(T ) ≤ c h2−t+d(1/q−1/r) ‖∇2v‖Lr(T ) ∀ v ∈W 2,r(T ) (24)
‖p− iph p‖Lq(T ) ≤ c h1+d(1/q−1/s) ‖∇p‖Ls(ωT ) ∀ p ∈ W 1,s(ωT ) (25)for all T ∈ Th. Here, ωT denotes the union of pat
hes asso
iated to theansatz fun
tions that are non-zero on T , and c > 0 does not depend on h.
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• Inverse property: For all vh ∈ Vh,

‖vh‖L∞(T )d ≤ c h−
d
2 ‖vh‖L2(T )d ∀T ∈ Th (26)is valid with a 
onstant c > 0 independent of h.

• Dis
rete inf-sup 
ondition: There is a real number γ > 0, independent of
h, su
h that

sup
φh∈Vh

(ph,∇ · φh)

‖∇φh‖
≥ γ ‖ph‖ ∀ ph ∈ Lh.The 
onditions in Assumption 6.1 are ful�lled by many standard �nite el-ements, in parti
ular by all examples mentioned in the following. Beside As-sumption 6.1, we suppose Assumptions 2.1�2.2, 3.1, and 3.3 to be satis�ed inall what follows. We again point out that the assumptions on the 
ontrol dis-
retization are ful�lled by 
onstant and linear (bilinear) ansatz fun
tions (seeRemark 7). Furthermore, we assume the mesh size to be small enough to ensure

h < min{h1, h2} throughout the following (see Theorem 5.1). The aim of thesubsequent se
tions is to verify Assumption 3.2.6.1. Smooth domains with Ω′ = ΩIn this se
tion we 
onsider the following setting: The boundary Γ is of 
lass C2and the subdomain Ω′, where the state 
onstraints are imposed, 
oin
ides withthe domain Ω. Before we start the dis
ussion, let us point out that we assumea triangulation that exa
tly �ts the boundary whi
h is fairly arti�
ial in 
aseof a smooth boundary. Moreover, we ta
itly supposed that the integrals in (5)are exa
tly evaluated whi
h is 
learly hard to implement if Ω is not polygonallybounded. Therefore, a realisti
 dis
retization would 
ause other types of errors,whi
h are negle
ted here, sin
e this would go beyond the s
ope of this paper.Noti
e that these problems do 
learly not arise if Ω has a polygonal boundaryas in the 
ase of the subsequent se
tions. We apply the result of Chen (2006),whi
h requires some additional assumptions on the dis
retization, in parti
ulara lo
al L2-error estimate of the Ritz-proje
tion, see Chen (2006, Se
tion 2) fordetails. The additional 
onditions are veri�ed by Arnold and Liu (1995) fordi�erent types of �nite elements su
h as
• all stable dis
retizations formed with Lagrange elements su
h as for in-stan
e the Taylor-Hood element (i.e. P2/P1-element)
• the Mini element, i.e., the unstable P1/P1-element enri
hed with bubblefun
tions.Using a te
hnique developed in S
hatz (1998), Chen proved the followingresult:Theorem 6.1 Assume that the solution of (1) satis�es (v, p) ∈ W 1,∞(Ω)d ×

L∞(Ω). There is a 
onstant c > 0, independent of h, v, and p, su
h that the
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ontrol of the Stokes equations 269solution of (5), denoted by (vh, ph) ∈ Vh × Lh, satis�es
‖v − vh‖L∞(Ω)d ≤ c h | log(h)|m

(
inf

w∈Vh

‖v − w‖W 1,∞(Ω)d + inf
q∈Lh

‖q − p‖L∞(Ω)

)
,where m = 0 if k > 1 and m = 1 if k = 1.If Ω is of 
lass C2, then G : Lp(Ω)d →W 2,p(Ω)d×W 1,p(Ω) for all 1 < p <∞(see Temam, 1977, Proposition 2.3). Therefore, together with (24) and (25),Chen's result yieldsCorollary 6.1 For every ε > 0, there is a 
onstant cε > 0, independent of hand u, so that

‖v − vh‖L∞(Ω)d ≤ cε h
2−ε ‖u‖L∞(Ω)d .Theorem 6.2 For every ε > 0, there holds

‖ū− ūh‖L2(Ω)d + ‖v̄ − v̄h‖H1(Ω)d + ‖p̄− p̄h‖L2(Ω) ≤ C h2− d
2−ε (27)with a 
onstant C > 0 whi
h depends on ε, but not on h.Proof. Let ε > 0 be given. In view of Corollary 6.1, Assumption 3.2 is ful�lledwith a 
onstant c depending on ε and δ(h) = h2−2ε. Moreover, by 
hoosing

σ = max
{

σ̄, d
d−1+ε

}, we obtain η(σ, h) ≤ h4−d−2ε (see De�nition 5.1). Thus,Theorem 5.1 and Corollary 5.1 together with standard �nite element results givethe assertion.Remark 6.1 Noti
e that C depends on ε �rstly be
ause of the 
onstant cε fromCorollary 6.1 and se
ondly due to the 
oupling of σ and ε.Remark 6.2 As above, let σ = σ(ε) = max
{

σ̄, d
d−1+ε

} with a �xed, but arbi-trary ε > 0. Then, Lemma 4.3 implies
‖u− Πhu‖L2(Ω)d ≤ c h2− d

2−ε ‖u‖Wσ(ε)
∀u ∈Wσ(ε) (28)and therefore, the order in (27) 
oin
ides with the one of the interpolation error.6.2. Convex domains with polygonal or polyhedral boundaryFirst, we 
onsider the 
ase Ω′ = Ω. In 
ase of polygons and polyhedrons,respe
tively, the following regularity result is known. For the proof, we refer toDauge (1989) and Kellog and Osborn (1976).Theorem 6.3 Let Ω be a 
onvex domain with polygonal (d = 2) or polyhedral(d = 3) boundary. Then, for all u ∈ L2(Ω)d, the unique solution (v, p) ∈ V × Lof (1) belongs to H2(Ω)d ×H1(Ω).



270 J. C. DE LOS REYES, C. MEYER, B. VEXLERBased on this result and standard �nite element error estimates, one provesfor an arbitrary u ∈ L2(Ω)

‖v − vh‖L∞(Ω)d ≤ c h2−d
2 ‖u‖L2(Ω)d ,where v = S u and vh = Sh u and c > 0 only depends on Ω (see, for instan
e,Rös
h and Vexler, 2006, Lemma 3.2). Therefore, by setting δ(h) = h2−d/2and σ = max{σ̄, 4/3} (noti
e that 4/3 < d/(d − 1) for d = 2, 3) su
h that

η(δ, h) ≤ h2−d/2, Theorem 5.1 and Corollary 5.1 implyTheorem 6.4 Suppose that Ω is a 
onvex domain with polygonal (d = 2) orpolyhedral (d = 3) boundary. Then, we have
‖ū− ūh‖L2(Ω)d + ‖v̄ − v̄h‖H1(Ω)d + ‖p̄− p̄h‖L2(Ω) ≤ C h1− d

4with a 
onstant C > 0 independent of h.Noti
e that the order of 
onvergen
e now di�ers from the one of the interpo-lation error. The situation 
hanges if we restri
t ourselves to two-dimensionaldomains with polygonal boundary and a maximum angle less or equal π/2. Tosee this, let us de�ne the weighted L2-norm as follows:
‖q‖2

ςν :=

∫

Ω

|q(x)|2 ς(x)ν dx, q ∈ L2(Ω)d, (29)where ς : Ω̄ → R+ is de�ned by
ς(x) :=

√

|x− x0|2 + θ2, (30)with given x0 ∈ Ω and θ > h > 0.Theorem 6.5 Let Ω ⊂ R
2 be a 
onvex polygon whose maximum aperture an-gle is less or equal π/2. Moreover, suppose that (Vh, Lh) satis�es the dis
reteweighted inf-sup 
ondition, i.e., for every θ > h and every point x0 ∈ Ω, thereholds

sup
φh∈Vh

(ph,∇ · φh)

‖∇φh‖ς2

≥ c | log θ|−1/2‖ph‖ς−2 ∀ ph ∈ Lh, (31)with a 
onstant c > 0 independent of h, θ, and x0. Then, for every ε > 0, thedis
rete solution satis�es
‖ū− ūh‖L2(Ω)2 + ‖v̄ − v̄h‖H1(Ω)2 + ‖p̄− p̄h‖L2(Ω) ≤ C h1−εwith a 
onstant C > 0 whi
h depends on ε, but not on h.
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ontrol of the Stokes equations 271Proof. A

ording to a result from Kozlov, Maz'ya and Rossmann (2001, Se
tion5.8.1), for all q ∈ [1,∞[, the solution v ∈ (V × L) of (1) belongs to W 2,q(Ω)2 ×
W 1,q(Ω), provided that u ∈ Lq(Ω)2, and there holds

‖v‖W 2,q(Ω)2 + ‖p‖W 1,q(Ω) ≤ c ‖u‖Lq(Ω)2 . (32)Moreover, Duran and No
hetto (1990) proved that, for all dis
retizations ful-�lling Assumption 6.1 and (31), there exists a 
onstant c > 0 independent of hsu
h that
‖v − vh‖L∞(Ω)2 ≤ c h | log(h)|3

(
inf

w∈Vh

‖v − w‖W 1,∞(Ω)2 + inf
q∈Lh

‖q − p‖L∞(Ω)

)
.Hen
e, together with (32), (24) and (25) give the existen
e of a 
onstant cε > 0,depending on ε, but not on h, su
h that for every ε > 0

‖v − vh‖L∞(Ω)2 ≤ cε h
2−ε ‖u‖L∞(Ω)2 .Then an argument, analogous to the proof of Theorem 6.2, �nally implies theassertion.Remark 6.3 The dis
rete weighted inf-sup 
ondition (31) is satis�ed by various
ommon stable �nite elements, as proven in Duran and No
hetto (1990). Weonly mention

• the Taylor-Hood element on triangles or quadrilaterals (i.e., P2/P1- and
Q2/Q1-elements, respe
tively)

• the Mini element
• the Crouzeix-Raviart element of di�erent order k ≥ 2, i.e., the Pk/Pk−1-element enri
hed with bubble fun
tions.If the state 
onstraints are only imposed in a 
ompa
t subset of Ω, the resultsof Duran and No
hetto (1990) allow to get same the order of 
onvergen
e asin the interpolation error (28), even if the maximum angle is larger than π/2.Noti
e that, in the presen
e of no-slip boundary 
onditions, it appears naturalto 
onsider the state 
onstraints only in the interior of Ω, as illustrated in theintrodu
tion.Theorem 6.6 Assume that Ω is a 
onvex polygon and let Ω′ ⊂ Ω be given.Furthermore, we assume that, for every h, a union of 
ells of Th, denoted by Ω′′,exists that 
ontains Ω′ and ful�lls dist(Ω′,Ω \ Ω′′) =: d > 0 and dist(Ω′′,Γ) =:

δ > 0 with d and δ independent of h. Furthermore, suppose that (Vh, Lh) satis�esthe dis
rete weighted inf-sup 
ondition (31). Then, for every ε > 0, there is a
onstant C > 0 depending on ε, but not on h, su
h that
‖ū− ūh‖L2(Ω)2 + ‖v̄ − v̄h‖H1(Ω)2 + ‖p̄− p̄h‖L2(Ω) ≤ C h1−ε.



272 J. C. DE LOS REYES, C. MEYER, B. VEXLERProof. The proof is similar to the proof of Duran and No
hetto (1990, Theorem4.1). In view of Theorem 6.3 and embedding theorems for d = 2, we have
∇v ∈ Lq(Ω) for all q < ∞. Thus, Theorem 4.1 in Galdi (1994) yields for every
q ∈ [1,∞[ that (v, p) ∈ W 2,q

loc (Ω)2 ×W 1,q
loc (Ω) if u ∈ Lq

loc(Ω)2, whi
h is 
learlyful�lled due to the 
ontrol 
onstraints. Thus we obtain (v, p) ∈ W 2,q(Ω′′)2 ×
W 1,q(Ω′′) for all q < ∞. Based on (31), it is shown in Duran and No
hetto(1990) that
‖v−vh‖2

ς−4 ≤ c
h2

θ2
| log θ|3

(

‖∇(v−ivhv)‖2
ς−2 +‖v − ivhv‖2

ς−4 +‖p− iphp‖2
ς−2

) (33)holds for all θ > h > 0 provided that Ω is a 
onvex polygon. Here, ς and theasso
iated norms are de�ned as in (30) and (29). Re
all that V∞ = L∞(Ω′)2.We start by estimating
‖v − vh‖V∞

≤ ‖v − ivhv‖V∞
+ ‖vh − ivhv‖V∞

.Sin
e |vh − ivhv| ∈ C(Ω̄′), there is an x0 ∈ T̄0 ⊆ Ω′ su
h that ‖vh − ivhv‖V∞
=

|vh(x0) − ivhv(x0)|. In all what follows, we use this x0 in the de�nition of ς in(30). The inverse estimate (26) implies
|vh(x0) − ivhv(x0)| ≤ ‖vh − ivhv‖L∞(T0)2

≤ c h−1 ‖vh − ivhv‖L2(T0)2 ≤ c
θ2

h
‖vh − ivhv‖ς−4 ,where the last estimate follows from the de�nition of ‖ · ‖ς−4 be
ause of θ > h.Now, one 
an apply (33) and 
ontinue with

‖v − vh‖V∞
≤ ‖v − ivhv‖V∞

+ c θ| log θ| 32
(

‖∇(v − ivhv)‖ς−2 + ‖p− iphp‖ς−2

)

+ c
(θ2

h
+ θ| log θ|3/2

)

‖v − ivhv‖ς−4 .For an arbitrary w ∈ L∞(Ω) and ν ≥ 0, we obtain
‖w‖ς−(2+ν) ≤ ‖w ς−(1+ν/2)‖L2(Ω′′) + ‖w ς−(1+ν/2)‖L2(Ω\Ω′′)

≤ ‖w‖L∞(Ω′′)

∫

Ω′′

ς−(2+ν) dx
1
2 + c ‖w‖L2(Ω),where we used the norm equivalen
e of ‖ · ‖ς−(2+ν) and ‖ · ‖L2 on Ω \ Ω′′ whi
hholds due to dist(x0,Ω \ Ω′′) ≥ d > 0. Together with

∫

Ω′′

ς−(2+ν) dx ≤
{
c θ−ν , ν > 0
c | log θ|, ν = 0



Optimal 
ontrol of the Stokes equations 273(see Duran and No
hetto, 1990), it follows with ν = 0 and ν = 2, respe
tively,that
‖v − vh‖V∞

≤ ‖v − ivhv‖L∞(Ω′′)2

+ c θ| log θ|2
(

‖∇(v − ivhv)‖L∞(Ω′′)2 + ‖∇(v − ivhv)‖L2(Ω)2

+ ‖p− iphp‖L∞(Ω′′) + ‖p− iphp‖L2(Ω)

)

+ c
( θ

h
+ | log θ|3/2

)(

‖v − ivhv‖L∞(Ω′′)2 + ‖v − ivhv‖L2(Ω)2

)

.Now we 
hoose θ = h| log h| su
h that θ > h for su�
iently small h. Be
ause ofthe regularity of (v, p) stated at the beginning of the proof, applying (24) and(25) then yields the existen
e of a 
onstant cε > 0, depending on ε, su
h that
‖v − vh‖V∞

≤ cε h
2−ε ‖u‖L∞(Ω)2 ∀ ε > 0.Here, we ta
itly assumed that h ≤ 1/e = 0.3679 to ensure | log(h| log h|)| ≤

| log h|. Noti
e, moreover, that the assumption dist(Ω′′,Γ) =: δ > 0 implies
dist(ωT ,Γ) > 0 for all T ∈ Ω′′ if h is su�
iently small. Hen
e, the aboveregularity result implies

p ∈ W 1,q

(
⋃

T⊂Ω′′

ωT

)

∀ q <∞su
h that (25) applies to ‖p − iphp‖L∞(Ω′′). For the rest of the proof, we argueas in the proof of Theorem 6.2, whi
h gives the assertion.6.3. Dis
retization of the dataUp to now, problem (Ph) is no �nite dimensional optimization problem sin
ewe have not dis
retized the problem data, i.e., the desired state z and the set
K. To this end, let us introdu
e the spa
e of linear (bilinear) �nite elements
V

(1)
h ⊂ Vh and the standard nodewise linear interpolant i(1)h : C(Ω̄)d → V

(1)
h .In addition, we introdu
e a dis
retization of K, denoted by Kh ⊂ V∞. The
orresponding 
ompletely dis
rete problem for

uh =

n∑

i=1

uiφi,for simpli
ity also denoted by (Ph), is then given with
(Ph)







min Jh(vh, uh) :=
1

2
‖vh − i

(1)
h z‖2

L2(Ω)d +
α

2
‖uh‖2

L2(Ω)ds.t. vh = Sh uhand i
(1)
h vh ∈ Kh

uh ∈ Uh, a ≤ ui ≤ b ∀ i ∈ {1, ..., n}.



274 J. C. DE LOS REYES, C. MEYER, B. VEXLERRemark 6.4 Noti
e that it depends on the 
on
rete stru
ture of K and itsdis
retization whether (Ph) is straight forward to implement as a �nite dimen-sional optimization problem or not. In the 
ases, dis
ussed in this paper, thelinear (bilinear) interpolation operator i(1)h allows a nodewise evaluation of thestate 
onstraints and hen
e an easy implementation of (Ph) if K is dis
retizedproperly (see Remark 6.6 below).To shorten the des
ription, we assume in all what follows that Assumption3.2 is ful�lled with δ(h) = c h2−ε with a �xed but arbitrary ε > 0 (see Se
tions6.1 and 6.2). Moreover, for the sake of simpli
ity, we suppose that Ω′ is a unionof 
ells. If these assumptions are not ful�lled, the subsequent analysis 
an easilybe modi�ed.Assumption 6.2 Beside Assumptions 2.1�2.2 and 3.1�3.3, assume that z ∈
H2(Ω)d. Furthermore, let Assumption 3.2 hold with

δ(h) = c h2−ε (34)with some �xed but arbitrary ε > 0. Moreover, let Ω′ be a union of 
ells of Th forevery h > 0 and assume that S : L∞(Ω)d →W 2,q(Ω′)d for all q <∞. Moreover,suppose that Kh is 
onvex with asso
iated support fun
tional sh : V ∗
∞ → R thatful�lls

|s(µ) − sh(µ)| ≤ cs h
2−ε ‖µ‖V ∗

∞
∀µ ∈ V ∗

∞ (35)with a 
onstant cs > 0. To guarantee the existen
e of a solution to (Ph), werequire the existen
e of a feasible point, i.e., there is a û ∈ Uh with a ≤ ûi ≤
b ∀ i ∈ {1, ..., n} and i(1)h Sh ûh ∈ Kh.Remark 6.5 Noti
e that the hypothesis on S and δ(h) agree with the theorypresented in Se
tions 6.1 and 6.2 (see in parti
ular, Corollary 6.1 and the proofsof Theorems 6.5 and 6.6).Lemma 6.1 Suppose that Assumption 6.2 holds. Let u ∈ L∞(Ω)d be arbitraryand set as before vh = Sh u. Then, for every ε > 0, there is a 
onstant c > 0,independent of u and h, su
h that

‖vh − i
(1)
h vh‖V∞

≤ c h2−ε ‖u‖L∞(Ω)d .Proof. The arguments are standard. For the 
onvenien
e of the reader, wesket
h the proof for a single 
omponent of vh, for simpli
ity also denoted by vh.Hen
e V∞ = L∞(Ω′). Let ε > 0 be arbitrary. We start by estimating
‖vh−i(1)h vh‖L∞(Ω′) ≤ ‖i(1)h (v−vh)‖L∞(Ω′) + ‖v−i(1)h v‖L∞(Ω′) + ‖v−vh‖L∞(Ω′)
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ontrol of the Stokes equations 275with v = S u. Sin
e Ω′ is a union of 
ells by assumption, we �nd for the �rstaddend
‖i(1)h (v − vh)‖L∞(Ω′) = max

T⊂Ω′

‖i(1)h (v − vh)‖L∞(T ) = max
T⊂Ω′

max
xi∈T̄

|v(xi) − vh(xi)|

≤ max
T⊂Ω′

‖v − vh‖L∞(T ) = ‖v − vh‖L∞(Ω′),where we used that i(1)h is the standard linear (bilinear) interpolation operator.Here xi denotes a node of Th. Moreover, i(1)h satis�es
‖v − i

(1)
h v‖L∞(Ω′) ≤ c h2−d/q‖∇2v‖Lq(Ω′) ∀ q <∞(see Brenner and S
ott, 1994, or Bernardi, 1989). Thus, by 
hoosing q = d/ε <

∞, the mapping properties of S together with Assumption 3.2 and (34), i.e.
‖v − vh‖L∞(Ω′) ≤ c h2−ε‖u‖L∞(Ω),give the assertion.Theorem 6.7 Assume that Assumption 6.2 is ful�lled. Then, for every ε > 0,the unique solution of (Ph) satis�es

‖ū− ūh‖L2(Ω)d + ‖v̄ − v̄h‖H1(Ω)d + ‖p̄− p̄h‖L2(Ω)d ≤ C h2− d
2−εwhere the 
onstant C > 0 depends on ε but not on h.Proof. Sin
e z is su�
iently smooth by assumption, we have ‖z− i(1)h z‖L2(Ω)d ≤

c h2 ‖z‖H2(Ω)d due to standard interpolation estimates. In view of this, thedis
retization of z 
an easily in
orporated in the presented analysis. The under-lying arguments are presented in detail in Meyer (2008, Se
tion 7). In addition,due to Assumption 3.3, it is su�
ient to require the 
ontrol 
onstraints only inthe 
oe�
ients of uh as done in (Ph). If K is dis
retized, then the proofs ofLemmata 5.2 and 5.5 have to be modi�ed, more pre
isely (15) and (11), respe
-tively. We exemplarily 
onsider (11), the arguments in 
ase of (15) are similar.Using (35) and Lemmata 5.1 and 6.1, we obtain for all µ̃ with ‖µ̃‖V ∗

∞
= 1

〈µ̃ , i(1)h Sh ud〉V ∗

∞
,V∞

≤ 〈µ̃ , Sh ud〉V ∗

∞
,V∞

+ ‖Sh ud − i
(1)
h Sh ud‖V∞

≤ s(µ̃) − c h2− d
2−ε(γdτ − cu) + c h2−ε ‖ud‖L∞(Ω)d

≤ sh(µ̃) − c h2− d
2−ε(γdτ − cu − cs),where cu is de�ned as in (11). Hen
e, if we 
hoose γd > (cu + cs)/τ , then thesame arguments as in the proof of Lemma 5.5 imply that ud is feasible for (Ph).Again γd depends on ū and σ, but not on h. Based on the feasibility of uc and

ud, one 
an argue as in the proof of Theorem 5.1 to verify the assertion.



276 J. C. DE LOS REYES, C. MEYER, B. VEXLERLet us investigate two exemplary state 
onstraints that are also used for thenumeri
al tests in Se
tion 7:
K(1) :=

{
v ∈ V∞|va(x) ≤ v(x) ≤ vb(x) a.e. in Ω′

}

K(2) :=
{
v ∈ V∞||v(x)|2

Rd ≤ ̺ a.e. in Ω′
}
.First, we 
onsider K(1), i.e., the 
ases of box 
onstraints. Let us assume that

Ω′ 
oin
ides with a union of 
ells of Th and denote the set of all nodes of Th by
N (Th). We 
onsider the following �nite dimensional optimization problem

(P
(1)
h )







min
uh∈Uh

Jh(vh, uh)s.t. vh = Sh uhand va,h(xi) ≤ vh(xi) ≤ vb,h(xi) ∀xi ∈ N (Th) ∩ Ω′

a ≤ ui ≤ b ∀ i ∈ {1, ..., n},with vb,h = i
(1)
h vb and va,h de�ned analogously.Corollary 6.2 Suppose that Ω is a 
onvex polygon and let Ω′ ⊂ Ω be a unionof 
ells of Th for all h > 0. Assume in addition that Ω′ ful�lls the assumptions ofTheorem 6.6. Furthermore, suppose that z ∈ H2(Ω)d and va, vb ∈ W 2,∞(Ω′)d.Then the solution of (P(1)

h ) satis�es for every ε > 0

‖ū− ūh‖L2(Ω)2 + ‖v̄ − v̄h‖H1(Ω)2 + ‖p̄− p̄h‖L2(Ω) ≤ C h1−ε,where the 
onstant C > 0 depends on ε, but not on h.Proof. First observe that the state 
onstraints in (P(1)
h ) are equivalent to theones in (Ph) if K(1) is dis
retized as indi
ated above, whi
h is demonstratedin the following. We exemplarily 
onsider the upper bound vb. The 
ase withlower 
onstraint 
an be dis
ussed analogously. Let ϕi, i = 1, ...,m, denote theansatz fun
tions asso
iated to the linear (bilinear) interpolant i(1)h . Sin
e theyare non-negative and satisfy ϕi(xj) = δij , the state 
onstraints in (P(1)

h ) areequivalent to
(i

(1)
h vh)(x) ≤ vb,h(x) a.e. in Ω′ ⇔ i

(1)
h vh ∈ K

(1)
h ,where K(1)

h is given by
K

(1)
h := {v ∈ V∞ | v(x) ≤ vb,h(x) a.e. in Ω′}. (36)Thus, the nodewise state 
onstraints in (P(1)

h ) indeed agree with the state 
on-straints in (Ph) if K(1) is dis
retized as done in (36).
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ontrol of the Stokes equations 277To apply Theorem 6.7, we have to verify (35). Given an arbitrary v ∈ K(1),we de�ne Π
K

(1)
h

(v)(x) := min{v(x), vb,h(x)}, hen
e ‖v − Π
K

(1)
h

(v)‖V∞
≤ ‖vb −

vb,h‖V∞
. Therefore we have for every µ ∈ V ∗

∞

〈µ , v〉V ∗

∞
,V∞

≤ 〈µ , Π
K

(1)
h

(v)〉V ∗

∞
,V∞

+ ‖µ‖V ∗

∞
‖vb − vb,h‖V∞

∀ v ∈ K(1).Sin
e Π
K

(1)
h

(v) ∈ K
(1)
h , this gives

s(µ) ≤ sh(µ) + ‖µ‖V ∗

∞
‖vb − vb,h‖V∞

. (37)An analogous argument with ΠK(1)(v)(x) := min{v(x), vb(x)}, v ∈ K
(1)
h , implies

sh(µ) ≤ s(µ) + ‖µ‖V ∗

∞
‖vb − vb,h‖V∞

. (38)Together with (37), this veri�es (35) provided that vb is su�
iently smooth,for instan
e vb ∈ W 2,∞(Ω′)d. The remaining 
onditions in Assumption 6.2,in parti
ular (34), are veri�ed by the proof of Theorem 6.6 whi
h gives theassertion.Remark 6.6 We point out that the introdu
tion of the standard linear (bilin-ear) interpolant i(1)h in (Ph) allows to obtain the desired order of 
onvergen
eeven if the state 
onstraints are only evaluated in the nodes of the triangulationwhi
h is easy to implement (see Remark 6.4). The situation 
hanges if K(1) isfor instan
e dis
retized using quadrati
 ansatz fun
tions whi
h 
ompli
ates theimplementation. Similar problems arise if the bound ̺ in K(2) is not 
onstantand has to be dis
retized.Now, let us turn to K(2), i.e., 
onstraints on the Eu
lidian norm of v. Forthis 
ase we set K(2)
h = K(2). The 
ompletely dis
rete problem is now given by

(P
(2)
h )







min
uh∈Uh

Jh(vh, uh)s.t. vh = Sh uhand |vh(xi)|2R2 ≤ ̺ ∀xi ∈ N (Th) ∩ Ω′

a ≤ ui ≤ b ∀ i ∈ {1, ..., n}.Corollary 6.3 Suppose that Ω is a 
onvex polygon and Ω′ ⊂ Ω ful�lls theassumptions of Corollary 6.2. Furthermore, assume that z ∈ H2(Ω)d. Then,the solution of (P(2)
h ) satis�es for every ε > 0

‖ū− ūh‖L2(Ω)2 + ‖v̄ − v̄h‖H1(Ω)2 + ‖p̄− p̄h‖L2(Ω) ≤ C h1−ε,where the 
onstant C > 0 depends on ε, but not on h.Proof. Similar arguments as in the proof of Corollary 6.2, together with the
onvexity of |·|2
R2 imply that the state 
onstraints in (P(2)

h ) are equivalent to
|(i(1)h vh)(x)|2

R2 ≤ ̺ a.e. in Ω′. Thus, Theorem 6.7 and the same arguments as inthe proof of Theorem 6.6 give the assertion.
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al experimentsIn this se
tion we perform numeri
al tests in order to verify the �nite elementerror estimates obtained in the previous se
tions. The 
onvex polygonal domain
Ω = (0, 1) × (0, 1) was dis
retized using a uniform triangular mesh. Boundary
onditions of Diri
hlet type were imposed on the boundary.In the �rst example, the horizontal velo
ity on the upper boundary takes thevalue one, while the verti
al 
omponent is zero. On the remaining boundarythe 
ondition is of no slip type. This problem is known in the literature as the"driven 
avity �ow".In the se
ond example we 
onsider homogeneous Diri
hlet boundary 
ondi-tions and try to tra
k the �uid to the ve
tor �eld given by

z =

(
sin(πx)2 · sin(πy) · cos(πy)
−sin(πy)2 · sin(πx) · cos(πx)

)

. (39)Let us point out that the latter test 
ase is 
overed by the above theory,whereas the driven 
avity example is stri
tly speaking not 
aptured by the aforepresented analysis due to a la
k of regularity indu
ed by the non-
ontinuousinhomogeneity in the boundary 
onditions. Nevertheless, the driven 
avity �owis investigated here as it 
an be seen as a ben
hmark for the Stokes system.For the �nite element dis
retization, we use Taylor-Hood elements withquadrati
 ansatz fun
tions for the velo
ity and linear fun
tions for the pressure.The 
ontrols were also dis
retized using pie
ewise linear polynomials, 
onsistentwith the 
onditions in Assumption 3.3. The dis
retized inequality 
onstrainedoptimization problems are solved by applying a semi-smooth Newton methodas stated in Hintermuller, Ito and Kunis
h (2002). The inequality state 
on-straints are added to the 
ost fun
tional through a penalized Moreau-Yosidaregularization term, see, e.g., De Los Reyes and Kunis
h (2005).For the solution of the dis
retized systems appearing in ea
h semi-smoothNewton step a penalty method is applied (see Gunzburger, 2000, p. 125). Thismethod 
onsiders, for 0 < ǫ << 1, the modi�ed Stokes system
(
A BT

B ǫI

)(
~v
~p

)

=

(
M~u
0

)

,where A, B, and M are the matri
es resulting from the �nite element dis-
retization of (1), I is the identity matrix, and ~v, ~p, and ~u are the ve
tors for thevelo
ity, pressure, and 
ontrol, respe
tively. A similar penalty s
heme was usedfor the adjoint equations. For 
onvergen
e results on this approa
h we refer toGunzburger (2000).The semi-smooth Newton algorithm stops if the L2-residuum of the dis-
retized 
ontrol is lower than a given toleran
e, typi
ally set as 10−4. Themethod is initialized setting the 
ontrols equal to 0 and solving su

essively theStokes and the adjoint equations. With these values at hand, the a
tive andina
tive sets are determined for the �rst iteration.
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ontrol of the Stokes equations 279The resulting linear systems in ea
h semismooth Newton iteration weresolved using Matlab exa
t solver. All algorithms were implemented in Mat-lab 7.4 and run on a 300 GHz ma
hine with 24 GByte RAM and a pre
ision ofeps=2.2204e-16.7.1. Example 1: box 
onstraintsFirst, we 
onsider pointwise box 
onstraints on the state, i.e., 
onstraints of theform K(1). To be more pre
ise, the state 
onstraint is given by y1 ≥ −0.15 in
Ωs = [0.1, 0.9]× [0.1, 0.9]. The target is to diminish the ba
kward �ow velo
ityand, as a 
onsequen
e, the intensity of the vortex. The desired state is givenby z ≡ 0. Thus, the example �ts to the setting of Corollary 6.2. The Tikhonovregularization parameter is set to α = 0.1, while we 
hoose 105 as penalizationparameter for the state 
onstraints.With a mesh size h =

√
2/32 the algorithm stops after 20 iterations. Thehorizontal and verti
al 
omponents of the optimal 
ontrol are depi
ted in Fig. 1,for h =

√
2/64. In Fig. 2 the optimal 
ontrol ve
tor �eld and the a
tive setfor the horizontal velo
ity 
omponent are depi
ted. From the graphi
s, the
on
entration of the irregular part of the horizontal 
ontrol on the a
tive set
an be observed.In Table 1 the 
onvergen
e history is registered. The experimental errornorms for di�erent values of h are tabulated. We 
onsider as optimal solutionthe one obtained numeri
ally with a mesh step size h =

√
2/160, whi
h will bedenoted by u∗h in all what follows. The quantity #it refers to the number ofsemi-smooth Newton iterations.Table 1. Example 1, 
onvergen
e history.

√
2/h 5 10 20 40 80

#it 4 8 20 20 32
‖uh − u∗h‖L2 1.1601 0.7982 0.4804 0.2572 0.1098To illustrate the 
onvergen
e behavior, we de�ne the quantity
EOC2(u) :=

log(‖uh − u∗h‖L2) − log(‖uhref
− u∗h‖L2)

log(h) − log(href)
(40)as the experimental order of 
onvergen
e for the L2-norm of u. Here, hrefrefers to the �nest mesh size, hen
e in this 
ase href =

√
2/80. The values for

EOC2(u) are listed in Table 2. From this table, a rough 
oin
iden
e betweenthe theoreti
al and experimental 
onvergen
e order 
an be inferred, sin
e theexperimental order of 
onvergen
e order averages approximately 1 − ε. Thisobservation 
on�rms the theoreti
al predi
tions of Corollary 6.2.
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Figure 1. Example 1: horizontal and verti
al 
omponents of the optimal 
ontrol;
h =

√
2/64.
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Figure 2. Example 1: 
ontrol ve
tor �eld (left) and a
tive set for the horizontal
omponent of the velo
ity (right); h =
√

2/32.
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ontrol of the Stokes equations 281Table 2. Example 1, experimental order of 
onvergen
e
√

2/h 5 10 20 40 80
EOC2(u) 0.85 0.95 1.06 1.23 �7.2. Example 2: 
onstraint on the Eu
lidian norm of the velo
ityve
torIn this example we 
onsider the state 
onstraint v2

1(x) + v2
2(x) ≤ 10−4 in the
enter of the 
avity. With this 
onstraint, the norm of the velo
ity ve
tor �eldis restri
ted pointwise in the subdomain Ωs = [38 ,

5
8 ]2. The desired state is givenas in (39). As already mentioned before, this example is 
overed by the aboveanalysis, to be more pre
ise by Corollary 6.3. Thus, we expe
t a 
onvergen
erate of order 1 − ε.The resulting velo
ity ve
tor �eld, with the Tikhonov parameter value α =

0.1 and the Moreau-Yosida parameter value 105, is shown in Fig. 3, togetherwith the optimal state without pointwise state 
onstraints. The obsta
le e�e
tof the state 
onstraint 
an be observed in the plot.
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Figure 3. Example 2: optimal velo
ity ve
tor �eld without state 
onstraints(left) and with state 
onstraint (right); h =
√

2/24.The evolution of the �nite element error and of the 
onvergen
e rate as
h→ 0 is registered in Table 3. The Tikhonov parameter is set to α = 0.2, whilewe used 5 × 103 for the Moreau-Yosida penalization of the state 
onstraints.Here, we 
onsider as optimal solution u∗h the one obtained numeri
ally with amesh step size h =

√
2/240. In average, an approximate order of 1 − ǫ for the

L2-norms of 
ontrol 
an be observed also in this example. Thus, the theoreti
alerror estimate of Corollary 6.3 
an be seen to be experimentally veri�ed.
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onvergen
e history.
√

2/h 5 15 30 60 120
#it 7 8 10 20 14

‖uh − u∗h‖L2 1.3108 0.5984 0.3637 0.2001 0.0863
EOC2(u) 0.85 0.93 1.04 1.21 �Referen
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