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1. Introduction

Many approaches have been developed in literature for obtaining results in op-
timization theory. In this paper we propose a systematic approach to many
problems of optimization theory (i.e. necessary and sufficient optimality con-
ditions, constraint qualifications, mean value theorems and error bound) which
uses local cone approximations of sets. This concept, introduced by Elster and
Thierfelder (1988) and studied also in Castellani and Pappalardo (1995), appears
to be very useful when used together with separation theorems and generalized
derivatives. When intensively applied, we show that it is very flexible in our
scope of interest.

The first step of this scheme consists in approximating a set with a cone; in
particular, when the set is the epigraph of a function, the cone represents the
epigraph of a positively homogeneous function, which will be called generalized
derivative. The subsequent step consists in considering the case in which the
generalized derivative is the difference between two sublinear functions; finally,
the most general situation, is the one in which the generalized derivative is a
minimum of sublinear functions.

The paper is organized as follows. Section 2 is devoted to the introduction
of the concepts of local cone approximation and directional K–epiderivative. In
Section 3 we obtain necessary optimality conditions in two different ways: the
former, called “primal”, where a necessary optimality condition is classically
obtained as nonnegativity of some suitable generalized derivative over some
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approximation of the feasible set; the latter, called “dual”, where a necessary
optimality condition is obtained in the form of a zero belonging to some suit-
able subdifferential of the Lagrangian function. In any case, primal conditions
are obtained with weaker assumptions; while dual conditions, more useful for
algorithmic schemes, are obtained via alternative theorems and therefore they
need stronger assumptions, in other words they need “constraint qualifications”.
Section 4 develops the analysis of constraint qualifications; Section 5 is devoted
to sufficient optimality conditions; Section 6 contains a scheme for mean value
theorems and Section 7 shows some applications to establishing error bound.

In the sequel (X, ‖ ·‖) is a real Banach space, X
∗ is its topological dual space

endowed with the weak∗ topology and 〈·, ·〉 is the canonical pairing between X
∗

and X. The open ball with center x and radius r is denoted by B(x, r). Given a
set A, we indicate by Ac, cl A, intA and conv A the complementary, the closure,
the interior and the convex hull of A respectively. An extended–value function
f : X −→ (−∞, +∞] is said proper if dom f 6= ∅, where

dom f = {x ∈ X : f(x) < +∞}

is the domain of f . We denote by E(X) the class of the proper extended–value
functions and by F(X) the subclass of the lower semicontinuous functions. If A

is a closed subset of X
∗, the support function associated to A is

σ(x, A) = sup{〈x∗, x〉 : x∗ ∈ A};

the domain of σ(·, A) is called barrier cone of A and it is denoted barrA.

2. Cone approximations and K–epiderivatives

The concepts of directional derivative and subdifferential of a convex function
were used for treating convex optimization problems. Since more than thirty
years ago a lot of effort was made to establish similar concept in the nonconvex
nonsmooth case with the introduction of modifications of the directional deriva-
tive. In accordance with such investigations, in Elster and Thierfelder (1988) an
axiomatic approach has been proposed for constructing generalized directional
derivatives of arbitrary functions: the basic idea is the fact that the epigraphs
of the different directional derivatives of a function f can be considered as cone
approximations of the epigraph of f .

Definition 1 A set–valued map K : 2X × X ⇉ X is said to be a local cone
approximation (in short l.c.a.) if to each set A ⊆ X and each point x ∈ X a
cone K(A, x) is associated such that the following properties hold:

(i) K(A, x) = K(A − x, 0),
(ii) K(A ∩ B(x, r), x) = K(A, x) for each r > 0,
(iii) K(A, x) = ∅ for each x 6∈ cl A,
(iv) K(A, x) = X for each x ∈ intA,
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(v) K(ϕ(A), ϕ(x)) = ϕ(K(A, x)) with ϕ : X −→ X linear homeomorphism,
(vi) 0+A ⊆ 0+K(A, x) for each x ∈ cl A,

where 0+A = {x ∈ X : A + x ⊆ A} is the recession cone of A.

Conditions (i) and (v) require the invariance of the approximation with re-
spect to translations and linear homeomorphisms; conditions (ii), (iii) and (iv)
show the local character of K. The last condition is quite technical and it is
needed to derive properties concerning the directional K–epiderivatives of func-
tions. The set of all l.c.a. is not empty and the independence of the axioms
(i),. . . ,(vi), that is no axiom can be expressed by the others, was proved in Elster
and Thierfelder (1988).

Now we cite the main properties of the l.c.a., which will be useful in what
follows: most of them can be found in Elster and Thierfelder (1988).

Theorem 1 Let K and Ki, with i ∈ I arbitrary index set, be l.c.a.; then

intK, cl K, conv K,
⋃

i∈I

Ki,
⋂

i∈I

Ki,
∑

i∈I

Ki,

are l.c.a.

We pay more attention to a particular operation, which is fundamental in
order to derive necessary optimality conditions for extremum problems. Starting
from the set–valued map K : 2X × X ⇉ X, we consider the new map Kc :
2X × X ⇉ X defined by:

Kc(A, x) = (K(Ac, x))c, ∀A ⊆ X, ∀x ∈ X. (1)

It is trivial to observe that K(A, x) = Kcc(A, x) and the following result holds:

Theorem 2 If K is a l.c.a. then Kc is a l.c.a. too.

The notion of l.c.a. is useful for describing generalized directional derivatives
of an extended–value function.

Definition 2 Let K be a l.c.a., f ∈ E(X) and x ∈ dom f ; the directional K–
epiderivative of f at x is the positively homogeneous function fK(x, ·) : X −→
[−∞, +∞] defined by

fK(x, v) = inf {y ∈ R : (v, y) ∈ K(epi f, (x, f(x)))}

where epi f = {(x, y) ∈ X × R : y ≥ f(x)} is the epigraph of f . We assume
inf ∅ = +∞.

In this way, we obtain a large family of generalized derivatives. It has been
shown that many of the classical generalized derivatives (Dini, Dini-Hadamard,
Clarke and so on) can be obtained following this scheme. Using the class of
pointwise minimum of sublinear function, we give the following definition:
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Definition 3 Let K be a l.c.a., f ∈ E(X) and x ∈ dom f ; the function f is
said to be K–MSL–differentiable at x if there exist an index set T and a family
{∂K

t f(x)}t∈T of closed and convex sets in X
∗ such that

fK(x, v) = min{σ(v, ∂K
t f(x)) : t ∈ T }, ∀v ∈ X.

In particular, when T is a singleton, the function is said to be K–subdifferentiable
at x and the unique closed and convex set ∂Kf(x) is called K–subdifferential.

When the directional K–epiderivative belongs to the class of difference of
sublinear and continuous functions we say that the function f is K–quasidif-
ferentiable (see Demyanov and Rubinov, 1995) at x and the two compact and

convex sets ∂Kf(x), ∂
K

f(x) ⊆ X
∗ such that

fK(x, v) = σ(v, ∂Kf(x)) − σ(v, ∂
K

f(x)), ∀v ∈ X

are called K–subdifferential and K–superdifferential, respectively. Notice that
a K–quasidifferentiable function is K–MSL–differentiable since

fK(x, v) = σ(v, ∂Kf(x)) − σ(v, ∂
K

f(x))

= min{σ(v, ∂Kf(x) − x∗) x∗ ∈ ∂
K

f(x)};

actually, the class of K–MSL–differentiable functions is quite wide as the fol-
lowing result, proved in Castellani (2000), shows.

Theorem 3 Let K be a l.c.a., f ∈ E(X) and x ∈ dom f .
• f is K–MSL-differentiable if and only if fK(x, ·) is proper and fK(x, 0)=0;
• if fK(x, ·) is Lipschitz continuous then all the sets ∂K

t f(x) may be chosen
compact.

Since the directional K–epiderivative is strictly related to the epigraph of
a function, it is not a surprise that the following result holds when f is K–
subdifferentiable.

Theorem 4 Let K be a l.c.a., f ∈ E(X) and x ∈ dom f ; then

∂Kf(x) = {x∗ ∈ X
∗ : (x∗,−1) ∈ K◦(epi f, (x, f(x)))}

where K◦ is the (negative) polar cone of K.

It is possible to show that the topological properties of the l.c.a. K affect
the directional K–epiderivative.

Theorem 5 Let K be a l.c.a., f ∈ E(X) and x ∈ dom f ; then
• the epigraph of fK(x, ·) is the “vertical” closure of K(epi f, (x, f(x))) i.e.

epi fK(x, ·) = {(y, β) ∈ X×R : ∀ε > 0, (y, β+ε) ∈ K(epi f, (x, f(x)))};

in particular if K is closed epi fK(x, ·) = K(epi f, (x, f(x))) and fK(x, ·)
is lower semicontinuous.
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• the strict epigraph of fK(x, ·), defined

s-epi fK(x, ·) = {(v, y) ∈ X × R : y > fK(x, v)}

is the “vertical” interior of K(epi f, (x, f(x))) i.e.

s-epi fK(x, ·) = {(y, β) ∈ X×R : ∀ε > 0, (y, β−ε) ∈ K(epi f, (x, f(x)))};

in particular if K is open s-epi fK(x, ·) = K(epi f, (x, f(x))) and fK(x, ·)
is upper semicontinuous.

With respect to the l.c.a. Kc we have the following statement:

Theorem 6 Let K be a l.c.a., f ∈ E(X) and x ∈ dom f ; if, for all v ∈ X,

inf{y ∈ R : (v, y) ∈ Kc(epi f, (x, f(x)))} =

= inf{y ∈ R : (v, y) ∈ Kc(s-epi f, (x, f(x)))}

then

fKc(x, v) = −(−f)K(x, v), ∀v ∈ X.

In optimization, it is often useful to calculate the directional K–epiderivative
of the pointwise maximum of a family of functions. Given fi ∈ E(X) with i ∈ I

a finite index set, define

fmax(x) = max{fi(x) : i ∈ I}

and

Imax(x) = {i ∈ I : fmax(x) = fi(x)}.

We prove the following result:

Theorem 7 Let K be a l.c.a., x ∈ ∩i∈Idom fi and suppose fi upper semicon-
tinuous for each i 6∈ Imax(x). If

K(A ∩ B, x) ⊆ K(A, x) ∩ K(B, x), ∀A, B ⊆ X, ∀x ∈ X

then

fK
max(x, v) ≥ max{fK

i (x, v) : i ∈ Imax(x)}, ∀v ∈ X.

Proof. Notice that epi fmax =
⋂

i∈I epi fi and therefore, by the assumption on
the l.c.a. of the intersection of sets,

fK
max(x, v) = inf

{

y ∈ R : (v, y) ∈ K

(

⋂

i∈I

epi fi, (x, fmax(x))

)}

≥ inf

{

y ∈ R : (v, y) ∈
⋂

i∈I

K (epi fi, (x, fmax(x)))

}

.
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The upper semicontinuity implies that (x, fmax(x)) ∈ int epi fi for each i 6∈
Imax(x) and then

K (epi fi, (x, fmax(x))) = X × R, ∀i 6∈ Imax(x).

Hence

fK
max(x, v) ≥ inf







y ∈ R : (v, y) ∈
⋂

i∈Imax(x)

K(epi fi, (x, fmax(x)))







= max
i∈Imax(x)

inf {y ∈ R : (v, y) ∈ K(epi fi, (x, fi(x)))}

= max{fK
i (x, v) : i ∈ Imax(x)}

that proves the result.

An analogous result holds for the pointwise minimum of lower semicontinuous
functions changing the intersection with the union and ⊆ with ⊇ in the assump-
tion and substituting max with min and ≥ with ≤ in the result.

3. Necessary optimality conditions

Let us consider the following problem

min{f0(x) : x ∈ S}, (2)

where f0 ∈ E(X) and S ⊆ X is the feasible region. It is immediate to observe
that x ∈ X is a local solution for (2) if and only if x ∈ S and there exists r > 0
such that

epi f0 ∩ [S × (−∞, f0(x))] ∩ B((x, f0(x)), r) = ∅. (3)

Even if this expression is easy and quite elegant from the formal viewpoint, in
general it is an arduous task to verify it. For this reason it is suitable to replace
the sets in (3) with approximations having a simpler structure. After, we study
separation between these suitable approximations. In particular take two l.c.a.
K, H : 2X × X ⇉ X such that

A ∩ B = ∅ =⇒ K(A, x) ∩ H(B, x) = ∅, ∀x ∈ X.

Such a pair of l.c.a. will be called admissible and the separation will be a
necessary condition for the disjunction of the sets A and B. It is obvious that
if (K, H) is an admissible pair of l.c.a. and K ′ ⊆ K and H ′ ⊆ H are l.c.a.
then the pair (K ′, H ′) is admissible too. The existence of not trivial pairs of
admissible l.c.a., that is to say – different from the identity map, is ensured by
the next theorem (see Vlach, 1970, and Castellani and Pappalardo, 1995). We
recall that an l.c.a. K is called
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• isotone if
K(A, x) ⊆ K(B, x), ∀A ⊆ B ⊆ X, ∀x ∈ X;

• isotone–dominated if there exists an isotone l.c.a. H such that
K(A, x) ⊆ H(A, x), ∀A ⊆ X, ∀x ∈ X.

Theorem 8 Let K be an isotone l.c.a. and Kc defined in (1). Then Kc is
isotone and the pair (K, Kc) is admissible.

We start with the unconstrained problem S = X (see Castellani, D’Ottavio
and Giuli, 2003).

Theorem 9 Let K0 be an isotone–dominated l.c.a. and x ∈ X be a local solution
for (2) with S = X; then

fK0

0 (x, v) ≥ 0, ∀v ∈ X. (4)

Moreover, if f0 is K0–MSL–differentiable with respect to the family {∂K0

t f(x)}t∈T ,
condition (4) can be equivalently written in dual form

0 ∈
⋂

t∈T

∂K0

t f0(x).

The points x ∈ X satisfying (4) are called K0–stationary points for f0.
Theorem 5.1, proved in Elster and Thierfelder (1988), required K0 ⊆ T ; since
T is an isotone l.c.a., Theorem 9 extends this result.

We are now interested in the constrained case. Nevertheless, if we replace
the space X with a subset S, we are not able to prove an analogous result to
Theorem 9 using only the abstract properties of the l.c.a., but we need a further
assumption.

Theorem 10 Let (K0, H) be an admissible pair of l.c.a., H0 be an l.c.a. and
x ∈ X be a local solution for (2). Suppose that for each (x, y) ∈ X × R

H(S × (−∞, y), (x, y)) ⊇ H0(S, x) × (−∞, 0); (5)

then

fK0

0 (x, v) ≥ 0, ∀v ∈ H0(S, x). (6)

Moreover, if X is finite dimensional and f0 is K0–MSL–differentiable with re-
spect to the family {∂K0

t f0(x)}t∈T , the cone H0(S, x) is convex and the following
condition holds

−H◦
0 (S, x) ∩

(

barr∂K0

t f0(x)
)◦

= {0}, ∀t ∈ T (7)

then condition (6) can be equivalently written in dual form

0 ∈
⋂

t∈T

(

∂K0

t f0(x) + H◦
0 (S, x)

)

.
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Proof. We prove only the latter part of the theorem (for the first part see Castel-
lani and Pappalardo, 1995). For fixed t ∈ T , we have

epi σ(·, ∂K0

t f0(x)) ∩ H0(S, x) × (−∞, 0) = ∅.

Since epi σ(·, ∂K0

t f0(x)) is convex, by separation there exists a nonzero vector
(x∗, a) ∈ X

∗ × R such that

〈x∗, v〉 + aα ≤ 0, ∀(v, α) ∈ H0(S, x) × (−∞, 0), (8)

〈x∗, v〉 + aα ≥ 0, ∀(v, α) ∈ epi σ(·, ∂K0

t f(x)). (9)

From (8), we deduce a ≥ 0 and x∗ ∈ H◦
0 (Q, x0); from (9), for any ε > 0 and for

any v ∈ domσ(·, ∂K0

t f0(x)) we have

〈x∗, v〉 + aσ(v, ∂K0

t f0(x)) + aε ≥ 0.

The arbitrariness of ε and the nonnegativity of a imply

〈x∗, v〉 + aσ(v, ∂K0

t f0(x)) ≥ 0, ∀v ∈ domσ(·, ∂K0

t f0(x)).

The constant a is different from zero, otherwise we have

−x∗ ∈ (domσ(·, ∂K0

t f0(x)))◦

which contradicts the assumption (7); therefore

σ(v, ∂K0

t f0(x)) ≥ 〈−a−1x∗, v〉, ∀v ∈ domσ(·, ∂K0

t f0(x)),

and −a−1x∗ ∈ ∂K0

t f0(x). Since H◦
0 (S, x) is a cone we obtain a−1x∗ ∈ H◦

0 (S, x)
and the proof is completed.

Assumption (7) can be expressed in different ways (see, for instance, Ward
and Borwein, 1987, or Ward, 1991); indeed, since if K0 and H0 are two cones
then (K0 + H0)

◦ = K◦
0 ∩ H◦

0 , condition (7) is equivalent to

(

barr ∂K0

t f(x) − H0(S, x)
)◦

= {0}, ∀t ∈ T

and a sufficient condition for this is expressed by

barr∂K0

t f(x) − H0(S, x) = X.

Moreover, since

0+∂K0

t f(x) =
(

barr ∂K0

t f(x)
)◦

,

many authors, in the K–subdifferential case, use the recession cone of the K–
subdifferential instead of (dom fK0

0 (x, ·))◦ in (7).
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Now we study the following extremum problem

min{f0(x) : fi(x) ≤ 0, i ∈ I}, (10)

where fi ∈ E(X) and I is a finite index set. For every feasible point x we denote
I(x) = {i ∈ I : fi(x) = 0} and I0(x) = I(x) ∪ {0}; moreover we put

Si = {x ∈ X : fi(x) ≤ 0}

for each i ∈ I. In the last decades many generalizations of the KKT necessary
optimality condition for the problem (10) have been stated without assuming
the differentiability of the functions fi. It has been proved that these necessary
optimality conditions are equivalent to the impossibility of systems of suitable
directional K–epiderivatives. We show our approach.

Theorem 11 Let (K0, H) be an admissible pair of l.c.a., x ∈ X be a local
solution for (10) and fi be upper semicontinuous for each i ∈ I \ I(x). Suppose
there exist a family of l.c.a. {Ki}i∈I(x) and an l.c.a. H0 satisfying assumption
(5),

⋂

i∈I(x)

Ki(Si, x) ⊆ H0(S, x). (11)

and

{v ∈ X : fKi

i (x, v) < 0} ⊆ Ki(Si, x), ∀i ∈ I(x). (12)

Then the system
{

fK0

0 (x, v) < 0,

fKi

i (x, v) < 0, i ∈ I(x),
(13)

is impossible.

Proof. From the upper semicontinuity of fi and from assumptions (11) and (12)
we deduce

⋂

i∈I(x)

{v ∈ X : fKi

i (x, v) < 0} ⊆ H0(S, x).

The impossibility of system (13) descends from (6).

If the system (13) is impossible then the feasible points x is said to be
a weakly stationary point for (10) with respect to the family {Ki}i∈I0(x). If

fKi

i (x, ·), with i ∈ I0(x), are pointwise minimum of sublinear functions it is
possible to prove, through a theorem of the alternative for MSL–functions stated
in Castellani (2000) that the impossibility of the system (13) is equivalent to a
generalized John necessary optimality condition.
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Theorem 12 In the same assumptions of Theorem 11 and supposing that each
fi is Ki–MSL–differentiable with respect to the family {∂Ki

ti
fi(x)}ti∈Ti

then, for
each ti ∈ Ti with i ∈ I0(x), we have

0 ∈ cl conv
⋃

i∈I0(x)

∂Ki

ti
fi(x). (14)

Moreover, if barr∂Ki

ti
fi(x) are closed, condition (14) is equivalent to affirm that,

for each ti ∈ Ti with i ∈ I0(x), there exist λi ≥ 0 with i ∈ I0(x), not all zero,
such that

0 ∈ cl





∑

i∈I0(x),λi>0

λi∂
Ki

ti
fi(x) +

∑

i∈I0(x),λi=0

0+∂Ki

ti
fi(x)



 . (15)

In particular, if all the sets ∂Ki

ti
fi(x) are compact (and it happens, for in-

stance, when fKi

i (x, ·) are Lipschitz), then barr ∂Ki

ti
fi(x) = X and hence (15)

assumes the following simpler form

0 ∈
∑

i∈I0(x)

λi∂
Ki

ti
fi(x).

4. Constraint qualifications

A crucial point in optimization theory is to establish the weakest conditions
guaranteeing the first KKT multiplier to be different from zero. We show in this
section that, in our approach, this becomes to establish conditions guaranteeing
the impossibility of the system

{

p0(x) < 0,

pi(x) ≤ 0, i ∈ I,
(16)

starting from the impossibility of system

{

p0(x) < 0,

pi(x) < 0, i ∈ I,
(17)

where pi ∈ E(X) are positively homogeneous functions, with i ∈ I ∪ {0} a finite
index set and ∩i∈Idom pi 6= ∅. No assumption of convexity or its generalizations
will be required. All the results in this section are proved in Castellani (2006).

We recall that the recession function of a positively homogeneous function
p : X −→ (−∞, +∞] is defined as

p∞(x) = sup{p(x + y) − p(y) : y ∈ dom p}.
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Notice that p∞ is sublinear and if p is sublinear with p(0) = 0 then p∞(x) = p(x)
for all x ∈ X. Denote P (x) = max{pi(x) : i ∈ I} and consider the following
three conditions:

{x ∈ X : P∞(x) < 0} 6= ∅, (18)

∀x ∈ X : P (x) = 0, ∃v ∈ X lim inf
t↓0

P (x + tv) − P (x)

t
< 0 (19)

cl {x ∈ X : P (x) < 0} = {x ∈ X P (x) ≤ 0}. (20)

The relations between these three conditions are stated in the following result:

Theorem 13 Suppose that the above mentioned assumptions about p0 and pi

are in force, then (18) implies (19). Moreover, if P is lower semicontinuous,
then (19) implies (20).

The converse implications do not hold in general but only if pi are sublinear
with pi(0) = 0. Now we state the main result of this section.

Theorem 14 Let the system (17) be impossible;
(i) if dom p∞0 ∩{x ∈ X : P∞(x) < 0} 6= ∅, then the system (16) is impossible,
(ii) if (19) holds and p0 is upper semicontinuous, then the system (16) is

impossible,
(iii) if (20) holds and p0 is upper semicontinuous, then the system (16) is

impossible.

Let us apply Theorem 14 to the optimality condition expressed by the im-
possibility of the positively homogeneous system (13).

Theorem 15 Let (K0, H) be an admissible pair of l.c.a., x ∈ X be a local
solution for (10) and fi be upper semicontinuous for each i ∈ I \ I(x). Suppose
that H satisfies assumptions (5) and (11). Let {Ki}i∈I(x) be a family of l.c.a.

satisfying (12) and such that fK0

0 (x, ·) and fKi

i (x, ·) are proper. Define

F (x, v) = max{fKi

i (x, v) : i ∈ I(x)}

and suppose that one of the following assumptions is satisfied:

(i) dom f0+K0

0 (x, ·) ∩ {v ∈ X F∞(x, v) < 0} 6= ∅;
(ii) fK0

0 (x, ·) upper semicontinuous and

∀v ∈ X : F∞(x, v) = 0, ∃w ∈ X lim inf
t↓0

F (x, v + tw) − F (x, v)

t
< 0;

(iii) fK0

0 (x, ·) upper semicontinuous and
cl {v ∈ X : F (x, v) < 0} = {v ∈ X : F (x, v) ≤ 0}.

Then the system
{

fK0

0 (x, v) < 0,

fKi

i (x, v) ≤ 0, i ∈ I(x).
(21)

is impossible.
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The feasible point x is said to be a strongly stationary point for (10) with
respect to the family {Ki}i∈I0(x) if the system (21) is impossible. In order
to establish a generalization of the KKT necessary optimality condition, we
apply a generalized Farkas lemma for MSL system proved in Glover, Ishizuka,
Jeyakumar and Tuan (1996) and we obtain the following result.

Theorem 16 Given the assumptions of Theorem 15 and supposing that each
fi is Ki–MSL–differentiable with respect to the family {∂Ki

ti
fi(x)}ti∈Ti

then, for
each ti ∈ Ti with i ∈ I0(x), we have

0 ∈ cl



∂K0

t0
f0(x) + cone conv

⋃

i∈I(x)

∂Ki

ti
fi(x)



 .

5. Sufficient optimality conditions

The concept of invexity was introduced by Hanson (1981) as a generalization
of differentiable convex functions: the function f ∈ E(X) is said to be invex if
there exists a function η : X × X −→ X such that

f(x1) − f(x2) ≥ 〈∇f(x2), η(x1, x2)〉, ∀x1 ∈ X, ∀x2 ∈ dom f.

The name invex descends from a contraction of “invariant convex” and it was
proposed by Craven (1981) since he observed that invexity is preserved by bijec-
tive coordinate transformations. The concept of invexity was adapted to various
nonsmooth classes of functions: Reiland (1990) considered the class of locally
Lipschitz functions and he used the generalized gradient of Clarke, Jeyakumar
(1987) introduced the notion of approximately quasidifferential functions, Ye
(1991) studied the directional differentiable functions.

By exploiting the concept of directional K–epiderivative it is possible to give
a unifying definition of invexity for nonsmooth functions.

Definition 4 Let K be a l.c.a.; the function f ∈ E(X) is said K–invex if there
exists a function η : X × X −→ X such that

f(x1) − f(x2) ≥ fK(x2, η(x1, x2)), ∀x1 ∈ X, ∀x2 ∈ dom f.

The function η is said the kernel of the K–invexity.

We observe that if fK1(x, ·) ≥ fK2(x, ·) and f is K1–invex then f is K2–invex
with respect to the same kernel. The following result is a trivial characterization
of K–invexity for K–MSL–differentiable functions.

Theorem 17 Let K be an l.c.a. and f ∈ E(X) be a K–MSL–differentiable
function with respect to the family {∂K

t f}t∈T ; then f is K–invex with kernel η

if and only if there exists a function η : X × X −→ X such that for each x1 ∈ X

and x2 ∈ dom f there exists t ∈ T with

f(x1) − f(x2) ≥ 〈x∗, η(x1, x2)〉, ∀x∗ ∈ ∂K
t f(x2).
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The following result (see Castellani, 2001) is fundamental to understand the
structure of this class of functions (for differentiable functions it was proved by
Ben–Israel and Mond, 1986).

Theorem 18 Let K be an l.c.a.; the function f ∈ E(X) is K–invex if and only
if every K–stationary point is a global minimum point.

Adapting the generalizations proposed in Kaul and Kaur (1985) for differen-
tiable functions, we can extend the notion of K–invexity in the following way:

Definition 5 Let K be an l.c.a.; the function f ∈ E(X) is called
• K–quasiinvex if there exists a function η : X×X −→ X such that f(x1) ≤

f(x2) implies fK(x2, η(x1, x2)) ≤ 0 for all x1 ∈ X and x2 ∈ dom f ;
• strictly K–pseudoinvex if there exists a functional η : X × X −→ X such

that f(x1) ≤ f(x2) implies fK(x2, η(x1, x2)) < 0 for all x1 ∈ X\{x2} and
x2 ∈ dom f .

We observe that every K–invex function is K–quasiinvex with respect to the
same kernel.

Now, we use the concept of K–invexity and its generalizations in order to
deduce sufficient optimality conditions directly from the impossibility of the
systems (13) or (21). Both results were proved in Castellani (2001).

Theorem 19 Let x ∈ X be a strongly stationary point for (10) with respect to
the family {Ki}i∈I0(x). If f0 is K0–invex and fi are Ki–quasiinvex with respect
to the same kernel η then x is a global solution for (10).

We have noted that the impossibility of (21) descends from the impossibility
of (13) in presence of a regularity condition. Nevertheless, even if we have
not regularity but we strengthen the hypothesis of invexity of the constraint
functions, the impossibility of the system (13) implies the optimality of x.

Theorem 20 Let x ∈ X be a weakly stationary point for (10) with respect to the
family {Ki}i∈I0(x). If f0 is K0–invex and fi are strictly Ki–pseudoinvex with
respect to the same kernel η then x is a global solution for (10).

6. Mean value theorem

In the last years many authors have introduced different axiomatic approaches
in order to derive generalizations of mean value theorems (see Thibault and Za-
grodny, 1985, or Aussel, Corvellec and Lassonde, 1995, and references therein).
Such an effort has been devoted to avoid redoubling of different results whose,
proofs follow the same principles. Nevertheless, the core of these approaches is
to construct an axiomatic class of abstract subdifferentials containing as special
case all the well-known subdifferentials. The goal of this section is to show that
an abstract form of the approximate mean value theorem can be obtained also
by means of the concept of directional K–epiderivative. This approach allows
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us to avoid the analysis of the smoothness regularity of the norm of the Banach
space (see references in Aussel, Corvellec and Lassonde, 1995).

An l.c.a. K is said to be convex–regular if for each f ∈ E(X) and for each
continuous convex function g we have

(f + g)K(x, v) ≤ fK(x, v) + g′(x, v), ∀x ∈ dom f and v ∈ X,

where

g′(x, v) = lim
t→0+

g(x + tv) − g(x)

t

is the classical directional derivative.

Theorem 21 Let K be an isotone–dominated and convex–regular l.c.a. and
f ∈ F(X); then, for each a, b ∈ X with a ∈ dom f , and for each r ≤ f(b) there
exist x ∈ [a, b) and a sequence {xk} ⊆ dom f with xk → x and f(xk) → f(x)
such that

lim inf
k→+∞

fK(xk, b − a) ≥ r − f(a)

and

lim inf
k→+∞

fK(xk, b − xk) ≥
‖b − x‖

‖b − a‖
(r − f(a)).

The proof of Theorem 21, given in Castellani, D’Ottavio and Giuli (2003),
follows the line of the proof given by Thibault (1995) for a generalization of the
well–known approximate mean value theorem proved by Zagrodny (1988).

Moreover, by means of the previous approximate mean value theorem we
may adapt the results in Aussel, Corvellec and Lassonde (1995) using l.c.a.

Corollary 1 Let K be an isotone–dominated and convex–regular l.c.a. and
f ∈ F(X). Suppose there exist L > 0 such that, for each x ∈ dom f

fK(x, v) ≤ L‖v‖, ∀v ∈ X

then f is a Lipschitz function with constant L.

Proof. For fixed x1, x2 ∈ X with x1 ∈ dom f , r ≤ f(x2) and ε > 0, from Theorem
21 we deduce that there exists x′ ∈ dom f near to [x1, x2) such that

r − f(x1) ≤ fK(x′, x2 − x1) + ε ≤ L‖x2 − x1‖ + ε.

Hence x2 ∈ dom f and, since ε is arbitrary, we achieve the inequality

f(x2) − f(x1) ≤ L‖x2 − x1‖.

Changing the role of x1 with x2 we conclude the proof.
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The next result is related to the monotonicity of a lower semicontinuous
function. We recall that a convex and pointed cone C defines the partial ordering
relation ≤C on X by

x1 ≤C x2 ⇐⇒ x2 − x1 ∈ C.

A function f is C–decreasing if x1 ≤C x2 implies f(x1) ≥ f(x2).

Corollary 2 Let K be an isotone–dominated and convex–regular l.c.a. and
f ∈ F(X); if

fK(x, v) ≤ 0, ∀v ∈ C

where C is a convex and ponted cone, then f is C–decreasing.

Proof. Suppose, by contradiction, that there exist x1, x2 ∈ X with x2 − x1 ∈ C

and x2 ∈ dom f such that f(x1) > f(x2). From Theorem 21 we deduce that
there exists x′ ∈ dom f near to [x1, x2) such that fK(x′, x2 − x1) > 0, which
contradicts the assumption.

7. Error bound

Roughly speaking, the solution set of an inequality system is said to have an
error bound if the involved functions provide an upper estimate for the distance
from any point to the solution set. More precisely, given a function f ∈ E(X)
and denoting the solution set of the inequality by

S = {x ∈ X : f(x) ≤ 0},

we say that S has a local error bound if it is nonempty and there exist two
constants µ > 0 and a > 0 such that

d(x, S) ≤ µf+(x), ∀x ∈ f−1(−∞, a)

where d(x, S) = infx′∈S ‖x − x′‖ and f+(x) = max{0, f(x)} is the positive part
of f .

In the last years, the pioneering result of Hoffman (1952) who gave an error
bound on the distance from any point to the solution set of a linear system in
R

n, has been extended along many directions (see Azé, 2003, for an interesting
survey). More recently, some authors weakened the convexity assumption on the
functions using some tools of nonsmooth analysis: generalized subdifferentials
and the Ekeland variational principle (see for instance Wu and Ye, 2001 and
2002).

It is possible to adapt the method presented in Wu and Ye (2002) for the
directional K–epiderivatives and to obtain the following error bound result:
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Theorem 22 Let K be an isotone–dominated and convex–regular l.c.a. and
f ∈ F(X). Suppose that

(i) there exists a > 0 such that f−1(−∞, a) 6= ∅,
(ii) there exists m > 0 such that, for each x ∈ f−1(0, a) there is v = v(x) ∈ X

such that

fK(x, v) < −m‖v‖;

then

d(x, S) ≤ m−1f+(x), ∀x ∈ f−1(−∞, a).

Proof. Suppose, by contradiction, that there exists x ∈ f−1(0, a) such that

d(x, S) > m−1f+(x) = m−1f(x).

Let t ∈ R with t > 1 such that

dS(x) > tm−1f+(x) = r;

then, applying Ekeland’s variational principle to the lower semicontinuous func-
tion

f+(x) + δ(x, cl B(x, r)) = f(x) + δ(x, cl B(x, r))

at the point x with ε = f(x) and λ = rt−1, where δ(·, cl B(x, r)) is the indicator
function of the closed ball clB(x, r), we obtain that there exists z ∈ X such that
(a) ‖z − x‖ ≤ rt−1,
(b) f(z) + δ(z, cl B(x, r)) ≤ f(x) + δ(x, cl B(x, r)) = f(x),
(c) the function ϕ = f+ + δ(·, cl B(x, r)) + m‖ · −z‖ assumes global minimum

at z.
From (a) and (b) we deduce that z ∈ f−1(0, a) and

ϕ = f + m‖ · −z‖

in a suitable neighborhood of z; hence, by means of Theorem 9 for each v ∈ X,
we have

0 ≤ ϕK(z, v) = (f + m‖ · −z‖)K (z, v) ≤ fK(z, v) + m‖v‖.

Therefore, fK(z, v) ≥ −m‖v‖ which contradicts the assumption.

Since m‖v‖ = σ(v, mB∗) where B∗ is the closed unit ball in the dual
space X

∗, if the function f is K–MSL–differentiable with respect to the family
{∂K

t f}t∈T , we have

fK(x, v) + m‖v‖ = min
t∈T

σ(v, ∂K
t f(x)) + σ(v, mB∗)

= min
t∈T

σ(v, ∂K
t f(x) + mB∗);
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hence, exploiting the dual characterization of K–stationary points, we may write
assumption (ii) in the following form

0 6∈
⋂

t∈T

(

∂K
t f(x) + mB∗

)

.

In particular, if f is K–quasidifferentiable, the equivalent dual expression of
assumption (ii) is

∂
K

f(x) 6⊆ ∂Kf(x) + mB∗.
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