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Abstract: This paper describes a technique for clustering large
collections of short and medium length text documents such as press
articles, news stories and the like. The technique called descrip-
tion comes first (DCF) consists of identification of related document
clusters, selection of salient phrases relevant to these clusters and re-
allocation of documents matching the selected phrases to form final
document groups. The advantages of this technique include more
comprehensive cluster labels and clearer (more transparent) rela-
tionship between cluster labels and their content. We demonstrate
the DCF by taking a standard k-means algorithm as a baseline and
weaving DCF elements into it; the outcome is the descriptive k-
means (DKM) algorithm. The paper goes through technical back-
ground explaining how to implement DKM efficiently and ends with
the description of an experiment measuring clustering quality on a
benchmark document collection 20-newsgroups.
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1. Introduction

Organizing unstructured collections of text documents into semantically related
groups, from now on referred to as text clustering or clustering, provides unique
ways of digesting large amounts of information. According to typical defin-
itions of clustering, documents within clusters (groups) should be similar to
each other, while being dissimilar to documents from other clusters. To evalu-
ate the similarity of text documents, first it is necessary to transform them into
a mathematical model where each document is described by certain features.
The most popular representation of text data is the vector space model (VSM),
Salton (1989). In the VSM, documents are represented as vectors of features in
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a multidimensional space. Each dimension corresponds to a given term (word)
and the dimension’s value in a document vector expresses the weight of this term
in the document. For a given set of documents one can build a term-document
matriz and define various similarity measures between document vectors (rows
of this matrix). A very common definition of document similarity is the angle
between document vectors in term vector space (or a cosine of this angle which
is easier to compute). Once similarity between documents is defined in this
way, one can apply a number of strategies for grouping similar documents into
clusters.

Historically, text clustering was applied in information retrieval to extend the
set of documents matching a query beyond those containing the query’s terms
(by adding similar documents from the clusters which matched the query). In
such applications clusters are not directly presented to the user — they are in the
background of an information retrieval system. This situation has changed as
new applications of text clustering emerged. For example, systems like Vivisimo
(www.vivisimo.com) or Carrot? (www.carrot2.org) cluster results retrieved from
Internet search engines and display cluster labels to present an overview of
a larger set of search results. Note that accuracy and comprehensiveness of
cluster labels determines the potential gain a user may receive from clustering
functionality. Very similar conclusion could be given for systems clustering news
stories (event detection). Their usefulness can be measured by the quality of the
label assigned to each group of stories and the relationship between this label
and the actual stories inside a cluster.

These new emerging applications require new solutions. In particular, if
clustering is moved directly to the user interface level, it is necessary to assure
that clusters contain human-readable descriptions — something to represent
the information that makes documents inside a cluster similar to each other
and that would convey this information back to the human user. Most text
clustering algorithms have not been designed for such requirements. A typical
solution for creating labels is to extract and present a list of the most salient
terms inside a cluster, so called keywords (see Fig. 1). But stripped from the
surrounding syntactical information, keywords leave a lot of room for guessing
the true context they appear in, which is often confusing and requires consid-
erable effort on behalf of the user. In general, returning from a mathematical
model of cluster representation to comprehensive, explanatory labels will be dif-
ficult because text representation models, such as the VSM, do not preserve the
inflection and syntax of the original text.

Some research has been done to replace word-based models with more com-
plex features like entire phrases (we present related work in Section 6), however
the semantics of cluster descriptions is still unsatisfactory. We think that creat-
ing comprehensive and accurate cluster labels is an interesting research problem
and that it is distinctively different from regular document clustering. For this
reason we formulated a problem of descriptive clustering, Weiss (2006):
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Descriptive clustering is a problem of discovering diverse groups of
semantically related documents described with meaningful, compre-
hensible and compact text labels.

The three additional expected properties of cluster labels in descriptive cluster-
ing are (with respect to normal clustering):

e comprehensibility of labels, understood as grammatical correctness (word
order, inflection, agreement between words if applicable);

e conciseness of labels — phrases selected for a cluster label should minimize
its total length (without sacrificing its comprehensibility);

o transparency of the relationship between cluster label and cluster content,
best explained by the ability to answer questions such as: “Why was this
label selected for these documents?” and “Why is this document in a
cluster labeled X7”.

It is easy to see that the above goals are quite difficult to achieve. We try
to fulfill them at least in part and propose a general algorithmic scheme called
description comes first (DCF) (see Section 2). The DCF is a very general ap-
proach which can be used to construct concrete algorithms depending on the
building blocks used in each step. In our previous work we demonstrated DCF
in a new algorithm called Lingo (Osiniski, Stefanowski and Weiss, 2004; Osinski
and Weiss, 2005). Lingo was designed to cluster (and label) search results from
Internet search engines and demonstrated the ability to create diverse, mean-
ingful cluster labels. However, Lingo’s weak point was its limited scalability,
which we would like to address in this work.

The main goal of this paper is to show how the popular and efficient k-
means algorithm can be modified to benefit from the DCF approach. We called
the modified algorithm descriptive k-means (DKM) to highlight the emphasis
placed on proper cluster descriptions.

A secondary goal of this paper is to experimentally study how our DCF mod-
ifications affect clustering quality compared to the baseline version of k-means.
We suspected that shifting emphasis to labels may lead to decreased document-
to-cluster assignment quality, but we needed evidence if this was really the case.

Finally, our intention was to combine theoretical aspects with pragmatic
approach. We wanted to see if an efficient implementation of the proposed
algorithm is possible and which data structures could be used to improve its
actual runtime performance.

The rest of the paper is organized as follows. In the next two sections we de-
scribe the fundamental ideas behind the DCF and show how k-means algorithm
can be modified to benefit from it. In Section 4 we delve into certain imple-
mentation details that make the algorithm implementation efficient for large
document collections. Section 5 shows the results of an experiment comparing
two versions of the descriptive k-means algorithm against the baseline k-means.
The paper ends with discussion of certain related works and final conclusions.
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2.  An overview of description comes first

In a typical text clustering algorithm, cluster labeling procedure naturally fol-
lows cluster discovery (see Fig. 1). As we mentioned already, this leads to prob-
lems because text representation based on vector space model makes sensible
cluster label extraction very difficult. One solution to this problem could be to
use more intuitive features instead of isolated terms, for example entire phrases
appearing in the text — this was the idea employed in the STC algorithm (Zamir
and Etzioni, 1999). But phrase-based clustering introduces its own difficulties:
meaningless, but frequent phrases are hard to identify (i.e., “home page”) and
unnecessarily proliferate in the set of features. Even the common understanding
of a phrase as an ordered sequence of words is not natural in many languages,
in which words have more positional freedom inside sentences.

In the description comes first approach we use a trick. To avoid the difficult
phase of constructing labels for existing clusters, we change the troublesome
conventional order of a typical clustering algorithm. First, we separate two
threads — candidate cluster label discovery and document clustering (see Fig. 1):

o Candidate label discovery phase is responsible for providing comprehensive

labels (usually phrases but also salient keywords) that can be used to label
future clusters. These candidate labels can be acquired in many ways, but
in this paper we show two methods that extract them directly from input
documents (Section 3.2).

o (luster discovery provides the model and information about similar doc-
ument groups present in the input data (we call this a model of dominant
topics). Note that we can and actually prefer to use a clustering algo-
rithm based on words as individual features here — such algorithms tend
to work better, especially for languages with less strict word order in a
sentence. What is important is that these clusters never surface to the
user interface level, merely providing information about document groups
in the input.

To better explain how DCF works let us demonstrate the entire procedure
using a simple example. Let us assume only two dimensions of feature space. At
first we collect cluster candidate labels and documents and represent them in the
same vector space model (Figs. 2(a) and 2(b)). Angle vectors are also shown for
clarity. Document clustering phase returns groups of similar documents, with
a centroid vector (average of all document vectors inside the cluster) for each
cluster (Fig. 2(c)).

After candidate labels and document clusters are known, the matching step
takes place. The assumption here is that the set of candidate labels contains
a number of good-quality, but redundant entries (not corresponding to any
document clusters). On the other hand, the model of clusters contains useful
information about document groups, but lacks the expressive power of syntac-
tically correct phrases. We combine these two information sources by filtering
the set of candidate labels and leaving only those labels that are most simi-
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Figure 1. Steps of a clustering procedure in a typical clustering algorithm and in
the DCF approach. Note the two steps of candidate label discovery and cluster
discovery in the DCF.

lar to any centroid vector of the discovered document clusters (Figs. 2(d) and
2(e)). The result of the matching step is a set of comprehensive phrases that
should constitute good representation of actual clusters discovered in the col-
lection of documents. We call these phrases pattern phrases because they can
be perceived as “seeds” of the final set of document groups to be created in the
last step. The model of clusters (dominant topics), computed using traditional
clustering algorithm, is no longer required at this point and can be discarded.

In the final step the documents are once again assigned to pattern phrases
to assure every document has a clear relationship to the cluster — the label
containment. For each pattern phrase we look for documents that contain the
phrase in an exact, or slightly distorted shape by allowing matches with minor
rewordings and foreign words injected inside (see Fig. 2(f)). The output is a
set of clusters, each consisting of a pattern phrase (label) and the documents
allocated to it.

Note a few interesting aspects of the procedure presented above. First, there
is strong interdependence between clustering, documents and label discovery:
cluster centroids formed around weak keywords are unlikely to find matching
candidate labels and will be discarded early on. At the same time, even if
a pattern phrase has been mistakenly selected, it must still collect a certain
required number of documents to actually form a final cluster. We thus increase
the likelihood that each cluster is truly sensible and tightly related to its label.
Second, the procedure naturally caters for two natural elements expected from a
text clustering algorithm — overlapping clusters and documents not belonging
to any cluster. Clusters may overlap because documents are re-assigned to
pattern phrases independently (a single document may match more than one
pattern phrase and hence belong to more than one cluster). At the same time, a
document may not find any matching pattern phrase and thus not belong to any
cluster at all. The third aspect worth mentioning is that there is a great deal of
freedom in putting together different basic blocks of the entire DCF procedure.
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The descriptive k-means algorithm presented in the next section shows one such
possibility.

3. Modifying k-means for the DCF: descriptive k-means
algorithm

3.1. Rationale for k-means and the variant selected for the baseline

The descriptive k-means (DKm) algorithm is, depending on how one looks at
it, either a modification of the widely known k-means algorithm, adjusted to
the DCF scheme or a concrete instance of the DCF scheme, where k-means is
used to discover dominant topics. We considered a few different “baseline” text
clustering algorithms and finally selected k-means for the following reasons.

e k-means is widely recognized and used, so minimal effort is required to
understand which DCF modifications we introduced.

e Baseline k-means has a few limitations when applied to text clustering —
crisp document-to-cluster partitioning, spherical clusters, non-overlapping
clusters and, perhaps most of all, the requirement to specify the number of
clusters in advance. There are many variants of k-means that attempt to
overcome the problems mentioned above, but our intention was to demon-
strate that even this inconvenient algorithm can be adopted to the DCF
approach and yield good results.

e At the time of choosing the baseline algorithm we thought it would be
a good idea to somehow utilize our good experiences with the singular
value decomposition (SVD) used in the Lingo algorithm. SVD is ap-
plied to the term-document matrix. Although this is difficult to objec-
tively prove, the matrices resulting from SVD decomposition reveal the
latent co-occurrence relationships between terms and correspond to dif-
ferent “topics” present in the documents. Interestingly, it has been shown
that SVD decomposition can be approximated with cluster centroids dis-
covered by k-means (Dhillon and Modha, 2001). Our hope was to create
a very efficient algorithm based on k-means and at the same time employ
the interesting properties of SVD.

e Finally, k-means (or one of its many variants) is often used for comparing
clustering quality between algorithms. Any definition of “quality” in text
clustering is usually controversial and prone to subjective bias because no
single ideal result exists (Manning and Schiitze, 1999). Our motivation
was to evaluate DKM and k-means in the same experiment conditions
to see if DCF improves (or at least retains) the quality of the output
clusters measured using typical document allocation indicators, at the
same time hoping that the DCF scheme should yield clearer cluster labels
and more transparent relationship between documents and the label of a
cluster. Since these aspects are quite difficult to formally define, quality
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measurement using methods other than user satisfaction surveys is nearly
impossible. In fact, we finally decided that comprehensibility of cluster
labels will not be taken into account at this phase of our evaluation and
we would focus just on document-to-cluster assignment quality, leaving
some systematic judgment concerning cluster labels for later.

After we decided to pick k-means to be the baseline clustering algorithm,
there was still a great deal of freedom in choosing the configuration of parameters
and components of this algorithm. We eventually decided to use the following
variant.

e The initial maximum number of clusters k must be given in advance (we
do not try to estimate it, although it is possible, see Manning, Raghavan
and Schiitze, 2008). As we discuss it later on, the final number of clus-
ters resulting from the DKM may be smaller than the one provided for
underlying k-means (depending on how many matching label candidates
we can find for the discovered k cluster centroids). The fact that k must
be given in advance is of course a weak point and should be addressed in
the future.

e The initial state of cluster centroid vectors is computed by taking a random
subset of input documents and finding & most diverse elements in this
subset. This method of bootstrapping k-means is reportedly stable and
leads to good cluster diversity (Dhillon, Fan and Guan, 2001).

e The convergence criterion is an alternative of two conditions: either there
are no more reassignments of documents to clusters or the global gradient
criterion (sum of distances to cluster centroids) no longer significantly
changes.

Once we had a concrete baseline algorithm, we could proceed to modifying it
toward the DCF.

3.2. Overview of the descriptive k-means algorithm

Our adaptation of plain k-means to DCF focused on adding a candidate label
discovery, using k-means for discovering cluster centroid vectors and combining
these two elements to select pattern phrases. The algorithm pseudocode would
be a bit lengthy! because of so many data structures and algorithms involved,
so instead we present a state chart of major steps (see Fig. 3).

As new documents are added for processing, candidate cluster labels are
extracted and unique entries are added to an inverted index (Baeza-Yates and
Ribeiro-Neto, 1999). A similar inverted index is created for document content.
These data structures are crucial for keeping the whole procedure efficient and
are used in searching for pattern phrases and allocation of documents in subse-
quent stages of the algorithm.?

1DKM’s pseudocode is available in Weiss (2006).
2We use the Lucene library extensively for building document and candidate label indexes
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Figure 3. State chart of major steps of the descriptive k-means algorithm.

Two different methods are used to extract candidate cluster labels: frequent
phrase extraction and noun chunking. The first method (described in Zamir and
Etzioni, 1999) looks for frequently occurring ordered sequences of terms. Addi-
tional constraints are added to prevent proliferation of common collocations: a
frequent phrase must not cross sentence boundary and it must not start or end
with a very common word. Extraction of frequent phrases is efficient and can
be implemented using generalized suffix trees or suffix arrays (Larsson, 1999).
While appealingly fast, frequent phrases are based solely on word statistics and
co-occurrence. An alternative method is applying shallow text chunking with
the aim of detecting and extracting noun phrases. Since nouns are usually used
to refer to objects and events, noun phrases should provide sensible and unam-
biguous cluster labels. We used a pre-trained statistical chunker for this task to
avoid deep linguistic processing and keep the process reasonably efficient (Ab-
ney, 1991; Zhang, Damerau and Johnson, 2002).

Candidate label extraction is a time-consuming process compared to other
phases of the algorithm, especially when shallow NLP methods need to be ap-
plied. The observation that helps here is that the extraction of candidate labels
from a document requires computations that are local to it and independent
of other input. Therefore, the effort required to extract phrases can be easily
divided into independent units and distributed. We successfully deployed this
idea and performed massive candidate label extraction using map-reduce com-
puting paradigm (Dean and Ghemawat, 2004), where the input for a single map
operation was a document and the result a set of phrases. Reducers simply

(http://lucene.apache.org), appendix A defines some terminology that we will use in further
part of this paper.
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emitted unique phrases with a minimal threshold on the number of occurrences
in all documents.

Once all documents have been added, the algorithm proceeds to building a
model of topics using k-means clustering (the variant described earlier). We only
care about the final centroid vectors of clusters and not about each document
assignment, so we can subsample the entire input collection of documents and
approximate cluster centroids fairly closely (Goswami, Jin and Agrawal, 2004).
With proper use of on-disk data structures created at indexing time, detection
of cluster centroids is in the order of seconds for a few thousand documents on
commodity hardware — we discuss these implementation details in Section 4.

In the merging step, we search for candidate cluster labels “closest” to the
discovered cluster centroids. We already discussed it when describing DCF,
but just to stress it again: an intuitive explanation of the rationale of this
phase is that we want to “describe” a cluster (group of similar documents) using
phrases we know are sensible for a human and at the same time match closely
the cluster centroid. To handle this goal efficiently, for each cluster centroid
we build a Boolean query (see Appendix A for definitions of query types) with
terms taken from the cluster centroid term vector. The scoring boosts for each
term correspond to weights in the centroid vector. We then execute such a query
against the index of label candidates. To give the user the ability to express his
or her preference of the final length of cluster labels, we multiply the matching
score of each candidate label by an adjustment function taking into account the
number of words in the label phrase — this helps promote phrases of the desired
length. The exact shape of this penalty function is discussed in Section 4. The
outcome is a score-ordered list of best matching labels. From this list we select
a few top scoring entries and add them to the set of pattern phrases.

The algorithm ends with allocation of documents to each pattern phrase.
We use the inverted index again (this time of documents, not candidate la-
bels) and build phrase queries, which retrieve documents matching the pattern
phrase. Exact matches receive a higher score than those where the phrase terms
appear in different order or are mixed with non-query terms. This way docu-
ments where the pattern phrase is slightly distorted may still end up in one
cluster, but documents just happening to contain the phrase terms at random
positions should not be taken into account. To give an example: for a pattern
phrase “Hillary Clinton” we would permit documents containing: “Hillary Rod-
ham Clinton” and “Clinton, Hillary” but not documents where these two words
appear too far apart.

If not enough documents can be collected for a given pattern phrase, it is
discarded. Note that the relationship between a cluster label and its documents
is very explicit — the label must be present in each document. We believe this
transparency of relationship between a cluster label and its content is one of the
most desirable features of document browsing interfaces, much like the default
conjunction (AND) between query terms has become the default behavior of
popular search engines.
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3.3. The k (number of clusters) problem

We decided that the number of clusters to be discovered inside the k-means
part of the DKM will be given a priori. Our decision was motivated by a few
factors. First, for our planned experiments with cross-algorithm comparisons
we needed the same number of clusters from all algorithms under considera-
tion — a different number of clusters complicates measuring quality greatly
(although is possible). Second, estimation of k is possible (Manning, Raghavan
and Schiitze, 1999), but counterintuitive in text clustering; many authors de-
cide to put this problem away as too problematic to solve together with other
issues (see Bekkerman et al., 2007, for an example). Third, descriptive k-means
and DCF in general exhibits an interesting “pruning” property that decreases
the number of clusters automatically if they have no coverage in the data set.
Let us investigate this phenomenon in more detail. The following scenarios are
possible:

e No good matches can be found in the set of cluster label candidates for a
given cluster centroid. This may be the case, for example, when cluster
centroids contain noisy groups of words not occurring anywhere in the text
as a phrase. In such situation, the cluster centroid is simply discarded.

e No documents or very few documents are assigned to a pattern phrase.
This happens when the pattern phrase was similar to the dominant topic
model, but is not relevant to any documents. Consider this example: a
cluster centroid vector contains terms lemony and snicket. A candidate
cluster label Lemony Snicket® will be added to the set of pattern phrases,
but since no documents contain this phrase, it is pruned and a potential
final cluster is discarded.

As a result, the number of final clusters in DKM may be smaller than the
k given to the algorithm. Nonetheless, we are aware this is a weakness of the
algorithm and that k& could be at least roughly estimated from the source data
using one of the known methods (Manning, Raghavan and Schiitze, 1999).

3.4. Discussion of computational complexity

Estimation of computational complexity of the entire descriptive k-means is dif-
ficult. A great deal depends on the method used to extract candidate cluster
labels, for example; shallow linguistic preprocessing algorithms like noun chunk-
ing heuristics rarely specify computational complexity. An alternative label can-
didate extraction method — frequent phrase extraction — can be implemented
more efficiently (an implementation based on Ukkonen’s, 1995, algorithm is of
the order of O(n), where n is the number of input symbols), but have complex
memory access characteristics that often turn out inefficient in practice. Our

3Lemony Snicket is a pseudonym of Daniel Handler, an American novelist and the author
of a series of darkly comic children books known as A Series of Unfortunate Events.



1020 J. STEFANOWSKI, D. WEISS

experiments show that candidate label extraction phase easily becomes the most
expensive phase of the entire algorithm.

Candidate label discovery put aside, the overall algorithm complexity is
bound by k-means. Theoretical approach to estimating k-means complexity is
given in Arthur and Vassilvitskii (2006). Encountering the pessimistic theoreti-
cal bound in practice is very doubtful, however, especially when the termination
criterion is a combination of the convergence function and the number of iter-
ations performed by the algorithm. The use of sampling reduces the problem
size even further. We found the performance of the entire DKM to be very
satisfactory in practice.

4. Implementation aspects

4.1. Term vectors, their properties and efficient implementation of
k-means

Let us recall that in the implementation of DKM we used the Lucene library.
The indexes created at the time documents are added to the system (documents
index and candidate labels index) contain VSM representation of each entry (a
sparse vector of terms with non-zero weight). For the needs of k-means clustering
we trimmed the size of document vectors even more in the following way:

e a random sample of term vectors for documents in the index is retrieved;

o for each selected document, its features (terms) are weighted and then
sorted in descending order of their weights;*

e the number of features finally used in k-means to represent a single doc-
ument is fixed (vectors are truncated and length-normalized). We experi-
mented with representation lengths equal to 30, 50, 70 and 100 features.
According to results shown in Schiitze and Silverstein (1997), the optimal
value of the term vector length should be somewhere within this range
and our results support these guidelines.

Compressing the input is one factor that speeds up the main k-means loop,
but the key to efficiency is in engineering vector multiplication. If we use cosine
distance to calculate similarity between documents then for normalized vectors
d; and d; the cosine similarity simplifies to:

d;-d;
sim(d;, d;) = cos(a) = /

= d; - d;. 1
PAILH ) M)

By representing cluster centroids as dense vectors and documents as (short)
sparse vectors, calculation of similarity in (1) is implemented in one loop iter-

4We use standard IR term weighting schemes — tfidf, mutual information, modified mutual
information and modified tfidf. The choice of a weighting formula was marginally important;
with the exception of pointwise mutual information all other strategies behaved similarly so
we omit their details here. A complete description of the term weighting functions used is
available in Weiss (2006).
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ating over the components of the sparse vector only (this is the actual reason
for limiting the number of features). The total cost of calculating similarity be-
tween two documents is therefore ©(m) multiplications, where m is the number
of components of the sparse vector.

Note that sampling and truncation of document features limit memory re-
quirements as well, so the whole k-means procedure can be squeezed into mem-
ory even for large document collections. These optimizations make the k-means
loop efficient enough to neglect other possible improvements to the baseline algo-
rithm, such as utilizing geometric properties of the clustered space as discussed
in Pelleg and Moore (1999).

4.2. Choosing pattern phrases

Selecting pattern phrases is about searching among candidate cluster labels and
selecting those similar (or “close to” in vector space model terminology) the
discovered dominant topics.

For each cluster centroid we assemble a list of its top weighted terms and
their scores. We then construct a weighted query and execute it against the in-
dex of cluster candidate labels, retrieving phrases that best match the “profile”
of weights of the cluster centroid terms. The queries are constructed program-
matically, but could be expressed in a human-readable form as a list of alterna-
tives with numeric boosts (denoting preference) associated with each term. For
instance:

java(g.52) OR coffee(y 24) OR island o 12) OR languagey o9) OR ...

Note that at this stage we are not concerned with the order of words or
their proximity — cluster label candidates that match the query, but have no
coverage in the set of input documents will be pruned later in the document
allocation phase anyway.

A query like the one shown in the example above fetches an ordered list of
candidate cluster labels for a given dominant topic. Additionally, each label has
a score, which is calculated as a relevance to this query. Let us denote this score
of a given candidate label p as query score(p). We can influence the process of
cluster label selection by allowing the user to express his or her preference of
the expected cluster description length by adjusting the score of each label p
and penalizing it for being longer or shorter then the desired length of m terms.

The penalty function is a simple bell-like curve:

_(Iengt;g;) —m) 7 @)

length _penalty(p) = exp

where length(p) is the number of terms in p and d controls the penalty strictness.
A penalized score of a candidate label then becomes:

score(p) = query _score(p) x length penalty(p). (3)
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We used fixed values of m = 4 and d = 8, these proved to work well in practice;
Fig. 4 illustrates the shape of this particular penalty function. After applying
the penalty function, the set of candidate labels is sorted again and the highest
scoring elements become pattern phrases.

4.3. Allocation of documents

Document allocation is more tricky since we want to have a clear relationship
between a pattern phrase and the documents allocated to it. A heuristic that
can be used for this task could be as follows:

e allocate all documents containing an exact copy of the pattern phrase,

e allocate all documents containing a possibly distorted version of the pat-
tern phrase (reordered words, a few other words injected between the
phrase terms); the user should be able to control the allowed level of dis-
tortion,

e allocate all documents containing the phrase and any synonymous phrases
that could be related to it, but offer the user a possibility of expanding
the cluster label to explain which phrases contributed to the allocated
documents.

We focused on the first two points from the list above. For each pattern phrase
a query is constructed and executed against the index of documents. This time,
unlike previously, the query is not a simple Boolean alternative of weighted
terms, but a phrase query with some allowance for distortions (slop factor, ex-
plained in Appendix A). For a given pattern phrase this query returns a list con-
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taining relevance-ordered documents; documents with exact matches are scored
higher than those with “sloppier” version of the pattern phrase terms.

The decision how much distortion (and hence potential confusion for the
user) is allowed between cluster labels and documents is controlled using the
slop factor. This threshold should be most likely left to the user. In our experi-
ments we set it automatically as a linear function of the pattern phrase’s length
(allowed distortion is proportional to the number of terms in the phrase).

5. Evaluation of clustering quality
5.1. Goals and assumptions

The goals of descriptive clustering slightly differ from those defined for pure
data clustering — the point is to find coherent, well-described groups of docu-
ments. Yet, in our experimental evaluation we tried to investigate how descrip-
tive k-means differs in the clustering quality compared to its baseline k-means
algorithm. Measuring quality (understood as document allocation) is fairly well
defined and portable across various IR clustering techniques, whereas evaluation
of the quality of labels is still a very challenging topic with very few references in
literature. We tend to believe that improved cluster labels should be an outcome
of the candidate cluster label extraction phase — if candidate labels extracted
there are good, then final cluster labels should be comprehensive as well. Since
we used two phrase extraction methods already rooted in literature — frequent
phrases and noun chunks — our hope was that cluster labels would be compre-
hensive to humans. Obviously, whether this claim is true should be validated,
but due to its inherent difficulty we shifted it to the future work on the subject.
Instead, we focused on answering the following questions concerning document
allocation quality in DCF and DKM:

e Two elements may degrade clustering quality in DCF: approximation of
dominant topics using pattern phrases and document assignment to pat-
tern phrases (instead of cluster centroids) — does DCF improve, degrade
or retain clustering quality of the baseline k-means?

e Given the two phrase-extraction methods (frequent phrases, noun chunks),
is the quality of clustering between them different and how does it change?

e Does document subsampling used to speed up k-means change or affect
clustering quality?

5.2. Data set and evaluation methodology

To validate our results against previous research we decided to use a widely
known 20-newsgroups® data set consisting of approximately 20 000 mailing list
messages partitioned into 20 different groups. Each group corresponds to a dif-
ferent topic, although some of them are more related than others. Fig. 5 shows
the headers of newsgroups in the 20-newsgroups data set and their relation to

5See http://peple.csail.mit.edu/jrennie/20Newsgroups/
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comp.graphics rec.autos sci.crypt

comp.os.ms-windows.misc rec.motorcycles sci.electronics

comp.sys.ibm.pc.hardware rec.sport.baseball sci.med

comp.sys.mac.hardware rec.sport.hockey sci.space

comp.windows.x

misc.forsale talk.politics.misc talk.religion.misc
talk.politics.guns alt.atheism
talk.politics.mideast soc.religion.christian

Figure 5. Groups of messages in the 20-newsgroups data set, related groups are
in the same box.

each other. We chose a subset of the original data set with removed redun-
dancies and empty documents called a “bydate split” and consisting of 18941
documents. We assumed that each original newsgroup in the data set should
be reconstructed as a cluster in the output clustering.

Three combinations of algorithms underwent the evaluation: DKM using
English noun phrases as candidate labels, DKM with frequent phrases, and
pure k-means. Descriptive k-means appears in two variants because we wanted
to see if the candidate label selection strategy affected clustering quality. The
implementation of k-means was identical as the one used internally in DKM to
detect clusters of dominant topics.

Standard IR evaluation measures assume complete partitioning of the input
data set into k disjoint subsets and DKM produces partial partitioning into
an unknown number of clusters. We forced the k-clusters output from DKM
by modifying it slightly for the needs of the experiment — pattern phrases
selected by each centroid formed one merged cluster with a union of documents
assigned to each pattern phrase. Any remaining unassigned documents have
been excluded from the result. It is worth mentioning that this change actually
penalizes the DKM algorithm because by artificially merging documents from
different pattern phrases we mix documents that would otherwise end up in
different (smaller) clusters. This adjustment was unfortunately necessary to
keep the structure of results similar to the ground truth set and evaluation
metrics applicable.

The values of thresholds and parameters used in k-means and DKM were
set to their best-guess values determined manually before the experiment (see
Table 1). We then clustered the ground truth set of documents five times (for
visualizations) and a hundred times (for statistical significance analysis) for each
possible combination of the following variable elements:

e sample size — size of the sample of documents from the original data set,

o feature type — type of feature weighting formulas used for feature selec-
tion; we used mutual information (mi), discounted mutual information
(mid), plain tfidf and its version downplaying the count of terms in the
document by taking a square root of the tf component (#fidf2),

e feature vector length — length of the document feature vector, set to 30,
50, 70 or 100 elements.
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Table 1. Values of thresholds used in the experiment.

Threshold k-means DKM
maximum reassignments rpyin 20 20
minimal global objective function increase 7 0.001 0.001
minimum documents allocated to a pattern phrase n/a 10
minimum documents in a final cluster n/a 5

For every run of the experiment we compared the clustered result against
the ground truth partitioning, calculating the following clustering quality indi-
cators: average cluster purity, average normalized entropy, average F-measure
and average contamination measure. Entropy and F-measure are widely used
and need no further explanation (see Cheng et al., 2005; Dhillon, Fan and
Guan, 2001, for details, for example). Cluster purity gives the average ratio of
the dominating class in each cluster to the cluster size. The interpretation of
values of these measures is given below each figure (Figs. 6-8). Contamination
measure for cluster k; is defined as the number of pairs of objects found in the
same cluster k;, but not coexisting in any of the original partitions, divided by
the worst case scenario — maximum number of such bad pairs in k;, see Weiss
(2006). For pure clusters, cluster contamination measure equals 0, for an even
mix of documents from all original partitions the measure equals 1.

5.3. The results

We actually expected descriptive k-means to be slightly worse at clustering
documents from a predefined collection because the DCF approach should not
group documents for which there are no sensible descriptions (even if these
documents are similar to each other) and were quite surprised when it turned
out that the experiment results show just the opposite — an improvement in
quality for most aspects of the analysis.

Clustering quality

Fig. 6 presents average contamination for each weighting scheme used for fea-
ture selection. Surprisingly, DKM in both variants is less contaminated than the
baseline k-means. This is confirmed by two other quality metrics® — average
purity (Fig. 7) and average entropy (Fig. 8). In these metrics, however, k-means
is slightly better when mutual information (or rather pointwise mutual informa-
tion) is used for feature weighting. This phenomenon has an good explanation.
MI boosts low-frequency terms (Manning and Schiitze, 1999), if such terms are
selected to represent the cluster centroid then they find little support in the set
of candidate labels. We can find the evidence of these suspicions in Fig. 9 —

6The F-measure turned out not to be a good choice because it was biased by the resulting
cluster size.
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the average cluster size for candidates selected among frequent phrases is much
lower than with noun phrases, whose selection is not related to frequency of
occurrence. This disproportion does not occur with other weighting schemes.

Another reason why DKM came out so good in cluster quality metrics is most
likely because it tends to produce more compact, narrow-topic clusters. In all
configurations the number of unclustered remaining documents was quite large.
This may be, in contrast to the initial feeling, an advantage of the algorithm —
a cluster composed of many topics is rarely intuitive and requires more verbose
description than a compact, well defined smaller cluster.

Fig. 10 illustrates an average size of a cluster (number of documents inside
a cluster), depending on the size of the feature vector. Descriptive k-means
produces smaller groups of documents (remember that k-means basically assigns
all documents to their closest cluster, so the average cluster size remains constant
for a given k and number of input documents). Note that increasing the size of
the sample affects the average cluster size gradually. This again indicates that
DKM tends to produce smaller, but more accurate clusters (is conservative in
document allocation).

The average number of clusters (Fig. 11) shows that descriptive k-means
indeed, as explained previously, reduces the number of clusters k¥ — the number
of output groups depended mostly on the length of document vectors (which
influence cluster centroid calculation and finally selection of pattern phrases).
Interestingly, the size of the sample had no visible influence on the number of
clusters — this confirms previous results reported in literature (Goswami, Jin
and Agrawal, 2004).

We also performed limited statistical analysis of significance between differ-
ences in clustering quality for the three algorithms involved. Even though the
distribution of original data is unknown, we assumed a sufficiently high number
of samples to use a test of difference of means between two populations (Ko-
ronacki and Mielniczuk, 2001). The difference for entropy, contamination and
purity was statistically significant for o = 0.05, suggesting that DKM with
any phrase extraction method had a better result than raw k-means. Inter-
estingly, there was no statistically significant difference between the two DKM
variants (we expected noun phrases to be more “accurate” and thus improve
upon frequent phrases). Full tables comparing the results of statistical analysis
are available in Weiss (2006).

Subsampling the input

Assuming cluster centroids remain similar, they should select the same pattern
phrases, which, in turn, should allocate identical final content of clusters. And
indeed, only the smallest sample (2000 documents) had a different quality char-
acteristic — for samples of 5000, 7000 and 9000 documents the results were very
much alike.
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DOk-means Wdkm-nounphrase Odkm-freqphrase

0,90 4

0,80 1

0,70 1

0,60 1

0,50 q

0,40 4

0,30 1

0,20 q

0,10 q

0,00 4
mi mid tfidf tfidf2

Figure 6. Average cluster contamination depending on the feature type (higher
values indicate more contaminated clusters).

DOk-means Wdkm-nounphrase Odkm-freqphrase
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0,20 q

0,10 4

0,00 +

mi mid tfidf tfidf2

Figure 7. Average cluster purity depending on the feature type (higher values
indicate purer clusters).
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DOk-means B dkm-nounphrase Odkm-freqphrase
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Figure 8. Average entropy depending on the feature type (lower values indicate
better clusters).
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Figure 9. Average size of a cluster depending on the feature type and sample
size.
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DOk-means B dkm-nounphrase Odkm-freqgphrase
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Figure 10. Average size of a cluster depending on the number of features and
sample size.
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Figure 11. Average number of clusters depending on the number of features and
sample size.
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An interesting aspect to investigate would be to see how stable the set of
pattern phrases is depending on the size of the sample. An experimental val-
idation of this question would require ways of detecting how pattern phrases
change (or rather: how their rank changes in a list of results returned for a
Boolean query issued to the index of candidate labels). This is an interesting
direction for future research, but we have not collected the data to be able to
answer this question at the time of this writing.

A few words about the quality of labels

Although it was not among the experiment objectives, we manually inspected
cluster labels of several clustered instances. For example, topmost labels from
a cluster most likely corresponding to a group called soc.religion.christian were:
Lord Jesus Christ, salvation through our Lord Jesus Christ, God does not ezxist,
existence of God, grace of God. Another sample showed cluster labels concerned
with the Muslim/ Jewish communities: Palestinians, Israel, Israel Gaza, Serbs,
Croats and Muslims, Israeli Jews, Bosnian Serbs and Bosnian Muslims.

The quality of cluster labels was, as we generally suspected, satisfactory.
Again, note that we relied on the candidate cluster label extraction method
to provide the best candidates possible, it was not our intention to measure if
frequent phrases or noun phrases were truly comprehensive.

6. Related work

We could divide the related work into two sections — one devoted to clustering
algorithms in general (there are a great number of papers here) and another
focused on cluster labeling (very few attempts to tackle the problem). The first
attempt to combine these two threads was perhaps the suffix tree clustering
algorithm, presented in Zamir and Etzioni (1999). A follow-up work by Guli and
Ferragina (2004) on the SnakeT project showed how to avoid certain limitations
of STC and use non-contiguous phrases (so-called approximate sentences) for
labeling clusters.

Among the approaches with goals similar to DCF, but different in implemen-
tation, we should mention the clustering with committees algorithm, Pantel and
Lin (2002), or Kummamuru et al. (2004) where authors present a search results
clustering algorithm which tries to associate documents with a single unique
concept. Hotho and Stumme (2002) and Hotho, Staab and Stumme (2003)
build a “conceptual clustering” system that refines cluster descriptions using
concept lattices. Their cluster descriptions are still single words but they use a
large thesaurus and formal concept analysis to avoid repetitions and synonyms
in cluster keywords. Applications of concept-lattices to compacting textual in-
formation and labeling clusters for display on mobile devices were presented by
Carpineto and Romano (2004).
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Traces of the pattern-phrase idea can be found in Zeng et al. (2004) —
authors perform an interesting experiment with supervised training of a cluster
label selection procedure (the classifier function is much like that of cluster
centroids in the DCF — select good cluster labels from a larger set).

Sanderson and Croft (1999) present a completely different, yet related ap-
proach to exploring document collections. Instead of clustering input docu-
ments, they start with salient terms and phrases taken from predefined queries
to a document collection and expand this set with a technique called local context
analysis.

7. Summary and conclusions

We presented the goals and requirements of descriptive clustering — a subclass
of the general clustering problem where the clusters are meant to be suitable
for use in document browsing interfaces and thus require comprehensive, intu-
itive cluster labels. We then outlined the proposed solution to the descriptive
clustering problem — the description comes first approach — and described
how a model of cluster centroids can be combined with potential cluster label
discovery to form clear, compact and properly labeled clusters.

We demonstrate a concrete implementation of the DCF on an example of de-
scriptive k-means: a modification of the k-means clustering algorithm. We also
describe how certain engineering tricks can be employed to make the algorithm
scale to large document collections.

Finally, we provide the results of a computational experiment in which we
quantitatively compare the clustering quality of both the modified and the base-
line k-means algorithm. The experimental results show that descriptive k-means
slightly increases clustering quality. From the way the algorithm is constructed
we also speculate that it provides compact and comprehensive cluster labels
with intuitive relationship between the content of a cluster and its description.

Directions for the future work are quite broad. The DCF approach relies
heavily on the quality of cluster label candidates. Frequent phrase extraction is
very convenient here because of its efficiency, but has several disadvantages like
word-order dependence, for example. Any method of determining good quality
potential cluster labels would most likely improve the overall clustering quality
as well. It has been already mentioned that the number of clusters k& could
be determined from the input data rather than being required in advance. An
alternative to estimating k could be to replace k-means with a different clus-
tering algorithm capable of producing cluster centroid representation suitable
for the merging phase without explicit knowledge of k. Finally, measuring the
quality of the produced cluster labels in terms of comprehensibility, clarity and
compactness remains a challenging and unsolved problem.
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A. Terminology related to Lucene

In the paper we refer to certain terms and concepts that are very specific to the
information retrieval library Lucene. Below we provide definitions and highlight
differences compared to the classic VSM model.

Lucene index Lucene index can contain several things: raw content of added
documents, an inverted index of terms, each term associated with a list
of documents it occurred in, and a lists of terms and their counts for each
document. A Lucene index is therefore a combination of a typical inverted
index of terms with on-disk sparse representation of document vectors and
a database of document content.

Lucene query model, Boolean query Lucene uses a combination of the vec-
tor space model and the Boolean model to execute queries against its in-
dexes. The Boolean model is used to narrow the set of documents to only
those that match a Boolean expression given between query terms. So,
for example, “Clockwork or Orange” would select a subset of documents
containing any of the query terms, whereas “Clockwork AND Orange” would
select a subset of documents with both these terms. The vector space
model is used to sort the selected subset of documents based on the rele-
vance score between the query (translated to a vector of terms) and each
document.

phrase query A phrase query seeks for documents, in which all the query
terms were present and at subsequent positions with respect to the query.
For example a phrase query for “Clockwork Orange” would yield documents
which contained the term “Clockwork”; followed by the term “Orange”.
The criterion on the order of terms in the query phrase can be relaxed by
adding a non-negative slop factor (explained below).

slop factor A phrase query with a non-negative slop factor retrieves documents
containing all terms contained in the query, but allows certain degree of
reordering of query terms and injection of other words in between these
terms. The slop factor controls how mangled the phrase can be to still
consider the document relevant to the query. Technically, slop factor is
defined as a difference in positions between two terms maximally displaced
from their original positions in the phrase. For a query p, containing
ordered terms t = tq,to,...,t, and a document d with terms from the
query at indices dy,ds,...,d,, slop factor is defined as:
slop(p, d) = max (V(d; — i)) — min (V(d; — 7). (4)

i i
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For example, consider a phase query with four terms: “a b ¢ d”. The
positions of each term in this phrase can be written down as shown in
Fig. 12(a). If we have two short documents in the index, one containing
reordered query terms: “a ¢ b d”, and the other containing non-phrase

term injected inside: “a b z ¢ d”, the calculations would proceed as shown
in Figs. 12(b) and 12(c).

(a) The query and its term

positions.
term a ¢ b |d teem a | b | x| c|d
di 0[] 1]27]3 di O0]1[]2]3]4
d;i—i 0| -1 1 0 di—i 010 - 1 1
—slop=1-(-1)=2 —slop=1-0=1
(b) Coefficients for the slop (c) Coefficients for the slop
factor for document “a ¢ b factor for document “a b z ¢ d”.

a”.

Figure 12. Example calculation of document “sloppiness” for query “a b ¢ d”
and two different documents.
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