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Abstract: The problem of cooperation of Model Predictive Con-
trol (MPC) algorithms with steady-state economic optimisation is
investigated in this paper. It is particularly important when the dy-
namics of disturbances is comparable with the dynamics of the pro-
cess, since in such a case the classical hierarchical multilayer struc-
ture is likely to be not efficient and give the economic yield smaller
than expected. This is because the economic nonlinear optimisation
problem cannot be then solved on-line to update the optimal operat-
ing point as frequently as needed. On the other hand, simple target
set-point optimisation based on linear models can be also insuffi-
ciently accurate. This paper introduces approximate formulations
of the target set-point optimisation problem which tightly cooper-
ates with the MPC and is solved as frequently as the MPC controller
executes. Linear, linear-quadratic and piecewise-linear formulations
are discussed, tuning guidelines are also given.
Keywords: predictive control, optimal control, optimisation,

economic steady-state optimisation, nonlinear control systems, con-
strained control.

1. Introduction

The technique of process automation has been based on the hierarchical (mul-
tilayer) approach for years. In general, from a functional point of view, the
main control layers are: the regulatory (feedback) control layers, which keep
process at given operating points and the optimisation layer, which calculates
these set-points (Brdys and Tatjewski, 2005; Findeisen et al., 1980). The opti-
mal set-points can be either optimal dynamic trajectories or optimal constant
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(i.e. steady-state) values of the set-points, which result in maximising the eco-
nomic yield. Moreover, the optimal trajectories or the set-points must satisfy
the constraints, which determine safety and quality of production.
As far as the contemporary, advanced control systems are concerned, the

regulatory control layer consists of basic (direct) dynamic control layer, which
is usually comprised of PID controllers, and a higher constraint control layer,
called also advanced control layer or Model Predictive Control (MPC) control
layer (Blevins et al., 2003; Brdys and Tatjewski, 2005; Kassmann et al., 2000;
Qin and Badgwell, 2003; Tatjewski et al., 2006). Model Predictive Control is
recognised as the only advanced control technique (i.e. more advanced than the
well known PID approach) which has been very successful in practical applica-
tions. MPC has influenced not only the directions of development of industrial
control systems but also research in this area (Brdys and Tatjewski, 2005; Hen-
son, 1998; Maciejowski, 2002; Morari and Lee, 1999; Qin and Badgwell, 2003;
Rossiter, 2003; Tatjewski 2007). The idea of MPC consists in predicting at each
sampling instant behavior of the controlled plant for a predefined future time
horizon under assumed sequence of control input values and solving a dynamic
optimisation problem. As a result, an optimal sequence of control values is ob-
tained, but only the first value from this sequence is used. Having updated the
measurement of the process output (or state) variables, the prediction is shifted
one step forward and the whole procedure is repeated at the next sampling
instant. The optimisation problem with control-type performance index that
minimises, over a predefined prediction horizon, the values of the control error
is usually used. The most important advantage of the MPC algorithms is the
fact that they have the unique ability to take into account constraints imposed
on process inputs (manipulated variables) and outputs (controlled variables) or
state variables, which usually decide on quality, economic efficiency and safety
of production. Furthermore, MPC techniques are very efficient in multivariable
process control. Finally, the underlying idea of MPC is relatively easy to explain
to engineering and operating staff, which is of fundamental importance when it
comes to introducing new techniques into industrial practice.
The values of measured or estimated disturbances have to be taken into

account in the economic optimisation problem since they determine the optimal
operating point. When the classical multilayer control system structure is used,
it is usually assumed that the disturbances are slowly-varying when compared
to the dynamics of the process. Hence, the steady-state economic optimisation
problem can be solved reasonably less frequently than the MPC controllers
executes. Provided that the dynamics of disturbances is much slower than
the dynamics of the plant, such an approach performs well. Unfortunately,
much more typical of industrial practice are the cases when the dynamics of
the disturbances is not slow, in the worst case it may be comparable with
the process dynamics. Very often the disturbances, for example flow rates,
properties of feed and energetic streams etc., vary significantly and not much
slower than the dynamics of the controlled process. In such cases operation in
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the classical hierarchical structure with infrequent economic optimisation can
result in a significant loss of economic effectiveness. Hence, the optimal set-
points have to be computed more often. This can be done efficiently in the
control systems which use MPC algorithms.

The paper is concerned with the problem of cooperation of MPC algorithms
with steady-state optimisation when the dynamics of disturbances is not much
slower than that of the process. Ideally, it would be best to perform full nonlinear
optimisation but with increased frequency. Unfortunately, such an approach has
limited applicability and is rarely implementable on-line. To circumvent this
drawback, in practice the MPC algorithm is supplemented with an additional
simple steady-state target optimisation. Since it usually employs a linear model
corresponding to the dynamic one used in the MPC algorithm, it may be not
effective. Hence, more advanced target recalculation is necessary.

The contribution of this paper is the introduction of approximate formu-
lations of the target set-point optimisation which uses nonlinear steady-state
model approximation. It tightly cooperates with the MPC and is performed
at every sampling instant. Linear, linear-quadratic and piecewise-linear ap-
proaches to this approximation problem are proposed. The method giving the
best results for a particular process actually depends on its nature, precisely on
the nonlinearity of its steady-state characteristics.

The outline of the paper is as follows. First, in Section 2, the multilayer,
hierarchical control system structure with model predictive control algorithm
and steady-state economic optimisation is presented. Section 3 describes MPC
dynamic optimisation problems. The main part of the article, Section 4, de-
tails the MPC target calculation problem with steady-state model approxima-
tion. Linear and linear-quadratic approximations and resulting optimisation
problems are thoroughly discussed, piecewise-linear approach is also briefly de-
scribed. Simulation results of the described algorithms applied to two nonlinear
benchmark processes are presented in Section 5, and the paper is summarised
in Section 6.

2. Model predictive control with steady-state economic

optimisation

Fig. 1 depicts the structure of the hierarchical control system. In general, each
layer operates with different frequency of intervention. A supervisory global
plant-wide optimisation layer aims at maximising the economic yield obtained
from many technological processes. On the contrary, the Local Steady-State
Optimisation (LSSO) layer is used only so as to maximise the yields from one
single plant. Typically, the plant-wide optimisation period is one day, the LSSO
problem is repeatedly solved every hour, the MPC layer executes every minute
and the basic controller layer is activated as frequently as every second (Qin
and Badgwell, 2003).
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Figure 1. Hierarchical control system structure with MPC advanced control
(set-point control) layer with steady-state target calculation

The LSSO layer uses a comprehensive nonlinear steady-state model of the
process, the resulting economic optimisation problem is usually difficult and
time consuming, with constraints which significantly decrease the set of possi-
ble solutions. The LSSO layer computes the optimal set-point values for the
MPC layer taking into account current values of disturbances (measured or es-
timated) affecting the plant, the information from the plant-wide optimisation
layer and from the operator. As mentioned in the introduction, if variability of
disturbances is not significant in comparison with the dynamic properties of the
process, such a structure works well, because the steady-state operating points
are close to optimal over long time periods. Unfortunately, when the distur-
bances vary faster, i.e. with the dynamics comparable with the dynamics of the
process, the economic performance is likely to be below expectations.

As increasing the frequency of the LSSO layer is limited in practice because
of its high computational burden, the MPC layer is supplemented with an addi-
tional Steady-State Target Optimisation (SSTO) layer, as it is shown in Fig. 1
(Blevins et al., 2003; Kassmann et al., 2000; Qin and Badgwell, 2003; Tatjew-
ski, 2007). The SSTO closely cooperates with the MPC layer, the steady-state
operating-point determined by the LSSO layer activated less often is recalcu-
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lated as frequently as the MPC executes. Because of that, the SSTO layer uses a
simplified steady-state model, rather than the comprehensive model used in the
LSSO layer. In practice, a linear steady-state model resulting from the dynamic
model used in the MPC algorithm is typically employed (Blevins et al., 2003;
Kassmann et al., 2000; Qin and Badgwell, 2003). Such an approach leads to
a linear programming SSTO problem assuming the objective function is a lin-
ear one. Unfortunately, it may lead to substantial loss of economic optimality,
since this model is only approximate and may be significantly different from the
comprehensive one used at the LSSO layer, for most of the operating points.
The problem has been recognised in Kassmann et al., (2000), treated explicitly
using uncertainty estimation in the steady-state gain matrix, in the framework
of robust target steady-state calculation. Linearisation of the comprehensive
nonlinear model, which leads to a quadratic programming SSTO problem has
been reported (Qin and Badgwell, 2003). Recently, the on-line adaptation of
the linear, linear-quadratic or piecewise-linear approximate models has been
proposed (Ławryńczuk et al., 2006; Tatjewski et al., 2006). The idea behind the
latter approach is that the steady-state model used at the SSTO layer should
be consistent with the one used at the LSSO layer rather than with the linear
dynamic model used at the MPC layer. The best solution would be, certainly,
to repeat the nonlinear LSSO every time the MPC controller executes, thus
eliminating the need for the MPC-SSTO task. This approach may be nowadays
possible, but still only for rather limited cases of slow process and relatively
simple nonlinear steady-state models.
As far as economic optimisation performed at the LSSO layer is concerned,

one usually aims at maximising the production profit. Typically, linear depen-
dence of costs of individual materials on their prices is assumed. Thus, in the
multilayer control system structure the economic optimisation layer has to solve
usually the following problem

min
uss

{

JE(k) = cT
u uss − cT

y yss
}

subject to:
umin ≤ uss ≤ umax

ymin ≤ yss ≤ ymax

yss = F (uss, w̃)

(1)

where a differentiable function F : ℜnu ×ℜnw → ℜny denotes a comprehensive
steady-state process model, usually a nonlinear mapping, which can be often
given in an implicit numerical form, nu, nw, ny are the numbers of manipulated
variables, disturbances affecting the plant and controlled variables, respectively,
w̃ is the current estimate or short-term prediction or measurement of distur-
bances. The vectors uss ∈ ℜnu and yss ∈ ℜny are related by the steady-state
process model yss = F (uss, w̃). The vectors cu ∈ ℜnu , cy ∈ ℜny represent the
prices resulting from economic considerations, umin, umax, ymin, ymax are vectors
of constraints imposed on input and output variables, respectively.
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The disturbances affecting the process can be regarded as the parameters of
the optimisation problem (1). In order to obtain both reliable and economically
viable solution two requirements have to be met. Firstly, the values of these
disturbances (measured or estimated) must be known. Secondly, the steady-
state model F of the process should be accurate enough and take into account
all the significant disturbances. It should be remembered, however, that in
practice, because of inaccuracies and uncertainties, the obtained solution to
the economic optimisation problem may be far from the real optimal operating
point. If the disturbance measurements and the model do not correspond to
the reality, the optimisation layer is likely to give not adequate set-points. Even
if significant uncertainty is encountered, but the disturbances can be assumed
to be constant over long time periods, using in an approximate way additional
measurements from the plant can lead to improved optimality of the determined
set-point values (Brdys and Tatjewski, 2005; Tatjewski 2007).

3. MPC dynamic optimisation problems

At first, the most typical situation is considered when the numbers of controlled
variables, y, and manipulated variables, u, are equal, i.e. nu = ny. The MPC
dynamic optimisation problem is as follows

min
∆u(k)

{

JMPC(k) =

N
∑

p=1

‖ysp(k+p|k) − y(k+p|k)‖2
Mp

+

Nu−1
∑

p=0

‖∆u(k+p|k)‖2
Λp

}

subject to:

umin ≤ u(k + p|k) ≤ umax, p = 0, . . . , Nu − 1 (2)

−∆umax ≤ ∆u(k + p|k) ≤ ∆umax, p = 0, . . . , Nu − 1

ymin ≤ y(k + p|k) ≤ ymax, p = 1, . . . , N

where

∆u(k) =







∆u(k|k)
...

∆u(k + Nu − 1|k)






(3)

is the vector of future control increments (i.e. decision variables of the algo-
rithm), N and Nu denote prediction and control horizons, respectively,Mp ≥ 0

and Λp > 0 are diagonal weighting matrices of dimension ny × ny and nu ×nu,
y(k + p|k) denotes the output prediction of the outputs for a future sampling
instant k + p, calculated at current sampling instant k using a dynamic model
of the process. The set-point trajectory is typically assumed to be constant over
the prediction horizon and equal to the desired set-point

ysp(k + p|k) = yss, p = 1, . . . , N (4)



Cooperation of model predictive control with steady-state economic optimisation 139

or, alternatively, a reference trajectory can be used

ysp(k + p|k) = γysp(k + p − 1|k) + (1 − γ)yss, p = 1, . . . , N. (5)

In the latter case ysp(k|k) = y(k), γ is a design parameter satisfying 0 < γ <
1. It means that a prescribed continuous trajectory approaching the required
steady-state, defined by a first-order filter, is applied as the set-point trajectory
in the MPC algorithm.
For future considerations, without loss of generality, the constant set-point

trajectory is assumed. Thus, the problem (2) can be rewritten as

min
∆u(k)

{

JMPC(k) = ‖yss − y(k)‖2
M

+ ‖∆u(k)‖2
Λ

}

subject to:

umin ≤ J∆u(k) + uk−1 ≤ umax

−∆umax ≤ ∆u(k) ≤ ∆umax

ymin ≤ y(k) ≤ ymax

(6)

where

umin =







umin

...
umin






, umax=







umax

...
umax






, uk−1 =







u(k − 1)
...

u(k − 1)






, ∆umax =







∆umax

...
∆umax






(7)

are vectors of length nuNu,

y(k)=







y(k + 1|k)
...

y(k + N |k)






, ymin=







ymin

...
ymin






, ymax =







ymax

...
ymax






, yss =







yss

...
yss






(8)

are vectors of length nyN ,

J =











Inu×nu
0nu×nu

0nu×nu
. . . 0nu×nu

Inu×nu
Inu×nu

0nu×nu
. . . 0nu×nu

...
...

...
. . .

...
Inu×nu

Inu×nu
Inu×nu

. . . Inu×nu











(9)

is the matrix of dimension nuNu × nuNu, M and Λ are diagonal matrices of
dimension nyN × nyN and nuNu × nuNu, comprised of matrices M and Λ,
respectively. If for prediction purposes a linear dynamic model of the plant is
used, as it is e.g. in the case of DMC (Cutler and Ramaker, 1979) or GPC
(Clarke et al., 1987) algorithms, the output prediction can be expressed as the
sum of the forced trajectory, which depends only on the future, i.e. on the input
moves ∆u(k) and the free trajectory y0(k), which depends only on the past

y(k) = G∆u(k) + y0(k) (10)
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where

G =











S1 0ny×nu
. . . 0ny×nu

S2 S1 . . . 0ny×nu

...
...

. . .
...

SN SN−1 . . . SN−Nu+1











(11)

is the dynamic matrix of the dimension nyN ×nuNu, which is composed of step
response coefficients.
If the output constraints are present in the economic optimisation task (1)

and, consequently, in the MPC optimisation task (2) or (6), the MPC may be
affected by the infeasibility problem. To cope with such a situation, the well
known approach is to soften the output constraints by using slack variables
(Maciejowski, 2002). Using a quadratic penalty for constraint violations, as-
suming that the set-point trajectory is constant over the prediction horizon (4)
and using for prediction a linear model of the plant (10), the MPC optimisation
problem would then be as follows

min
∆u(k), εmin, εmax

{

JMPC(k) =
∥

∥yss − G∆u(k) − y0(k)
∥

∥

2

M
+ ‖∆u(k)‖2

Λ
+

+ρmin ‖εmin‖2
+ ρmax ‖εmax‖2

}

subject to:

umin ≤ J∆u(k) + uk−1 ≤ umax (12)

−∆umax ≤ ∆u(k) ≤ ∆umax

ymin − εmin ≤ G∆u(k) + y0(k) ≤ ymax + εmax

εmin ≥ 0

εmax ≥ 0

where εmin, εmax are vectors of length nyN , and ρmin, ρmax are positive weights.
A disadvantage of the quadratic penalty is the fact that if the constraints are

active, for all finite values of ρmin and ρmax this approach results in them be-
ing violated to some extent, even if the violation is not necessary (Maciejowski,
2002). As an alternative, the 1-norm (sum of violations) of the constraint vio-
lations may be considered. The MPC optimisation problem would then be as
follows

min
∆u(k), ε

{

JMPC(k) =
∥

∥yss − G∆u(k) − y0(k)
∥

∥

2

M
+ ‖∆u(k)‖2

Λ
+

+ρmin ‖εmin‖1 + ρmax ‖εmax‖1

}

subject to:

umin ≤ J∆u(k) + uk−1 ≤ umax

−∆umax ≤ ∆u(k) ≤ ∆umax

ymin − εmin ≤ G∆u(k) + y0(k) ≤ ymax + εmax

εmin ≥ 0

εmax ≥ 0.

(13)
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4. MPC target calculation with steady-state model ap-

proximation

The best solution would be to always solve the nonlinear optimisation problem
(1) as frequently as needed. This frequency should be high enough to make it
possible to follow the changes of the disturbances. In the ideal case it should
be solved as frequently as the MPC controller executes. Unfortunately, mainly
because of computational complexity, it is usually impossible. That is why,
instead of the LSSO problem, the MPC SSTO problem is solved at each sampling
instant. In order to reduce the computation requirements, a simplified steady-
sate model of the process is used and this optimisation problem is posed in the
form of linear or quadratic programming.

4.1. Linear MPC steady-state target optimisation

In the simplest, standard approach to the MPC SSTO problem which is widely
applied in industrial practice (Blevins et al., 2003; Kassmann et al., 2000), it
is based on a constant linear steady-state model of the process derived off-line
from the dynamic (linear) one used in the MPC algorithm. Let H denote the
gain matrix of dimension ny × nu corresponding to this model. Taking into
account the nonlinear LSSO problem (1), the equivalent MPC SSTO problem
is cast in the following linear programming form

min
uss

{

JE(k) = cT
u ∆uss − cT

y ∆yss
}

subject to:

umin ≤ uss ≤ umax

ymin ≤ yss ≤ ymax

∆yss = H∆uss

yss = y0(k + N |k) + ∆yss

uss = u(k − 1) + ∆uss

(14)

where y0(k + N |k) is the value of predicted free output trajectory at the end
of the prediction horizon. In this formulation the free output trajectory should
be calculated first, then the LP SSTO problem (14) is solved to determine
the optimal steady-state uss and corresponding optimal yss, which is finally
used in the MPC optimisation problem (12) or (13) to calculate ∆u(k). In
the above SSTO problem formulation the free response y0(k + N |k) is used
since it comprises the information about the disturbances. More specifically, it
is influenced by disturbances affecting the output measurements or the process
itself.
In general, the SSTO optimisation task (14) may be affected by the infeasi-

bility problem, i.e. for the current operating point determined by u(k − 1) and
y0(k − 1) it may be infeasible. Since such a situation is unacceptable in on-line
control, one has to soften the steady-state output constraints ymin ≤ yss ≤ ymax.
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The SSTO problem becomes

min
uss, vmin, vmax

{

JE(k) = cT
u ∆uss − cT

y ∆yss + ρmin ‖vmin‖1 + ρmax ‖vmax‖1

}

subject to:

umin ≤ uss ≤ umax (15)

ymin − vmin ≤ yss ≤ ymax + vmax

∆yss = H∆uss

yss = y0(k + N |k) + ∆yss

uss = u(k − 1) + ∆uss

vmin ≥ 0

vmax ≥ 0

where vmin, vmax are vectors of length ny, and ρmin, ρmax are positive weights.

4.2. Linear MPC steady-state target optimisation with successive

linearisation

In linear MPC steady-state target optimisation problems, (14) or (15), the
steady-state properties of the process are characterised by the constant matrix
H corresponding to the dynamic model used in the MPC optimisation problem
(12) or (13). Such a method is likely to fail if the process is significantly non-
linear, because real steady-state nature of the process, which is dependent on
the current operating point, differs significantly from the steady-state descrip-
tion ∆yss = H∆uss. An appropriate alternative is then to use a successive
linearisation approach, i.e. to use in the SSTO problem the gains matrix H(k)
calculated from the comprehensive nonlinear model of the process, F (·, ·), which
is also used in the local steady-state optimisation (LSSO) problem (1). The ma-
trix

H(k) =

[

∂F (u(k − 1), w̃)

∂u1
. . .

∂F (u(k − 1), w̃)

∂unu

]

(16)

=















∂f1(u(k − 1), w̃)

∂u1
. . .

∂f1(u(k − 1), w̃)

∂unu

...
. . .

...
∂fny

(u(k − 1), w̃)

∂u1
. . .

∂fny
(u(k − 1), w̃)

∂unu















(17)

may be updated as frequently as the MPC controller executes (i.e. at every
sampling instant), or, alternatively, less frequently. In the latter case the SSTO
problems solved at a few consecutive sampling instants use the same matrix
H(k). The derivatives comprising the matrix H(k) are usually computed nu-
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merically using finite difference approach. Analogously to (14), the SSTO prob-
lem is then as follows

min
uss

{

JE(k) = cT
u ∆uss − cT

y ∆yss
}

subject to:
umin ≤ uss ≤ umax

ymin ≤ yss ≤ ymax

∆yss = H(k)∆uss + b
yss = F (uss, w̃) + ∆yss

uss = u(k − 1) + ∆uss

(18)

where b is the bias corresponding to unmeasured disturbances based on a com-
parison of measured and predicted outputs. To avoid the infeasibility problems,
the SSTO task with soft output constraints can be formulated, analogously to
(15).
Since the comprehensive steady-state nonlinear model of the process is used

to calculate on-line, taking into account current state of the plant, the gains
matrix H(k), it would be also reasonable to obtain successively a local lineari-
sation of the nonlinear dynamic model and employ it in the MPC algorithm.
Of course, this is possible, provided that such a model is available. If only the
steady-state nonlinear model is used and the MPC algorithm uses a linear dy-
namic model it is then logical to update the gains matrix of this model each
time a new matrix H(k) is determined.
The MPC optimisation problems (2), (6), (12) and (13) are well posed pro-

vided that nu = ny. However, the cases when the process has more manipulated
variables than controlled ones, i.e. nu > ny, are encountered in practice. Be-
cause the solution to the MPC dynamic optimisation problem is then not unique,
the control algorithm has to take advantage of additional degrees of freedom to
enforce economically better solution. This could be achieved by imposing an
additional constraint

u(k + Nu − 1|k) = uss (19)

and use it in the MPC optimisation problem. Alternatively, the same can be
achieved by adding to the performance function an additional penalty term.
Considering hard output constraints for short, analogously to (6) and using
(10), one has

min
∆u(k)

{

JMPC(k) =
∥

∥yss − G∆u(k) − y0(k)
∥

∥

2

M
+ ‖∆u(k)‖2

Λ

+ ‖uss−u(k + Nu−1|k)‖2
R

}

subject to:

umin ≤ J∆u(k) + uk−1 ≤ umax

−∆umax ≤ ∆u(k) ≤ ∆umax

ymin ≤ G∆u(k) + y0(k) ≤ ymax

(20)
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where the matrixR is of dimension nu×nu. The purpose of the last term in the
performance function is to enforce the future controls u(k + Nu − 1|k) to be as
close as possible to the optimal steady-state uss. Remembering that nu > ny,
it is obvious that the controller has enough freedom to calculate such values of
the decision variables since it is not in contradiction to the requirement that the
steady-state values yss should be achieved at the end of the prediction horizon,
i.e. y(k + N |k) = yss. It is possible because the steady state values uss and yss

are consistent, provided that the same gains matrices are used in both MPC
and SSTO problems. Of course, the above formulation can also use soft output
constraints, similarly to (12) or (13).

4.3. Quadratic MPC steady-state target optimisation with succes-

sive linear-quadratic approximation

For some nonlinear plants linear approximation of the steady-state characteristic
may be not sufficiently accurate. In such cases the quadratic approximation
can be employed provided that the economic optimisation performance index
JE(k) is a linear function as it is assumed in the LSSO problem formulation
(1). Taking into account the current operating point determined by u(k − 1),
at each sampling instant one has

yss = F (u(k−1), w̃)+H(k)∆uss +0.5







(∆uss)T B1(k) ∆uss

...
(∆uss)T Bny

(k) ∆uss






(21)

where the matrices Bn(k), n = 1, . . . , ny have the following structure

Bn(k) =















∂2fn(u(k − 1), w̃)

∂u1∂u1
. . .

∂2fn(u(k − 1), w̃)

∂u1∂unu

...
. . .

...
∂2fn(u(k − 1), w̃)

∂unu
∂u1

. . .
∂2fn(u(k − 1), w̃)

∂unu
∂unu















. (22)

The quadratic approximation given by (21) can be rewritten in a more compact
form as

yss = F (u(k − 1), w̃) + H(k)∆uss + 0.5(Iny×ny
⊗ (∆uss)T )B(k)∆uss (23)

where

B(k) =







B1(k)
...

Bny
(k)






(24)
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is a matrix of dimension nynu×nu and ⊗ denotes the Kronecker tensor product.
Analogously to (14) and (18) the SSTO problem is then as follows

min
uss

{

JE(k) = cT
u ∆uss − cT

y ∆yss

= cT
u ∆uss − cT

y (H(k)∆uss + 0.5(Iny×ny
⊗ (∆uss)T )B(k)∆uss)

}

subject to:

umin ≤ uss ≤ umax (25)

ymin ≤ yss ≤ ymax

∆yss = H(k)∆uss + b

yss = F (uss, w̃) + ∆yss

uss = u(k − 1) + ∆uss

which is a standard quadratic programming problem. It is worth emphasising
that the quadratic approximation (21) is used in the above SSTO problem only
in the objective function whereas the linear approximation is used in the con-
straints, otherwise it would not be possible to keep all the constraints linear.
Unfortunately, it may be the main disadvantage of the linear-quadratic approx-
imate formulation (25), since in many applications at the optimal steady-state
operating point the constraints are active. It may be then necessary to use a
more accurate approximation of the steady-state characteristic of the process
in the constraints than in the objective function JE(k). Nevertheless, in gen-
eral, the linear-quadratic approximation is expected to be more accurate than
the successive linearization only, especially, if nonlinearity of the steady-state
model corresponding to actively constrained outputs is not strong or only pro-
cess inputs are constrained.

Although in this paper the economic objective function JE(k) minimised at
the LSSO and SSTO layers is a linear combination of input and output values,
it is also possible, and in some cases natural for certain processes, that the
objective function is nonlinear, for example a quadratic one. In such cases the
linear-quadratic approximation is more appropriate than the linearisation.

The linear-quadratic approximation (21) and (23) depends on the current
state of the process. If the steady-state characteristic is of appropriate nature,
one can imagine that the approximation is a global one, calculated off-line, i.e.
the approximation is then not updated on-line since it does not depend on the
current operating point. It means that, instead of (23), one has

yss = F (u(k − 1), w̃) + H∆uss + 0.5(Iny×ny
⊗ (∆uss)T )B∆uss (26)

where the matricesH and B are constant. As far as the adaptive version of the
approximation is concerned, in some applications, it may be sufficient to update
the matrices H(k) and B(k) not at each sampling instant, but less frequently.
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4.4. Linear MPC steady-state target optimisation with piecewise-

linear approximations

If the process under consideration has significantly nonlinear steady-state prop-
erties, either linear MPC steady-state target optimisation based on successive
linearisation or MPC steady-state target optimisation based on successive linear-
quadratic approximation may give economic yields still worse than expected
(Tatjewski et al., 2006). In most cases the reason is that the linear approxima-
tion may simply be too inaccurate. Even if the linear-quadratic approximation
is used in the objective function, still the linear approximation must be used for
the constraints to keep them linear in the quadratic-programming formulation.
The significance of accurate satisfaction of these constraints, which are usually
active at the optimum steady-state operating point, is crucial, since they decide
of the quality and safety of production. It is then necessary to introduce yet
another, more accurate and efficient, approach to nonlinear function approxi-
mation to be used in the SSTO problem. A piecewise-linear approximation can
be used as a method having the required properties. It is a well known concept
in mathematical programming, especially in separable programming. It leads
to mixed linear programming problems, or linear programming problems if the
solver used allows Special Ordered Sets (SOS) to be declared (Williams, 1995).
Similarly to the previously described approximations, the piecewise-linear ap-
proximation should also be performed locally at each sampling instant or every
few instants, depending on the degree of nonlinearity and the dimensionality
of the problem. The approximation can be also done globally, analogously
to the linear-quadratic approximation. As far as the local approximation is
concerned, it is based on a limited number of points in the neighbourhood of
the current operating point, whereas in the global approach the whole region
umin ≤ uss ≤ umax, ymin ≤ yss ≤ ymax must be considered.

As an alternative to the exact piecewise-linear approximation, a conceptually
very similar but reasonably simpler and slightly more approximate approach is
to simply check the values of the objective function JE(k) and satisfaction of
the nonlinear inequality constraints imposed on the output variables only for a
defined mesh of grid points from the input domain umin ≤ uss ≤ umax. As a
result, the solution is found which both satisfies the nonlinear constraints and
yields good economic performance. If the obtained solution is too rough, a finer
grid mesh around the found solution should be used, i.e. the mesh of points
can be selected once again so as to be close to the current region of operation
(Tatjewski et al., 2006; Tatjewski 2007). Apparently, the piecewise-linear ap-
proximation to be used in the SSTO problem can also be considered as a less
complicated, approximate version of the comprehensive nonlinear LSSO prob-
lem, but the approximate-based optimisation problem is solved more frequently
and it is expected to give improved results only in the vicinity of the current
point of approximation.

In case of some processes the introduction of SSTO problem with a linear
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Figure 2. Van de Vusse reactor

constant model or successive linearisations may not give expected set-points
leading to economic optimality, whereas the SSTO with quadratic approxima-
tion could not be used because of the nonlinear nature of the constraints. Thus,
for example, the distillation process has these properties, but the steady-state
target optimisation with piecewise-linear approximations was found to be suc-
cessful (Tatjewski et al., 2006; Tatjewski 2007).

5. Simulation results

5.1. Van de Vusse reactor economic optimisation and control

The considered control plant is an isothermal Continuous Stirred Tank Reactor
(CSTR) with van de Vusse reaction depicted in Fig. 2 (Maner et al., 1996). It
is often used as a benchmark plant for nonlinear control systems evaluation.
Its distinct feature is the shape of static characteristic shown in Fig. 3. The
reaction scheme is as follows

A −→ B −→ C
2A −→ D .

(27)

The process model contains composition balance equations for components
A and B

dCA

dt
= −k1CA − k3C

2
A +

F

V
(CAf − CA) (28)

dCB

dt
= k1CA − k2CB − F

V
CB

where CA, CB are the concentrations of components A and B in the reactor,
respectively, F is the inlet flow rate (equal to the outlet flow rate), V is the
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Figure 3. Steady-state characteristic CB(F ) of the van de Vusse reactor, Pi –
optimal operating points for different values of disturbance CAf

volume in which the reaction is carried out (it is assumed constant and V = 1
l), CAf is the concentration of component A in the inlet flow stream (if it is
not stated differently it is assumed that CAf0 = 10 mol/l). The values of the
kinetic parameters are: k1 = 50 1/h, k2 = 100 1/h, k3 = 10 l/(h · mol). The
output variable is CB, the manipulated variable is F , it is assumed that the
disturbance CAf is changing according to the equation

CAf = CAf0 − sin

(

2πt

100

)

. (29)

Since maximum production rate is required, the following performance function
at the economic optimisation layer is minimised

JE(k) = −F ss. (30)

Manipulated variable is constrained

Fmin ≤ F ≤ Fmax (31)

where Fmin = 0 l/h, Fmax = 150 l/h. It is also assumed that the product should
fulfill some purity criteria, i.e. the output variable is constrained

CB min ≤ CB (32)

where CB min = 1.15 mol/l.
Optimal operating points for different values of disturbance 9 mol/l ≤ CAf ≤

11 mol/l are shown in Fig. 3. Particularly, for small concentration of substance
A the optimal steady-state operating points P1 is on the output constraint
CB min. For bigger values of CAf the input constraint Fmax becomes active
(optimal operating points P2, P3).
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Figure 4. Simulation results of the control system of the van de Vusse reactor
in the LSSO+MPC structure with economic optimisation repeated every 72 s
(solid line), 6 min (dashed line), 12 min (dashdot line)

The same constraints imposed on manipulated and controlled variables are
taken into account in the LSSO, SSTO and MPC optimisation problems. The
infeasibility problem, resulting from output constraints in the MPC optimisa-
tion problem, was not encountered during the simulations, hence the output
constraint could be treated as hard.

In order to design a DMC predictive controller the step response was ob-
tained with sampling time 3.6 s. Tuning parameters of the controller are:
N = 30, Nu = 15,M = I, Λ = λI, λ = 0.001.

Let TE denote the intervention period of the economic LSSO layer, when it
is activated as often as the MPC controller TE = 1. At first, the hierarchical
LSSO+MPC structure was considered, intervention frequency of the optimisa-
tion layer was changed. The set-point optimisation was repeated every 72 s
(TE = 20), 6 min (TE = 100) and 12 min (TE = 200), respectively (Fig. 4).
For comparison, temporary values of the economic performance index summed
and divided by the number of iterations were calculated. The higher the fre-
quency the better responses are obtained. In case of the optimisation repeated
every 72 s (solid line in Fig. 4) performance was JE = −133.2657, if the op-
timisation was repeated every 6 min (dashed line in Fig. 4) JE = −132.2807,
and in the case when the optimisation was repeated every 12 min (dotted line in
Fig. 4) JE = −131.1948. It should be noticed that the frequency of the set-point
optimisation should be chosen in relation to the dynamics of the disturbances.

In the second experiment, the SSTO layer was introduced into the control
system. Simulation results of the LSSO+MPC structure versus the LSSO+MPC
+SSTO structure with single linear steady-state model are depicted in Fig. 5,
economic optimisation at the LSSO layer was repeated every 6min. Fig. 6 com-
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Figure 5. Simulation results of the control system of the van de Vusse reactor in
the LSSO+MPC structure (dotted line) and in the LSSO+MPC+SSTO struc-
ture with single linear steady-state model (solid line), economic optimisation in
the LSSO layer repeated every 6 min
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Figure 6. Simulation results of the control system of the van de Vusse reactor in
the LSSO+MPC+SSTO structure with single linear steady-state model (dotted
line) and in the LSSO+MPC+SSTO structure with the linear approximate
model updated iteratively (solid line), economic optimisation in the LSSO layer
repeated every 6 min

pares the LSSO+MPC+SSTO structure with single linear steady-state model
and the LSSO+MPC+SSTO structure with the linear approximate model up-
dated iteratively. As previously, the LSSO problem was solved every 6 min.
In the LSSO+MPC+SSTO structure with single linear steady-state model the
average performance index JE = −131.3750. It was worse than in the case
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Figure 7. Polymerisation reactor

without the SSTO layer. However, the application of the proposed SSTO with
iteratively updated linear model (Fig. 6) brought an improvement of the per-
formance index, which was equal JE = −132.2875.
Experiment in the LSSO+MPC+SSTO structure with iteratively updated

quadratic model were also performed. The obtained responses are almost the
same as in the case with iteratively updated linear model and shown in Fig. 6,
so they are not presented here. The obtained average performance index was
slightly better, JE = −132.2876.

5.2. Economic optimisation and control of a polymerisation reactor

The control process is a polymerization reaction taking place in a jacketed con-
tinuous stirred tank reactor depicted in Fig. 7 (Maner et al., 1996). The reaction
under consideration is the free-radical polymerization of methyl methacrylate
with azo-bis-isobutyronitrile as initiator and toluene as solvent. The output
NAMW (Number Average Molecular Weight) is controlled by manipulating
the inlet initiator flow rate FI . The main disturbance is the feed flow of the
monomer and the solvent stream F .
The fundamental (i.e. first-principle) model is as follows

dx1

dt
= 10(6 − x1) − 2.4568x1

√
x2 (33)

dx2

dt
= 80FI − (0.10225 + 10F )x2

dx3

dt
= 0.0024121x1

√
x2 + 0.112191x2 − 10x3

dx4

dt
= 245.978x1

√
x2 − 10x4

NAMW =
x4

x3
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where x1, x2, x3, x4 are state variables. Empirical dynamic linear model used
in the MPC algorithm of the GPC type (Clarke et al., 1987) has the form

y(k) = b2u(k − 2) − a1y(k − 1) − a2y(k − 2) (34)

where u(k) = 100(FI(k) − FI0), y(k) = 0.0001(NAMW (k)−NAMW0), FI0 =
0.033566 m3/h, NAMW0 = 2.494749 · 104 kg/kmol. The horizons were set to:
N = 10 and Nu = 3, the weighting matrices to M = I, Λ = λI, λ = 0.2, the
sampling time was set to 1.8 min.
Analogously to the van de Vusse reactor, maximum production rate is re-

quired, and the following performance function at the economic optimisation
layer is used

JE(k) = −F ss
I . (35)

The following constraints are imposed on the manipulated variable

FI min ≤ FI ≤ FI max (36)

where FI min = 0.0035 m3/h, FI max = 0.033566 m3/h. In addition to that,
the product should satisfy some purity criteria, i.e. the output variable is con-
strained

NAMWmin ≤ NAMW (37)

where NAMWmin = 20000 kg/kmol. The same constraints imposed on ma-
nipulated and controlled variables are taken into account in the LSSO, SSTO
and MPC optimisation problems. Output constraints in the MPC optimisation
problem were implemented as soft ones, 2-norm formulation (12) was used. It
is assumed that the changes in the disturbance signal can be described by the
equation

F (k) = F0 − 1.6(sin(0.008k)− sin(0.08)) (38)

where F0 = 2 m3/h.
Taking into account the constraints imposed on input and output variables,

the steady-state characteristic of the polymerisation reactor is depicted in Fig. 8.
Optimal operating points for different values of disturbance 0.5 m3/h ≤ F ≤
2 m3/h are also shown. In particular, for F = 2 m3/h the optimal steady-
state operating point P1 is on the input constraint FI max. Initially, as the
value of F decreases, this constraint is also active (optimal operating points
P2, P3, P4). Finally, for small values of the disturbance F , this constraint is
not active, but the output constraint NAMW = NAMWmin becomes active
(optimal operating points P5, P6, P7).
Simulation results of the polymerisation reactor in the LSSO+MPC struc-

ture with TE = 1 and with single economic optimisation (performed for sam-
pling instant k = 3) are depicted in Fig. 9. Economic optimisation repeated
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Figure 8. Steady-state characteristic NAMW (FI , F ) of the polymerisation re-
actor, Pi – optimal operating points for different values of disturbance F

as frequently as the MPC controller executes takes into account changes in the
disturbance F , new optimal steady-state operating point is calculated for each
sampling instant. Apparently, this structure gives the best economic objective
function value (calculated for the whole simulation horizon after completing the
simulations), JE = −5.2459. On the contrary, if the nonlinear economic opti-
misation is performed only once, the set-point value is constant, the economic
objective function deteriorates to JE = −3.7188. Figs. 10 and 11 show how
the obtained responses of the system with the LSSO+MPC structure change
according to different values of TE , the results for TE = 1 are shown as the
reference. Table 1 compares the obtained economic objective function values
(calculated for the whole simulation horizon after completing the simulations)
for LSSO+MPC structure for different values of the intervention period TE . In
general, analogously as in the case of the van de Vusse reactor considered in
the previous subsection, the higher the period, the worse the economic results
obtained.

Finally, the LSSO+MPC+SSTO structure was studied. Figs. 12 and 13 de-
pict simulation results obtained in both LSSO+MPC and LSSO+MPC+SSTO
structures for different values of TE . Corresponding values of the economic
performance function values JE are compared in Table 1. In the case of the
considered polymerisation reactor, introduction of the steady-state target opti-
misation into the LSSO+MPC structure with nonlinear economic optimisation
layer activated infrequently leads to the same economic performance as in the
reference control system with TE = 1. At the SSTO layer an iteratively updated
approximate linear steady-state model was used.
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Table 1. Comparison of the economic performance function values Je obtained in
LSSO+MPC and LSSO+MPC+SSTO control structures of the polymerisation
reactor

TE LSSO+MPC LSSO+MPC+SSTO

1 −5.2459 −

2 −5.2459 −5.2459

5 −5.2441 −5.2459

10 −5.2134 −5.2459

15 −5.1763 −5.2459

20 −5.1323 −5.2459

25 −5.1011 −5.2459

30 −5.0426 −5.2459
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Figure 9. Simulation results of the control system of the polymerisation re-
actor in the LSSO+MPC structure with TE = 1 (solid line), single economic
optimisation (dashed line)
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Figure 10. Simulation results of the control system of the polymerisation reactor
in the LSSO+MPC structure with TE = 1 (solid line), TE = 10 (dashed line)
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Figure 11. Simulation results of the control system of the polymerisation reactor
in the LSSO+MPC structure with TE = 1 (solid line), TE = 30 (dashed line)
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Figure 12. Simulation results of the control system of the polymerisation reactor
in the LSSO+MPC structure (solid line), the LSSO+MPC+SSTO structure
(dashed line), TE = 10
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Figure 13. Simulation results of the control system of the polymerisation re-
actor in the LSSO+MPC structure (solid line), and the LSSO+MPC+SSTO
structure, (dashed line), TE = 30



156 M. ŁAWRYŃCZUK, P.M. MARUSAK, P. TATJEWSKI

6. Conclusions

This paper describes the cooperation problem of model predictive control al-
gorithms with steady-state optimisation assuming that the dynamics of distur-
bances is comparable with that of the process. Since the classical hierarchical
multilayer approach is not economically efficient, in such a case an additional
steady-state target optimisation (SSTO) layer activated as frequently as the
MPC controller executes is introduced. Unlike the typical approach, this paper
introduces the SSTO problems with on-line adaptation of approximate models.
Specifically, linear, linear-quadratic or piecewise-linear approximate models are
considered. It is emphasised that the steady-state model used in the SSTO
should be consistent with the comprehensive nonlinear model used at the local
steady-state optimisation (LSSO) layer rather than with the linear dynamic one
used at the MPC layer.
In spite of the fact that the proposed approaches are straightforward, they

have two advantages: i) computational efficiency (they result in linear or quadratic
programming SSTO problems), ii) unlike the standard SSTO with the linear
model corresponding to the dynamic one used at the MPC layer, the calculated
steady-state values are closer to the optimal ones, which would be calculated by
the LSSO using a comprehensive nonlinear model of the plant. The efficiency
of the proposed approaches was assessed in control systems of two instances
of nonlinear benchmark plants: the van de Vusse reactor and a polymerisation
reactor.
For some processes, the cooperation problem of MPC algorithms with steady-

state economic optimisation can be also approached in an integrated manner
(Ławryńczuk et al., 2006, 2007a, 2007b; Tvrzska and Odolak,1998; Zanin et al.,
2000; Zanin et al., 2002). Instead of solving three optimisation problems (i.e.
LSSO, SSTO and MPC problems) it is possible to integrate MPC optimisation
with economic optimisation, which leads to solving on-line at each sampling in-
stant only one optimisation problem. Using approximate steady-state models,
similarly it is done in the SSTO problem, the resulting optimisation task can
be transformed into a linear or a quadratic programming one (Ławryńczuk et
al., 2006, 2007a, 2007b). Although the integrated approach has more limited
applicability than the hierarchical structure described in this paper, it may lead
to quite good results.
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