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Abstract: We consider a linear-quadratic elliptic optimal con-
trol problem with pointwise state constraints. The problem is fully
discretized using linear ansatz functions for state and control. Based
on a Slater-type argument, we investigate the approximation behav-
ior for mesh size tending to zero. The obtained convergence order
for the L2-error of the control and for H1-error of the state is 1 − ε
in the two-dimensional case and 1/2 − ε in three dimensions, pro-
vided that the domain satisfies certain regularity assumptions. In
a second step, a state-constrained problem with additional control
constraints is considered. Here, the control is discretized by con-
stant ansatz functions. It is shown that the convergence theory can
be adapted to this case yielding the same order of convergence. The
theoretical findings are confirmed by numerical examples.

Keywords: linear-quadratic optimal control problems, elliptic
equations, state constraints, numerical approximation.

1. Introduction

In this paper, we focus on the error analysis for a finite element discretization
of linear elliptic optimal control problems with pointwise state constraints. It
is well known that, in contrast to the control-constrained case, these problems
provide some particular difficulties. This especially concerns the regularity of
the Lagrange multipliers associated to the state constraints that are generally
regular Borel measures (see for instance Casas, 1993, or Alibert and Raymond,
1997). As a consequence, the optimal controls are in general only elements
of W 1,σ(Ω) with some σ < 2 (see Casas, 1993). This lack of regularity nat-
urally affects the behavior of finite element discretization and numerical op-
timization algorithms. Consequently, several articles addressed the numerical
treatment of state-constrained problems in the recent past. We only mention
Bergounioux and Kunisch (2002) and the regularization approaches proposed
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by Meyer, Rösch and Tröltzsch (2006) and Hintermüller and Kunisch (2006). In
contrast to the control-constrained case, where the finite element discretization
is well investigated (see for instance Falk, 1973; Arada et al., 2002; Casas et
al., 2005) and the references therein), finite element convergence analysis for
state-constrained problems still provides several open questions. Here, we refer
to Casas (2002), Casas and Mateos (2002), and, in particular, to Deckelnick and
Hinze (2007). The first two articles deal with finitely many state constraints,
whereas in the latter, Deckelnick and Hinze established error estimates for a
semi-discrete approach in the spirit of Hinze (2005). In Deckelnick and Hinze
(2007), they considered the following purely state-constrained problem

(P)







minimize J(y, u) :=
1

2

∫

Ω

|y − yd|2 dx +
α

2

∫

Ω

u2 dx

subject to −∆ y + y = u in Ω

∂ny = 0 on Γ

and y(x) ≤ yb(x) a.e. in Ω

and derived a convergence order of h1−ε, ε > 0, in the two-dimensional case
and h1/2−ε in three dimensions. Furthermore, it turns out that, in the purely
state-constrained case, the semi-discrete solution coincides with the solution of
the fully discretized problem using linear ansatz functions for the control. In
other words, the results of Deckelnick and Hinze (2007) also apply to a full
discretization of (P) (see Remark 2.2 in Deckelnick and Hinze, 2007). Here,
we will confirm their results for the fully discretized case by using a completely
different technique. Based on a Slater-point assumption, we establish the exis-
tence of a function which is, in some sense, close the solution of (P) and, on the
other hand, feasible for the discrete version of (P). By similar arguments, one
shows the existence of another function, which is feasible for (P) and close to
the discrete solution. Together with the variational inequalities for (P) and its
discretization, this two-way feasibility is the basis for the overall error analysis.
In the second part of the paper, we use this technique to verify a similar result
for the case with additional control constraints, i.e.

(Q)







minimize J(y, u) :=
1

2

∫

Ω

|y − yd|2 dx +
α

2

∫

Ω

u2 dx

subject to −∆ y + y = u in Ω

∂ny = 0 on Γ

and ya(x) ≤ y(x) ≤ yb(x) a.e. in Ω

ua ≤ u(x) ≤ ub a.e. in Ω.
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In contrast to (P), the controls are now discretized with piecewise constant
functions. The error analysis for (Q) represents the genuine result of this ar-
ticle since, in case of (Q), the discrete solution differs from the semi-discrete
one. Hence, the theory developed in Deckelnick and Hinze (2007) for the semi-
discretization of (Q) cannot be applied to the full discretization.

The paper is organized as follows: In Section 2, we specify the assumptions
for the analysis of problem (P) and describe the discretization of (P). After
stating some basic properties of (P) and its state equation in Section 3, we
derive some auxiliary results in Section 4. These are needed for the proof of
the main convergence result Section 5 is devoted to. In Section 6, we turn
to problem (Q) and derive an analogous convergence result for this problem by
using the same technique. The obtained error estimates are discussed in Section
7, whereas Section 8 finally presents some numerical examples.

2. Notation and assumptions

In the following, we state the assumptions required for discussion of the finite
element discretization of (P). The additional assumptions for the analysis of
problem (Q) are mentioned in Section 6.

Assumption 1 Let Ω be a bounded C1,1-domain in RN , N = 2, 3. Moreover,
we assume that yd is a given function in L2(Ω), while the bound yb is defined in
C(Ω̄). The Tikhonov parameter α is a real positive number.

For an interpolation of yd and yb, higher regularity is required. This is
discussed in detail in Section 7. It is well known that, under Assumption 1, to
every u ∈ L2(Ω) there exists a unique solution of the state equation in H2(Ω) ⊂
C(Ω̄) (see for instance Grisvard, 1985). Thus, we introduce the control-to-state
mapping S : L2(Ω) → H2(Ω) that maps u to y. In the subsequent sections, the
control-to-state mapping is considered with different ranges. For simplicity, the
associated operators are also denoted by S. In view of the definition of S, we
are in the position to introduce the reduced optimal control problem as

(P)







minimize f(u) :=
1

2
‖S u − yd‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω)

subject to u ∈ L2(Ω) and (S u)(x) ≤ yb(x) a.e. in Ω.

Now, we turn to the discretization of (P). To that end, let us introduce a family
of triangulations of Ω̄, denoted by {Th}h>0. Each triangulation is assumed to
exactly fit the boundary of Ω so that

Ω̄ =
⋃

T∈Th

T.

Hence, the elements of Th lying on the boundary of Ω are curved. Notice
that such a triangulation is difficult to implement. In Section 7, it is therefore
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described how the upcoming analysis can be modified in case of domains with
polygonal (N = 2) or polyhedral (N = 3) boundaries. With each element
T ∈ Th, we associate two parameters ρ(T ) and R(T ), where ρ(T ) denotes the
diameter of the set T and R(T ) is the diameter of the largest ball contained in
T . The mesh size of Th is defined by h = max

T∈Th

ρ(T ). We suppose the following

regularity assumption for Th:

Assumption 2 There exist two positive constants ρ and R such that

ρ(T )

R(T )
≤ R ,

h

ρ(T )
≤ ρ

hold for all T ∈ Th and all h > 0.

With this setting at hand, we are in the position to introduce the discretized
control space:

Definition 1 The space of discrete controls is given by

Vh = {uh ∈ C(Ω̄) | u|T ∈ P1 ∀ T ∈ Th}.

Notice that Vh ∈ H1(Ω) ∩ C(Ω̄).

Furthermore, we define by {xi}n
i=1 the set of all nodes of Th and denote the

standard continuous and piecewise linear finite element ansatz function associ-
ated to xi, 1 ≤ i ≤ n, by φi. In other words, φi satisfies φi ∈ Vh with φi(xi) = 1
and φi(xj) = 0 for all 1 ≤ j ≤ n with j 6= i. In the same way as the control,
the state is also discretized by the linear ansatz functions such that the discrete
state is equivalent to

∫

Ω

∇yh · ∇vh dx +

∫

Ω

yh vh dx =

∫

Ω

u vh dx ∀ vh ∈ Vh (1)

with an arbitrary u ∈ L2(Ω). Clearly, for every u ∈ L2(Ω), there is a unique
solution yh ∈ Vh such that we are allowed to introduce the discrete solution
operator Sh : L2(Ω) → Vh, associated to (1).

Remark 1 We tacitly assume that we are able to evaluate the integrals in (1)
exactly, although one has to perform an integration over a curved domain, which
is difficult to realize. For a practical implementation, an approximation of Ω
with isoparametric elements can be used, which causes another sort of errors.
However, to keep the discussion concise, we do not consider this issue here.
Notice, moreover, that these problems do of course not occur if Ω has a polygonal
boundary as discussed in Section 7.
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In view of (1), the discrete counterpart of (P) is given by

(Ph)







minimize fh(u) :=
1

2
‖Sh u − yd‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω)

subject to u ∈ Vh and (Sh u)(x) ≤ yb(x) a.e. in Ω.

Notice that (Ph) is not a completely discrete problem, since the desired state yd

as well as the bound yb are not discretized. Nevertheless, to keep the discussion
concise, we do not consider a discretization of these quantities for the moment
and demonstrate in Section 7 how a discretization of yd and yb influences the
theory.

Notations

Due to the strict convexity of f(u) and fh(u), (P) and (Ph) admit unique optimal
solutions that are denoted by ū ∈ L2(Ω) and ūh ∈ Vh in all what follows. The ad-
missible set of (P) is defined by Uad := {u ∈ L2(Ω) | (S u)(x) ≤ yb(x) a.e. in Ω},
and a function v is called feasible for (P) if v ∈ Uad. Analogously, we set
Uh

ad := {uh ∈ Vh | (Sh uh)(x) ≤ yb(x) a.e. in Ω} and say that vh ∈ Vh is feasible
for (Ph) if v ∈ Uh

ad. Given a real number σ with 1 ≤ σ < N/(N − 1), N = 2, 3,
we introduce the abbreviation Wσ = W 1,σ(Ω) and denote the dual space of Wσ

with respect to the L2-inner product by W ∗
σ . The conjugate exponent to σ is

denoted by σ′ = σ/(σ − 1). Furthermore, for a given 1 ≤ p ≤ ∞, we define
‖ . ‖p := ‖ . ‖Lp(Ω), except p = 2, i.e. the L2(Ω)-norm, which is denoted by ‖ . ‖.
Moreover, (. , .) is natural inner product in L2(Ω). The set C(Ω̄)+ is defined by
C(Ω̄)+ := {v ∈ C(Ω̄) | v(x) ≥ 0 ∀x ∈ Ω̄}. Finally, throughout the paper, c is a
positive generic constant.

3. Known results

The subsequent section states some basic results needed for the error analysis
of (P). We start with the well known L2-projection that is defined in a standard
way as follows:

Definition 2 Let Vh be an arbitrary subspace of L2(Ω). Then, for an arbitrary
u ∈ L2(Ω), the L2-projection on Vh, denoted by Πhu, is defined by

Πhu := arg min
vh∈Vh

‖u − vh‖2. (2)

The first-order optimality conditions for (2) immediately imply

(u − Πhu , vh) = 0 ∀ vh ∈ Vh, (3)

which will be used several times in the subsequent. Now, let us consider the
control-to-state mapping S that was introduced in Section 2.
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Theorem 1 Suppose that Ω ⊂ RN is an open bounded Lipschitz domain. Then,
there is a σ̄ < N/(N − 1) such that, for all σ̄ ≤ σ < N/(N − 1), the control-
to-state operator is continuous from W ∗

σ = W 1,σ(Ω)∗ to W 1,σ′

(Ω). Moreover,
if Ω is of class C1,1, then, for every right-hand side in Lp(Ω), 2 ≤ p < ∞,
there exists a unique solution of the state equation in W 2,p(Ω) that depends
continuously on the inhomogeneity.

For the first part of Theorem 1, we refer to Gröger (1989) for N = 2. In the
three dimensional case, a corresponding result can be found in Zanger (2000).
The second part of the Theorem 1 is a standard result that is, for instance,
proven in Grisvard (1985). In all what follows, let σ denote a fixed, but arbitrary
number in [σ̄, N/(N − 1)[.

Remark 2 Due to σ < N/(N − 1), hence σ′ > N , well known embedding
theorems imply W 1,σ′

(Ω) →֒ C(Ω̄) such that S : W ∗
σ → C(Ω̄) continuously.

The additional regularity of solutions to the state equation, is essential, since
the derivation of first-order optimality conditions by means of the generalized
Karush-Kuhn-Tucker (KKT) theory requires that the set defined by the state
constraints in (P) admit a non-empty interior (see for instance Zowe and Kur-
cyusz, 1979).

Theorem 2 There exists a unique solution of (P), denoted by ū. Moreover,
this solution provides some additional regularity, namely ū ∈ Wσ.

Proof. The existence and uniqueness result is standard. For the rest of the
proof, we set ȳ = S ū. To show the additional regularity of ū, we make use
of the generalized KKT theory. It is well known that this requires a certain
constraint qualification. Here, we rely on the Slater condition, i.e. the existence
of a û ∈ L2(Ω) and a constant τ > 0 such that ŷ := S û satisfies ŷ ∈ C(Ω̄)
and ŷ(x) ≥ τ for all x ∈ Ω̄. In case of (P), the existence of a Slater point is
automatically guaranteed since, if we choose û ≡ τ with an arbitrary τ > 0, then
the Neumann boundary conditions and the special choice of the state equation
imply ŷ = û = τ > 0. Therefore, the generalized KKT theory guarantees the
existence of a Lagrange multiplier µ̄ ∈ C(Ω̄)∗ such that ū satisfies

ū = − 1

α
S∗

(
E2(ȳ − yd) + µ̄

)
, (4)

where E2 : L2(Ω) → C(Ω̄)∗ is the associated embedding operator (see for in-
stance, Theorem 5.2 in Casas, 1993). Since the adjoint operator S∗ is continuous
from C(Ω̄)∗ to Wσ by Remark 2 , this gives the assertion.

Remark 3 It is well known that C(Ω̄)∗ can be identified with the space of regular
Borel measures, denoted by M(Ω). Then, the first-order optimality conditions
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can be formulated in terms of the following optimality system:

−∆ ȳ + ȳ = ū in Ω

∂n ȳ = 0 on Γ

−∆ p̄ + p̄ = ȳ − yd + µ̄Ω in Ω

∂n p̄ = µ̄Γ on Γ

α ū(x) + p̄(x) = 0 a.e. in Ω
∫

Ω̄

(ȳ − yb) dµ̄ = 0 , ȳ(x) ≤ yb(x) ∀ x ∈ Ω̄

∫

Ω̄

y dµ̄ ≥ 0 ∀ y ∈ C(Ω̄)+,







(5)

where µ̄Ω and µ̄Γ denote the restrictions of µ̄ ∈ M(Ω) on Ω and Γ, respectively.
For a detailed derivation of (5), we refer to Casas (1993) or Alibert and Ray-
mond (1997). Nevertheless, let us point out that the subsequent analysis only
uses dual variables, i.e., the adjoint state or Lagrange multipliers, to show the
additional regularity of ū and ūh, i.e. ū, ūh ∈ Wσ. Notice that the solutions are
less regular than in the optimal control in the control-constrained case, where the
optimal control is even Lipschitz continuous. This lack of regularity illustrates
an essential difference to the control-constrained case.

Due to the low regularity of the control, we need a generalized interpolation
operator for functions in Ht(Ω), t ≤ 1, that employs local L2-projections. In
case of polyhedral domains, this operator is given by the well known Clément
interpolation operator (see Clément, 1975) that is defined by

(Ihu)(x) :=

n∑

i=1

(Πiu)(xi)φi(x),

where Πi denotes the L2-projection on supp{φi}, i.e. the solution of

(Πiu , uh) = (u , uh) ∀ uh ∈ Vh ∩ Ht(supp{φi}).

Bernardi (1989) generalized this concept for domains with curved boundary and
proved the following result:

Lemma 1 Let t ∈ [0, 1] be given. Then there exists an interpolation operator
Ih : Ht(Ω) → Vh such that, for all u ∈ Ht(Ω),

‖u − Ihu‖ ≤ c ht ‖u‖Ht(Ω)

is satisfied with a constant c independent of t, h, and u.

For the particular form of Ih, in case of curved domains, we refer to Bernardi
(1989). The operator Ih will be called quasi-interpolation in all what follows.
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Next, we turn to the finite element approximation of the state equation in
(P). Using again Bernardi’s results for interpolation error estimates on curved
domains (see Bernardi, 1989), the standard theory for linear finite elements
yields that, for all u ∈ L2(Ω), the discrete solution operator Sh satisfies the
following error estimates

‖(S − Sh)u‖ ≤ c h2 ‖u‖ (6)

‖(S − Sh)u‖∞ ≤ c h2−N/2 ‖u‖. (7)

However, if u is more regular, then this result can be improved as shown by
Deckelnick and Hinze (2007), based on a result of Schatz (1997).

Lemma 2 Let u ∈ Wσ be given. Then

‖(S − Sh)u‖∞ ≤ c h3−N/σ | log h| ‖u‖Wσ

holds true with a constant c only depending on Ω.

The Tikhonov regularization term within the objective function immediately
implies that the discrete controls are uniformly bounded in L2(Ω). Moreover,
because of ūh ∈ Vh ⊂ H1(Ω), we have ūh ∈ Wσ. In addition to that, we find:

Lemma 3 The sequence of discrete optimal solutions, denoted by {ūh}h>0, is
uniformly bounded in Wσ.

Proof. In Lemma 3.5 in Deckelnick and Hinze (2007), the assertion is proven for
the semi-discrete case. Since semi-discretization and full discretization coincide
in the purely state-constrained case as mentioned in the introduction (see also
Remark 2.2 in Deckelnick and Hinze, 2007), the same arguments apply in case
of (P). Let us shortly sketch the underlying analysis for the convenience of the
reader. Similarly to (4), the necessary and sufficient optimality conditions for
(Ph) can be written as

ūh = − 1

α
S∗

h

(
E2(ȳh − yd) + µ̄h

)
,

where ȳh = Sh ū and µ̄h is the Lagrange multiplier associated to the state
constraints in (Ph). Now we define

ph := S∗
h

(
E2(ȳh − yd) + µ̄h

)
(8)

ph := S∗
(
E2(ȳh − yd) + µ̄h

)
(9)

and start with

‖ūh‖Wσ
≤ 1

α

(
‖ph − Ih ph‖Wσ

+ ‖ph − Ih ph‖Wσ
+ ‖ph‖Wσ

)
.
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Because of S∗ : M(Ω̄) → Wσ continuously by Remark 2, interpolation error
estimates give

‖ph − Ih ph‖Wσ
+ ‖ph‖Wσ

≤ c
(
‖ȳh − yd‖ + ‖µ̄h‖M(Ω̄)

)
.

In Theorem 2.3 in Deckelnick and Hinze (2007), it is shown that {µ̄h}h>0 is
uniformly bounded in M(Ω), which immediately follows from testing the varia-
tional formulation corresponding to (8) with a constant test function. Moreover,
{ȳh}h>0 is clearly uniformly bounded in L2(Ω) due to the optimality of ȳh. It
remains to estimate ‖ph − Ih ph‖Wσ

. Here, an inverse estimate implies

‖ph − Ih ph‖Wσ
≤ c h−1+N(1/σ−1/2)

(
‖ph − ph‖ + ‖ph − Ih ph‖

)
.

The second addend is estimated by standard interpolation error estimates. For
the finite element error ‖ph − ph‖, Theorem 3 in Casas (1985) gives

‖ph − ph‖ ≤ c h1/(N−1)‖E2(ȳh − yd) + µ̄h‖M(Ω̄).

Notice that the analysis in Casas (1985) refers to homogeneous Dirichlet bound-
ary conditions, but can easily be adapted to homogeneous Neumann boundary
conditions. Due to σ < N/(N − 1), one has −1+N(1/σ− 1/2)+1/(N − 1) > 0
and the uniform boundedness of µ̄h finally implies the result.

4. Auxiliary results

Before we are in the position to prove the main convergence theorem, we have to
derive some auxiliary results. In particular, Lemma 6 is essential for the overall
theory. Nevertheless, let us start with the approximation error for the optimal
control ū. As stated above, one has to apply quasi-interpolation to approximate
ū. Based on Lemma 1, we find the following estimates:

Lemma 4 Let σ ∈ [σ̄, N/(N − 1)[. Then, for every function u ∈ Wσ, there
exists a constant c , independent of u and h, such that

‖u − Πhu‖ ≤ c h1+N/2−N/σ ‖u‖Wσ
(10)

‖u − Πhu‖W∗

σ
≤ c h2+N−2N/σ ‖u‖Wσ

. (11)

Proof. Embedding theorems imply that Wσ →֒ Ht(Ω) with t = 1 + N/2−N/σ.
Hence, Lemma 1 yields

‖u − Πhu‖ ≤ c ht ‖u‖Ht(Ω) ≤ c h1+N/2−N/σ ‖u‖Wσ
. (12)

For the second statement, we argue in a standard way: due to (3), for every
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vh ∈ Vh, it follows that

‖u − Πhu‖W∗

σ
= sup

ϕ∈W,ϕ 6=0

(u − Πhu , ϕ)

‖ϕ‖Wσ

= sup
ϕ∈W,ϕ 6=0

(u − Πhu , ϕ − vh)

‖ϕ‖Wσ

= ‖u − Πhu‖ sup
ϕ∈W,ϕ 6=0

‖ϕ − vh‖
‖ϕ‖Wσ

.

(13)

Now, we choose the quasi-interpolant for vh, i.e. vh = Ihϕ, such that, analo-
gously to above, Lemma 1 implies

‖ϕ − Ihϕ‖ ≤ c h1+N/2−N/σ ‖ϕ‖Wσ
.

Inserting this, together with (12), in (13) finally yields the assertion.

Lemma 5 Let σ ∈ [σ̄, N/(N − 1)[ and u be an arbitrary function in Wσ. Then,
the following estimate holds with a constant c, independent of h and u,

‖Sh(Πhu − u)‖∞ ≤ c h2+N−2N/σ ‖u‖Wσ
.

Proof. We start with the triangle inequality that implies

‖Sh(Πhu − u)‖∞ ≤ ‖(Sh − S)(Πhu − u)‖∞ + ‖S(Πhu − u)‖∞. (14)

For the first addend, (7) and (10) yield

‖(Sh − S)(Πhu − u)‖∞ ≤ c h3−N/σ ‖u‖Wσ
.

It remains to estimate the second addend in (14). In view of Remark 2, we
obtain

‖S(Πhu − u)‖∞ ≤ c ‖Πhu − u‖W∗

σ
≤ c h2+N−2N/σ ‖u‖Wσ

,

where we used (11) for the last estimate. Due to σ < N/(N − 1), there holds
3 − N/σ > 2 + N − 2N/σ, which implies the assertion.

To improve the readability, we use the notation

δ(h, σ) := h2+N−2N/σ (15)

in all what follows. Because of σ < N/(N − 1), we have 1 − N + N/σ > 0 such
that there is a constant c, depending on σ, with

h3−N/σ | log h| = δ(h, σ)h1−N+N/σ | log h| ≤ c δ(h, σ), (16)

which gives, in turn, the following result:
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Corollary 1 Lemmata 2, 4, and 5 imply

‖u − Πhu)‖ ≤ c
√

δ(h, σ) ‖u‖Wσ
, ‖u − Πhu‖W∗

σ
≤ c δ(h, σ) ‖u‖Wσ

‖(S − Sh)u‖∞ ≤ c δ(h, σ) ‖u‖Wσ
, ‖Sh(Πhu − u)‖∞ ≤ c δ(h, σ) ‖u‖Wσ

.

with a constant c, independent of h and u.

With these results at hand, we are now able to show the key point of our
convergence theory. Here, we prove the feasibility of ūh−c δ(h, σ) for the infinite
dimensional problem (P). On the other hand, Πhū − c δ(h, σ) is feasible for the
discrete problem (Ph). This two-way feasibility represents the basis for the
convergence theory in Section 5.

Lemma 6 Let δ(h, σ) be defined by (15). Then there exist positive constants γ1

and γ2, each independent of h, such that, the function v1, defined by

v1 := ūh − γ1 δ(h, σ),

is feasible for (P), whereas

v2 := Πhū − γ2 δ(h, σ)

is feasible for (Ph).

Proof. First, we show (S v1)(x) ≤ yb(x) a.e. in Ω. Together with Lemma 2 and
Corollary 1, respectively, the feasibility of ūh for (Ph) implies

(S v1)(x) = (Sh ūh)(x) +
(
(S − Sh)ūh

)
(x) − δ(h, σ) (S γ1)(x)

≤ yb(x) + ‖(S − Sh)ūh‖∞ − γ1 δ(h, σ)

≤ yb(x) −
(
γ1 − c ‖ūh‖Wσ

)
δ(h, σ) (17)

for almost all x ∈ Ω. Because of Lemma 3, ‖ūh‖Wσ
is bounded by a constant

independent of h and hence (17) yields the feasibility of v1 for sufficiently large
γ1. Next, let us turn to the feasibility of v2 for (Ph). First, we have v2 ∈ Vh

by construction. To verify the inequality constraints in (Ph), we deduce from
Lemma 5 and Lemma 2 that

(Sh v2)(x) = (S ū)(x) +
(
Sh(Πhū−ū)

)
(x) +

(
(Sh−S)ū

)
(x)−δ(h, σ) (Sh γ2)(x)

≤ yb(x) + ‖Sh(Πhū − ū)‖∞ + ‖(S − Sh)ū‖∞ − γ2 δ(h, σ)

≤ yb(x) −
(
γ2 − c ‖ū‖Wσ

)
δ(h, σ) (18)

(see Corollary 1). Due to ū ∈ Wσ, the expression in the brackets is non-negative,
if γ2 is chosen sufficiently large, giving in turn the assertion.

The following lemma is an immediate consequence of the variational inequal-
ities for (P) and (Ph).
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Lemma 7 For every v ∈ Uad and every vh ∈ Uh
ad, we find

α ‖ū − ūh‖2 + ‖S ū − Sh ūh‖2

≤ α (ū , v − ūh) + α (ū , vh − ū) + α (ūh − ū , vh − ū)

+
(

Sh ūh − S ū , (Sh − S)vh + S(vh − ū)
)

+
(

S ū − yd , S(v − ūh) + S(vh − ū) + (S − Sh)ūh + (Sh − S)vh

)

.

(19)

Proof. The proof is completely analogous to the control-constrained case pre-
sented by Falk (1973) and follows from straightforward computation. We start
with the variational inequalities for (P) and (Ph), respectively, given by

(S ū − yd , S v − S ū) + α (ū , v − ū) ≥ 0 ∀ v ∈ Uad (20)

(Sh ūh − yd , Sh vh − Sh ūh) + α (ūh , vh − ūh) ≥ 0 ∀ vh ∈ Uh
ad. (21)

Adding both inequalities yields

=: A
︷ ︸︸ ︷

(S ū − yd , S v − S ū) + (Sh ūh − yd , Sh vh − Sh ūh)

+ α
[
(ū , v − ū) + (ūh , vh − ūh)

]

︸ ︷︷ ︸

=: B

≥ 0
(22)

for all v ∈ Uad and all vh ∈ Uh
ad. Straightforward computations show for A and

B

B = (ū , v − ūh) + (ū , ūh − ū) + (ūh , vh − ū) + (ūh , ū − ūh)

≤ −‖ū − ūh‖2 + (ū , v − ūh) + (ū , vh − ū) + (ūh − ū , vh − ū)
(23)

and

A =
(

S ū − yd , S(v − ūh) + (S − Sh)ūh + Sh ūh − S ū)
)

+
(

Sh ūh − yd , (Sh − S)vh + S(vh − ū) + S ū − Shūh

)

=
(

S ū − yd , S(v − ūh) + S(vh − ū) + (S − Sh)ūh + (Sh − S)vh

)

+
(

Sh ūh − S ū , (Sh − S)vh + S(vh − ū)
)

− ‖Sh ūh − S ū‖2.

(24)

Inserting (23) and (24) in (22) finally implies the assertion.

5. Convergence analysis

With the results of the previous section at hand, in particular Lemma 6, we are
now able to prove our main result, which is the following convergence theorem:
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Theorem 3 Let ū denote the optimal solution of (P), while ūh is the optimal
solution of (Ph). Then, for every σ < N/(N − 1), the following estimate holds
true

‖ū − ūh‖ + ‖S ū − Sh ūh‖ ≤ C h1+N/2−N/σ

with a constant C depending on σ, Ω, α, ū, and û.

Proof. We start by estimating the right hand side of (19). For the first two
expressions, we obtain

(ū , v − ūh) + (ū , vh − ū) ≤ ‖ū‖Wσ

(
‖v − ūh‖W∗

σ
+ ‖vh − ū‖W∗

σ

)
.

The next two addends are estimated by using Young’s inequality so that

(ūh − ū , vh − ū) ≤ 1

2
‖ūh − ū‖2 +

1

2
‖vh − ū‖2

and
(

Sh ūh − S ū , (Sh − S)vh + S(vh − ū)
)

≤ 1

2
‖Sh ūh − S ū‖2 + ‖(Sh − S)vh‖2 + ‖S(vh − ū)‖2

≤ 1

2
‖Sh ūh − S ū‖2 + ‖(Sh − S)vh‖2 + c ‖vh − ū‖2

W∗

σ
,

are obtained. Here, we used the continuity of S from W ∗
σ to H1(Ω) that follows

from S : H1(Ω)∗ → H1(Ω) continuously and W ∗
σ ⊂ H1(Ω)∗ because of H1(Ω) ⊂

Wσ. The last term on the right hand side of (19) is estimated by the Cauchy-
Schwarz inequality, i.e.
(

S ū − yd , S(v − ūh) + S(vh − ū) + (S − Sh)ūh + (Sh − S)vh

)

≤ c ‖S ū − yd‖
(

‖v − ūh‖W∗

σ
+ ‖vh − ū‖W∗

σ
+ ‖(S − Sh)ūh‖ + ‖(Sh − S)vh‖

)

,

where we again used S : W ∗
σ → H1(Ω) continuously. Inserting these estimates

in (19) yields

α

2
‖ū − ūh‖2 +

1

2
‖S ū − Sh ūh‖2

≤ α

2
‖vh − ū‖2

+
(

α ‖ū‖Wσ
+ c ‖S ū − yd‖

)(

‖v − ūh‖W∗

σ
+ ‖vh − ū‖W∗

σ

)

(25)

+c2 ‖vh − ū‖2
W∗

σ
+ ‖(S − Sh)vh‖2

+‖S ū − yd‖
(

‖(S − Sh)ūh‖ + ‖(S − Sh)vh‖
)

∀ v ∈ Uad, vh ∈ Uh
ad.
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Thanks to Lemma 6, we are now allowed to insert v = v1 and vh = v2. By
means of Corollary 1, we obtain

‖vh − ū‖ ≤ ‖Πhū − ū‖ + c γ2 δ(h, σ)

≤ c
(
‖ū‖Wσ

+ γ2

)√

δ(h, σ) =: c1

√

δ(h, σ),
(26)

‖vh − ū‖W∗

σ
≤ ‖Πhū − ū‖W∗

σ
+ c γ2 δ(h, σ)

≤ c
(
‖ū‖Wσ

+ γ2

)
δ(h, σ) =: c2 δ(h, σ),

(27)

and in case of v = v1

‖v − ūh‖W∗

σ
≤ c γ1 δ(h, σ) =: c3 δ(h, σ). (28)

For the remaining expressions in (25), one can apply (6), i.e.

‖(Sh − S)vh‖ ≤ c h2 ‖Πhū − γ2 δ(h, σ)‖
≤ c h2

(
‖ū‖ + γ2

)
=: c4 h2

(29)

and

‖(Sh − S)ūh‖ ≤ c h2 ‖ūh‖ =: c5 h2, (30)

where the optimality of ūh guarantees its uniform boundedness in L2(Ω) such
that c5 is independent of h. If, we now insert (26)–(30) in (25), we obtain

α

2
‖ū − ūh‖2 +

1

2
‖S ū − Sh ūh‖2

≤ α

2
c2
1 δ(h, σ) +

(

α ‖ū‖Wσ
+ c ‖S ū − yd‖

)

(c2 + c3) δ(h, σ)

+ c2 c2
2 δ(h, σ)2 + c4 h2 + ‖S ū − yd‖ (c4 + c5)h2

≤ C δ(h, σ). (31)

We point out that C depends on σ because of two reasons: firstly, due to (16),
and secondly, since c1 and c2 and thus also C depend on ‖ū‖Wσ

and consequently
on σ. Finally, the definition of δ(h, σ) in (15) yields the assertion.

Remark 4 Note that the order of convergence in Theorem 3 coincides with the
one of the interpolation error (see Lemma 4). Thus, the approximation error
can be seen to be optimal.

Remark 5 To rewrite the assertion of Theorem 3 in a more compact way, let
ε > 0 be fixed but arbitrary and set σ = max{σ̄, N/(N − 1 + ε)} with σ̄ as given
in Theorem 1. Hence, σ < N/(N − 1). Then, Theorem 3 implies that, for all
ε > 0, there holds

‖ū − ūh‖ + ‖S ū − Sh ūh‖ ≤ C h2−N/2−ε

with a constant C depending on ε, Ω, α, ū, and û.
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Using standard finite element error estimates, we deduce

‖S u − Sh uh‖H1(Ω) ≤ ‖S(u − uh)‖H1(Ω) + ‖(S − Sh)uh‖H1(Ω)

≤ c ‖u − uh‖ + c h ‖uh‖.

Hence, Remark 5 implies the following result:

Corollary 2 For the optimal states of (P) and (Ph), we have

‖ȳ − ȳh‖H1(Ω) ≤ c h2−N/2−ε.

6. A problem with pointwise state and control constraints

As already mentioned in the introduction, the previous theory for (P) can be
adapted to problem (Q) with additional box-constraints on the control. Analo-
gously to (P), we introduce the reduced optimal control problem by

(Q)







min
u∈L2(Ω)

f(u) :=
1

2
‖S u − yd‖2 +

α

2
‖u‖2

subject to ya(x) ≤ (S u)(x) ≤ yb(x) a.e. in Ω

ua ≤ u(x) ≤ ub a.e. in Ω.

Besides Assumption 1, we need the following assumptions on the additional
quantities in (Q):

Assumption 3 The bounds ya and yb are given in C(Ω̄) with ya(x) < yb(x) for
all x ∈ Ω̄. Moreover, ua and ub are real numbers satisfying ua ≤ ub.

It is well known that, under this assumption, (Q) admits a unique solution.
Furthermore, the first-order conditions are again derived by means of the gen-
eralized KKT-theory. As stated in the proof of Theorem 2, certain constraint
qualifications are required to this end. To be more precise, we rely on the fol-
lowing Slater condition. In contrast to (P), this condition is not automatically
guaranteed in case of (Q):

Assumption 4 (Slater condition) A function û ∈ Wσ exists such that

ya(x) + τ ≤ (S û)(x) ≤ yb(x) − τ

ua ≤ û(x) ≤ ub

holds for all x ∈ Ω̄ with some τ > 0.

Recall that σ is a fixed but arbitrary number in [σ̄, N/(N −1)[, where σ̄ is as
defined in Theorem 1. As in case of (P), the KKT theory implies the existence
of Lagrange multipliers µ̄a, µ̄b ∈ M(Ω) associated to the state constraints in
(Q) such that, similarly to (4), the solution of (Q) satisfies

ū = Πad

[

− 1

α
S∗

(
E2(ȳ − yd) + µ̄b − µ̄a

)]

(32)
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(see Theorem 5.2 in Casas, 1993). Here, as in the proof of Theorem 2, E2 :
L2(Ω) → C(Ω̄)∗ denotes the embedding operator, while ȳ is the state associated
to ū, i.e. ȳ = S ū. Moreover, Πad denotes the pointwise projection on the
interval [ua, ub], which is stable from Wσ to Wσ. Moreover, ū is clearly bounded
in L∞(Ω), due to the control constraints. Hence, we have demonstrated:

Theorem 4 Problem (Q) admits a unique solution, again denoted by ū, fulfill-
ing ū ∈ Wσ ∩ L∞(Ω).

Remark 6 Similarly to (P), the first-order conditions, i.e. (32) together with
complementary slackness condition and non-negativity of the multipliers, are
equivalent to the following optimality system:

−∆ ȳ + ȳ = ū in Ω

∂n ȳ = 0 on Γ

−∆ p̄ + p̄ = ȳ − yd + µ̄b,Ω − µ̄a,Ω in Ω

∂n p̄ = µ̄b,Γ − µ̄a,Γ on Γ

ū(x) = Πad

[

− 1

α
p̄(x)

]

ya(x) ≤ ȳ(x) ≤ yb(x) ∀ x ∈ Ω̄
∫

Ω̄

(ya − ȳ) dµ̄a = 0 ,

∫

Ω̄

(ȳ − yb) dµ̄b = 0

∫

Ω̄

y dµ̄a ≥ 0 ,

∫

Ω̄

y dµ̄b ≥ 0 ∀ y ∈ C(Ω̄)+,







(33)

(see Casas, 1993, for details). Let us again point out that dual variables, i.e. µ̄a,
µ̄b, and p̄, are not used within the following analysis.

In contrast to the discretization of problem (P), the control is now discretized
by piecewise constant ansatz functions, while the discrete state is still an element
of Vh as defined in Definition 1.

Definition 3 The space of discrete controls is given by

Uh = {uh ∈ L2(Ω) | u|T = const. ∀ T ∈ Th}.

With the discrete control-to-state mapping, as defined subsequent to (1), the
discrete optimal control problem now reads

(Qh)







min
u∈Uh

fh(u) :=
1

2
‖Sh u − yd‖2 +

α

2
‖u‖2

subject to ya(x) ≤ (Sh u)(x) ≤ yb(x) a.e. in Ω

ua ≤ u(x) ≤ ub a.e. in Ω.

As (Ph) in Section 2, problem (Qh) is, strictly speaking, not a completely dis-
crete problem, since yd, ya, and yb are not discretized. As already pointed
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out, a discretization of these quantities is considered in Section 7. By standard
arguments, one shows that, for every h > 0, there is a unique solution ūh of
(Qh).

Remark 7 Due to the control constraints, {ūh}h>0 is uniformly bounded in
L∞(Ω). However, since the control is discretized by piecewise constant non-
continuous functions, we have Uh * Wσ, and therefore Lemma 3 does not hold
in this case. Here, we use the uniform boundedness in L∞(Ω) to prove a result
analogous to Lemma 5, see Lemma 10 and Corollary 4 below.

Our aim is now to derive results analogous to the ones in Section 4 for
the new discrete control space Uh. Therefore, let us define the projection of
a function u ∈ L2(Ω) on Uh. Based on (3), it is straightforward to see that
Πh : L2(Ω) → Uh is given by

Πhu|T =
1

|T |

∫

T

u dx ∀ T ∈ Th.

Lemma 8 For every u ∈ Wσ, there holds

‖u − Πhu‖ ≤ c h1+N/2−N/σ ‖u‖Wσ
,

with a constant c only depending on Ω.

Proof. Let T be an arbitrary element of Th. Then, according to Theorem 6.6 in
Stampacchia (1965), one finds

‖u − Πhu‖Lσ∗(T ) ≤ c
hN

|T | ‖u‖W 1,σ(T ),

where σ∗ is defined by σ∗ = N σ/(N − σ). Together with the definition of σ,
this yields σ∗ < N/(N −2), hence σ∗ < ∞ for N = 2, 3. Application of Hölder’s
inequality then yields

‖u − Πhu‖L2(T ) ≤ |T |(σ∗−2)/(2σ∗) ‖u − Πhu‖Lσ∗(T )

and hence

‖u − Πhu‖L2(T ) ≤ c hN |T |(σ∗−2)/(2 σ∗)−1 ‖u‖W 1,σ(T ). (34)

Now, by definition of h, there is a constant c such that |T | ≤ c hN . Thus, by
the definition of σ∗, we obtain

hN |T |(σ∗−2)/(2 σ∗)−1 ≤ c hN(σ∗−2)/(2 σ∗) = c h1+N/2−N/σ. (35)
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Now, given an arbitrary set of non-negative real numbers {ai}, we have
∑

i a
2/σ
i ≤

( ∑

i ai

)2/σ
, since 2/σ > (2N − 2)/N ≥ 1 for N = 2, 3. Hence, together with

(35), (34) implies

‖u − Πhu‖2
L2(Ω) ≤ c h2+N−2N/σ

∑

T∈Th

(
‖u‖σ

W 1,σ(T )

)2/σ

≤ c h2+N−2N/σ‖u‖2
Wσ

,

(36)

giving, in turn, the assertion.

Now, we can argue analogously to the proof of Lemma 4 and Lemma 5,
respectively, (with Πh instead of Ih) to obtain the following result:

Corollary 3 Suppose that u ∈ Wσ. Then, the following estimates hold true

‖u − Πhu‖W∗

σ
≤ c h2+N−2N/σ ‖u‖Wσ

(37)

‖S(Πhu − u)‖∞ ≤ c h2+N−2N/σ ‖u‖Wσ
(38)

with a constant c > 0 independent of u, h, and σ.

Lemma 9 There exists a τ0 > 0, independent of h such that,

ya(x) + τ0 ≤ (Sh Πhû)(x) ≤ yb(x) − τ0

holds for all 0 < h ≤ h0.

Proof. The assertion follows immediately from Lemma 8 and standard finite
element error estimates. We exemplarily consider the upper state constraint.
Due to σ < N/(N − 1), there holds 1+N/2−N/σ < 2−N/2 and consequently

(Sh Πhû)(x) = (S û)(x) +
(
S(Πhû − û)

)
(x) +

(
(Sh − S)Πhû

)
(x)

≤ yb(x) − τ + ‖S‖L(L2(Ω),L∞(Ω)) ‖Πhû − û‖ + c h2−N/2 ‖Πhû‖
≤ yb(x) − (τ − c h1+N/2−N/σ) ‖û‖Wσ

︸ ︷︷ ︸

=: τ0

,

where we used Lemma 8 and (7). Hence, since û is a fixed function in Wσ, there
is an h0 such that τ0 is positive for all h < h0. An analogous discussion for the
lower constraint gives the assertion.

As mentioned in Remark 7, we have Uh * Wσ such that one cannot use
this additional smoothness for the estimation of ‖(S − Sh)ūh‖∞ as done in the
proof of Lemma 2 (see Deckelnick and Hinze, 2007). However, here we benefit
from the additional control constraints that guarantee ū, ūh ∈ L∞(Ω). For a
corresponding lemma, we argue analogously to Lemma 3.4 in Deckelnick and
Hinze (2007).
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Lemma 10 Suppose that u ∈ Lq(Ω) is given with N < q < ∞. Then a constant
c independent of h and u exists such that

‖(S − Sh)u‖∞ ≤ c h2−N/q | log h| ‖u‖q. (39)

Proof. Let us introduce the notations y = S u and yh = Sh u. First, according
to Grisvard (1985), u ∈ Lq(Ω) implies y = S u ∈ W 2,q(Ω) ⊂ W 1,∞(Ω), where
the embedding is guaranteed by the assumption q > N . For y ∈ W 1,∞(Ω),
Schatz (1998) proved in Theorem 2.2 that

‖y − yh‖∞ ≤ c | log h| ‖y − Ihy‖∞,

where Ih again denotes the interpolation operator. Now, together with interpo-
lation error estimates for curved domains (see Bernardi, 1989), the regularity of
y grants

‖y − Ihy‖L∞(Ω) ≤ c h2−N/q ‖y‖W 2,q(Ω) ≤ c h2−N/q ‖u‖q,

which concludes the proof.

If we choose q = Nσ/(N − σ) so that q < ∞, because of σ < N/(N − 1),
then Lemma 10 and (16) immediately imply the following result:

Corollary 4 For every u ∈ L∞(Ω), there holds

‖(S − Sh)u‖∞ ≤ c h2+N−2N/σ ‖u‖∞

with a constant c > 0 depending on σ, but independent of u and h.

In the following, we again use δ(h, σ) as defined in (15), i.e. δ(h, σ) =
h2+N−2N/δ, to shorten the presentation. Using the previous results, we are
now ready to state the analogon to Lemma 6, which is again the crucial point
in the overall convergence theory.

Lemma 11 There exists a positive constant γ, independent of h, such that the
function v1, defined by

v1 := ūh + γ δ(h, σ) (û − ūh),

is feasible for (Q). On the other hand, there is an h0 such that

v2 := Πhū + γ δ(h, σ) (Πhû − Πhū)

is feasible for (Qh) for all h < h0.

Proof. With the previous results at hand, the proof is similar to the one of
Lemma 6. We exemplarily show the feasibility of v2. In case of v1, the arguments
are analogous. First, we have v2 ∈ Uh by construction. Hence, it remains to
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show that v2 satisfies the inequality constraints in (Qh). Clearly, if u(x) ∈
[ua, ub] for almost all x ∈ Ω, then (Πhu)(x) ∈ [ua, ub] follows a.e. in Ω. Hence,
we have (Πhū)(x), (Πhû)(x) ∈ [ua, ub] a.e. in Ω due to Assumption 4. Moreover,
for h sufficiently small, we have γ δ(h, σ) ≤ 1 such that v2 is a convex linear
combination of two functions in [ua, ub] and consequently ua ≤ v2(x) ≤ ub

a.e. in Ω. For the upper state constraint in (Qh), Lemma 9, Corollary 3, and
Lemma 10 imply

(Sh v2)(x) =[1 − γ δ(h, σ)](S ū)(x) + [1 − γ δ(h, σ)]
(
S(Πhū − ū)

)
(x)

+ [1 − γ δ(h, σ)]
(
(Sh − S)Πhū

)
(x) + γ δ(h, σ) (Sh Πhû)(x)

≤ [1 − γ δ(h, σ)] yb(x) + γ δ(h, σ) (yb(x) − τ0)

+ [1 − γ δ(h, σ)]
(

‖S(Πhū − ū)‖∞ + ‖(S − Sh)Πhū‖∞
)

≤ yb(x) − γ δ(h, σ) τ0 + c [1 − γ δ(h, σ)]
(
δ(h, σ) ‖ū‖Wσ

+ δ(h, σ) ‖Πhū‖∞
)

≤ yb(x) −
(

γ τ0 − c
(
‖ū‖Wσ

+ ‖ū‖∞
))

δ(h, σ).

Here, we used the fact that ‖Πhū‖∞ ≤ ‖ū‖∞. Since ū is bounded in Wσ

and L∞(Ω), because of the control constraints, the expression in the brackets
is non-negative if γ is chosen sufficiently large. Notice that γ depends on ū,
ua, and ub, but not on h. The lower state constraint, i.e. (Sh v2)(x) ≥ ya(x)
a.e. in Ω, can be discussed analogously giving the assertion on v2. Using again
Corollary 4 and Assumption 4, it is straightforward to show the feasibility of
v1 for (Q). Here, one again benefits from the control constraints in (Qh) that
imply ‖ūh‖∞ ≤ max{|ua|, |ub|} for all h.

The remaining analysis follows the lines of the previous sections. First,
Lemma 7 clearly also holds in case of (Q), with

Uad := {u ∈ L2(Ω) | ua ≤ u(x) ≤ ub and ya(x) ≤ (S u)(x) ≤ yb(x) a.e. in Ω}
Uh

ad := {uh ∈ Uh | ua ≤ uh(x) ≤ ub and ya(x) ≤ (Sh uh)(x) ≤ yb(x) a.e. in Ω}.

Furthermore, with Lemma 8, Corollary 3, and Lemma 11, we obtain the follow-
ing estimates instead of (26)–(28):

‖v2 − ū‖ ≤ ‖Πhū − ū‖ + γ δ(h, σ) ‖Πhû − Πhū‖

≤
(

c ‖ū‖Wσ
+ γ

(
‖û‖ + ‖ū‖

))√

δ(h, σ) =: c1

√

δ(h, σ),

‖v2 − ū‖W∗

σ
≤ ‖Πhū − ū‖W∗

σ
+ γ δ(h, σ) ‖Πhû − Πhū‖W∗

σ

≤
(

c ‖ū‖Wσ
+ c γ

(
‖û‖ + ‖ū‖

))

δ(h, σ) =: c2 δ(h, σ),

‖v1 − ūh‖W∗

σ
= c γ δ(h, σ) ‖û − ūh‖ =: c3 δ(h, σ).
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Again, c1 and c2 depend on ‖ū‖Wσ
and thus on σ. Moreover, using (6) for the

L2-approximation error, one finds analogously to (29) and (30)

‖(Sh − S)v2‖ ≤ c h2 ‖Πhū − γ δ(h, σ) (Πhû − Πhū)‖
≤ c h2

(
(1 + γ)‖ū‖ + γ ‖û‖

)
=: c4 h2,

‖(Sh − S)ūh‖ ≤ c h2 ‖ūh‖ =: c5 h2.

Therefore, with these estimates at hand, we can proceed analogously to the
proof of Theorem 3 and in this way, one obtains the following result:

Theorem 5 Suppose that ū and ūh are the optimal solutions of (Q) and (Qh),
respectively. Then, for all σ < N/(N − 1), the following estimate holds true

‖ū − ūh‖ + ‖S ū − Sh ūh‖ ≤ C h1+N/2−N/σ

with a constant C depending on σ, Ω, α, ū, and û.

The constant C again depends on σ because of the dependence of c1 and c2

on ‖ū‖Wσ
.

Remark 8 Again, the order of convergence can be seen to be optimal since it
coincides with the one of the interpolation error in Lemma 8.

Remark 9 Analogously to Remark 5, σ can again be coupled with ε > 0 by
σ = max{σ̄, N/(N − 1 + ε)} such that

‖ū − ūh‖ + ‖S ū − Sh ūh‖ ≤ C h2−N/2−ε

follows for all ε > 0 with a constant C depending on ε but not on h.

Similarly to Corollary 2, one shows the following estimate:

Corollary 5 For the optimal states of (Q) and (Qh), it follows that

‖ȳ − ȳh‖H1(Ω) ≤ c h2−N/2−ε.

7. Discussion of the error estimates

In the following section, we highlight several aspects of the error analysis pre-
sented before. We start with the discretization of the desired state yd and the
bounds ya and yb.

7.1. Discretization of the data

It is easy to see that, if yd, ya, and yb are sufficiently smooth, then the arguments
can be modified so that the presented theory still holds in case of a discretization
of yd and the bounds. For the convenience of the reader, we shortly present
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the corresponding arguments. In case of discretization of yd, the variational
inequality (21) for the discrete problem has to be replaced by

(Sh ūh − yd , Sh vh − Sh ūh) + α (ūh , vh − ūh)

+ (yd − Ih yd , Sh vh − Sh ūh) ≥ 0 ∀ vh ∈ Uh
ad.

If we assume yd ∈ H2(Ω), the additional term is estimated by

(yd − Ih yd , Sh vh − Sh ūh) ≤ ‖yd − Ih yd‖ ‖Sh (vh − ūh)‖ ≤ c h2 ‖vh − ūh‖

with vh = Πhū−γ2 δ(h, σ) in case of problem (P) and vh = Πhū+γ δ(h, σ) (Πhû−
Πhū) for problem (Q). Clearly, in both cases, ‖vh − ūh‖ is uniformly bounded
by a constant because of the optimality of ū and ūh, so that the additional
term does not influence the theory. If ya and yb are discretized, the proofs of
Lemma 6 and Lemma 11, respectively, have to be modified. In case of (Ph),
the discrete state constraint then reads (Sh u)(x) ≤ (Ih yb)(x) a.e. in Ω. We
exemplarily study the first part of Lemma 6. The other cases can be discussed
analogously. To derive the feasibility of v1 := ūh − γ1 δ(h, σ) for (P), we argue
similarly to the original proof of Lemma 6:

(S v1)(x) = (Sh ūh)(x) +
(
(S − Sh)ūh

)
(x) − δ(h, σ) (S γ1)(x)

≤ Ih yb(x) + ‖(S − Sh)ūh‖∞ − γ1 δ(h, σ)

≤ yb(x) + ‖Ih yb − yb‖∞ −
(
γ1 − c ‖ūh‖Wσ

)
δ(h, σ).

(40)

If yb is sufficiently smooth, i.e. yb ∈ W 2,∞(Ω), then the interpolation error
estimates for curved domains yield

‖Ih yb − yb‖∞ ≤ c δ(h, σ) ‖yb‖W 2,∞(Ω), (41)

giving, in turn, the feasibility of v1 for (P), provided that γ1 is chosen sufficiently
large. In summary, we have proven the following result:

Corollary 6 Assume that the desired state satisfies yd ∈ H2(Ω) and the
bounds in the state constraints are given functions in W 2,∞(Ω). Then the as-
sertions of Theorems 3 and 5 remain true, if yd in (Ph) and (Qh) is replaced by
Ihyd and the state constraints are substituted by

y(x) ≤ (Ihyb)(x) a.e. in Ω

and

(Ihya)(x) ≤ y(x) ≤ (Ihyb)(x) a.e. in Ω,

respectively.



Error estimates for state-constrained problems 73

Let us point out that, also in case of discretization of the data, (Ph) and (Qh)
are not finite dimensional optimization problems if Γ is curved, which implies
that each boundary element has in general a curved side. Therefore, let us now
assume that the state constraints in (Ph) and (Qh) are only considered in the
nodes of the triangulation, denoted as before by xi, i = 1, ..., n. We exemplarily
study (Ph) and replace the state constraints by

(Sh u)(xi) ≤ (Ih yb)(xi) ∀ i ∈ {1, ..., n} (42)

and therefore end up with a completely discrete problem. One easily verifies
that in case of (Qh) analogous arguments apply. Again, Lemma 6 is the critical
part, the rest of the theory remains unchanged. For v2 = Πhū − γ2 δ(h, σ),
(18) implies together with (41) that (Sh v2)(x) ≤ (Ih yb)(x) for all x ∈ Ω̄ for
sufficiently large γ2, so that (42) is immediately fulfilled and v2 is feasible for
(Ph). Next, we derive the feasibility of v1 for (P) in case of (42). However, this
cannot be done with v1 as defined above, but with v1 := ūh − γ1 ρ(h, σ) with
some function ρ(h, σ) that will be specified later on. Notice that, for elements
of the triangulation lying in the interior of Ω, (42) is of course equivalent to the
original constraint (Sh u)(x) ≤ (Ih yb)(x) ∀x ∈ T̄ ⊂ int Ω̄, so that (40) applies in
this case and we only have to investigate elements at the boundary which may be
curved. Let us consider an arbitrary element of these, denoted by T , and denote
by Th the element that arises if the curved side of T is replaced by a straight line.
Notice that Ω is assumed to be convex such that Th ⊂ T . Then, for every point in
T̄h, we can proceed as in (40) since (42) implies (Sh u)(x) ≤ (Ih yb)(x) ∀x ∈ T̄h

as already indicated above. In contrast to this, an argument similarly to (40)
gives for an arbitrary point x ∈ T \ Th

(S v1)(x) = y1(xj) + y1(x) − y1(xj)

≤ (Ih yb)(xj) − γ1 ρ(h, σ) + c ‖ūh‖Wσ
δ(h, σ) + ‖y1‖C0,α(T )diam(T \ Th)α

≤ yb(x) − γ1 ρ(h, σ) + c ‖ūh‖Wσ
δ(h, σ) + ‖Ih yb − yb‖∞

+
(
‖yb‖C0,α + ‖y1‖C0,α

)
diam(T \ Th)α

where y1 := S v1 and xj denotes one of the intersections of T̄h and Γ which are
of course nodes of the triangulation such that (42) applies. By Lemma 3, {ūh}
is uniformly bounded in W 1,σ, so that there is a constant c, independent of h,
with ‖ūh‖Lq(Ω) ≤ c, q = Nσ/(N −σ), thanks to standard embedding theorems.
Hence, Theorem 1 yields ‖y1‖W 2,q ≤ c such that ‖y1‖C0,α ≤ c with α = 1 for
N = 2 and α = 2 − N/q = 3 − N/σ for N = 3 by well known embedding
theorems. Note that 3 − N/σ < 1 since σ < N/(N − 1). Hence, in view of (41)
and diam(T \ Th) ≤ h, we continue with

(S v1)(x) = yb(x) −
(
γ1 ρ(h, σ) − c (δ(h, σ) + hα)

)
.

Thus, if ρ(h, σ) := max{δ(h, σ), hα}, then v1 is feasible for (P) provided that
γ1 is chosen sufficiently large. In view of 3 − N/σ > 2 + N − 2N/σ because of
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σ < N/(N − 1), the definition of δ(h, σ) in (15) then implies

ρ(h, σ) =

{
h , N = 2
h2+N−2N/σ , N = 3.

If we again couple σ with ε > 0 by σ = max{σ̄, N/(N − 1 + ε)}, then an
inspection of the convergence analysis in Section 5 yields:

Theorem 6 Let Ω ⊂ RN , N = 2, 3, be a convex domain with C1,1-boundary
Γ. Suppose, further, that yd ∈ H2(Ω) and yb ∈ W 2,∞(Ω). Assume that ū is the
solution of (P), while ūh solves the finite dimensional problem (Ph) given by

(Ph)







minimize fh(u) :=
1

2
‖Sh u − Ih yd‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω)

subject to u ∈ Vh and (Sh u)(xi) ≤ (Ih yb)(xi) ∀ i ∈ {1, ..., n},

where xi denote the nodes of a triangulation that exactly fits the boundary Γ.
Then, there is a constant C > 0 such that

‖ū − ūh‖ ≤
{

C h1/2, N = 2

C h1/2−ε,N = 3

for all ε > 0, where C depends on ε but not on h.

We observe that the optimal order of convergence is preserved in the three
dimensional case, whereas we obtain a lower order of convergence in case of
N = 2. Notice, moreover, that this problem does not occur in case of polygonally
bounded domains, considered in the subsequence, since the state constraint
(Sh u)(x) ≤ (Ih yb)(x) for all x ∈ Ω̄ is equivalent to (42) in this case.

7.2. Polygonally bounded domains

The analysis, presented in the sections before, is developed for triangulations
that exactly fit a C1,1-domain. Naturally, this assumption is fairly artificial.
However, the regularity of Ω is required for the second part of Theorem 1,
i.e. S : Lp(Ω) → W 2,p(Ω) for all p < ∞. This property of S is needed within the
proof of Lemma 2 and Lemma 10, respectively. In case of polyhedral domains,
where exact triangulations are evident, this additional regularity can in general
not be expected. Nevertheless, if Ω is a convex domain with polygonal (N = 2)
or polyhedral (N = 3) boundary, additional regularity results are known. For
simplicity, we demonstrate the situation for the two-dimensional case, where the
following result holds:

Theorem 7 Let Ω ∈ R2 be a convex domain with polygonal boundary Γ. Then,
there is a p ≥ 2 depending on the measure of the maximum angle in Γ such that,
for every right-hand side in Lp(Ω), the state equation admits a unique solution
in W 2,p(Ω), i.e. S : Lp(Ω) → W 2,p(Ω). Moreover, if the maximum angle is less
or equal π/2, the above assertion holds for every p with 2 ≤ p < ∞.
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For the corresponding proof, we refer to Theorem 2.4.3 in Grisvard (1992).
Based on Theorem 7, the presented analysis can immediately be applied to
polygonally bounded domains with maximum angle less or equal π/2, for in-
stance in case of problem (P):

Corollary 7 Suppose that Ω ⊂ R2 and Γ is a polygon with maximum angle
less or equal π/2. Moreover, let yd ∈ H2(Ω) and yb ∈ W 2,∞(Ω). Then the
solutions of (P) and (Ph), as defined in Theorem 6, denoted by ū and ūh satisfy
for all ε > 0

‖ū − ūh‖ ≤ C h1−ε

with a constant C depending on ε, Ω, α, ū, and û.

Remark 10 We point out that, since Γ is a polygon, the state constraint in
(Ph) is equivalent to

(Sh u)(x) ≤ (Ihyb)(x) a.e. in Ω.

Thus, together with the smoothness of yd and yb and Theorem 7, Corollary 6 is
directly applicable.

Similarly, one obtains in case of (Q):

Corollary 8 Suppose that Ω ⊂ R2 and Γ is a polygon with maximum angle
less or equal π/2. Suppose further that yd ∈ H2(Ω) and ya, yb ∈ W 2,∞(Ω). Let
ū be the optimal solution of (Q) and ūh solve

(Qh)







min
u∈Uh

fh(u) :=
1

2
‖Sh u − yd‖2 +

α

2
‖u‖2

s.t. (Ihya)(xi) ≤ (Sh u)(xi) ≤ (Ihyb)(xi) ∀ i ∈ {1, ..., n}
ua ≤ u|T ≤ ub ∀ T ∈ Th.

Then

‖ū − ūh‖ ≤ C h1−ε

holds for all ε > 0 with a constant C depending on ε, Ω, α, ū, and û.

Remark 11 Notice that (Qh) is a finite dimensional optimization problem,
since u ∈ Uh implies that u is constant over each element (see Definition 3).

Results, similarly to Theorem 7, are also known in three dimensions. In
particular, as stated in Theorem 7 for N = 2, S : L2(Ω) → H2(Ω) is also fulfilled
for all convex three dimensional domains with polyhedral boundaries (see for
instance Remark 2.6.9 in Grisvard, 1992). Hence, standard finite element error
analysis implies ‖(S − Sh)u‖∞ ≤ c h2−N/2‖u‖ (see also (7)). It is easy to see
that, in this case, the presented analysis yields
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Corollary 9 Let Ω ∈ RN , N = 2, 3, be a convex domain with polygonal
(N = 2) or polyhedral (N = 3) boundary Γ. Moreover, suppose that yd, ya,
and yb satisfy the conditions of Corollary 7 and 8. Let ū and ūh be the optimal
solutions of (P) and (Ph) or (Q) and (Qh), respectively. Then

‖ū − ūh‖ ≤ C h1−N/4

holds with a constant C depending on Ω, α, ū, and û.

Notice, however, that the convergence rates in this case are not longer opti-
mal in the sense that they differ from the interpolation error (see Lemma 4 and
8, respectively).

7.3. Semi-discretization

Next, let us turn to the semi-discrete approach according to Deckelnick and
Hinze (2007). As already mentioned in the introduction, this approach coincides
with the full discretization in the absence of additional control constraints, i.e. in
case of problem (P). In contrast to that, the corresponding solutions differ from
each other in case of problem (Q). However, one can easily verify that the theory,
presented in Section 6, also applies to the semi-discretization of (Q), which reads

(Qsh)







min
u∈L2(Ω)

fh(u) :=
1

2
‖Sh u − yd‖2 +

α

2
‖u‖2

subject to ya(x) ≤ (Sh u)(x) ≤ yb(x) a.e. in Ω

ua ≤ u(x) ≤ ub a.e. in Ω.

In this case, the arguments are even simpler since we do not have to account
for the interpolation error of the control (see Lemma 8), as it is not discretized
here. Therefore, the error is dominated by the FEM-discretization error (see
Lemma 10). Given ε > 0, if we choose q = N/(2ε) < ∞, then (39) implies

‖(S − Sh)u‖∞ ≤ c h2−2ε| log h| ‖u‖∞.

Following the arguments of Section 6, we then arrive at:

Theorem 8 Let ū and ūsh denote the optimal solutions of (Q) and (Qsh), re-
spectively. Then the following estimate holds true

‖ū − ūsh‖ ≤ C h1−ε

for all ε > 0 with a constant C, depending on ε but not on h.

Notice that, in the three dimensional case, the semi-discrete approach achieves
a higher order of convergence than full discretization (see Theorem 5). More-
over, similarly to purely control-constrained problems, ūsh is not an element of
the discrete space spanned by the linear ansatz functions (see also Hinze, 2005).
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8. Numerical examples

In the following, we test the presented error analysis with two different exam-
ples. The first one refers to the purely state-constrained case, i.e. problem (P),
see Section 8.1, whereas the latter test case corresponds to problems with con-
trol and state constraints as discussed in Section 6 (see Section 8.2). For a
numerical solution of the finite dimensional problems (Ph) and (Qh), the state
constraints are penalized by a logarithmic barrier function (see for example Ul-
brich et al., 1999), while the box-constrains on the control in (Qh) are treated
by a primal-dual active set method (see for instance Bergounioux et al., 1999).
Both examples are performed on the unit square such that Corollaries 7 and 8
apply. Throughout the numerical experiments, α is fixed at α = 10−6.

8.1. Example 1: pure state constraints

Instead of an upper bound, we consider an example with a state constraint of
the form ya(x) ≤ y(x) a.e. in Ω. However, it is straightforward to see that the
theory for (P) also applies in this case. The data are given by

yd(x) ≡ 1 and ya(x) = min{y(1)
a , y(2)

a , y(3)
a , y(4)

a } + 0.6,

with

y(1)
a (x) = 0.5 x1 + 0.5 x2 , y(2)

a (x) = 0.5 − 0.5 x1 + 0.5 x2

y(3)
a (x) = 0.5 + 0.5 x1 − 0.5 x2 , y(4)

a (x) = 1 − 0.5 x1 − 0.5 x2.

Fig. 1 shows the maximum of yd and ya and indicates that one can expect
the state constraint to be active in a square in the middle of Ω. Notice that
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Figure 1. Example 1: Desired state yd and lower bound ya.

ya /∈ W 2,∞(Ω), which was required in Section 7. However, the used meshes
are constructed so that the lines {(x1, x2) ∈ Ω | x1 = 0.5} and {(x1, x2) ∈
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Ω | x2 = 0.5} coincide with edges of the triangulation. Therefore, the kinks of
ya at x1 = 0.5 and x2 = 0.5 are captured by the mesh and thus, estimate (41)
also holds in this case. Consequently, according to Corollary 7, one can expect
a convergence order of 1 − ε. Figs. 2–5 show the numerical solution h = 0.02.
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2 = 0.02.
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Figure 4. Example 1: adjoint state
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√

2 = 0.02.
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Figure 5. Example 1: multiplier as-

sociated to ya ≤ y for h/
√

2 = 0.02.

As we use an interior point algorithm for the treatment of the state constraints,
the associated multiplier is approximated by ε/(yh − ya), where ε denotes the
homotopy parameter (see Ulbrich et al., 1999, for details). We observe that
the discrete Lagrange multiplier as well as the discrete control appear fairly
irregular, which indicates that the multiplier and the control corresponding to
the infinite dimensional problem (P) are indeed just a Borel measure and a
function in Wσ, respectively.

The order of convergence is approximated by comparing the numerical re-
sults of different mesh sizes. The reference solution is the numerical solution
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computed with a mesh size of hf =
√

2/1400, which corresponds to a triangu-
lation with 1,962,801 nodes. Table 1 displays the relative errors of control and
state for this example. Here, e2 refers to the approximation of relative error
in the L2-norm, whereas e1,2 denotes the approximative relative error in the
H1-norm, i.e.

e2 :=
‖ūhf

− ūh‖
‖ūhf

‖ and e1,2 :=
‖ȳhf

− ȳh‖H1(Ω)

‖ȳhf
‖H1(Ω)

.

Moreover, the experimental order of convergence is shown in Table 1. In case
of u, it is computed by

EOC2(u) :=
log

(
e2(u, h1)

)
− log

(
e2(u, h2)

)

log(h1) − log(h2)
,

where h1 and h2 denote two consecutive mesh sizes. Similarly, EOC1,2(y) is
computed with e1,2(y) instead of e2(u). We observe that EOC2(u) as well as
EOC1,2(y) are equal on the average to approximately 1 and thus the numerical
findings agree with the theoretical predictions (see Corollary 7).

Table 1: Relative errors and experimental order of convergence in the first
example.

h/
√

2 e2(u) e1,2(y) EOC2(u) EOC1,2(y)

1/20 4.0173e-01 4.9587e-02 – –

1/40 2.6022e-01 3.2969e-02 0.6265 0.5889

1/60 1.8470e-01 2.2535e-02 0.8454 0.9384

1/80 1.4125e-01 1.6850e-02 0.9324 1.0107

1/100 1.1204e-01 1.3885e-02 1.0383 0.8674

1/120 9.1870e-02 1.0866e-02 1.0886 1.3447

1/400 7.7308e-02 9.8724e-03 1.1196 0.6220

1/160 6.6892e-02 7.8888e-03 1.0838 1.6797

1/180 5.8977e-02 6.8939e-03 1.0692 1.1445

8.2. Example 2: state and control constraints

Now, let us turn to an example with pointwise state and control constraints.
For the numerical tests, we just consider a lower bound ya, given by

ya(x) = −10(x1 − 0.4)2 − 10 (x2 − 0.4)2 + 2,

such that ya ∈ W 2,∞(Ω). It is straightforward to see that the absence of an
upper bound does not influence the theory of Section 6. For the desired state, we
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Figure 6. Example 2: Desired state yd and lower bound ya.

again choose yd(x) ≡ 1. Fig. 6 shows the maximum of yd and ya in this case. The
box constraints for the control are set to ua = −40 and ub = 20. Figs. 7–10 show
the numerical solution for h

√
2 = 0.02. Notice that the active sets associated to

the control constraints and the active set corresponding to the state constraint
are not disjoint. Since u is discretized by constant ansatz functions, Fig. 7
shows the values of uh at each triangle. As before, the solution appears to
be fairly irregular. The state constraint is only active at a single point, the
maximum of ya. Accordingly, the discrete multiplier seems to approximate a
Dirac measure located at this point and the adjoint state has a singularity there.
Table 2 presents the relative errors and orders of convergence, respectively. The
reference solution is again computed with hf =

√
2/1400. Since hierarchical

meshes are required for the interpolation and prolongation of functions in Uh

between different meshes, other meshes are used than in the first test case. As
above, EOC2(u) and EOC1,2(y) average approximately 1 and hence coincide
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Figure 10. Example 2: multiplier

associated to ya ≤ y for h/
√

2 =

0.02.

Table 2: Relative errors and experimental order of convergence in the second
example.

h/
√

2 e2(u) e1,2(y) EOC2(u) EOC1,2(y)

1/20 3.8654e-01 1.2688e-01 – –

1/40 2.2698e-01 6.1924e-02 0.7681 1.0349

1/56 1.7633e-01 4.2522e-02 0.7504 1.1171

1/70 1.5059e-01 3.7924e-02 0.7072 0.5129

1/100 1.2119e-01 2.9699e-02 0.6090 0.6854

1/140 8.6779e-02 1.9010e-02 0.9927 1.3260

1/175 6.4988e-02 1.3542e-02 1.2959 1.5200

1/200 5.6638e-02 1.1496e-02 1.0299 1.2265

with the theoretical findings.
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