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Warsaw, Poland

Abstract: This paper describes a computationally efficient (sub-
optimal) nonlinear predictive control algorithm. The algorithm uses
a modified dual-mode approach which guarantees closed-loop sta-
bility. In order to reduce the computational burden, instead of on-
line nonlinear optimisation used in the classical dual-mode control
scheme, a nonlinear model of the plant is linearised on-line and a
quadratic programming problem is solved. Calculation of the ter-
minal set and implementation steps of the algorithm are detailed,
especially for input-output models, which are widely used in prac-
tice.
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1. Introduction

Model Predictive Control (MPC) is recognised as the only advanced control
technique (i.e. more advanced than the well known PID approach) which has
been very successful in practical applications and has influenced not only di-
rections of development of industrial control systems but also research in this
area (Henson, 1998; Maciejowski, 2002; Morari, 1999; Qin and Badgwell, 2003;
Rossiter, 2003; Tatjewski, 2007). MPC algorithms have many advantages. In
particular, they have a unique ability to take into account constraints imposed
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on both process inputs (manipulated variables) and outputs (controlled vari-
ables) or state variables, which usually decide on quality, economic efficiency
and safety of production. Furthermore, MPC techniques are very efficient in
multivariable process control. Various MPC approaches are nowadays used in
numerous applications including chemicals, food processing, robotics, automo-
tive and aerospace (Qin and Badgwell, 2003).

Because properties of many technological processes are nonlinear, different
nonlinear MPC techniques have been developed (Henson, 1998; Morari and Lee,
1999; Tatjewski, 2007). The main difficulty is that a nonlinear model used for
prediction entails the necessity of solving a nonlinear optimisation problem at
each sampling instant on-line. Computational burden of such a problem is usu-
ally big and it may terminate at local minima. As a result, reliability of MPC
with nonlinear optimisation is limited. In order to circumvent these difficul-
ties various suboptimal MPC algorithms with on-line linearisation have been
developed (Declercq and de Keyser, 1999; Garcia, 1984; Gattu and Zafiriou,
1992;  Lawrynczuk, 2007;  Lawrynczuk and Tatjewski, 2006; Lee and Ricker,
1994; Li and Biegler, 1989; Mollov et al., 2004; Mutha et al., 1997; Oliveira
and Bieglerm 1995; Tatjewski and  Lawryńczuk, 2006; Tatjewski, 2007). Sub-
optimal MPC algorithms require solving on-line only a quadratic programming
problem. In practice, they give closed-loop control performance comparable to
that obtained in MPC strategies with nonlinear optimisation repeated on-line
at each sampling instant. As emphasised in Morari and Lee (1999), suboptimal
MPC is the only method which is widely used in industry rather than MPC
with nonlinear optimisation.

MPC algorithms have gained recognition and have been successfully applied
in industrial practice for years before theoretical results concerning their stabil-
ity analysis appeared. In the 1970s and 1980s stability was practically achieved
by tuning horizon lengths and penalty factors. Such an approach received strong
criticism as ”playing games” (Bitmead et al., 1990). In the meantime, how-
ever, some stability criteria were obtained, but their applicability was limited to
particular cases, especially, unconstrained linear MPC algorithms were mainly
considered (Clarke and Mohtadi, 1989; Clarke et al., 1987; Rouhani and Mehra,
1982; Scattolini and Bittanti, 1990). Over the years several MPC algorithms
with guaranteed stability in which constraints can be taken into account have
been developed:

a) the algorithms with a terminal equality constraint (Bemporad, 1994; Chisci
and Mosca, 1994; Clarke and Scattolini, 1991; Keerthi and Gilbert, 1988;
Mayne and Michalska, 1990; Meadows et al., 1995; Scokaert et al., 1999;
Scokaert and Clarke, 1994),

b) the algorithms with an infinite horizon (Meadows and Rawlings, 1993;
Muske and Rawlings, 1993; Rawlings and Muske, 1993; Scokaert, 1997;
Scokaert and Clarke, 1994),

c) the dual-mode algorithm (Chisci et al., 1996; Michalska and Mayne, 1993;
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Scokaert et al., 1999),

d) the algorithms with a quasi-infinite horizon (Chen and Allgöwer, 1998;
Magni et al., 2001; DeNicolao et al., 1998),

e) the algorithm with a contraction constraint (DeOliveira Kothare and Morari,
2000),

f) the algorithm with an artificial Lyapunov function (Bemporad, 2002).

Although suboptimal MPC algorithms with on-line linearisation and quadratic
programming are widely used in practice, algorithms with guaranteed stabil-
ity need on-line nonlinear optimisation. The gap between practice and theory
is evident. Stability issues of suboptimal MPC are researched exceptionally
infrequently ( Lawrynczuk, 2004; Marusak and Tatjewski, 2003).

The additional terminal equality constraint, the purpose of which is to bring
the state of the plant to the equilibrium point (for example to – the origin),
guarantees stability, provided that at each sampling instant the optimisation
problem is feasible and the global solution is found (Maciejowski, 2002; Mayne
et al., 2000; Mayne and Michalska, 1990). Terminally constrained algorithms
can be effectively developed and implemented on-line only when the model is
linear, because the resulting optimisation problem is convex (Bemporad, 1994;
Chisci and Mosca, 1994; Clarke and Scattolini, 1991; Scokaert and Clarke, 1994).
When nonlinear MPC with the terminal equality constraint is considered, two
major difficulties emerge. First of all, the optimisation problem is nonlinear,
usually non-convex, it is practically impossible to find the global solution at
each sampling instant in real-time. Secondly, the stabilising equality constraint
poses a serious problem for the optimisation routine. To circumvent these diffi-
culties, the dual-mode MPC scheme can be used, in which a terminal inequal-
ity constraint and an additional feedback local controller guarantee stability
(Michalska and Mayne, 1993; Scokaert et al., 1999). In this approach merely
feasibility, rather then optimality, is sufficient to guarantee stability. It means
that it is only necessary to find a feasible solution to the MPC optimisation
problem, this solution does not need to be the global or even a local minimum
to guarantee stability of the control algorithm.

This paper presents a computationally efficient (suboptimal) dual-mode type
MPC algorithm for nonlinear processes. It is based on the suboptimal MPC al-
gorithm with Nonlinear Prediction and Linearisation (MPC-NPL) ( Lawrynczuk,
2007; Tatjewski, 2007; Tatjewski and  Lawrynczuk, 2006). At each sampling in-
stant a nonlinear model of the process is linearised on-line and a free trajectory
is calculated. The algorithm needs solving on-line only a quadratic program-
ming problem. In order to guarantee closed-loop stability a modified dual-mode
approach is used. In the classical dual-mode MPC a nonlinear stabilising con-
straint has to be taken into account, which means that the resulting optimi-
sation problem is nonlinear. In order to formulate an easy to solve quadratic
programming problem, this nonlinear constraint is transformed into a set of
linear constraints. The contribution of the paper is twofold: i) it introduces
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the stable dual-mode type predictive control algorithm with linearisation and
discusses its implementation for input-output models that are widely used in
practice, ii) it specifies the calculation of the terminal set, which can be also
used in any dual-mode MPC algorithm, also when state-space models are used.

The organisation of the paper is as follows. First, in Section 2, the subopti-
mal MPC-NPL algorithm (MPC-NPL) and the dual-mode MPC algorithm are
shortly presented. Section 3 describes the practical implementation of the sub-
optimal, stable dual-model type algorithm with on-line linearisation, quadratic
programming and input-output models. Section 4 discusses calculation of the
terminal set, which determines the stabilising constraint. Simulation results of
the algorithm applied to a high-purity high-pressure ethylene-ethane distillation
column are presented in Section 5, and the paper is summarised in Section 6.

2. Model Predictive Control algorithms

Although a number of different MPC techniques have been developed, the main
idea (i.e. the explicit application of a process model, optimisation of a cost func-
tion and the receding horizon) is always the same (Maciejowski, 2002; Rossiter,
2003; Tatjewski, 2007). At each consecutive sampling instant k a set of future
controls u(k) or corresponding increments ∆u(k)

u(k) =







u(k|k)
...

u(k + Nu − 1|k)






, ∆u(k) =







∆u(k|k)
...

∆u(k + Nu − 1|k)






(1)

is calculated. It is assumed that ∆u(k + p|k) = 0 for p ≥ Nu, where Nu is the
control horizon. Usually, the objective is to minimise the differences between the
reference trajectory yref (k + p|k) and predicted values of the output ŷ(k + p|k)
over the prediction horizon N and to penalise excessive control increments. The
following cost function is usually applied

J(k) =
N
∑

p=1

∥

∥yref(k + p|k) − ŷ(k + p|k)
∥

∥

2

Mp
+

Nu−1
∑

p=0

‖∆u(k + p|k)‖2
Λp

. (2)

In general, a Multi-Input Multi-Output (MIMO) process is considered with
nu inputs (manipulated variables) and ny outputs (controlled variables), i.e.
u(k) ∈ ℜnu , y(k) ∈ ℜny . Mp ≥ 0 and Λp > 0 are weighting matrices of
dimensionality ny × ny and nu × nu, respectively. Typically, Nu < N , which
decreases dimensionality of the optimisation problem. Only the first nu elements
of the determined sequence (1) are applied to the process, the control law is

u(k) = u(k|k) or u(k) = ∆u(k|k) + u(k − 1). (3)

At the next sampling instant, k + 1, the prediction is shifted one step forward
and the whole procedure is repeated. In the simplest and the most common case,
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the reference trajectory is not known in advance, hence yref (k + p|k) = ysp(k)
for all p = 1, . . . , N , where ysp(k) is the current set-point.

Considering constraints imposed on input and output variables, future con-
trol increments are determined from the following optimisation problem

min
∆u(k)

{J(k)}

subject to

umin ≤ u(k + p|k) ≤ umax, p = 0, . . . , Nu − 1
−∆umax ≤ ∆u(k + p|k) ≤ ∆umax, p = 0, . . . , Nu − 1
ymin ≤ ŷ(k + p|k) ≤ ymax, p = 1, . . . , N.

(4)

For prediction purposes, a dynamic model of the process is used. The model
of a MIMO process is comprised of ny Multi-Input Single-Output (MISO) mod-
els. Let each consecutive MISO model be described by the following nonlinear
discrete-time equation

ym(k) = fNARX
m (u1(k − τm,1), . . . , u1(k − nm,1

B ), . . . , (5)

unu
(k − τm,nu), . . . , unu

(k − nm,nu

B ),

ym(k − 1), . . . , ym(k − nm
A ))

where fNARX
m : ℜnm

A +
∑nu

n=1
(nm,n

B
−τm,n+1) −→ ℜ, m = 1, . . . , ny. Integers τm,n,

nm,n
nA

, nm,n
nB

where m = 1, . . . , ny, n = 1, . . . , nu and τm,n ≤ nm,n
nB

, define the
order of the dynamics. The model used is of Nonlinear Auto Regressive with
eXternal input (NARX) class. The rudimentary suboptimal MPC-NPL algo-
rithm and its stable version described in this paper do not restrict the structure
of the model. It is only necessary that the functions fm be differentiable in
order to linearise the model on-line.

2.1. MPC algorithm with Nonlinear Prediction and Linearisation
(MPC-NPL)

In general, two approaches to nonlinear MPC can be distinguished: MPC with
Nonlinear Optimisation (MPC-NO) and suboptimal MPC. If for prediction pur-
poses a nonlinear model (e.g. a neural network, a fuzzy system) is used without
any simplifications, at each sampling instant a nonlinear optimisation problem
(4) has to be solved on-line.

It is necessary to emphasise the fact that the difficulty of the MPC-NO op-
timisation problem (4) is twofold. First of all, it is nonlinear, computationally
demanding, its computational burden is big. Secondly, it may be non-convex
and even multi-modal. Unfortunately, for such problems there are no suffi-
ciently fast and reliable optimisation algorithms, i.e. those which would be able
to determine the global optimal solution at each sampling instant and within
predefined time limit, as it is required in on-line control. Global optimisation
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techniques substantially increase the computational burden, yet they still give
no guarantee that the global solution is found. In this paper a suboptimal MPC
algorithm, which needs solving on-line only a quadratic programming problem
is recommended.

In the MPC-NPL algorithm at each sampling instant k the nonlinear model
is used on-line twice: to find a local linearisation and a nonlinear free trajectory
( Lawrynczuk, 2007;  Lawrynczuk and Tatjewski, 2006; Tatjewski, 2007; Tatjew-
ski and  Lawrynczuk, 2006). It is assumed that the output prediction ŷ(k) can
be expressed as the sum of a forced trajectory, which depends only on the future
(on future input moves ∆u(k)) and a free trajectory y0(k), which depends only
on the past

ŷ(k) = G(k)∆u(k) + y0(k) (6)

where

ŷ(k) =







ŷ(k + 1|k)
...

ŷ(k + N |k)






, y0(k) =







y0(k + 1|k)
...

y0(k + N |k)






(7)

are vectors of length nyN and G(k) is a dynamic matrix of dimensionality
nyN × nuNu. It is comprised of step-response coefficients of the linearised
model

G(k) =











S1(k) 0 . . . 0
S2(k) S1(k) . . . 0

...
...

. . .
...

SN (k) SN−1(k) . . . SN−Nu+1(k)











. (8)

For the considered MIMO process having nu inputs and ny outputs the step-
response submatrices are

Sj(k) =







s1,1
j (k) . . . s1,nu

j (k)
...

. . .
...

s
ny,1
j (k) . . . s

ny,nu

j (k)






. (9)

Both the free trajectory and the dynamic matrix are calculated on-line from the
nonlinear model taking into account the current state of the plant.

On the one hand, the suboptimal prediction calculated from (6) is different
from the optimal one determined from the nonlinear model as it is done in the
MPC-NO algorithm with nonlinear optimisation. On the other hand, thanks to
using (6), the general optimisation problem (4) becomes the following quadratic
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programming task

min
∆u(k), εmin, εmax

{

∥

∥ysp(k) − G(k)∆u(k) − y0(k)
∥

∥

2

M

+ ‖∆u(k)‖
2
Λ

+ ρmin
∥

∥εmin
∥

∥

2
+ ρmax ‖εmax‖

2
}

subject to

umin ≤ J∆u(k) + uk−1(k) ≤ umax

−∆umax ≤ ∆u(k) ≤ ∆umax

ymin − εmin ≤ y0(k) + G(k)∆u(k) ≤ ymax + εmax

εmin ≥ 0, εmax ≥ 0

(10)

where

ysp(k) =







ysp(k)
...

ysp(k)






, ymin =







∆ymin

...
∆ymin






, ymax =







∆ymax

...
∆ymax






(11)

are vectors of length nyN ,

umin =







umin

...
umin






, umax =







umax

...
umax






, ∆umax =







∆umax

...
∆umax






(12)

are vectors of length nuNu, M = diag(M1, . . . , MN ), Λ = diag(Λ0, . . . , ΛNu−1)
are weighting matrices of dimensionality nyN ×nyN and nuNu×nuNu, respec-
tively. J is a matrix of dimensionality nuNu ×nuNu and uk−1(k) is a vector of
length nuNu

J =











Inu×nu
0nu×nu

0nu×nu
. . . 0nu×nu

Inu×nu
Inu×nu

0nu×nu
. . . 0nu×nu

...
...

...
. . .

...
Inu×nu

Inu×nu
Inu×nu

. . . Inu×nu











, uk−1(k) =







u(k − 1)
...

u(k − 1)






(13)

where I and 0 are identity and zero matrices of appropriate dimensionality.
If output constraints have to be taken into account, the MPC optimisation

task may be affected by the infeasibility problem. In order to cope with such
a situation, the output constraints have to be softened by slack variables (Ma-
ciejowski, 2002; Tatjewski, 2007). A quadratic penalty for constraint violations
is used in the MPC optimisation problem (10), εmin and εmax are vectors of
length N comprising the slack variables and ρmin, ρmax > 0 are weights.

The structure of the MPC-NPL algorithm is depicted in Fig. 1. At each
sampling instant k the following steps are repeated:

1. Linearisation of the nonlinear model: obtain the matrix G(k).
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Figure 1. Structure of the MPC algorithm with Nonlinear Prediction and Lin-
earisation (MPC-NPL)

2. Find the nonlinear free trajectory y0(k) using the nonlinear model.

3. Solve the quadratic programming problem (10) to determine ∆u(k).

4. Apply u(k) = ∆u(k|k) + u(k − 1).

5. Set k := k + 1, go to step 1.

The nonlinear model is used on-line twice at each sampling instant. At first,
it is linearised, from the linearisation the step-response coefficients of the lin-
earised model and the dynamic matrix are obtained. Next, the nonlinear free
trajectory is calculated taking into account only the influence of the past. A
detailed description of the MPC-NPL algorithm, in particular for neural net-
work and fuzzy neural network models can be found in  Lawryńczuk (2007),
 Lawryńczuk and Tatjewski (2006), Tatjewski (2007), Tatjewski and  Lawryńczuk
(2006).

2.2. Stable dual-mode MPC algorithm

In stable dual-mode MPC (Michalska and Mayne, 1993; Scokaert et al., 1999)
a nonlinear state-space model of the plant is used

x(k + 1) = f(x(k), u(k)) (14)

where x(k) ∈ ℜnx , u(k) ∈ ℜnu , f : ℜnx+nu → ℜnx is differentiable in the origin,
f(0, 0) = 0. A perfect model and a disturbance-free case are assumed. For the
sake of simplicity of theoretical analysis the so called ”regulator problem” is
considered, i.e. the objective of the control algorithm is to drive the state of the
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process to zero. The equilibrium point is equivalent to the origin with respect
to the practical implementation of stable MPC-NPL algorithm (Section 3) this
assumption is relaxed.

In MPC algorithms with linear models the stabilising equality terminal con-
straint

x(k + N |k) = 0 (15)

can be effectively used to reduce the number of decision variables, for example
as it is done in Constrained Receding Horizon Predictive Control (CRHPC)
scheme (Clarke and Scattolini, 1991). In nonlinear MPC such a constraint
significantly increases the complexity of the nonlinear optimisation problem. A
straightforward idea used in the dual-mode algorithm (Michalska and Mayne,
1993; Scokaert et al., 1999) is to employ, instead of the equality constraint (15),
the stabilising inequality terminal constraint

x(k + N |k) ∈ Ωα (16)

where Ωα is a convex neighbourhood of the origin. The terminal set Ωα is
defined as

Ωα =
{

x(k) ∈ ℜnx : ‖x(k)‖
2
P ≤ α

}

(17)

where the matrix P > 0 (see Section 4).
According to the dual-model approach, values of manipulated variables are

calculated in two different ways, the method used depends on the current state of
the process. Outside the terminal set Ωα a nonlinear MPC controller calculates
the controls whereas an additional, usually linear, controller is used inside this
set. The objective of the additional feedback controller is to bring the state of
the process to the origin. The control law is

u(k) =

{

u(k|k) if x(k) /∈ Ωα

Kx(k) if x(k) ∈ Ωα
. (18)

The performance index, whose minimisation leads to calculation of future con-
trols in the MPC scheme used in the dual-mode algorithm when x(k) /∈ Ωα, is

J(k) =

N−1
∑

p=0

θ(x(k + p|k))
(

‖x(k + p|k)‖
2
Q + ‖u(k + p|k)‖

2
R

)

(19)

where

θ(x(k + p|k)) =

{

1 if x(k + p|k) /∈ Ωα

0 if x(k + p|k) ∈ Ωα
(20)

Q, R > 0 and x(k|k) = x(k). In general, constraints can be imposed both on
state an input vectors

x(k + p|k) ∈ X, p = 1, . . . , N − 1
u(k + p|k) ∈ U, p = 0, . . . , Nu − 1

(21)
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where the sets X and U are closed and (0, 0) ∈ interior(X ×U). Future values
of manipulated variables, u(k), are found in the dual-mode MPC scheme when
x(k) /∈ Ωα from the nonlinear optimisation problem

max
u(k)

J(k)

subject to
x(k + p|k) ∈ X, p = 1, . . . , N − 1
u(k + p|k) ∈ U, p = 0, . . . , Nu − 1
x(k + N |k) ∈ Ωα.

(22)

The nonlinear MPC controller, which is used if the current state of the
plant does not belong to the terminal set Ωα, takes into account the con-
straints (21) explicitly in the optimisation problem, whereas the linear control
law u(k) = Kx(k), which is used if the state belongs to the set Ωα, despite
being unconstrained, must never violate the constraints. In fact, constraints are
taken into account during calculating off-line the terminal set Ωα as thoroughly
discussed in Section 4.

The suboptimal dual-mode MPC algorithm can be summarised as follows

1. Set µ ∈ (0, 1].

2. For k = 0: if x(0) ∈ Ωα apply u(0) = Kx(0). Otherwise, calculate

a feasible solution u(0) to the nonlinear optimisation problem (22) and
corresponding state trajectory x(0). Apply u(0) = u(0|0).

3. For k ≥ 1: if x(k) ∈ Ωα apply u(k) = Kx(k). Otherwise, calculate
a feasible solution u(k) to the nonlinear optimisation problem (22) and
corresponding state trajectory x(k) which satisfy the condition

J(k) ≤ J(k − 1) − µ
(

‖x(k − 1)‖
2
Q + ‖u(k − 1)‖

2
R

)

(23)

using

u(k) =









u(k|k − 1)
· · ·

u(k + N − 2|k − 1)
Kx(k + N − 1|k − 1)









(24)

as an initial guess, where u(k + p|k− 1) = u(k + Nu − 2|k− 1) for p ≥ Nu.
Apply u(k) = u(k|k).

The main advantage of the algorithm is its suboptimality, i.e. feasibility
of the nonlinear optimisation problem (22) and the property (23) of the perfor-
mance index are sufficient to guarantee stability. In other words, the determined
control sequence u(k) must be always feasible, but it does not need to be the
global or even a local minimum of the optimisation problem (22). The initial
state, x(0), must belong to the region, where the optimisation problem is feasi-
ble. Stability proof of the discrete-time version of the algorithm can be found
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in Scokaert et al. (1999), it corresponds to the original work by H. Michalska
and D. Q. Mayne (Michalska and Mayne, 1993). In short, to prove stability it is
sufficient to show that each trajectory of the process reaches the terminal set Ωα

within finite time, whereas stability in this set is guaranteed by the stabilising
control law u(k) = Kx(k).

Using the dual-mode approach, stabilising modifications can be introduced
into the nonlinear Dynamic Matrix Control (DMC) algorithm which uses a
step-response type fuzzy model (Marusak and Tatjewski, 2003). In this work a
more general approach is presented. The described algorithm uses input-output
NARX models, for example neural networks of various kinds. The algorithm
does not restrict the structure of the model.

3. Stable MPC algorithm with Nonlinear Prediction and
Linearisation (MPC-NPL)

From the practical point of view, computational efficiency is the most attrac-
tive feature of any nonlinear MPC algorithm. It should be considered in two
aspects. Firstly, the algorithm should be suboptimal, the necessity of finding at
each sampling instant the global solution to the nonlinear optimisation problem
should be relaxed. Secondly, stabilising modifications to the standard MPC
optimisation problem should not lead to increasing the complexity of the opti-
misation problem. The dual-mode MPC algorithm discussed in Section 2 has
these properties: feasibility of the nonlinear optimisation problem, rather than
optimality, implies stability, whereas the additional inequality constraint (16)
is much easier to satisfy than the equality one (15). Furthermore, in the sta-
ble MPC-NPL algorithm, described in this paper, to reduce the computational
burden, instead of non-convex nonlinear optimisation used in the classical dual-
model MPC, quadratic programming is used. The main difficulty results from
the necessity of satisfying the stabilising nonlinear inequality constraint (16).
In order to make it possible to use the quadratic programming approach, this
constraint is transformed into a set of linear inequality constraints.

Although the algorithm presented in the paper can be used with state-space
models, in practice it is more convenient to use input-output models (5). Let
usp(k) and ysp(k) correspond to the desired set-point. Because the rudimentary
dual-model MPC algorithm described in Section 2 uses the state-space model
(14), it is necessary to define the state vector of length nx = nynA+nu max(nB−
1, 1), whose elements are past input and output values of process variables
(Maciejowski, 2002)

x(k) =

[

xu(k)
xy(k)

]

(25)
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where

xu(k) =







u(k − 1)
...

u(k − max(nB − 1, 1))






, xy(k) =







y(k)
...

y(k − nA + 1)






(26)

are vectors of length nu max(nB−1, 1) and nynA, respectively. For simplicity of
presentation nA = max(nm

A ) where m = 1, . . . , ny and nB = max(nm,n
B ) where

m = 1, . . . , ny, n = 1, . . . , nu.
The key idea of the stable MPC-NPL algorithm is to use two different per-

formance indices. In order to calculate future control moves, the MPC-NPL
quadratic programming problem (10) is solved. It uses the classical performance
index (2) which takes into account predicted differences from the set-point and
future control increments, as it is done in the most popular MPC algorithms
based on input-output models, for example DMC (Cutler and Ramaker, 1979)
or GPC (Clarke et al., 1987). Thanks to linearisation and free trajectory cal-
culation, the MPC-NPL optimisation problem is convex, the global solution is
always found.

The second performance index, named ”the test function”, is used to decide
whether or not the obtained solution should be applied to the system in order
to guarantee stability of MPC. Similarly to (19), it is defined as

J t(k) =

N−1
∑

p=0

θ(x(k + p|k))
(

‖x(k + p|k) − xsp(k)‖
2
Q (27)

+ ‖u(k + p|k) − usp(k)‖
2
R

)

where usp(k) corresponds to the output set-point ysp(k). Considering the struc-
ture of the state vector (26), one has

xsp(k) =

[

ūsp(k)
ȳsp(k)

]

, ūsp(k) =







usp(k)
...

usp(k)






, ȳsp(k) =







ysp(k)
...

ysp(k)






(28)

and, ūsp(k) ∈ ℜnu max(nB−1,1), ȳsp(k) ∈ ℜnynA , u(k + p|k) = u(k + Nu − 1|k)
for p ≥ Nu.

In the rudimentary MPC-NPL algorithm (i.e. without guaranteed stability)
decision variables are found using quadratic programming approach, in which
the objective function is quadratic, the constraints are linear. The optimisation
problem (10) is of quadratic programming type. Hence, bearing in mind the
rudimentary dual-mode algorithm presented is Section 2, the main issue to ad-
dress is how to take into account the nonlinear stabilising inequality constraint
(16). In the approach presented in this paper the nonlinear constraint is trans-
formed into a set of linear inequality ones. The idea of the method is depicted in
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Figure 2. The ellipsoid Ωα and the resulting box determined by vectors of the
standard basis (nx = 2)

Fig. 2 for nx = 2. The ellipsoid is replaced by a set of linear constraints deter-
mined by vectors of the standard basis. The resulting box, which is symmetric
with respect to the axes, belongs to the interior of the ellipsoid. Hence, if the
predicted state x(k + N |k) is in this box, it is in the ellipsoid. The nonlinear
constraint (16) is then replaced by linear constraints

x̃min ≤ x(k + N |k) − xsp(k) ≤ x̃max (29)

where, for the sake of symmetry, x̃max = −x̃min.
In order to find the box, i.e. the quantities x̃max

1 , . . . , x̃max
nx

, composing the
vector x̃max, it can be noticed that the box has 2nx vertices, because of the
symmetry it is sufficient to take into account only half of them. They can be
described as

wi =
(

σ1x̃
max
1 , σ2x̃

max
2 , . . . , σnx−1x̃

max
nx−1, x̃

max
nx

)

(30)

where σn ∈ {−1, 1}, n = 1, . . . , nx − 1, i = 1, . . . , 2nx−1. The quantities
x̃max

1 , . . . , x̃max
nx

, which uniquely determine the linear constraints (29), are found
from the following optimisation problem

max
x̃max

1
,...,x̃max

nx

nx
∏

n=1

x̃max
n

subject to
x̃max

n > 0, n = 1, . . . , nx

‖wi‖
2
P ≤ α, i = 1, . . . , 2nx−1

(31)

because the vertices of the box have to belong to the ellipsoid and the biggest
possible ellipsoid has to be found.



112 M.  LAWRYŃCZUK, W. TADEJ

If the algorithm uses input-output models, as it is assumed in the paper, it
is necessary to reformulate the constraints (29) into corresponding constraints
imposed on input and output variables. Using the state vector (26) one has

ũmin ≤ xu(k + N |k) − ūsp(k) ≤ ũmax

ỹmin ≤ xy(k + N |k) − ȳsp(k) ≤ ỹmax (32)

where

ũmin =







umin

...
umin






, ũmax =







umax

...
umax






, ỹmin =







ymin

...
ymin






, ỹmax =







ymax

...
ymax






(33)

ũmin, ũmax ∈ ℜnu·max(nB−1,1), ỹmin, ỹmax ∈ ℜnynA . The first group of the
above constraints are linear with respect to the future values of the manipulated

variables, because xu(k +N |k) =
[

uT (k − nb + 1 + N |k) . . . uT (k − 1 + N |k)
]T

.
Hence, they can be directly used in a quadratic programming procedure. What
concerns the second ones, analogously to (6), the following is used

ỹmin ≤ G̃(k)∆u(k) + ỹ0(k) − ȳsp(k) ≤ ỹmax (34)

where the matrix G̃(k), of dimensionality nynA × nuNu, is

G̃(k) =











SN−nA+1(k) SN−nA
(k) . . . 0

SN−nA+2(k) SN−nA+1(k) . . . 0
...

...
. . .

...
SN (k) SN−1(k) . . . SN−Nu+1(k)











(35)

and the vector ỹ0(k) =
[

(y0(k + N − na + 1|k))T . . . (y0(k + N |k))T
]T

is the
corresponding free trajectory. Because it depends only on the past, as in the
case of the trajectory y0(k), it can be easily determined from the nonlinear
model (5) assuming only influence of the past. Analogously to the calculation
of the dynamic matrix G(k) the superposition principle, similar to (6), and a
linearised model are used in (34) to calculate the matrix G̃(k). Even if the
nonlinear model is perfect, it may happen that the state vector calculated from
the linearisation of the model belongs to the box constraints replacing the ellip-
soid, whereas the accurate prediction of the state x(k + N |k) determined from
the nonlinear model is outside the terminal set Ωα. The problem of inaccurate
(suboptimal) prediction, which may lead to dissatisfaction of the nonlinear con-
straint (16) and, in the worst case, to instability, can be solved by decreasing
the box replacing the ellipsoid. It is done by using the constraints

ỹmin + ε̃min ≤ G̃(k)∆u(k) + ỹ
0(k) − ȳsp(k) ≤ ỹmax − ε̃max (36)

where the vectors ε̃min ≥ 0, ε̃max ≥ 0 are of length nynA.
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All things considered, in the stable MPC-NPL algorithm the sequence of
future control moves ∆u(k) is calculated from the following quadratic program-
ming problem

min
∆u(k), εmin, εmax

{

∥

∥ysp(k) − G(k)∆u(k) − y0(k)
∥

∥

2

M

+ ‖∆u(k)‖2
Λ

+ ρmin
∥

∥εmin
∥

∥

2
+ ρmax ‖εmax‖2

}

subject to

umin ≤ J∆u(k) + uk−1(k) ≤ umax

−∆umax ≤ ∆u(k) ≤ ∆umax

ymin − εmin ≤ y0(k) + G(k)∆u(k) ≤ ymax + εmax

εmin ≥ 0, εmax ≥ 0

ũmin ≤ xu(k + N |k) − ūsp(k) ≤ ũmax

ỹmin + ε̃min ≤ G̃(k)∆u(k) + ỹ0(k) − ȳsp(k) ≤ ỹmax − ε̃max.

(37)

At each sampling instant the above optimisation problem is commenced with
ε̃min = ε̃max=0. Having found the future control increments, the nonlinear
prediction is calculated afterwards using the nonlinear model (5). If x(k+N |k) ∈
Ωα the solution is accepted, otherwise the quantities ε̃min and ε̃max are increased,
which results in decreasing the box depicted in Fig. 2 and the optimisation
problem (37) is repeated. Although during performing the experiments, whose
results are presented in Section 5 it was not necessary to reduce the size of the
box replacing the ellipsoid, in general the algorithm should make it possible.

Considering the rudimentary MPC-NPL algorithm and the basic scheme of
the suboptimal dual-mode MPC described in Section 2, the proposed stable
MPC-NPL algorithm is as follows:

1. Set µ ∈ (0, 1].

2. For k = 0: if x(0) ∈ Ωα apply u(0) = Kx(0). Otherwise, calculate
the solution ∆u(0) to the quadratic optimisation problem (37) and corre-
sponding state trajectory x(0). Apply u(0) = ∆u(0|0) + u(k − 1).

3. For k ≥ 1: if x(k) ∈ Ωα apply u(k) = Kx(k). Otherwise, calculate
the solution ∆u(k) to the quadratic optimisation problem (37) and the
corresponding state trajectory x(k). If the condition

J t(k) ≤ J t(k − 1) − µ
(

‖x(k − 1)‖
2
Q + ‖u(k − 1) − usp(k)‖

2
R

)

(38)

is satisfied, apply u(k) = ∆u(k|k) + u(k − 1). If the condition (38) is not
satisfied, apply u(k) = u(k|k − 1).

At each sampling instant, k, the nonlinear model (5) is used to calculate non-
linear free trajectories y0(k), ỹ0(k) and a local linearisation, from which step-
response coefficients and resulting dynamic matrices G(k), G̃(k) are determined.
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The linear controller K must not violate the constraints in the optimisation
problem (37). In order to determine the size of the set Ωα (Section 4), they have
to be transformed into appropriate sets X , U defining the constraints (21).

4. Calculation of the terminal set Ω
α

As far as the development of the algorithm is concerned, it is necessary to
find off-line the terminal set Ωα and a local stabilising linear controller K.
Considering the constraints (21) imposed on state and input variables in the
MPC optimisation problem (22), the linear controller, although unconstrained,
must calculate control values which never violate the constraints, i.e.

x(k) ∈ X (39)

u(k) = Kx(k) ∈ U. (40)

Linearisation of the nonlinear model (14) in the origin is

x(k + 1) = Ax(k) + Bu(k) (41)

where

A =
∂f(x(k), u(k))

∂x(k)

∣

∣

∣

∣

x(k)=0, u(k)=0

, B =
∂f(x(k), u(k))

∂u(k)

∣

∣

∣

∣

x(k)=0, u(k)=0

. (42)

The matrix K is found, for example, using the LQ approach, so that the closed-
loop system

x(k + 1) = Acx(k) (43)

where Ac = A + BK, is asymptotically stable. The terminal set Ωα is defined

by (17), i.e. Ωα =
{

x(k) ∈ ℜnx : ‖x(k)‖2
P ≤ α

}

, where the matrix P > 0 is the

solution to the Lyapunov equation

AT
c PAc − P = −(Q + KT RK). (44)

Theorem 1 Assuming that the linearisation (41) of the nonlinear system (14)
in the origin is stabilisable, there exists a constant α ∈ (0,∞) which determines
the size of the terminal set Ωα such that:

a) ∀ x(k) ∈ Ωα x(k) ∈ X, u(k) = Kx(k) ∈ U ,
b) the set Ωα is invariant for the nonlinear system (14) controlled by the

linear control law u(k) = Kx(k), i.e.

x(k) ∈ Ωα =⇒ x(k + 1) = f(x(k), Kx(k)) ∈ Ωα. (45)

The first property guarantees that the constraints (39) and (40) are satis-
fied for all x(k) ∈ Ωα. The invariance property implies that each trajectory
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commencing in the terminal set Ωα never leaves this set. Ωα is a positively
invariant set for the closed loop system with the local stabilising controller (40).
For continuous-time systems, detailed stability considerations equivalent to The-
orem 1 and its proof can be found in (Chen and Allgöwer, 1998; Michalska and
Mayne, 1993). Here, the discrete-time case is considered.

Proof. Because (0, 0) ∈ interior(X × U), for a matrix P > 0 there exists a
constant α0 ∈ (0,∞) such that ∀ x(k) ∈ Ωα0

x(k) ∈ X , u(k) = Kx(k) ∈ U. In
the set Ωα0

the constraints (39) and (40) are satisfied, but, in general, it may
be not invariant.

When the invariant set Ωα has to be found, it is necessary to consider the
trajectory of the nonlinear system (14) controlled by the linear controller u(k) =
Kx(k), i.e. the system

x(k + 1) = f(x(k), Kx(k)). (46)

Using the Lyapunov theory (Kalman and Bertram, 1960) it is necessary to
determine how the function

V (k) = ‖x(k)‖
2
P (47)

evolves along the trajectory of the system (46), similarly as it is done in (Michal-
ska and Mayne, 1993) for continuous-time systems. Let

φ(k) = f(x(k), Kx(k)) − Acx(k). (48)

Hence

lim
x(k)→0

‖φ(k)‖
2

‖x(k)‖
2 = 0. (49)

From (48) one has

V (k + 1)−V (k) =
∥

∥φT (k)
∥

∥

2

P
+ 2φT (k)PAcx(k) +

∥

∥xT (k)
∥

∥

2

(AT
c PAc−P )

(50)

Using the Lyapunov equation (44) becomes

V (k + 1) − V (k) =
∥

∥φT (k)
∥

∥

2

P
+ 2φT (k)PAcx(k) −

∥

∥xT (k)
∥

∥

2

Qc

(51)

where Qc = AT
c PAc − P = −(Q + KT RK). It also holds true that

V (k + 1) − V (k) ≤
∥

∥φT (k)
∥

∥

2

P
+ 2

∣

∣φT (k)PAcx(k)
∣

∣−
∥

∥xT (k)
∥

∥

2

Qc

. (52)

Considering the right-hand side of inequality (52), it can be noticed that its last
part has the dominating absolute value, since it is independent of φ(k). This is
because
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• For the first part of the right-hand side of inequality (52), using the in-
equality

λmin(X) ‖x(k)‖2 ≤ ‖x(k)‖2
X ≤ λmax(X) ‖x(k)‖2 (53)

where λmin(X) and λmax(X) are minimum and maximum eigenvalues of
a matrix X > 0, respectively, one has

lim
x(k)→0

‖φ(k)‖2
P

‖x(k)‖
2
Qc

≤
λmax(P )

λmin(Qc)
lim

x(k)→0

‖φ(k)‖
2

‖x(k)‖
2 (54)

and from (49) it follows that

lim
x(k)→0

‖φ(k)‖
2
P

‖x(k)‖
2
Qc

= 0. (55)

• For the second part of the right-hand side of inequality (52) one has

∣

∣φT (k)PAcx(k)
∣

∣ ≤ ‖φ(k)‖ ‖PAcx(k)‖ ≤ ‖φ(k)‖ ‖PAc‖ ‖x(k)‖ . (56)

Because, again using (53)

lim
x(k)→0

∣

∣φT (k)PAcx(k)
∣

∣

‖x(k)‖
2
Qc

≤
‖PAc‖

λmin(Qc)
lim

x(k)→0

‖φ(k)‖2

‖x(k)‖
2 (57)

and taking into account (49) one has

lim
x(k)→0

∣

∣φT (k)PAcx(k)
∣

∣

‖x(k)‖
2
Qc

= 0. (58)

Finally, from (55) and (58),

lim
x(k)→0

‖φ(k)‖2
P + 2

∣

∣φT (k)PAcx(k)
∣

∣− ‖x(k)‖2
Qc

‖x(k)‖
2
Qc

= −1. (59)

Let κ ∈ (0, 1). If follows that

∀κ ∈ (0, 1) ∃α > 0 x(k) ∈ Ωα\ {0} =⇒ (60)

− 1 ≤
‖φ(k)‖2

P + 2
∣

∣φT (k)PAcx(k)
∣

∣− ‖x(k)‖2
Qc

‖x(k)‖
2
Qc

≤ −κ.

The quantity κ is an adjustable parameter, it determines the maximum possible
size of the set Ωα. The bigger κ, the smaller the maximum possible α and the
terminal set Ωα.
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Statements (52) and (60) imply that

∀κ ∈ (0, 1) ∃α > 0x(k) ∈ Ωα =⇒ V (k + 1) − V (k) ≤ −κ ‖x(k)‖
2
Qc

. (61)

Because Q > 0, if follows that Qc > 0. For a chosen value of the parameter κ,
in the resulting terminal set Ωα the function V (k) can then be the Lyapunov
function of the system (43), which is a linearisation of the nonlinear system
(14), and of the nonlinear system controlled by the linear control law (46).
From the definition of the function V (k), given by (47), and using (61) one can
conclude that each trajectory commencing from the set Ωα, determined by α
corresponding to the chosen value of κ, will remain in its interior, the set Ωα

is thus invariant, i.e. x(k) ∈ Ωα =⇒ x(k + 1) ∈ Ωα. The equilibrium point,
the origin, is asymptotically stable for systems (43) and (46). Obviously, the
statement (61) guarantees the existence of suitable α also satisfying α ∈ (0, α0),
so that the set Ωα has the properties a) and b) from Theorem 1.

All things considered, the terminal set Ωα is found by means of the following
procedure:

1. From the linearisation (41) of the nonlinear system (14) calculate the
stabilising linear control law u(k) = Kx(k).

2. Calculate the matrix P , the solution to the Lyapunov equation (44).

3. Calculate the biggest α0 ∈ (0,∞) such that

∀x(k) ∈ Ωα0
x(k) ∈ X, Kx(k) ∈ U. (62)

4. Calculate the biggest α ∈ (0, α0) such that, for the chosen κ,

∀x(k) ∈ Ωα

(

‖φ(k)‖
2
P +2

∣

∣φT (k)PAcx(k)
∣

∣+(κ−1) ‖x(k)‖
2
Qc

)

≤ 0. (63)

The problem solved in the third step of the above procedure belongs to the
class of semi-infinite optimisation, since the constraints have to be satisfied in
the whole set Ωα0

. Let d(x(k), X) and d(Kx(k), U) denote the distance from
x(k) to the set X and the distance from Kx(k) to the set U , respectively. The
statement (62) is equivalent to

∀x(k) ∈ Ωα0
d(x(k), X) = 0, d(Kx(k), U) = 0 . (64)

Of course, constraints (64) are satisfied only when the maximum distance be-
tween any point x(k) and the set X is 0 and the maximum distance between
any point Kx(k) and the set U is 0. Hence, statements (64) can be transformed
into the following equivalent statements

max
‖x(k)‖2

P
≤α0

(d(x(k), X)) = 0 and max
‖x(k)‖2

P
≤α0

(d(Kx(k), U)) = 0 , (65)
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which can be verified by solving two standard optimisation problems with in-
equality constraints

min
x(k)

(−d(x(k), X))

subject to

‖x(k)‖
2
P ≤ α0

,

min
x(k)

(−d(Kx(k), U))

subject to

‖x(k)‖
2
P ≤ α0

. (66)

Thus, the problem in step 3 can be rewritten as

max
α0

α0

subject to
max

‖x(k)‖2

P
≤α0

(d(x(k), X)) = 0

max
‖x(k)‖2

P
≤α0

(d(Kx(k), U)) = 0

. (67)

It is obvious that for small values of α0 the statement (62) is true and also
(39), (40) are true. Hence, the parameter α0 can be found by a recurrent
procedure, in which its initial value is increased, the optimisation problems (66)
are solved and the signs of the objective functions for the optimal determined
solution are checked.

Considering the efficiency of solving the optimisation problems (66), the way
the quantities d(x(k), X) and d(Kx(k), U) are calculated is crucial. In general,
the distance from the point x(k) to the set X is given by

d(x(k), X) =
∥

∥x(k) − x0(k)
∥

∥ , (68)

where x0(k) is the solution to the following optimisation problem

min
x∗(k)

‖x(k) − x∗(k)‖

subject to
x∗(k) ∈ X

. (69)

Analogously, the distance to the set U is given by

d(Kx(k), U) =
∥

∥Kx(k) − u0(k)
∥

∥ . (70)

where u0(k) is the solution to the following optimisation problem

min
u∗(k)

‖Kx(k) − u∗(k)‖

subject to
u∗(k) ∈ U

. (71)

The formulae presented so far are very general. In the most common case
of box constraints

X =
{

x(k) ∈ ℜnx : xmin ≤ x(k) ≤ xmax
}

(72)

U =
{

u(k) ∈ ℜnu : umin ≤ u(k) ≤ umax
}

(73)
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where

xmin ≤ 0 ≤ xmax, umin ≤ 0 ≤ umax (74)

the value of α0, which determines the size of the set Ωα0
, can be found analyti-

cally, without any optimisation.

Theorem 2 If the state constraints are given in the box form (72), max
Ωα⊂X

α =

max αn
0 , where

αn
0 =

min
(

(xmin
n )2, (xmax

n )2
)

eT
nP−1en

(75)

and en is a vector of length nx, its nth coordinate is 1, the remaining ones are 0.

Theorem 3 If the input constraints are given in the box form (73) and the
matrix K has full rank, max

KΩα⊂U
α = max αn

0 , where

αn
0 =

min
(

(umin
n )2, (umax

n )2
)

eT
nKP−1KT en

(76)

and en is a vector of length nu, its nth coordinate is 1, the remaining ones are 0.

Proofs of Theorems 2 and 3 are given in Appendices A and B, respectively.
From Theorem 2 and Theorem 3 it follows that α0 calculated in step 3 of the

procedure in which the set Ωα is found, in the case of box constraints imposed
on state (72) and input (73) variables, is given by

α0 ∈

(

min
n=1,...,nx

min
(

(xmin
n )2, (xmax

n )2
)

eT
nP−1en

, min
n=1,...,nu

min
(

(umin
n )2, (umax

n )2
)

eT
nKP−1KT en

)

. (77)

To sum up, if the state and input constraints are given in their general form
(21), the value of the parameter α0, which determines the size of the set Ωα0

,
is found by solving the semi-infinite optimisation problem (62), formulated also
as the equivalent statement (65). Values of the respective constraint functions
are calculated as solutions to two standard minimisation problems with non-
linear inequality constraints (66), the resulting standard optimisation problem
is then (67). The distances, which are used as objective functions in (66), are
calculated from (68) and (70) using the solutions to the additional optimisation
problems (69) and (71). Hence, the resulting optimisation problems are nested.
If the constraints are given in box form (72) and (73), the value of α0 can be
calculated analytically from Theorems 2 and 3 without the necessity of solving
any optimisation problems.
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To guarantee the invariance property of the terminal set Ωα (Theorem 1),
the biggest allowed α ∈ (0, α0) is found so that (63) is true for the chosen value
of κ. The resulting semi-infinite optimisation problem can be expressed as

max
α

α

subject to
(

max
‖x(k)‖2

P
≤α

(

(κ − 1) ‖x(k)‖
2
Qc

+ ‖φ(k)‖
2
P + 2

∣

∣φT (k)PAcx(k)
∣

∣

)

)

≤ 0

(78)

where the value of the constraint function is calculated as the solution to the
following standard optimisation problem with inequality constraint

min
x(k)

(

(1 − κ) ‖x(k)‖
2
Qc

− ‖φ(k)‖
2
P − 2

∣

∣φT (k)PAcx(k)
∣

∣

)

subject to

‖x(k)‖
2
P ≤ α

. (79)

Analogously to the iterative procedure in which α0 is found by increasing its
value and the optimisation problems (66) are solved, when α has to be found
its initial value is increased, the problem (79) is solved, and the sign of the
objective function is checked for the optimal solution determined. Naturally,
one has take into account that α is restricted to (0, α0), otherwise the linear
controller u(k) = Kx(k) may violate the constraints (39) and (40).

5. Experiments

The plant under consideration is a high-purity, high-pressure (1.93 MPa) ethy-
lene-ethane distillation column the structure of which is shown in Fig. 3 ( Law-
ryńczuk and Tatjewski, 2006; Tatjewski, 2007; Tatjewski and  Lawryńczuk,
2006). The feed stream consists of ethylene (approx. 80 %), ethane and traces
of hydrogen, methane and propylene. The product of the distillation is ethylene
which, according to technological requirements, can contain up to 1000 ppm
(parts per million) of ethane. The objective is to develop a supervisory con-
troller which would be able to increase relatively fast the impurity level when
the composition changes in the feed stream are relatively small. Reducing the
purity of the product, of course taking into account the technological limit, re-
sults in decreasing energy consumption. Production scale is very big, nominal
value of the product stream is 43 tons/h. The column has 121 trays, the feed
stream is delivered to the tray number 37.

Two fast single-loop PID controllers (denoted as LC) are used to stabilise
the levels in reflux tank and bottom product tank. Yet another PID controller
(denoted as TC) is used to control the temperature on the tray number 13. The
PID controllers comprise the basic control layer. As far as the supervisory MPC
algorithm is concerned, the control loop has one manipulated variable r, which is



Dual mode nonlinear predictive control algorithm 121

Figure 3. High-purity ethylene-ethane distillation column control system struc-
ture

the reflux ratio r = R
P

, where R and P are reflux and product stream flow rates,
respectively, and one controlled variable z, which represents the impurity of the
product. In fact, the desired reflux ratio, calculated by the supervisory MPC
algorithm, is enforced by manipulating the product flow rate. The reflux stream
is delivered to the column by the top tray and the product stream is taken from
the tray number 110. Sample time of the supervisory MPC algorithms is 40
minutes (slow composition analyser.)

Four models of the plant are used. The fundamental model is used as the
real process during simulations. This model is simulated open-loop in order to
obtain two sets of data, namely training and test data sets. Both sets contain
2000 samples, the output signal contains noise. An identification procedure is
carried out, as a result three empirical models are obtained:

a) a linear model for low impurity level (100 ppm)

y(k) = blow
3 u(k − 3) − alow

1 y(k − 1), (80)

a) a linear model for high impurity level (850 ppm)

y(k) = bhigh
3 u(k − 3) − ahigh

1 y(k − 1), (81)

c) a neural model

y(k) = fNARX(u(k − 3), y(k − 1))), (82)
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Figure 4. Simulation results of the MPC algorithm based on the linear model
valid for low impurity level

All three empirical models have the same arguments, determined by nA = 1,
τ = nB = 3. Because input and output process variables are of different order,
they are scaled as u = 10

3 (r − r0), y = 0.001(z − z0) where r0 = 4.34, z0 = 100
correspond to the initial operating point. A Multi Layer Perceptron (MLP)
neural model used. It contains one hidden layer with hyperbolic tangent transfer
functions and a linear output, 6 neurons in the hidden layer are used.

The compared MPC strategies are:

a) the linear MPC algorithm based on the linear model (80) for low impurity
level,

b) the linear MPC algorithm based on the linear model (81) for high impurity
level,

c) the rudimentary (i.e. without guaranteed stability) suboptimal nonlinear
MPC-NPL algorithm based on the neural model (82),

d) the suboptimal stable nonlinear MPC-NPL algorithm based on the same
neural model (82).

The horizons are N = 10, Nu = 3, the weighting matrices Mp = 1 and Λp = 2.
Three set-point changes are used, at the sampling instant k = 1 the set-point
value is changed from 100 ppm to 350 ppm, 600 ppm and 850 ppm, respectively.
Because of technological reasons the following constraints are imposed on the
reflux ratio: rmin = 4.051, rmax = 4.4571.

At first, MPC algorithms based on two linear models are developed. The first
one is valid for low impurity level and the resulting control algorithm works well
in this region but exhibits unacceptable oscillatory behaviour for medium and
big set-point changes as it is shown in Fig. 4. The second linear model captures
the process properties for high impurity level and the closed-loop response is
fast enough for the biggest set-point change, but is very slow for smaller ones,
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Figure 5. Simulation results of the MPC algorithm based on the linear model
valid for high impurity level

as it is shown in Fig. 5. Simulation results of the MPC-NPL algorithm with the
neural network model are depicted in Fig. 6. The suboptimal algorithm is stable
and fast for all three set-point changes. As demonstrated in ( Lawryńczuk and
Tatjewski, 2006; Tatjewski, 2007; Tatjewski and  Lawryńczuk, 2006), the closed-
loop performance obtained in the suboptimal MPC-NPL algorithm is close to
that obtained in the computationally prohibitive MPC algorithm with Nonlinear
Optimisation (MPC-NO).

The suboptimal nonlinear MPC-NPL algorithm works in practice, but its
closed-loop stability is not guaranteed. In order to compare the MPC algorithms
without and with guaranteed stability, described in this paper, the weighting
matrix Λp = 0.01 in the objective function (37) is used. Simulation results are
depicted in Fig. 7. At the sampling instant k = 1 the set-point value is changed
from 100 ppm to 600 ppm. The first algorithm becomes unstable, whereas the
second one works properly. Of course, such a small value of Λp is practically
unacceptable, since it results in fast output profile which would be too dangerous
from the technological point of view.

Fig. 8 presents simulation results of the MPC algorithm with guaranteed
stability with nominal length of the control horizon Nu = 3. The weighting
matrix Λp is set to its nominal value 2. It can be noticed that the bigger the
parameter µ the bigger the possibility of violating the condition (38), previously
calculated controls are applied to the plant more frequently. When zsp = 350
ppm and zsp = 850 ppm and when µ = 0.01, the condition (38) is always
satisfied, whereas when µ = 1 the solution to the optimisation problem (37) is
rejected at k = 4, 5. When zsp = 600 ppm and when µ = 0.01 the solution is
rejected at k = 3, when µ = 1 at k = 3, 4.

Fig. 9 presents simulation results of the MPC algorithm with guaranteed
stability with long control horizon Nu = 10. When compared to the shorter
horizon case, the influence of the parameter µ is even smaller. For all three
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Figure 6. Simulation results of the rudimentary (i.e. without guaranteed sta-
bility) MPC-NPL algorithm based on the neural network model
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Figure 7. Simulation results of two MPC-NPL algorithms, based on the neural
model: without (dashed line) and with guaranteed stability (solid line), Λp =
0.01, µ = 0.01

set-point changes and µ = 0.01 the algorithm never uses the previously found
sequence. When µ = 1 and zsp = 350 ppm the solution is rejected at k = 6, 7,
when zsp = 600 ppm at k = 4, when zsp = 850 ppm at k = 5.

6. Conclusions

The algorithm presented in this paper makes an attempt to bridge the gap
between practice and theory. On the one hand, different versions of subopti-
mal MPC algorithms with on-line linearisation and quadratic programming are
widely used in practice. Their stability is practically achieved by tuning hori-
zon lengths and penalty factors. On the other hand, algorithms with guaranteed
stability need on-line nonlinear optimisation. The described algorithm results
in an easy to solve on-line quadratic programming problem and its closed-loop
stability is guaranteed.
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Figure 8. Simulation results of the MPC-NPL algorithm with guaranteed sta-
bility, based on the neural model: µ = 0.01 (dashed line), µ = 1 (solid line),
Nu = 3
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Figure 9. Simulation results of the MPC-NPL algorithm with guaranteed sta-
bility, based on the neural model: µ = 0.01 (dashed line), µ = 1 (solid line),
Nu = 10

The described suboptimal MPC algorithm has the following advantages:
computational efficiency and guaranteed stability. The algorithm combines
two ideas: the MPC with Nonlinear Prediction and Linearisation (MPC-NPL)
scheme which uses on-line quadratic programming ( Lawryńczuk, 2007; Tatjew-
ski, 2007; Tatjewski and  Lawryńczuk, 2006) and a modified dual-mode approach
(Michalska and Mayne, 1993; Scokaert et al., 1999), for which feasibility of the
nonlinear optimisation problem, rather than optimality, implies stability. Con-
trary to the classical dual-mode MPC, in which nonlinear optimisation is used,
the proposed algorithm uses on-line linearisation and computationally reliable
quadratic programming to calculate future controls. To keep all the constraints
linear, the stabilising nonlinear inequality constraint enforcing bringing the pre-
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dicted state at the end of the prediction horizon to the terminal set is trans-
formed into a set of linear ones.

The described algorithm uses input-output NARX models, for example neu-
ral networks of various kinds. The algorithm does not restrict the structure of
the model. The paper specifies the calculation of the terminal set for different
cases of constraints, particularly for box constraints. These methods can be also
used in any dual-mode algorithm with state-space models.

Appendices

A. Proof of Theorem 2

To prove Theorem 2 it is sufficient to find the maximum value of α0 for which
the ellipsoid Ωα0

is in the state box constraints (72). Because of the symmetry
of the ellipsoid the value α0 to be found is the smallest of the quantities αn

0 ,
which satisfy the condition

max
xT P x=αn

0

xn = min
(
∣

∣xmin
n

∣

∣ , |xmax
n |

)

(83)

where, for the sake of simplicity, x = x(k). The solution to the above problem,
the value x∗ = argmax(xn), is uniquely determined by the optimality conditions

xT Px = αn
0 , λ∇f(x) = 2Px (84)

where λ is an appropriate Lagrange multiplier. Since f(x) = xn

∇f(x) = en. (85)

Because the maximum value of xn has to be found, a pair of (x, λ) is chosen
satisfying the above conditions with λ > 0.

Rearranging the optimality conditions (84) one has

{

xT Px = αn
0

2Px = λen
=⇒ x =

λ

2
P−1en (86)

and taking into account that the matrix P > 0 is symmetric, it follows that

αn
0 = xT Px =

1

2
xT 2Px =

λ

2
xT en (87)

=
λ2

4
eT

n

(

P−1
)T

en =
λ2

4
eT

nP−1en (88)

hence

λ =

√

4αn
0

eT
nP−1en

. (89)
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Using (86) the optimal point is found

x∗ =

√

αn
0

eT
nP−1en

P−1en. (90)

To satisfy (83), i.e.

xn = eT
n

√

αn
0

eT
nP−1en

P−1en =
√

αn
0

√

eT
nP−1en (91)

= min
(
∣

∣xmin
n

∣

∣ , |xmax
n |

)

(92)

the value of the parameter αn
0 has to satisfy

αn
0 =

min
(

(xmin
n )2, (xmax

n )2
)

eT
nP−1en

(93)

where the denominator is the nth diagonal element of the matrix P−1. Hav-
ing determined nx quantities αn

0 , n = 1, . . . , nx, the maximum value of the
parameter α0 is equal to min

n=1,...,nx

αn
0 .

B. Proof of Theorem 3

To prove Theorem 3 it is sufficient to find the maximum value of α0, for which
the ellipsoid of possible controls

ε = {Kx(k) ∈ ℜnu : x(k) ∈ Ωα0
} (94)

is in the input box constraints (73). The ellipsoid ε is the image of the ellipsoid
Ωα0

under the map K. It can be easily verified that the surface of the ellipsoid
Ωα0

, which is described by the equation xT P x = α0, is the image of the sphere

θ =
{

z ∈ ℜnx : zT z = α0

}

(95)

under the nonsingular map

x → Sx (96)

with S satisfying

S−T S−1 = P
(

⇐⇒ P−1 = SST
)

(97)

because, if S−1x = z belongs to θ, α0 = zT z = xT (S−1)T S−1x.
Because the matrix P is symmetric, positive definite, it can be expressed as

P = UΛUT (98)
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where the matrix U is orthogonal whereas the diagonal matrix Λ comprises
positive eigenvalues of the matrix P . One has

P−1 = UΛ−1UT = UΛ
−

1

2

Λ
−

1

2

UT (99)

= UΛ
−

1

2

(

UΛ
−

1

2

)T

. (100)

Hence, let

S = UΛ− 1

2 . (101)

The ellipsoid ε is the image of the sphere θ under the map

x → KSx = KUΛ− 1

2 x. (102)

Assuming that the matrix K is of full rank, i.e. rank(K) = nu, the matrix KS

of the map (102) can be expressed using Singular Value Decomposition (SVD)

KS = ŨΣV
T

= Ũ
[

Σ̃ 0
]

V T (103)

where the matrices Ũ and V , of dimensions nu × nu and nx × nx, respectively,
are orthogonal, whereas the nonsingular diagonal matrix Σ̃ comprises singular
values of the matrix KS.

The point y belonging to the ellipsoid ε and its any preimage z belonging to
the sphere θ are related by the equation

y = KUΛ− 1

2 z = Ũ
[

Σ̃ 0
]

V T z (104)

= Ũ
[

Σ̃ 0
]

[

z̃1

z̃2

]

(105)

from which it follows that the component z̃1 of the vector V T z satisfies

z̃1 = Σ̃
−1

Ũ
−1

y = Σ̃
−1

Ũ
T
y. (106)

It is also true that

α0 = zT z =
(

V T z
)T (

V T z
)

=
[

z̃T
1 z̃T

2

]

[

z̃1

z̃2

]

(107)

=
[

yT ŨΣ̃
−1

z̃T
2

]

[

Σ̃
−1

Ũ
T
y

z̃2

]

(108)

= yT ŨΣ̃
−1

Σ̃
−1

Ũ
T
y + z̃T

2 z̃2. (109)

Hence, it is easy to see that the point y belongs to the ellipsoid ε if and only if

yT ŨΣ̃
−2

Ũ
T
y ≤ α0. (110)
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The value of the parameter α0, for which the whole of the ellipsoid ε is in the
box constraints (73), can be calculated enforcing that only the surface of the
ellipsoid satisfies the same constraints. The maximum value of α0 is determined
analogously as in the state box constraints case (Theorem 2). This value is
equal to min

n=1,...,nu

αn
0 ,

αn
0 =

min
(

(umin
n )2, (umax

n )2
)

eT
n

(

ŨΣ̃
−2

Ũ
T
)−1

en

. (111)

Using the formulae (98) and (101), it can be noticed that

KP−1KT = KUΛ−1UT KT = KUΛ
−

1

2

Λ
−

1

2

UT KT (112)

= (KS) (KS)
T

. (113)

Hence, taking into account (103), one has

KP−1KT = Ũ
[

Σ̃ 0
]

V T V

[

Σ̃
0

]

Ũ
T

= ŨΣ̃
2
Ũ

T
. (114)

Taking advantage of the orthogonality of the matrix Ũ , one obtains a subex-
pression of (102)

(

KP−1KT
)−1

=
(

ŨΣ̃
2
Ũ

T
)−1

= ŨΣ̃
−2

Ũ
T

(115)

so the values of the parameter αn
0 can be rewritten as

αn
0 =

min
(

(umin
n )2, (umax

n )2
)

eT
nKP−1KT en

(116)

where the denominator is the nth diagonal element of the matrix KP−1KT .
Having determined nu quantities αn

0 , n = 1, . . . , nu, we obtain the maximum
value of the parameter α0 as equal to min

n=1,...,nu

αn
0 .
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 Lawryńczuk, M. and Tatjewski, P. (2004) A stable dual-mode type non-
linear predictive control algorithm based on on-line linearisation and quadra-
tic programming. Proceedings of the 10th International Conference on
Methods and Models in Automation and Robotics, Midzyzdroje, Poland,
503–510.

Maciejowski, J.A. (2003) Predictive Control with Constraints. Prentice Hall,
Harlow.

Magni, L., De Nicolao, G., Magnani, L. and Scattolini, R. (2001) A
stabilizing model-based predictive control algorithm for nonlinear systems.
Automatica 37, 1351–1362.

Marusak, P. and Tatjewski, P. (2003) Stable, effective fuzzy DMC algo-
rithms with on-line quadratic optimisation. Proceeding of the American
Control Conference, Denver, USA, 3513–3518.

Mayne, D.Q., Rawlings, J.B., Rao, C.V. and Scokaert, P.O.M. (2000)
Constrained model predictive control: stability and optimality. Automat-
ica 36, 789–814.

Mayne, D.Q. and Michalska, H. (1990) Receding horizon control of non-
linear systems. IEEE Transactions on Automatic Control 35, 814–824.

Meadows, E.S., Henson, M.A., Eaton, J.W. and Rawlings, J.B. (1995)
Receding horizon control and discontinuous state feedback stabilization.
International Journal of Control 62, 1217–1229.

Meadows, E.S., and Rawlings, J.B. (1993) Receding horizon control with
an infinite horizon. Proceedings of the American Control Conference, San
Francisco, USA, 2926–2930.

Michalska, H. and Mayne, D.Q. (1993) Robust receding horizon control of
constrained nonlinear systems. IEEE Transactions on Automatic Control
38, 1623–1633.
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