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Abstract: An optimal control problem for 2d and 3d Stokes
equations is investigated with pointwise inequality constraints on
the state and the control. The paper is concerned with the full dis-
cretization of the control problem allowing for different types of dis-
cretization of both the control and the state. For instance, piecewise
linear and continuous approximations of the control are included in
the present theory. Under certain assumptions on the L*-error of
the finite element discretization of the state, error estimates for the
control are derived which can be seen to be optimal since their or-
der of convergence coincides with the one of the interpolation error.
The assumptions of the L°°-finite-element-error can be verified for
different numerical settings. Finally the results of two numerical
experiments are presented.
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1. Introduction

This paper is concerned with the finite element discretization for the following
linear quadratic optimal control problem subject to the Stokes equations and
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additional constraints on the control and the state:
L. 1 2 - 2
minimize J(v,u) =< [ |[v—z|gadz + = [ |u|ga dz
2 Ja 2 Ja

subject to —Av+Vp=wu in ()
(P) V-o=0 inQ
v=0 onl :=00

and ve K cL®Q)?
a<u(x)<b ae.in,

where u denotes the control, v and p are velocity and pressure, respectively, and
z is the given desired state. Furthermore, Q C R%, d = 2,3 is a bounded domain
with boundary I' and o > 0 is a given number. Moreover, a,b € R? are given
vectors, whereas K denotes a closed and convex subset of L°°(€')?, where €' is
a fixed (not necessarily proper) subset of €. Possible examples for K are box
constraints for v or restrictions on the Euclidian norm of v, i.e.,

KW = {ve L®(Q) v, <v(x) < vy ae. in Q}
K@ = {v e L>(Q)|v(z)[2. < 0 ace. in '}

with given bounds v,, v, € R%, and o > 0. In view of the no-slip conditions on
the boundary, it might be reasonable to require the state constraints only in the
interior of Q. The theory presented is applicable for both cases, i.e. ' # Q and
Q' = . We point out that the subsequent analysis can be extended to the case
of more general control constraints, i.e. v € K, with a nonempty convex subset
K, € L>=(Q)%. For a better readability of the paper, we concentrate on box
constraints for the control, while general constraints on the state are considered.

It is well known that, if certain constraint qualifications are satisfied, then
the generalized Karush-Kuhn-Tucker theory allows to derive first-order neces-
sary conditions that include the existence of Lagrange multipliers associated to
the state constraints in (L°°(€')?)*, i.e., the dual of L>(Q")¢ with respect to
the inner product of L?(€2)? (see Zowe and Kurcyusz, 1979, or Casas, 1993).
This lack of regularity of the multipliers complicates the numerical analysis of
state-constrained optimal control problems. Nevertheless, in the recent past,
some progress has been achieved concerning the finite element error analysis
of state-constrained elliptic problems. We exemplarily mention Casas (2002),
where a semilinear elliptic control problem with finitely many state constraints is
considered, and Casas and Mateos (2002), where convergence of a finite element
discretization for state-constrained semilinear elliptic problems is proved in a
general setting. Moreover, we refer to Deckelnick and Hinze (2007 a,b), where
a variational discretization of state-constrained elliptic problems is considered,
and to Deckelnick, Giinther and Hinze (2007) for problems with pointwise con-
straints on the gradient of the state variable. Furthermore, Deckelnick and Hinze
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(2008) also investigated piecewise constant approximations of the control in the
presence of pointwise state constraints and obtained an order of convergence of
h|logh| in the two dimensional case and h'/? in case of three dimensions with
respect to the L2-norm on the control. Afore, slightly worse results for the same
setting are proven in Meyer (2008) by employing a completely different analysis.

In this paper, we show that the analysis of Meyer (2008) can be trans-
ferred to the Stokes equations and more general discretizations for the control,
e.g. piecewise linear and continuous ansatz functions. In particular, the use of
more general ansatz functions, as e.g. piecewise linear ones, requires significant
modification of the theory presented in Meyer (2008), which is performed by
using a particular quasi-interpolant introduced in Carstensen (1999). More-
over, to deal with different discretization techniques for the Stokes equations,
we have to allow for discrete states which may not be feasible for the continuous
problem. This constitutes another significant difference to the existing theory.
The presented analysis covers results for different settings such as for instance
the following: Let Q € R? be a convex polygon and € be strictly contained in
Q) and suppose that the Stokes equations are discretized with the Taylor-Hood
element, while we use piecewise linear ansatz functions for the control. Then
there holds for every € > 0

@ = anll2(@y + 12 = Onllgr(@)2 + 1D = DrllL2@) < Ch'F,

where (@, 7, D) is the solution of (P), while (@p, Un,pn) denotes the solution of
its discrete counterpart.

To the authors’ best knowledge, this is the first note that deals with the dis-
cretization error for the optimal control of the Stokes equations in the presence of
pointwise state constraints. There are several papers considering finite element
discretizations of the unconstrained optimal control of the Stokes and Navier-
Stokes equations (see for instance Bochev and Gunzburger, 2004; Deckelnick
Hinze, 2004; Gunzburger, Hou and Svobodny, 1991a,b), as well as contributions
for the purely control-constrained case, Rosch and Vexler (2006). However, the
analysis in case of pointwise state constraints differs significantly from these
settings since, among other things, optimal L>°-error estimates for the finite
element discretization of the Stokes equations are required.

The paper is organized as follows: after stating the main assumptions and
known results for the continuous problem (P) in the following section, we intro-
duce a general framework for a discretization of (P) in Section 3, which covers
different concrete discrete schemes. Thereafter, in Section 4 we discuss some spe-
cial interpolation results to be used in Section 5, where a priori error analysis
for the problem under consideration is presented. Finally, Section 6 is devoted
to concrete discretization schemes and their practical realization, whereas the
numerical examples are presented in Section 7.
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2. Notation and assumptions

i=1%i
inequalities of the form z < w with w,z € R?, are understood component-
wise. Moreover the natural inner product of L%(Q)? is abbreviated by (-,-) :=

(*+)12(q)e- Furthermore, we introduce the Hilbert spaces

In all what follows, |z|ga = (Zd 22)1/2 denotes the Euclidian norm and

Vi=H} Q)Y L:= {p€L2(Q)|/Qp(3:)d:c:O}.

Throughout this article, let o be a real number satisfying 1 < o < d/(d — 1).
Then we define the conjugate exponent by ¢/ = o/(c — 1). In addition, W,
denotes the Sobolev space W17 (Q)¢, whereas we set Vo, := L>°(Q')4. The dual
spaces associated to W, and V., with respect to the inner product of L2(Q)?
and L2(Q)%, respectively, are denoted by W and V.

ASSUMPTION 2.1 On the quantities in (P), we impose the following conditions:
e Q is an open, bounded, simply connected Lipschitz domain Q C RY, d =
2,3, while Q' denotes an open subset of Q).
e K is a closed and convex subset of L°°())?
e a,beR? witha<b
o 2 L2(Q)%.

Let us introduce the variational formulation of the Stokes equations by

(V’U,V(p) _(pav'sé’)'f‘(v'vﬂﬁ) = (u,cp) v(@ﬂﬁ) eV xL. (1)

It is well known that, for a given right-hand side u € L?(Q2)?, there exists a
unique solution to (1) and the associated solution operator, denoted by G :
u +— (v,p), is continuous from L2(Q)? to V x L. Moreover, we introduce the
control-to-state operator S: L%(Q)? — V which maps the control variable u to
the velocity component of the solution Gu, i.e., S: u +— v. Sometimes S and
G are considered in different spaces (e.g. L°°(©')9), for simplicity also denoted
by S and G, respectively. Based on the control-to-state operator, we define the
reduced control problem by:

i =J(S
Lomn fu) = J(Su,u)

(P) s.t. Sue K
a<u(x)<b ae.in Q.
For the solution operator of the Stokes system, the following mapping properties

are known. We refer to Brown and Shen (1995, Theorem 2.9) and the references
therein.

PROPOSITION 2.1 Under the hypothesis on € in Assumption 2.1, there is a
positive number 2d/(d +2) < ¢ < d/(d — 1) such that S continuously maps
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Wr = (Who(Q)D* to WHo' () for all 0 € [5,d/(d —1)[. Hence, due to
&’ > d, Sobolev embedding theorems give

S: LX) - Wi - Wh () Vo Vo€ [5,d/(d—1). (2)

For the rest of the paper, let o be a fixed, but arbitrary number in |7, d/(d—
1)[. As already mentioned in the introduction, a certain constraint qualifica-
tion is needed to derive the existence of Lagrange multipliers by means of the
generalized Karush-Kuhn-Tucker theory. Here, we rely on

ASSUMPTION 2.2 (SLATER CONDITION) Thereis a € L (Q)NW,, satisfying
Su e int K
a <i(x) <b ae. in Q.

In order to state the necessary optimality conditions for the solution of (P)
we introduce the set of admissible controls, which incorporates both the control
and the state constraints:

Uad := {u € L)%Y a <u(z) <bae inQ, Suc K}.

THEOREM 2.1 Under Assumption 2.2 there exists a unique solution of (P), de-
noted by u. This solution provides some additional regularity, namely u € W,
and satisfies the following variational inequality

(Su—z,Su—Su)+a(i,u—u)>0 YVu€Uy (3)
where Uyq is defined as above.

Proof. The existence and uniqueness result is standard. To show the additional
regularity of @, we make use of the generalized Karush-Kuhn-Tucker theory (see
Zowe and Kurcyusz, 1979). To this end, set = S(@). Under the Slater con-
dition in Assumption 2.2, the generalized KKT theory guarantees the existence
of a Lagrange multiplier 1 € VZ such that u satisfies

=1, { - é S*(E2(v — 2) + Exoft) } (4)

with the adjoint operator S*: (W17 (Q)4)* — W, (see Proposition 2.1). More-
over, Ey: L2(Q)? — (WL (Q)D)* and Es: VE — (W' (Q)9)* are the asso-
ciated embedding operators. Furthermore, IIj, 3 denotes the component- and
pointwise projection operator on the interval [a,b]. Since this projection opera-
tor maps W, to itself, we have u € W,,. Finally, the derivation of the variational
inequality follows standard arguments. [

REMARK 2.1 We point out that the convergence analysis, presented below, does
not involve dual variables, i.e., the adjoint state or Lagrange multipliers. In
this context, the ewistence of Lagrange multipliers is just required to guarantee
the additional regularity of w which is needed for the derivation of interpolation
error estimates (see Lemmata 4.3 and 4.4 below).
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3. Discretization

Now we turn to the discretization of (P). First, let us introduce a family of
meshes {7} with mesh size h > 0. The mesh 7}, consists of open cells T
(triangles, tetrahedra, quadrilaterals, hexahedra) such that

= T

TeT),

fulfilling usual assumptions on the finite element mesh, see, e.g., Brenner and
Scott (1994). Notice that this implies that the cells lying on the boundary of
Q may be curved if T' is smooth (see Section 6.1 for details). The mesh size is
defined by

h = max hy with  hp = diam (7).

With each T' € 73, we associate the diameter of the largest ball contained in T,
denoted by Rp. We suppose the following regularity assumptions for {7}, }:

ASSUMPTION 3.1 There exist two positive constants p and R such that

hr h

= < =<

Ry =T g s
hold for all cells T' € Up~oTy,.

To each mesh, we associate finite dimensional subspaces of V and L, denoted
by V, and Lj,. The discrete counterpart of (1) is then given by

(Von, Vo) — (0n, V- on) + (V- o, ¥n) = (u,0n) Y (@n,n) € Vi x Ly, (5)

with associated solution operator Gpu = (vp, pn) € Vi, X Lj. Concrete choices
for the pairs (V4, Ly), allowing for existence of the solution operator Gy, will
be discussed in Section 6. Analogously to the above, we define the discrete
control-to-state operator Sj mapping given control u to the velocity component
vp, of Gru. In all what follows, we rely on the following conditions on Sj,, that
will be verified in Section 6 for different settings.

ASsSUMPTION 3.2 The following error estimates hold true
[1Su = Shullv., < cd(h)||ullp=(q) (6)

with some function §: RT — RY satisfying 5(h) — 0 if h | 0, and a constant ¢
independent of h and u.

Next, we turn to the discretization of the control. To this end, we define the
associated ansatz functions.
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ASSUMPTION 3.3 For each mesh Ty, there is a family of control ansatz functions
consisting of n ansatz functions ¢; € L>=(Q), 1 <i < n. Here, the number n as
well as the ansatz functions themselves are allowed to depend on the mesh and
therefore on the mesh size. Moreover, for every i € {1,...,n} there holds

ess sup ¢;(xz) =1, ¢i(x) >0 a.e. inQ, Zgbl(x) =1lae inQ. (7

z€Q i=1

In addition, we assume that the patch w; := supp ¢; is a connected set of positive
measure and contained in the union of M; adjacent cells that share at least one
common vertex. Further, there exists a constant M € N, independent of h, such
that M; < M for all i € {1,...,n}. Finally, each cell T € T, is contained in at
most N supports w;, N independent of h.

REMARK 3.1 If Q is a polygon (d =2) or polyhedron (d = 3), the assumptions
on the ansatz functions ¢;, i = 1,...,n are clearly fulfilled for different common
finite elements such as:

e piecewise constant elements,

e linear finite elements in case of triangles and tetrahedrons, respectively,

e bi-/trilinear elements for quadrilaterals and hexahedrons, respectively.

The assumption ¢;(x) > 0 a.e. in Q is not needed for the derivation of interpo-
lation error estimates, but for the feasibility of interpolated controls (see Lemma
5.5).

The discrete control space is given by Uy, := span {¢; |1 < i < n}?. Now we
are in the position to define the discrete counterpart to (P):

min f(u) := J(Sh up, un)

up €U
(Pr) s.t. Spup € K,
a<up(x) <b a.e.in Q.
Notice that (Pj) is not a fully discrete problem, since K and z are not dis-

cretized. The discretization of K and z is postponed to Section 6.3. One shows
by standard arguments:

THEOREM 3.1 Assume that the feasible set for (Py) is not empty, i.e., there
exists a discrete control up, € Uy, with a < up(x) < b a.e. in Q and Sy up, € K.
Then there exists unique solution of (Py), denoted by uy € Uy, which satisfies
the following discrete variational inequality

(Shﬁh—z,Shuh—Shﬁh)—FOx(ﬁh,uh—ﬂh)ZO VuhEUgd (8)
with

Uhd = {uh € Upla < up(x) < b ae. inQ, Spup € K}

a
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4. Interpolation estimates

In this section we discuss some interpolation estimates for functions in W,. For
the error analysis in the next section we need an interpolation operator which
provides interpolation estimates of optimal order among other things in negative
Sobolev norms (see Lemma 4.4) and additionally has the following property:

a<u(z)<bae in = a<u)(z)<bae. inQ. 9)

To this end we consider the quasi-interpolation operator introduced in Carstensen
(1999). For an arbitrary v € L*(£2), the construction is as follows:

pu = Z mi(w) i, (10)

where 7;(u) € R is defined by

., udidx

7T1'(’U,) = W .

(11)

Analogously, the quasi-interpolation operator for vectorial quantities is defined
componentwise and for simplicity also is denoted by IIj,. The property (9) is
obviously fulfilled due to the above construction and Assumption 7.

In the following we discuss error estimates for u — ITpu in different norms
on the computational domain Q ¢ R, d = 2,3. To keep the discussion concise,
we argue for a single component for the rest of this section. The results for
vectorial quantities immediately follow from norm equivalence in R<.

LEMMA 4.1 For each i € {1,...,n}, there is a constant ¢; which may depend on
diam w; such that

[ =75 (W) L2y < €il[Vullpo) Yue WhHe(w)

foralld2—f2§5<oo.

REMARK 4.1 The condition s > d2—4fl2 is required for the embedding W% (w;) —
L?(w;). There obviously holds:

2d d
- < — =2 3.
d+2<d—1 for d ,3

Proof. Let i € {1,...,n} be arbitrary. For the proof we use an indirect argument.
If the proposed assertion is false, there exists a sequence {uy} C W'*(w;) with

VkeN.

=

g = mi(ur)|[ 2wy =1 and  [[Vurllps,) <
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Now, let us consider vy = ug — m;(ug). Since m;(ug) € R by construction, we
have V;(ug) = 0 and therefore

1
Lo(w) S z VkeN. (12)

[vkllzzw,) =1 and ||Vl

Therefore, thanks to s < 2, {v} is bounded in W'*(w;) and there exists a
subsequence denoted again by {v;} with

v — v in W (w;)

and therefore
vy — v in L (w;).

Due to (12), Vuy, is a Cauchy sequence in L®(w;) and therefore
v — v in W (w).

Hence, Vv = 0 and v = const. Moreover there holds by the definition of ;:

/ ons da =0,

and therefore

/ vy dz =0,

which implies v = 0. Due to the embedding W' (w;) — L?(w;), we have vy — v
in L?(w;) and therefore ||v]|12(,,) = 1. This is a contradiction. m

LEMMA 4.2 There is a constant ¢ which is independent of h such that

lw = mi (@)l p2gn < b =D V) Ve W (wy)

for alli e {1,...,n} and all dQ_J:iQ <s < oo.

Proof. The proof uses the assertion from Lemma 4.1 on a reference patch w;
and a standard transformation argument. For convenience of the reader, we
shortly sketch the arguments for a domain with polygonal (d = 2) or polyhedral
(d = 3) boundary and the case of triangles and tetrahedra, respectively. Let w;
be an arbitrary patch consisting of the cells Tj(z), j=1,...,M;. By Assumption
3.3, M = max;{M;} is bounded independently of h. To each patch w;, we
associate a reference patch w; whose vertices lie on the surface of the unit ball
in R?. Moreover, it consists of M; congruent cells 7% Due to M; < M, the

j
number of possible reference patches is finite and they can be constructed so
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that |Tj(1)| is bounded from below and above by constants independent of h (see

Bernardi, 1989, Section 4, for the construction of suitable reference patches).

Now denote by F;, F;& = x, the bi-Lipschitz transformation from w; to w;,

and set Fj(l) := Fi| s, i-e. the affine-linear transformation from Tj(l) to Tj(z).
J

Analogously to (11), let 7; be defined by
[y divdi [ (¢i0 Fi)vdi

i (v) = - =

fd;i ¢i di f@,i ¢; 0 F; dz ’

T(i)|

where ¢?i denotes the ansatz function on @;. Then, due to uo F; € W1>S(c&i), we
M; {
|u— Wi(“)”%?(wi) = Z AJ(Z-)

obtain
= / (u(Fj(“;@)—m(u))Qd@

Jj=1 | j |A )
7o

2

Schd/(qu Ti(uo Fy)) da:<chd</|v (wo Fy)|° da:)
M, |7(4)
"] ox
d | J s
<ch (E T.(i)| /|un| ‘8:2“

with a constant ¢ > 0 independent of h. If quadrilaterals or hexahedra are
used, one argues analogously using suitably defined reference patches. In case

2
s : _2
dw) < eh DTl

of smooth boundaries, where Fj(z) is not longer affine-linear, the result follows
from similar transformation arguments known from the theory of interpolation
on curved domains (see Bernardi, 1989, Lemma 2.3). m

LEMMA 4.3 There is a constant ¢ which is independent of h such that
l = Tl g2y < ch®G=DM |V L) Yue WH(Q),
2d
with 775 < s <2.
Proof. Due to >~ ¢; = 1 and the definition of II;, we find for all v € L*(Q)

(U_Hhu U <UZ¢1 Zﬂz ¢17 ) :Z/.(U_Wi(u))¢ivdxa

1 1

< chi(i=2)

2w vllz2 ()

1/s n l/s'
> (Z ||v||i2(wi)> :
i=1

< entlit)s (Zl
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Using the fact that % _ > 1 since s < 2, we have

s/

n n s/ 2
S, B
> olzay = (IlEaen) (vanm ) -
=1 1=1
Hence,

[(u — Hpu,v)| < chd(=3)+1 1Vl L) ] L2(0)-

Notice that Assumption 3.3 implies > . , vaHqu(w) <c ||Vw||qu(Q) for every
w € WH4(Q) and every 1 < ¢ < oo. Setting v = u — IT,u, we complete the
proof. [

LEMMA 4.4 There exists a constant ¢, independent of h, such that
[l = Maufws @)« < ch24(3—5)+2 [ullwre@) YueWhs(Q)
with deQ <s<2.

Proof. Similarly to the beginning of the proof of the previous lemma, one has
for all v € WH5(Q):

(u—Mpu,v) = (ngbl Zm (bz,) Z/ u—mi(u)) ¢; vde.

i=1 " Wi

The definition of 7; implies

/%w—m(u)m dr =0,

and therefore we continue with
(u—l‘[;m,v)zZ/ u—mi(u) ¢; (v—m(v))de
i=1 Y wi

< G072 37Vl ooy V0]l Lo
=1

L
o7

< cnt) (Z IVull7s <w1> <Z Vo7, )

Using the fact 2 " > 1 since s < 2, we obtain

\_/
|

S IVl = 3 (19 ) (
i=1

=1
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so that

1
1 . s n .
[(u —Tpu,v)| < ch2d(z-3)+2 (Z ||Vu||Ls(wi)> (Z ||Vv||L5(wi)>
i=1 i=1

1_1
< cp2i(z—1)+2 ullws @) [vllwrs@)-

1
s

This completes the proof. [
LeEMMA 4.5 For every u € L>=(R2), there holds

MIh ull Lo () < [[ullLe=(a)-
Proof. In view of (11), we obtain

mi(0)] < Jullzeqey Vi € {1,

Together with (7), this implies

Zm(u) ¢i(x)

< max{|mi(u)|} Y ¢i(#) < Jullz=@) Yoe,
i=1
which gives the assertion. [

5. Convergence analysis

With the above results at hand, in particular Lemmata 4.3 and 4.4, one can
extend the theory from Meyer (2008) to problem (P). The analysis of Meyer
(2008) is mainly based on the existence of functions ug € Uy, and u. € U which
are feasible for one of the problems (P) or (Pj), but in some sense close to the
solution of the other problem. In Meyer (2008), the proofs are presented for the
case of box constraints on the state. With the help of the support functional, the
arguments can easily be adapted to the more general state constraint in (P).
For convenience of the reader, this is demonstrated in the following section.
We characterize the convex set K by means of the support functional: since
the interior of K is not empty by Assumption 2.2, the supporting hyperplane
theorem implies

int K = ﬂ {ve Vo, 'U>Vo’g,Voo <s(w} (13)
eV, n#0

where s : V1 — R denotes the support functional, i.e. () = sup, ¢ (10, v)v v
(see, e.g., Luenberger, 1969). Based on Assumption 2.2, we find the following

LEMMA 5.1 There is a constant T > 0 such that
(o, Si)ve v <s(p)—7 for all pe Va with |ullve =1 (14)

holds true.
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Proof. First, since S € int K by Assumption 2.2, there exists an » > 0 such
that {v € Vo | |lv — Sallv, <r} C K. Hence, for all w € V,, with ||w|v,, =1,
we have Su+rw € K. Now let o with ||u[|v: = 1 be arbitrary. Since

lullve = sap (), wive v | =1,

lwllve =1

there is a w with ||@||y,, = 1 such that |(u, @w)| > 1/2. For the rest of the proof
assume that (u, w) > 1/2 and define ¢ := Sa+rw. If —(u, w) > 1/2, the proof
can be carried out analogously with v := Su — rw. Clearly, by construction,
v € K such that

s(pu) > (p, O)ve vie = (, Sty v, + (i, W)ve vie > (1, S@)ve v, +§

Hence, setting 7 = r/2 finally gives the assertion. [

Next recall that o is a fixed, but arbitrary number in [7,d/(d — 1)[ and
W, = Who ()4,

DEFINITION 5.1 Given o € [7,d/(d —1)[ and h > 0, we set
(o, h) = h2d(%—§)+2
B(o,h) := max{n(o, h),6(h)},
where 6(h) is defined as in Assumption 3.2. Moreover, we define
Uc := Up + Y0 (h) (@ — up)
ug =y u + va B0, h) (I @ — Iy a),
with constants ~.,vq > 0 defined in the subsequent.

LEMMA 5.2 There exists a constant ~y. independent of h such that the function
u. is feasible for (P) for all h < hy, where hy > 0 is chosen sufficiently small
so that v.6(h) < 1.

Proof. First we show Su, € K. To this end, let p € VI, u # 0, be arbitrary
and define
1
=T M
lllvs,

such that [|il|v= = 1. Then, by Lemma 5.1, one obtains

(i, Sue)ve v = (1= 7eb(h){ft, Stn)ve v +70(h) (i, St)v= v

< (L =7e6(h) [(ft, Sntin)ve vae + (i, (S = Sp)tn)ve vi, ] +7:0(h) (s(i) — 7)
< s(p ) Yed(h)T + (1 =y d(h) | allve 1(S = Sh)anllv.,
< s(f) — ( ) (Ve = e(1 =7 ()| anll e ()2 (15)
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where we used Assumption 3.2, (14), and the feasibility of @, for (Pj) which
implies (ft, Sy up) < s(ft). In view of the control constraints in (P), we obtain
for the second addend in the last inequality

YeT = (1 = 7e0(h))[[anl Lo ()2 = 7e — ¢ max{lal, [b]}

such that (1, Swu.) < s(j1) is fulfilled if we choose 7. > ¢ max{]al, |b|} /7. Hence,
u. satisfies

(s Sucyve vio = lpllve (i, Suc)ve v, < llpllve s(it) = s(u),

since the support functional is clearly sublinear. As yp was chosen arbitrary, (13)
implies Su, € K if . > ¢ max{]|al, |b|}/7. Furthermore, if we choose h; small
enough such that ~.d(h) < 1, then wu, is a convex linear combination of two
functions in {u € L=(Q)?|a < u(z) < ba.e. in Q} and therefore also satisfies
the control constraints in (P). Consequently, the assertion holds true. [

To prove a similar result for the other direction, i.e., the feasibility of ug for
(Py), we need some auxiliary results which are presented in the subsequent.

LEMMA 5.3 Suppose u € W, is given. Then
[S(u—pu)llve, < en(o,h)[|ullw,
holds true with a constant ¢ > 0 independent of h.
Proof. The mapping properties of S in Proposition 2.1 imply
15(u=Thu)llvee < e ISl zowzwor @ay lv = n ullw; < enlo,h) lullw, ,
where we used Lemma 4.4 and the definition of 7. (]

LEMMA 5.4 Let ji € VI with [|fillv: = 1 be arbitrary. Then, for every u €
W, N L>®(0Q)4,

(i, SpIpuhve v < (i, Supvz v +eBlo,h) (Ilullw, + llull e (9)e)
is satisfied with a constant ¢ > 0 independent of h and .

Proof. In view of ||fi|lv: = 1, we find

(f, Spllp u)ve v,
= (i, Suyve v + (i, Sy u—u))ve vio + (i, (Sp— Sy u)yvs v
<A@, Suyvs v + [[Ellve 1SThw —w)|ve + |Ellve 1Sk — Sk ullve,
< (@i, Suyve o + ¢ (n(o,h) [[ullw, + 8(h) [lu]l o))

where we used Lemma 5.3, Assumption 3.2, and Lemma 4.5. With the definition
of 3 (see Definition 5.1), the assertion is verified. ]
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LEMMA 5.5 There exists a constant vq depending on u and o, but not on h,
such that ug is feasible for (Pp) if h < ha, where ha > 0 is chosen so that

~va B(o,h) < 1.

Proof. Let pu € V3 again be arbitrary and define fi = p/||p|lv= as in the proof
of Lemma 5.2. Similarly to (15), we estimate

(i, Shua)vs va,
= (1 —=~aB(o,h) (i, SpIlp w)ve v +vaB(0, h) (i, SpTp 0)ve v,

< (1= 7aBlo, ) (s S@ve ve +eB(,) (Jallw, + lalz~@e)]  (16)

)
+1aBlo, W [{, Sy v+ cBlo,h) (Ialw, + 13l L= @ye)

A

IN

s(fz) = Blo h) |var — e (lallw, + [l L~ @)e + N, + [lall md)}

=y

Hence, if we choose 74 > c ¢, /7, then one obtains (fi, Sy ug) < s(ft) which gives,
in turn, S, ug € K by the same arguments as in the proof of Lemma 5.2. Notice
that -4 is independent of h, but depends on ||@|lw, and therefore on @ and o.
Moreover, we have that

a < (Tpu)(z) <b ae. in Q,
see (9). Hence, the same arguments as in the proof of Lemma 5.2 give
a<ug(z) <b a.e.inQ,

for all h < hg if ho is sufficiently small, namely fulfills v48(o,h) < 1. Since
uq € Uy, by construction, we therefore end up with ug € UL,. m

Now we are in the position to prove our main result which reads as follows:

THEOREM 5.1 Let @ and 4y, denote the optimal solutions of (P) and (Py), re-
spectively. Then, under Assumptions 2.1-2.2 and 3.1-3.3, the following estimate
holds true for all h < min{hy, ho}

@ = @nl L2(ye + 1S @ = Sh @l 2)e < C v/max{n(o, h),(h)}
with a constant C > 0 which depends on @ and o, but not on h.

Proof. Based on a technique introduced in Falk (1973), it is shown in Meyer
(2008) that the variational inequalities (3) and (8) imply for all u € Uyq and all
up € U:d
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e R AR R [y

< ¢ [llun — @l aqpe + (i, + 185~ =ll2gaye) (o — il + llun — ;)
Hlun = allfys + 1105 = Sp)unll7zqya
15T~ 2laaye (165 ~ Sl + 1S~ Sdunlae)] (17)

Here, the constant ¢ depends on «, but not on u, up, u, and uy,. Thanks to
Lemmata 5.2 and 5.5, we are allowed to insert © = wu. and wup = ug in (17).
Then, by means of Lemmata 4.3 and 4.4 and the definition of 3, we obtain

llua — ull 2()a < [|[Tptt — || p2(0ya +va B(o, h) [Tyt — Tpal| L2 o)a

< clallw, + lilw,) max{ VAo B0y
lua = ullw; < [Upu — allw; +va B0, h) [[Und — Myallw, (19)
< c(lallw, + llallw,) B(o, ).
In case of u = u., we have
e = unllw; < cved(h) ||@ = anllw, - (20)
For the remaining expressions in (17), (6) implies
[(Sh = S)uall2(@)e < ¢d(h) [[Tnti + 72 6(h) (Tt — My)|| oo () (21)
<c (||@||L°°(Q)d + ||ﬁ||L°°(Q)d) 6(h)
[(Sh = S)anllL2(0ye < c(h) [[an|| Lo ()a, (22)

where we used Lemma 4.5 for the estimation of the right hand side in (21).
Notice that @ and 4 are bounded in W, and L>(Q)¢ due to Assumption 2.2
and Theorem 2.1, whereas 1y, is uniformly bounded in L°°(£2)? due to the control
constraints. Inserting (18)—(22) in (17) finally implies

o, I _

3 1@ — @nl|72(qya + B 1S @ — Shanl72(0)a

<c [max{n(@ h),ﬁ(U, h)2} + (Ha”Wn + ||Sﬂ’ - Z”Lz(ﬂ)d) (6(0-7 h) + 5(h))

+ B(0, R)? + 6(h)* + 1S @ = 2|2y O(R)]
< C? max{n(o,h),6(h)}

thanks to the definition of 3. For the last estimate we tacitly assumed that
B(o,h) < 1, which is clearly fulfilled if the mesh size is small enough. An
inspection of the proof yields that C' depends on @ and o, but not on h. [
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COROLLARY 5.1 Suppose that, in addition to the assumptions of Theorem 5.1,
1(Gh — G)ull g1 (@yaxr2q) < cV(h) (|l oo ()a

is fulfilled with 9 : RY — R, 9(h) — 0 as h | 0. Then, (v,p) = Gu and
(On,Pn) = Gnun satisfy

1 = Tl s (e + 15— Bl 2y < C max{9(h), /3(R), /n(e 1)}
with a constant C' independent of h.

Proof. The proof is almost standard. The mapping properties of G imply

GU — Grin|| 1 (@)yax L2
<|NG(@ = an)ll g @)ixr2@) + (G = Gr)unll g1 @)ax L2 @)

<Gl zz2@)a,mr (@) x 2@t = nllp2@ye + cO(R) [[tn | Lo ()a,

so that Theorem 5.1 yields the assertion. [

6. Concrete numerical settings

In the subsequent, several control problems and discretization techniques are
discussed that are covered by the above theory. The critical point is to verify
(6) for a concrete discretization such that 6(h), i.e., the L>-error of the finite
element, approximation, is not worse than (o, h), i.e., the interpolation error.
To keep the discussion concise, we restrict ourselves to discretization schemes
that fulfill the discrete inf-sup condition so that there is no need for stabilization.
We rely on the following assumptions:

AsSumPTION 6.1 The spaces Vi, C V and Ly C L satisfy the following condi-

tions
o There is a number k € N, k > 1, such that

Vi € C(), Pu(T) CVilp, Proi(T)C Lylr YT €T, (23)

Consequently, there exist interpolation operators i}, and @) that fulfill stan-
dard approximation properties. In particular, if t € {0,1} and ¢q,7,s €
[1,00] are given such that W27 (Q) — Wh4(Q) and W15(Q) — L),
then there holds:

IV (0 = i} 0)| Laqry < eh?> VUG gy Vo € WHN(T) (24)
lp = i, pllaqry < W VTV |Vl Loy VP € W (wr) (25)

for all T € T;,. Here, wr denotes the union of patches associated to the
ansatz functions that are non-zero on T', and ¢ > 0 does not depend on h.
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e Inverse property: For all v, € V},
lonllpeqrys < k™ Jonllaerye VT €T (26)

is valid with a constant ¢ > 0 independent of h.
e Discrete inf-sup condition: There is a real number v > 0, independent of

h, such that
(Pn, V - dn)
sup ——=-—— =7 ”ph” Vpn € L.
PrEVR ||v¢h||

The conditions in Assumption 6.1 are fulfilled by many standard finite el-
ements, in particular by all examples mentioned in the following. Beside As-
sumption 6.1, we suppose Assumptions 2.1-2.2, 3.1, and 3.3 to be satisfied in
all what follows. We again point out that the assumptions on the control dis-
cretization are fulfilled by constant and linear (bilinear) ansatz functions (see
Remark 7). Furthermore, we assume the mesh size to be small enough to ensure
h < min{hq, ha} throughout the following (see Theorem 5.1). The aim of the
subsequent sections is to verify Assumption 3.2.

6.1. Smooth domains with Q' =Q

In this section we consider the following setting: The boundary T is of class C*
and the subdomain €', where the state constraints are imposed, coincides with
the domain ). Before we start the discussion, let us point out that we assume
a triangulation that exactly fits the boundary which is fairly artificial in case
of a smooth boundary. Moreover, we tacitly supposed that the integrals in (5)
are exactly evaluated which is clearly hard to implement if {2 is not polygonally
bounded. Therefore, a realistic discretization would cause other types of errors,
which are neglected here, since this would go beyond the scope of this paper.
Notice that these problems do clearly not arise if Q has a polygonal boundary
as in the case of the subsequent sections. We apply the result of Chen (2006),
which requires some additional assumptions on the discretization, in particular
a local L?-error estimate of the Ritz-projection, see Chen (2006, Section 2) for
details. The additional conditions are verified by Arnold and Liu (1995) for
different types of finite elements such as

e all stable discretizations formed with Lagrange elements such as for in-

stance the Taylor-Hood element (i.e. P2/P1-element)
e the Mini element, i.e., the unstable P;/Pi-element enriched with bubble
functions.

Using a technique developed in Schatz (1998), Chen proved the following

result:

THEOREM 6.1 Assume that the solution of (1) satisfies (v,p) € WH>(Q)? x
L>(Q). There is a constant ¢ > 0, independent of h, v, and p, such that the
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solution of (5), denoted by (vn,pr) € Vi, X Ly, satisfies
v — Uh||L°°(Q)d <ch| 10g(h)|m(ljg‘f/h v — wHWl’“’(Q)d + qieanh llq _p”LOO(Q))a

where m=0ifk>1andm=11ifk=1.

If Q is of class C2, then G: LP(Q)? — W2P(Q)4 x WP(Q) forall 1 < p < oo
(see Temam, 1977, Proposition 2.3). Therefore, together with (24) and (25),
Chen’s result yields

COROLLARY 6.1 For every € > 0, there is a constant c. > 0, independent of h
and u, so that

[v = vnll Lo (e < e h*7¢ ||ul| oo (e
THEOREM 6.2 For every € > 0, there holds
o o _ _d_
@ — anll 2y + 10 = Onll g @ye + 16— DrllL2ge) < Ch*727F (27)
with a constant C > 0 which depends on e, but not on h.

Proof. Let € > 0 be given. In view of Corollary 6.1, Assumption 3.2 is fulfilled
with a constant ¢ depending on e and 6(h) = h?~2¢, Moreover, by choosing
,d%‘fﬂ}, we obtain 7(c, k) < h*~972 (see Definition 5.1). Thus,
Theorem 5.1 and Corollary 5.1 together with standard finite element results give
the assertion. [

o= max{&

REMARK 6.1 Notice that C' depends on € firstly because of the constant c. from
Corollary 6.1 and secondly due to the coupling of o and .

REMARK 6.2 As above, let o = o(e) = max{&, d+1{+5} with a fized, but arbi-
trary € > 0. Then, Lemma 4.3 implies

lu = Tullaops < e 3% lullw, ., Yu € Woe (28)

and therefore, the order in (27) coincides with the one of the interpolation error.

6.2. Convex domains with polygonal or polyhedral boundary

First, we consider the case ' = . In case of polygons and polyhedrons,
respectively, the following regularity result is known. For the proof, we refer to
Dauge (1989) and Kellog and Osborn (1976).

THEOREM 6.3 Let §2 be a convex domain with polygonal (d = 2) or polyhedral
(d = 3) boundary. Then, for all u € L?(Q)?, the unique solution (v,p) € V x L
of (1) belongs to H?(Q)? x H1(Q).



270 J. C. DE LOS REYES, C. MEYER, B. VEXLER

Based on this result and standard finite element error estimates, one proves
for an arbitrary u € L*(Q)

_d
[v = vnll Lo (ya < ch®77 [|ul| 2y,

where v = Su and v, = S, u and ¢ > 0 only depends on 2 (see, for instance,
Rosch and Vexler, 2006, Lemma 3.2). Therefore, by setting d(h) = h?~%/?2
and ¢ = max{5,4/3} (notice that 4/3 < d/(d — 1) for d = 2,3) such that
n(0,h) < h?~4/2 Theorem 5.1 and Corollary 5.1 imply

THEOREM 6.4 Suppose that Q is a conver domain with polygonal (d = 2) or
polyhedral (d = 3) boundary. Then, we have

o o o _d
@ — anllL2ye + 10 = Onll i @)e + 15 = PallL2) < C R
with a constant C' > 0 independent of h.

Notice that the order of convergence now differs from the one of the interpo-
lation error. The situation changes if we restrict ourselves to two-dimensional
domains with polygonal boundary and a maximum angle less or equal 7/2. To
see this, let us define the weighted L?-norm as follows:

lall2 = /Q 4(@) s(2)” de, g € L), (20)

where ¢ : Q@ — R, is defined by

¢(z) = /|r — xo|? + 02, (30)
with given xo € Q and 6 > h > 0.

THEOREM 6.5 Let 2 C R? be a convex polygon whose mazimum aperture an-
gle is less or equal w/2. Moreover, suppose that (Vy, Ly) satisfies the discrete
weighted inf-sup condition, i.e., for every 6 > h and every point xo € €, there
holds

sup (Pn, V- dn)

> ¢|log8 Y2 |pnllc-> VYpu € L, 31
e 1Vénle s (31)

with a constant ¢ > 0 independent of h, 0, and xy. Then, for every ¢ > 0, the
discrete solution satisfies

|z — ﬁh”L?(Q)? +||lv— 'L_)hHHl(Q)Z + ||Z_)—]3h||L2(Q) < Ch'—®

with a constant C > 0 which depends on €, but not on h.
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Proof. According to a result from Kozlov, Maz’ya and Rossmann (2001, Section
5.8.1), for all ¢ € [1,00], the solution v € (V x L) of (1) belongs to W249(Q)? x
Wha(Q), provided that u € LY(Q)?, and there holds

lvllw2.a0)2 + Ipllwra@) < cllullpaq)- (32)

Moreover, Duran and Nochetto (1990) proved that, for all discretizations ful-
filling Assumption 6.1 and (31), there exists a constant ¢ > 0 independent of h
such that

3 . .
o = vnllzoxqes < chllog()f* ( inf [lv = wlwioe@p + inf llo=plr~):

Hence, together with (32), (24) and (25) give the existence of a constant ¢, > 0,
depending on €, but not on h, such that for every e > 0

||’U — UhHLoo(Q)z < ce h?=¢ ||u||Loo(Q)2.

Then an argument, analogous to the proof of Theorem 6.2, finally implies the
assertion. -

REMARK 6.3 The discrete weighted inf-sup condition (31) is satisfied by various
common stable finite elements, as proven in Duran and Nochetto (1990). We
only mention

e the Taylor-Hood element on triangles or quadrilaterals (i.e., Po/P1- and
Qo /Q1-elements, respectively)

e the Mini element

e the Crouzeiz-Raviart element of different order k > 2, i.e., the Py /Pr_1-
element enriched with bubble functions.

If the state constraints are only imposed in a compact subset of €2, the results
of Duran and Nochetto (1990) allow to get same the order of convergence as
in the interpolation error (28), even if the maximum angle is larger than /2.
Notice that, in the presence of no-slip boundary conditions, it appears natural
to consider the state constraints only in the interior of €2, as illustrated in the
introduction.

THEOREM 6.6 Assume that Q is a convexr polygon and let ' C Q be given.
Furthermore, we assume that, for every h, a union of cells of T, denoted by ",
exists that contains ' and fulfills dist(Q,Q\ Q") =: d > 0 and dist(Q”,T") =:
0 > 0 with d and § independent of h. Furthermore, suppose that (Vy,, Ly,) satisfies
the discrete weighted inf-sup condition (31). Then, for every e > 0, there is a
constant C' > 0 depending on €, but not on h, such that

|z — ﬁh”L?(Q)? +||lv— 'L_)hHHl(Q)Z + ||}_)—Z3h||L2(Q) < Chl~e.
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Proof. The proof is similar to the proof of Duran and Nochetto (1990, Theorem
4.1). In view of Theorem 6.3 and embedding theorems for d = 2, we have
Vv e L9(Q) for all ¢ < co. Thus, Theorem 4.1 in Galdi (1994) yields for every

€ [1,00] that (v,p) € W2I(Q)? x WL(Q) if u € LY (Q)?, which is clearly
fulfilled due to the control constraints. Thus we obtain (v,p) € W29(Q")? x
Wa(Q") for all ¢ < co. Based on (31), it is shown in Duran and Nochetto

(1990) that

h? v o .
Jo—onll2-s < e 5 Mg 8 (IV(v=ifw) |2+ v = ifolZ-s - Ip — o)) (33)

holds for all # > h > 0 provided that Q is a convex polygon. Here, ¢ and the
associated norms are defined as in (30) and (29). Recall that V,, = L*°(Q))2.
We start by estimating

[o = vnllvee < llv=dhollvee + llon = djollva -
Since |vy, — i%v] € C(Q), there is an 2o € Ty C € such that ||v, — o]y, =

|vn(zo) — ijv(xo)|. In all what follows, we use this x¢ in the definition of ¢ in
(30). The inverse estimate (26) implies

[vn (o) — ipv(zo)| < llon — ihol Lo ()2

_ . 62 )
<c¢h™! lon = ipvll 22 < c " llop, — ipv|lc-a,

where the last estimate follows from the definition of || - || -4+ because of § > h.
Now, one can apply (33) and continue with

Jo = vnllvee < llo = iRellva. + cOllogbl? (IV (0 = o)== + lIp — #pll— )
g 3/2 v
+ec - + 0] log 0] lv —ijvlc-a.

For an arbitrary w € L>°(§2) and v > 0, we obtain

1+v/2 1+v/2

w]l¢-crn < lw ¢ )||L2(Q”) + lwe )||L2(Q\Q”)

(240 1
< ||w||Lao(Q,,) /Q”g (2+ )d:Z?2 —|—C||’w||Lz(Q)7

where we used the norm equivalence of || - || ~@+.,) and || - ||z2 on Q\ Q" which
holds due to dist(zg, 2\ Q) > d > 0. Together with

—(2+4v) < ch™v, v>0
‘///< dx_{c|10g9|,V—0
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(see Duran and Nochetto, 1990), it follows with ¥ = 0 and v = 2, respectively,
that

o= vnllva < llo = ifollp o2
+ 01og 62 ( V(0 = i50) | e (@myz + IV (0 = i50) | 2(y2
+lp — iy pll Loy + llp — in||L2(Q))

0 , ,
o5+ 1og 82 (Ilv = igvllzeamye + lo = i5vllzacape)-

Now we choose § = h|logh| such that 6§ > h for sufficiently small h. Because of
the regularity of (v, p) stated at the beginning of the proof, applying (24) and
(25) then yields the existence of a constant ¢. > 0, depending on ¢, such that

||’U — vhHVoo < ce h?—¢ ||’u,||Lao(Q)2 Ve > 0.

Here, we tacitly assumed that h < 1/e = 0.3679 to ensure |log(h|log h|)| <
|log h|. Notice, moreover, that the assumption dist(Q2”,T) =: § > 0 implies
dist(wy,T') > 0 for all T € Q" if h is sufficiently small. Hence, the above
regularity result implies

pEWl’q< U wT> Vg < oo
TCQ

such that (25) applies to ||p — i)p|| (o). For the rest of the proof, we argue
as in the proof of Theorem 6.2, which gives the assertion. [

6.3. Discretization of the data

Up to now, problem (P) is no finite dimensional optimization problem since
we have not discretized the problem data, i.e., the desired state z and the set
K. To this end, let us introduce the space of linear (bilinear) finite elements

Vh(l) C Vj, and the standard nodewise linear interpolant i;ll): c()? — Vh(l).
In addition, we introduce a discretization of K, denoted by Kj; C V. The
corresponding completely discrete problem for

up = Z Ui Pi,
i=1
for simplicity also denoted by (Pj), is then given with
. 1 (1 e
min Ty (on,wn) = 5 [lon = i3 2l 32y + 5 lunlZa(oye
st. v, =Spu
(P1) h h Uh

and i\, € K,
up €Uy, a<u; <b Vie{l,.. n}.
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REMARK 6.4 Notice that it depends on the concrete structure of K and its
discretization whether (Py,) is straight forward to implement as a finite dimen-
sional optimization problem or not. In the cases, discussed in this paper, the
linear (bilinear) interpolation operator ig) allows a nodewise evaluation of the
state constraints and hence an easy implementation of (Py) if K is discretized

properly (see Remark 6.6 below).

To shorten the description, we assume in all what follows that Assumption
3.2 is fulfilled with 6(h) = ch®~¢ with a fixed but arbitrary € > 0 (see Sections
6.1 and 6.2). Moreover, for the sake of simplicity, we suppose that {2’ is a union
of cells. If these assumptions are not fulfilled, the subsequent analysis can easily
be modified.

ASSUMPTION 6.2 Beside Assumptions 2.1-2.2 and 3.1-3.3, assume that z €
H2(Q). Furthermore, let Assumption 3.2 hold with

§(h) = ch>= (34)

with some fized but arbitrary € > 0. Moreover, let ' be a union of cells of Ty, for
every h > 0 and assume that S: L>=(Q)? — W24(Q')? for all ¢ < co. Moreover,
suppose that Ky, is convex with associated support functional s, : VI — R that

fulfills
ls(p) = sn(p)| < csh* |lpllve VeV (35)

with a constant ¢cs > 0. To guarantee the existence of a solution to (Py), we
require the existence of a feasible point, i.e., there is a u € Uy, with a < 4; <
bVie{1,...n} and iV S, @y, € K.

REMARK 6.5 Notice that the hypothesis on S and 6(h) agree with the theory
presented in Sections 6.1 and 6.2 (see in particular, Corollary 6.1 and the proofs
of Theorems 6.5 and 6.6).

LEMMA 6.1 Suppose that Assumption 6.2 holds. Let u € L>=(2)?% be arbitrary
and set as before vy, = Spu. Then, for every € > 0, there is a constant ¢ > 0,
independent of w and h, such that

(1 2
lon = i onllvee < €= full L (@ya-
Proof. The arguments are standard. For the convenience of the reader, we

sketch the proof for a single component of vy, for simplicity also denoted by vy,.
Hence Voo = L*(§'). Let £ > 0 be arbitrary. We start by estimating

(1 (1 (1
llon =i ol Ly < i (0 =vm) | ey + lo=18 v L (@) + 0 =0n]| L)



Optimal control of the Stokes equations 275

with v = Swu. Since ' is a union of cells by assumption, we find for the first
addend

(1) _ +(1) —
13 0 = )l ey = a1 (0 = o) s ry = ey mase o) — vn ()

< g o = sl = o = o,

where we used that ig) is the standard linear (bilinear) interpolation operator.

(1 .
Here z; denotes a node of 7. Moreover, Z;l ) satisfies

lo = i vl ey < h? 9 V20| Loy Vg < o0

(see Brenner and Scott, 1994, or Bernardi, 1989). Thus, by choosing ¢ = d/e <
00, the mapping properties of S together with Assumption 3.2 and (34), i.e.

[[v = vnll ooy < P> lul| oo (s
give the assertion. [

THEOREM 6.7 Assume that Assumption 6.2 is fulfilled. Then, for every ¢ > 0,
the unique solution of (Pr,) satisfies

_ _ _ _d_
@ = @nl L2(ye + 10 = Onll @y + 1P = PrllLo(@ye < Ch*27°
where the constant C' > 0 depends on € but not on h.

Proof. Since z is sufficiently smooth by assumption, we have ||z — ig)zﬂw(md <
ch? ||zl gr2(ye due to standard interpolation estimates. In view of this, the
discretization of z can easily incorporated in the presented analysis. The under-
lying arguments are presented in detail in Meyer (2008, Section 7). In addition,
due to Assumption 3.3, it is sufficient to require the control constraints only in
the coefficients of u, as done in (Pp). If K is discretized, then the proofs of
Lemmata 5.2 and 5.5 have to be modified, more precisely (15) and (11), respec-
tively. We exemplarily consider (11), the arguments in case of (15) are similar.
Using (35) and Lemmata 5.1 and 6.1, we obtain for all i with ||i[[v. =1

(. i) Shuahve v < (i, Snua)ve v + 1Shua — iy S uallve,
< (i) — ch* 5 (yam = ) + B ||ual| e ()0
< sn(ft) — Chzi%is(%ﬂ' —Cy — Cs),
where ¢, is defined as in (11). Hence, if we choose v4 > (¢, + ¢5)/7, then the
same arguments as in the proof of Lemma 5.5 imply that u, is feasible for (Py,).

Again 74 depends on @ and o, but not on h. Based on the feasibility of u. and
uq, one can argue as in the proof of Theorem 5.1 to verify the assertion. [
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Let us investigate two exemplary state constraints that are also used for the
numerical tests in Section 7:

KW .= {v e Vi|va(z) < v(z) < vp(z) ae. in Q'}
K® .= {v € Vaol|lv(z)|za < 0 ae. in Q'}.

First, we consider K1), i.e., the cases of box constraints. Let us assume that
Q' coincides with a union of cells of 7;, and denote the set of all nodes of 7, by
N(73,). We consider the following finite dimensional optimization problem

uiﬂelgh Jn(vn, un)
(PS)) s.t. v = Shpup B
and  ven(z;) <wvpx;) <vpp(x;) Yo, € N(Tp) N
a<u; <b Vie{l, .. n},

with vy j, = ig) vy and v, ;, defined analogously.

COROLLARY 6.2 Suppose that Q is a convex polygon and let ' C § be a union
of cells of Ty, for all h > 0. Assume in addition that Q' fulfills the assumptions of
Theorem 6.6. Furthermore, suppose that z € H*(Q)? and v,,v, € W2 ('),

Then the solution of (P;ll)) satisfies for every € > 0
1@ — anll L2y + 17 = Onll a1 @2 + 1P = PllL2@) < O,
where the constant C > 0 depends on €, but not on h.

Proof. First observe that the state constraints in (Pg)) are equivalent to the
ones in (Py,) if K1) is discretized as indicated above, which is demonstrated
in the following. We exemplarily consider the upper bound v,. The case with
lower constraint can be discussed analogously. Let ¢;, i« = 1,...,m, denote the

ansatz functions associated to the linear (bilinear) interpolant ig). Since they

are non-negative and satisfy o;(z;) = d;;, the state constraints in (Pg)) are
equivalent to

(ig) vp)(x) <vpp(z) ae in Q@ PN ig) o € K}(Ll)7
where K ,(11) is given by
K;(ﬂ) = {v € Vo |v(2) <wvpn(z) ae. in Q'}. (36)

Thus, the nodewise state constraints in (P;ll)) indeed agree with the state con-
straints in (P,) if K is discretized as done in (36).
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To apply Theorem 6.7, we have to verify (35). Given an arbitrary v € K1),
we define 11 1) (v)(x) := min{v(x), vp,n(7)}, hence [|v — ) (v)|lve, < [lop —
h h
vp,h||v.. - Therefore we have for every p € V2

(s v vee < (s e ())vz v +llellve lve =vsnllve Vo e KW,

Since IT .1 (v) € K,(Il), this gives

KM

s(n) < sn(w) + lpllve llvs = vp,nllve- (37)

An analogous argument with Iz (v)(z) := min{v(x), vp(2)}, v € K,Sl), implies

sn(p) < s(p) + llullvz, lve = venllve - (38)
Together with (37), this verifies (35) provided that v, is sufficiently smooth,
for instance v, € W2>(2)?. The remaining conditions in Assumption 6.2,

in particular (34), are verified by the proof of Theorem 6.6 which gives the
assertion. -

REMARK 6.6 We point out that the introduction of the standard linear (bilin-
ear) interpolant i;ll) in (Pp) allows to obtain the desired order of convergence
even if the state constraints are only evaluated in the nodes of the triangulation
which is easy to implement (see Remark 6.4). The situation changes if KW s
for instance discretized using quadratic ansatz functions which complicates the
implementation. Similar problems arise if the bound o in K is not constant

and has to be discretized.

Now, let us turn to K, i.e., constraints on the Euclidian norm of v. For

this case we set K ,(LQ) = K@ The completely discrete problem is now given by

min  Jp(vp, up)
up€Up

(P§L2)) s.t. v = Shpup
and  |op(z)3e <o Vo, e N(T) N
a<u; <b Vie{l,..,n}
COROLLARY 6.3 Suppose that € is a convex polygon and Q' C Q fulfills the

assumptions of Corollary 6.2. Furthermore, assume that = € H*(Q)?. Then,
the solution of (ng)) satisfies for every € > 0

1@ — anll L2y + 17 = Onll a1 @2 + 1P = PrllL2@) < CAF,
where the constant C > 0 depends on €, but not on h.
Proof. Similar arguments as in the proof of Corollary 6.2, together with the
convexity of |-|2, imply that the state constraints in (P;lz)) are equivalent to

|(i§ll)vh)(:t)|]12§2 < g a.e. in Q. Thus, Theorem 6.7 and the same arguments as in

the proof of Theorem 6.6 give the assertion. [



278 J. C. DE LOS REYES, C. MEYER, B. VEXLER

7. Numerical experiments

In this section we perform numerical tests in order to verify the finite element
error estimates obtained in the previous sections. The convex polygonal domain
Q= (0,1) x (0,1) was discretized using a uniform triangular mesh. Boundary
conditions of Dirichlet type were imposed on the boundary.

In the first example, the horizontal velocity on the upper boundary takes the
value one, while the vertical component is zero. On the remaining boundary
the condition is of no slip type. This problem is known in the literature as the
"driven cavity flow".

In the second example we consider homogeneous Dirichlet boundary condi-
tions and try to track the fluid to the vector field given by

L ( sin(mx)? - sin(my) - cos(my) ) ' (39)

—sin(my)? - sin(mz) - cos(mz)

Let us point out that the latter test case is covered by the above theory,
whereas the driven cavity example is strictly speaking not captured by the afore
presented analysis due to a lack of regularity induced by the non-continuous
inhomogeneity in the boundary conditions. Nevertheless, the driven cavity flow
is investigated here as it can be seen as a benchmark for the Stokes system.

For the finite element discretization, we use Taylor-Hood elements with
quadratic ansatz functions for the velocity and linear functions for the pressure.
The controls were also discretized using piecewise linear polynomials, consistent
with the conditions in Assumption 3.3. The discretized inequality constrained
optimization problems are solved by applying a semi-smooth Newton method
as stated in Hintermuller, Ito and Kunisch (2002). The inequality state con-
straints are added to the cost functional through a penalized Moreau-Yosida
regularization term, see, e.g., De Los Reyes and Kunisch (2005).

For the solution of the discretized systems appearing in each semi-smooth
Newton step a penalty method is applied (see Gunzburger, 2000, p. 125). This
method considers, for 0 < € << 1, the modified Stokes system

(5%) ()= (%)

where A, B, and M are the matrices resulting from the finite element dis-
cretization of (1), I is the identity matrix, and v, p, and @ are the vectors for the
velocity, pressure, and control, respectively. A similar penalty scheme was used
for the adjoint equations. For convergence results on this approach we refer to
Gunzburger (2000).

The semi-smooth Newton algorithm stops if the L2?-residuum of the dis-
cretized control is lower than a given tolerance, typically set as 107%. The
method is initialized setting the controls equal to 0 and solving successively the
Stokes and the adjoint equations. With these values at hand, the active and
inactive sets are determined for the first iteration.
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The resulting linear systems in each semismooth Newton iteration were
solved using MATLAB exact solver. All algorithms were implemented in MAT-
LAB 7.4 and run on a 300 GHz machine with 24 GByte RAM and a precision of
eps=2.2204e-16.

7.1. Example 1: box constraints

First, we consider pointwise box constraints on the state, i.e., constraints of the
form K. To be more precise, the state constraint is given by y; > —0.15 in
Qs =10.1,0.9] x [0.1,0.9]. The target is to diminish the backward flow velocity
and, as a consequence, the intensity of the vortex. The desired state is given
by z = 0. Thus, the example fits to the setting of Corollary 6.2. The Tikhonov
regularization parameter is set to o = 0.1, while we choose 10° as penalization
parameter for the state constraints.

With a mesh size h = v/2/32 the algorithm stops after 20 iterations. The
horizontal and vertical components of the optimal control are depicted in Fig. 1,
for h = v/2/64. In Fig. 2 the optimal control vector field and the active set
for the horizontal velocity component are depicted. From the graphics, the
concentration of the irregular part of the horizontal control on the active set
can be observed.

In Table 1 the convergence history is registered. The experimental error
norms for different values of h are tabulated. We consider as optimal solution
the one obtained numerically with a mesh step size h = v/2/160, which will be
denoted by uj in all what follows. The quantity #it refers to the number of
semi-smooth Newton iterations.

Table 1. Example 1, convergence history.

V2/h 5 10 20 40 80
#it 4 8 20 20 32
llun — | L2 1.1601 0.7982  0.4804  0.2572  0.1098

To illustrate the convergence behavior, we define the quantity

_ log(llun — ujllr2) — log(llun,. — ujllz2)
EOC,(u) == Tog(1) = Tog(het) (40)

as the experimental order of convergence for the L2-norm of u. Here, Aot
refers to the finest mesh size, hence in this case hyer = \/5/ 80. The values for
EOC5(u) are listed in Table 2. From this table, a rough coincidence between
the theoretical and experimental convergence order can be inferred, since the

experimental order of convergence order averages approximately 1 — e. This
observation confirms the theoretical predictions of Corollary 6.2.
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Table 2. Example 1, experimental order of convergence

V2/h 5 10 20 40 80

EOCs(u) 085 095 106 123 -

7.2. Example 2: constraint on the Euclidian norm of the velocity
vector

In this example we consider the state constraint v?(z) + v3(z) < 10~ in the
center of the cavity. With this constraint, the norm of the velocity vector field
is restricted pointwise in the subdomain Qg = [2, 2]2. The desired state is given
as in (39). As already mentioned before, this example is covered by the above
analysis, to be more precise by Corollary 6.3. Thus, we expect a convergence

rate of order 1 — .

The resulting velocity vector field, with the Tikhonov parameter value o =
0.1 and the Moreau-Yosida parameter value 10°, is shown in Fig. 3, together
with the optimal state without pointwise state constraints. The obstacle effect
of the state constraint can be observed in the plot.

Figure 3. Example 2: optimal velocity vector field without state constraints
(left) and with state constraint (right); h = v/2/24.

The evolution of the finite element error and of the convergence rate as
h — 0 is registered in Table 3. The Tikhonov parameter is set to o = 0.2, while
we used 5 x 103 for the Moreau-Yosida penalization of the state constraints.
Here, we consider as optimal solution uj the one obtained numerically with a
mesh step size h = \/5/ 240. In average, an approximate order of 1 — e for the
L?-norms of control can be observed also in this example. Thus, the theoretical
error estimate of Corollary 6.3 can be seen to be experimentally verified.
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Table 3. Example 2, convergence history.

V2/h 5 15 30 60 120
Hit 7 8 10 20 14
lun — utl L2 1.3108  0.5984  0.3637  0.2001  0.0863
EOC,(u) 0.85 0.93 1.04 1.21 -
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