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Abstract: In the paper we present the results which enable
to calculate the nonlinearity of the round function with quite large
dimensions, e.g. 32 × 32 bits, which are used in some block ciphers.
It can be used to estimate resistance of these ciphers against linear
cryptanalysis. We give the application to linear cryptanalysis of the
TGR block cipher.
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1. Introduction

The linear cryptanalysis introduced by M. Matsui (1994) is one of the basic at-
tacks on block ciphers. The resistance of block cipher against this attack is the
main requirement in stating its security. The notion of nonlinearity of Boolean
functions and Boolean mappings (S-boxes) introduced in Meier and Staffelbach
(1990), Nyberg (1991) and Pieprzyk, Finkelstein (1988) is essential in formu-
lation of linear cryptanalysis. In this paper we consider the round function
of a block cipher consisting of parallel S-boxes, whose inputs are concatenated
and outputs xored giving in this way the output of the round function. The
problem is to calculate the nonlinearity of such a Boolean mapping when the
component S-boxes are quite large, e.g. having 8-bit inputs and 32-bit outputs.
In the CAST-like ciphers (Adams, 1997, 1999) the round function was used with
four such S-boxes giving the mapping of 32-bit input and 32-bit output. The
resistance of the CAST-like cipher to differential and linear cryptanalysis was
investigated in Lee, Heys and Tavares (1997). In present, it is not possible to
calculate in a direct way the nonlinearity of this round function. In Youssef,
Chen and Tavares (1997) the authors stated, without giving details, that they
had calculated the nonlinearity and gave the numerical result. Following their
suggestions we have given here Theorem 1, making it possible to calculate the



1038 M. KONTAK, J. SZMIDT

nonlinearity of the function. The round function examined is a good approxima-
tion of the one used in the cipher CAST-256 (Adams, 1999), where in two cases
bitwise addition is replaced by algebraic operations like arithmetic addition and
subtraction modulo 232. The calculation of the nonlinearity of the round func-
tion is used to estimate the resistance of the cipher against linear cryptanalysis.
The result is better when we consider the round function as a whole than the
one obtained by taking into account the nonlinear properties of the individual
S-boxes. We show the application of our results to the linear cryptanalysis of the
block cipher TGR, which is a modification of the hash function Tiger proposed
by R. Anderson and E. Biham (1996) working in the encryption mode.

2. The nonlinearity of the round function

A Boolean function with m inputs is a mapping f : Zm
2 → Z2, where Z2 = {0, 1}

and m ∈ N . The Boolean function f : Zm
2 → Z2 is an affine one when it can

be represented as f(x) = a · x⊕ c = amxm ⊕ am−1xm−1 ⊕ . . .⊕ a1x1 ⊕ c, where
a = [am, am−1, . . . , a1] ∈ Zm

2 , x = [xm, xm−1, . . . , x1] ∈ Zm
2 and c ∈ Z2. The

affine function is linear when c = 0.
For a given Boolean function f we define the polar function f̂(x) = (−1)f(x)

which takes the values from the set {−1, 1}.
The real function of u ∈ Zm

2 defined as W (f)(u) =
∑

x∈Zm

2

f(x)(−1)u·x is

called the Walsh transform of the function f , where f : Zm
2 → R. The Walsh

transform of the polar function f̂ at the point u is denoted W (f̂)(u). For the
fast method computing of the Walsh transform see for example Ahmed, Rao
(1975).

The nonlinearity of a Boolean function f : Zm
2 → Z2 is defined as NLf =

min
a,c

#{x ∈ Zm
2 |f(x) 6= a · x ⊕ c}, where a ∈ Zm

2 , c ∈ Z2.

Lemma 1 Let f : Zm
2 → Z2, then NLf = 2m−1 − 1

2 max
a∈Zm

2

|W (f̂)(a)|.

A substitution box (S-box) of dimension m×n is a transformation S : Zm
2 →

Zn
2 , where m, n ∈ N . The substitution box S can be considered as a collection

of its coordinates being n Boolean functions, i.e. S = [fn, fn−1, . . . , f1], where
fi : Zm

2 → Z2, i = 1, 2, . . . , n.
The nonlinearity of substitution box S : Zm

2 → Zn
2 is defined as NLS =

min
b

NLb·S, where b ∈ Zn
2 \ {0},b = [bn, bn−1, . . . , b1] and NLb·S is nonlinearity

of the Boolean function b · S = bnfn ⊕ bn−1fn−1 ⊕ . . . ⊕ b1f1.
For a given substitution box S : Zm

2 → Zn
2 the linear approximation table is

defined, whose elements are LATS(a,b) = #{x ∈ Zm
2 |a · x = b · S(x)} − 2m−1,

where a ∈ Zm
2 ,b ∈ Zn

2 \ {0}.

Lemma 2 For a substitution box S : Zm
2 → Zn

2 one has NLS = 2m−1 −
max
a,b

|LATS(a,b)|, where a ∈ Zm
2 ,b ∈ Zn

2 \ {0}.
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By the linear approximation of a substitution box S : Zm
2 → Zn

2 we mean
the equation a · x = b · S(x), where a ∈ Zm

2 ,b ∈ Zn
2 \ {0}. Let p be the

probability of satisfying this for given a and b, it is

p =
#{x ∈ Zm

2 |a · x = b · S(x)}

2m
.

Then
∣

∣

∣

∣

p −
1

2

∣

∣

∣

∣

=
|LATS(a,b)|

2m

has a meaning of efficiency of the linear approximation of substitution box
S : Zm

2 → Zn
2 . Let pβ denote the probability of the best linear approximation,

i.e. the one, for which the efficiency |pβ − 1
2 | has the biggest value.

Lemma 3 (Lee, Heys and Tavares, 1997) For a substitution box S : Zm
2 → Zn

2

there is
∣

∣

∣

∣

pβ −
1

2

∣

∣

∣

∣

=
2m−1 − NLS

2m
.

Let F : Zkm
2 → Zn

2 be a transformation such that F (x) = F (xk,xk−1, . . . ,x1) =
S1(x1) ⊕ S2(x2) ⊕ . . . ⊕ Sk(xk), where Si : Zm

2 → Zn
2 , i = 1, 2, . . . , k and

Si = [fi,n, fi,n−1, . . . , fi,1], fi,j : Zm
2 → Z2, j = 1, 2, . . . , n (see Fig. 1).

F

km

m m m

S1 S2 Sk
. . . 

n

n n n

Figure 1. The structure of F round function.
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Similarly to that of the substitution boxes we define the nonlinearity of the
transformation F : Zkm

2 → Zn
2 :

NLF = min
b

NLb·F , (1)

where b ∈ Zn
2 \ {0},b = [bn, bn−1, . . . , b1], F = [Fn, Fn−1, . . . , F1], Fj : Zkm

2 →
Z2, Fj(x) = Fj(xk,xk−1, . . . ,x1) = f1,j(x1)⊕f2,j(x2)⊕. . .⊕fk,j(xk) and NLb·F

is the nonlinearity of the Boolean function b ·F = bnFn⊕bn−1Fn−1⊕ . . .⊕b1F1.

Theorem 1 NLb·F = 2km−1 − 2k−1
k
∏

i=1

(2m−1 − NLb·Si
).

3. The TGR algorithm

The TGR algorithm is a block cipher, which works on 128-bit blocks and uses
256-bit keys. The 128-bit plaintext P is transformed to the 128-bit ciphertext
C in three passes (r = 1, 2, 3) each consisting of eight rounds (j = 0, 1, . . . , 7).

The passes use the 256-bit keys Kr obtained from the main 256-bit key K

using the key schedule algorithm Key sch. We have Kr = Key sch(Kr−1),
where K0 = K. Each key Kr is divided into eight 32-bit subkeys kr,j , which
are used in the corresponding j-th round of the r-th pass. The first use of
Key sch has as input the main key K = (k0, k1, k2, k3, k4, k5, k6, k7) and gives
as output the key K1 = (k1,0, k1,1, k1,2, k1,3, k1,4, k1,5, k1,6, k1,7) used in the first
pass. Next we have as input to Key sch the key K1 and we get as out-
put K2 = (k2,0, k2,1, k2,2, k2,3, k2,4, k2,5, k2,6, k2,7) and analogously for K3 =
(k3,0, k3,1, k3,2, k3,3, k3,4, k3,5, k3,6, k3,7). The Key sch is described by the for-
mulae shown in Fig. 2.

Operations like + and – are just an addition and a subtraction modulo 232,
respectively; ⊕ is a bitwise sum modulo 2, ∼ denotes a bitwise negation, ≪ and
≫ are bitwise left and right shifts, respectively (the loosing bits are comple-
mented by zeros), ≪ and ≫ are bitwise rotations left and right, respectively.

The 128-bit input to the j-th round of the r-th pass is divided into four 32-
bit blocks denoted (Ar,j , Br,j , Cr,j , Dr,j) and the 128-bit output of this round is

denoted (A
′

r,j , B
′

r,j, C
′

r,j , D
′

r,j). The structure of the round is depicted in Fig. 3.
The S-boxes S1, S2, S3, S4 are taken from the CAST-256 cipher (Adams, 1999)
and operation Rot is the data-dependent rotation function

Rot(x, d) = x ≪ [((d(2d + 1) mod 232) ≪ 5) & 0x1f ],

taken from the RC6 cipher (Rivest et al., 2001), where & is logical AND oper-
ation.

The TGR decryption algorithm is obtained by taking the inversion of the
TGR encryption algorithm (suitable modification of the round function and
opposite order of the subkeys). The TGR design is based on the hash function
Tiger proposed by R. Anderson and E. Biham (1996).
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k0 := k0 − (k7 ⊕ ((∼ k6) ≪ 11) ⊕ c) k4 := k4 − (k3 ⊕ ((∼ k2) ≪ 11))
k1 := k1 ⊕ k0 k5 := k5 ⊕ k4

k2 := k2 + k1 k6 := k6 + k5

k3 := k3 − (k2 ⊕ ((∼ k1) ≫ 13)) k7 := k7 − (k6 ⊕ ((∼ k5) ≫ 13))
k4 := k4 ⊕ k3 k0 := k0 ⊕ k7

k5 := k5 + k4 k1 := k1 + k0

k6 := k6 − (k5 ⊕ ((∼ k4) ≫ 7) k2 := k2 − (k1 ⊕ ((∼ k0) ≫ 7))
k7 := k7 ⊕ k6 k3 := k3 ⊕ k2

k0 := k0 + k7 k4 := k4 + k3

k1 := k1 − (k0 ⊕ ((∼ k7) ≪ 5)) k5 := k5 − (k4 ⊕ ((∼ k3) ≪ 5))
k2 := k2 ⊕ k1 k6 := k6 ⊕ k5

k3 := k3 + k2 k7 := k7 + k6,

where the constant c = 0xa5a5a5a5.

Figure 2. The key schedule algorithm Key sch.
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Figure 3. The j-th round of the r-th pass of the encryption algorithm.



1042 M. KONTAK, J. SZMIDT

4. Resistance of TGR to linear cryptanalysis

It has been stated in Lee, Heys and Tavares (1997) that the best linear approx-
imation of a cipher, satisfied with the probability pL is bounded as follows:

∣

∣

∣

∣

pL −
1

2

∣

∣

∣

∣

≤ 2α−1

∣

∣

∣

∣

pβ −
1

2

∣

∣

∣

∣

α

, (2)

where α is the number of S-box linear approximations involved in the linear
approximation of the cipher and pβ represents the probability of the best S-
box linear approximation (among all the α S-box linear approximations). In
every round of the block cipher TGR two 16× 32-bit S-boxes are involved each
consisting of two 8 × 32-bit S-boxes taken from the CAST-256. The linear
approximation of a block cipher is based on the assumption of independent
round keys such that the linear expressions approximating the S-boxes are in-
dependent. The sequence of approximations of the round functions (involving
approximations of the S-boxes) results in the overall linear expression for the
cipher. According to Matsui (1994) the number of known plaintexts required
for an almost sure deduction of some bits of the round keys is approximately
equal to

Np =

∣

∣

∣

∣

pL −
1

2

∣

∣

∣

∣

−2

. (3)

It was shown in Lee, Heys and Tavares (1997) (see Lemma 3 above) that the
probability pβ is given by

∣

∣

∣

∣

pβ −
1

2

∣

∣

∣

∣

=
2m−1 − NLmin

2m
, (4)

where m is the number of input bits of the S-box and NLmin is minimal nonlin-
earity of the S-boxes involved in the approximation of the cipher. In our case of
TGR cipher we have m = 16 and using formula (1) and Theorem 1 we have cal-
culated NLmin being 28736 for the 16×32-bit S-box built from the substitution
boxes S1 and S2 taken from the CAST-256 cipher. The best linear approxima-
tion of TGR cipher appears to be constructed using 2-round characteristic when
in each round it is approximated by the left one 16 × 32-bit S-box (see Fig. 3)
and the arithmetic addition and subtraction are replaced by xor operation and
the data-depended rotation is neglected. This characteristic is not iterative one.
When calculating (4) with our data we obtain

∣

∣

∣

∣

pβ −
1

2

∣

∣

∣

∣

=
63

1024

and putting α = 24 in (2) we have
∣

∣

∣

∣

pL −
1

2

∣

∣

∣

∣

≤ 0.725545 · 10−22.
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From (3) we get that the number of required plaintexts to perform the linear
cryptanalysis is

Np ≥ 1.8996 · 1044 ≈ 2147

which is much more that the number 2128 of all available plaintexts.
If we perform such analysis, when in each two round characteristic two 8×32-

bit substitution boxes S1 and S2 are approximated having nonlinearity 74, we
get that the required number of plaintexts is greater than 2121. It shows that we
obtain the better estimation of resistance of the cipher to linear cryptanalysis
when considering bigger S-boxes in the round function, confirming thereby the
observation made by A. M. Youssef, Chen and Tavares (1997).

Let us consider the TGR cipher reduced to two passes, i.e. 16 rounds.
Performing the linear cryptanalysis as described above we get the following
data. In the first case of 16× 32-bit S-boxes, there are then α = 16 S-box linear
approximations involved in the approximation of the cipher and more than 298

plaintexts are required. In the second case of 8 × 32-bit S-boxes, there are
then α = 32 S-box linear approximations involved in the approximation of the
cipher and more than 281 plaintexts are required. We can conclude that TGR
algorithm has a security margin with respect to the linear cryptanalysis.
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