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Abstract: This paper primarily concerns the study of general
classes of constrained multiobjective optimization problems (includ-
ing those described via set-valued and vector-valued cost mappings)
from the viewpoint of modern variational analysis and generalized
differentiation. To proceed, we first establish two variational princi-
ples for set-valued mappings, which—being certainly of independent
interest—are mainly motivated by applications to multiobjective op-
timization problems considered in this paper. The first variational
principle is a set-valued counterpart of the seminal derivative-free
Ekeland variational principle, while the second one is a set-valued ex-
tension of the subdifferential principle by Mordukhovich and Wang,
formulated via an appropriate subdifferential notion for set-valued
mappings with values in partially ordered spaces. Based on these
variational principles and corresponding tools of generalized differen-
tiation, we derive new conditions of the coercivity and Palais-Smale
types ensuring the existence of optimal solutions to set-valued opti-
mization problems with noncompact feasible sets in infinite dimen-
sions and then obtain necessary optimality and suboptimality con-
ditions for nonsmooth multiobjective optimization problems with
general constraints, which are new in both finite-dimensional and
infinite-dimensional settings.

Keywords: multiobjective optimization, variational principles,
generalized differentiation, existence of optimal solutions, necessary
optimality and suboptimality conditions.

1. Introduction

The primary goal of this paper is to study constrained multiobjective optimiza-
tion problems generally given by

minimize F (x) subject to x ∈ Ω ⊂ X (1)
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by using advanced tools of modern variational analysis and generalized differ-
entiation. In (1), the cost mapping F : X →→ Z may be set-valued, and “mini-
mization” is understood with respect to some partial ordering on Z. Thus (1)
is a problem of set-valued optimization, while the term of vector optimization is
usually used when F = f : X → Z is a single-valued mapping. In this paper
we unify both set-valued and vector optimization problems under the name of
multiobjective optimization.

There is an abundant literature on various problems of multiobjective opti-
mization. One of the first work in modern variational theory for such problems
was done by Rolewicz; see Rolewicz (1975) and Pallaschke and Rolewicz (1998,
Chapter 10). We refer the reader to the books of Chen, Huang, Yang (2005),
Göpfert et al. (2003), Jahn (2004), Luc (1989), Mordukhovich (2006b), Pal-
laschke and Rolewicz (1998) and the bibliographies therein for more informa-
tion on history, results, and methods in multiobjective optimization and related
problems.

A characteristic feature of the current stage of variational analysis is the
broad usage of modern variational principles, started with the seminal work by
Ekeland (1974). The fundamental Ekeland variational principle asserts that,
given a proper and lower semicontinuous function ϕ : X → IR := (−∞,∞]
bounded from below on the complete metric space (X, d), for every ε > 0,
λ > 0, and x0 ∈ X with ϕ(x0) < infX ϕ(x) + ε there is x̄ ∈ X satisfying the
conditions ϕ(x̄) ≤ ϕ(x0), d(x̄, x0) ≤ λ, and

ϕ(x) − ϕ(x̄) +
ε

λ
d(x, x̄) > 0 whenever x ∈ X with x 6= x̄. (2)

Note that (2) means that the perturbed function ϕ(x) + (ε/λ)d(x, x̄) attains its
strict global minimum over X at x̄. If X is Banach and f is Gâteaux differen-
tiable, then (2) easily implies the perturbed stationary condition

∥∥∇ϕ(x̄)
∥∥ ≤

ε

λ
, (3)

which can be treated as a suboptimality condition to the problem of minimizing
ϕ(x)—with no assumption on the existence of optimal solutions to this problem
over X particularly restrictive in infinite dimensions—and which was among the
strongest original motivations for developing Ekeland’s variational principle in
Ekeland (1974) and its subsequent applications.

When ϕ is nonsmooth—just extended-real-valued, lower semicontinuous, and
bounded from below as in the afore-mentioned Ekeland general result—another
variational principle was established by Mordukhovich and Wang (2002) under
the name of subdifferential variational principle. It gives the same conclusions
as Ekeland’s principle with replacing the minimization condition (2) by the
subdifferential one:

‖x∗‖ ≤ ε/λ for some x∗ ∈ ∂̂ϕ(x̄), (4)
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where ∂̂ϕ(x̄) stands for the so-called Fréchet subdifferential of ϕ at x̄ defined by

∂̂ϕ(x̄) :=
{

x∗ ∈ X∗
∣∣∣ lim inf

x→x̄

ϕ(x) − ϕ(x̄) − 〈x∗, x − x̄〉

‖x − x̄‖
≥ 0

}
, (5)

and where the space X is assumed to be Asplund, i.e., a Banach space whose
separable subspaces have separable duals; see, e.g., Phelps (1993) for more in-
formation and references on the broad class of Asplund spaces that includes, in
particular, all reflexive Banach spaces.

The subdifferential variational principle is established in Mordukhovich and
Wang (2002) (see also Mordukhovich, 2006a, Theorem 2.28) as a consequence
of (actually an equivalence to) the extremal principle, which is a variational
counterpart of local separation for nonconvex sets being a variational principle
of the geometric type independent of the analytic Ekeland variational princi-
ple; see the books by Mordukhovich (2006 a,b) for a comprehensive variational
theory and numerous applications of the extremal principle. Observe that the
subdifferential condition (4) is a nonsmooth counterpart of the almost station-
ary condition (3); furthermore, it implies certain enhanced versions of (analytic)
smooth variational principles under additional smoothness assumptions of the
space X in question; see Mordukhovich (2006a, Subsection 2.3.3).

In this paper we derive an appropriate analog of the afore-mentioned sub-
differential variational principle for the set-valued (in particular, vector-valued)
mappings with values in partially ordered spaces. We need such a result for
the subsequent applications to constrained multiobjective optimization prob-
lems of type (1). The proof of the set-valued subdifferential variational prin-
ciple (SVSVP) obtained in this paper is based on the extremal principle and
a new version of the set-valued Ekeland variational principle (SVEVP) estab-
lished below. The required version of the latter needed for our purposes (while
certainly of independent interest) is different from various vector and set-valued
extensions of Ekeland’s seminal result known in the literature; see, e.g., Bao
and Khanh (2003); Bianchi, Kassay and Pini (2005); Chen, Huang and Yang
(2005); Göpfert et al. (2003); Ha (2003, 2005); Hamel (2005); Hamel and Löhne
(2006); Khanh (1989) and the references therein as well as further comments in
Section 3.

The rest of the paper is organized as follows. In Section 2 we briefly review
(for the reader’s convenience) certain basic tools of variational analysis and
generalized differentiation widely used in the paper. Then we introduce new
subdifferential notions for set-valued mappings (in particular, for vector-valued
mappings) with values in partially ordered spaces and establish some of their
important properties needed in the sequel.

In Section 3 we first derive a new version of the SVEVP and then use it
in the proof of the new SVSVP via the extremal principle. The formulation of
the SVSVP result, which plays a crucial role in the subsequent applications in
this paper, involves the subdifferentials of set-valued mappings introduced in
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Section 2. We discuss relationships of the results obtained with those known in
the literature.

Section 4 contains applications of the variational techniques and principles
developed in Section 3 to deriving efficient conditions for the existence of optimal
solutions to set-valued constrained optimization problems. In particular, we
establish new conditions of the coercivity type and of the subdifferential Palais-
Smale type for set-valued and nonsmooth single-valued mappings ensuring the
existence of weak minimizers to the multiobjective optimization problems under
consideration.

The concluding Section 5 is devoted to applications of the variational prin-
ciples established in Section 3 and some basic calculus rules of generalized dif-
ferentiation from Mordukhovich (2006a) to deriving necessary optimality con-
ditions for multiobjective optimization problems with general geometric con-
straints as well as their specifications for multiobjective problems of mathemat-
ical programming with equality and inequality constraints given by nonsmooth
functions. In this section we also obtain suboptimality conditions for the afore-
mentioned multiobjective problems, which do not assume the existence of opti-
mal solutions and are important for both theoretical and numerical aspects of
multiobjective optimization.

Throughout the paper we use standard notation from variational analy-
sis and set-valued optimization; see the books by Jahn (2004), Mordukhovich
(2006a), Rockafellar and Wets (1998). Some special symbols are described in
the text when they are introduced. Recall that IN = {1, 2, . . .}, that IB and
IB∗ stand for the closed unit balls of the space in question and its topologically

dual, and that x
Ω
→ x̄ means that x → x̄ with x ∈ Ω. Unless otherwise stated,

the norm on the product X × Y of Banach spaces is defined by

‖(x, y)‖ := ‖x‖ + ‖y‖, (x, y) ∈ X × Y.

Given a set-valued mapping G : X →→ X∗ between a Banach space X and its
dual space X∗, the Painlevé-Kuratowski sequential outer/upper limit of F as
x → x̄ is defined by

Lim sup
x→x̄

G(x) =
{
x∗ ∈ X∗

∣∣∣ ∃ sequences xk → x̄, x∗
k

w∗

→ x∗

such that x∗
k ∈ G(xk) for all k ∈ IN

}
,

(6)

where
w∗

→ signifies the weak∗ convergence on X∗.

2. Subdifferentials of set-valued mappings

The primary goal of this section is to introduce and discuss new notions of sub-
differentials for set-valued and vector-valued mappings with values in partially
ordered spaces. To proceed, we first need to recall some well-recognized gener-
alized differential constructions of variational analysis widely used in this paper.
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We mainly follow the recent books by Mordukhovich (2006a,b), where the reader
can find more details, references, and discussions. We also recommend the book
by Rockafellar and Wets (1998) for related and additional material in finite di-
mensions and the one by Borwein and Zhu (2005) for that in Fréchet smooth
spaces.

Given a nonempty subset Ω ⊂ X of a Banach space X , define the collection
of ε-normals to Ω at x̄ ∈ Ω by

N̂ε(x̄; Ω) :=
{

x∗ ∈ X∗
∣∣∣ lim sup

x
Ω
→x̄

〈x∗, x − x̄〉

‖x − x̄‖
≤ ε

}
, ε ≥ 0, (7)

with N̂ε(x̄; Ω) := ∅ if x̄ /∈ Ω. For ε = 0 in (7), the construction N̂(x̄; Ω) :=

N̂0(x̄; Ω) is known as the Fréchet normal cone (or prenormal cone) to Ω at x̄.

When X = IRn, the dual/polar cone to N̂(x̄; Ω) agrees with the (Bouligand-

Severi) contingent cone to Ω at x̄. Note that the Fréchet subdifferential ∂̂ϕ(x̄)
defined in (5) for an extended-real-valued function ϕ : X → IR finite at x̄ admits
the following equivalent geometric representation:

∂̂ϕ(x̄) =
{
x∗ ∈ X∗

∣∣ (x∗,−1) ∈ N̂
(
(x̄, ϕ(x̄)); epi ϕ

)}
(8)

via Fréchet normals to the epigraph epiϕ := {(x, µ) ∈ X × IR| µ ≥ ϕ(x)}. The
basic (limiting, Mordukhovich) normal cone to Ω at x̄ is defined by

N(x̄; Ω) := Lim sup
x→x̄
ε↓0

N̂ε(x; Ω) (9)

via the Painlevé-Kuratowski sequential outer limit (6). If the space X is Asplund
and the set Ω is locally closed around x̄, we can equivalently put ε = 0 in (9).

Note that both cones N̂(x̄; Ω) and N(x̄; Ω) reduce to the normal cone of convex
analysis for convex sets Ω.

Having now a set-valued mapping F : X →→ Z between Banach spaces with
the graph

gphF :=
{
(x, z) ∈ X × Z

∣∣ z ∈ F (x)
}
,

define its ε-coderivative D̂∗
εF (x̄, z̄) : Z∗ →→ X∗ at (x̄, z̄) ∈ gphF by

D̂∗
εF (x̄, z̄)(z∗) :=

{
x∗ ∈ X∗

∣∣ (x∗,−z∗) ∈ N̂ε

(
(x̄, z̄); gphF

)}
, ε ≥ 0, (10)

where D̂∗
εF (x̄, z̄)(z∗) = ∅ for (x̄, ȳ) /∈ gphF , and where D̂∗F (x̄, z̄) := D̂∗

0F (x̄, z̄)
is a positively homogeneous set-valued mapping called the Fréchet coderivative
of F at (x̄, z̄). Based on (10) considered at points nearby the reference one,
construct as in Mordukhovich (2006a) two (sequential) limiting coderivatives of
F at (x̄, z̄) called, respectively, the normal coderivative

D∗
NF (x̄, z̄)(z̄∗) := Lim sup

(x,z)→(x̄,z̄)
ε↓0

z∗
w∗

→z̄∗

D̂∗
εF (x, z)(z∗) (11)
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and the mixed coderivative of F at (x̄, z̄) that is given by

D∗
MF (x̄, z̄)(z̄∗) := Lim sup

(x,z)→(x̄,z̄)
ε↓0

‖z∗−z̄∗‖→0

D̂∗
εF (x, z)(z∗). (12)

We can equivalently put ε = 0 in (11) and (12) if both spaces X and Z are
Asplund and if the mapping F is locally closed-graph around (x̄, z̄).

Note that, by definition (6) of the sequential outer limit, the only difference
between (11) and (12) is that the weak∗ convergence w∗ is used in (11) on both
dual spaces X∗ and Z∗, while in (12) the strong/norm convergence is employed
on Z∗ versus the weak∗ convergence on X∗. Thus, these limiting coderiva-
tives agree when dim Z < ∞ (they both reduce to the original construction by
Mordukhovich, 2006a, see also the references and commentaries therein), while
D∗

MF (x̄, z̄) may be essentially smaller than D∗
NF (x̄, z̄) even for single-valued

Lipschitzian mappings f : IR → H to an arbitrary Hilbert space H as in Mor-
dukhovich (2006a, Example 1.35). Note that the normal coderivative (11) can
be equivalently defined by

D∗
NF (x̄, z̄)(z∗) =

{
x∗ ∈ X∗

∣∣ (x∗,−z∗) ∈ N
(
(x̄, z̄); gphF

)}

via the basic normal cone (9) to the graph of F .
Now let us consider a set-valued mapping F : X →→ Z between Banach spaces,

where Z is partially ordered by a convex and closed cone Θ ⊂ Z. Denoting
the ordering relation on Z under consideration by “≤”, we therefore have its
description:

z1 ≤ z2 iff z2 − z1 ∈ Θ. (13)

Given F : X →→ Z, define its (generalized) epigraph with respect to the above
order by

epi F :=
{
(x, z) ∈ X × Z

∣∣ z ∈ F (x) + Θ
}

and associate with F the epigraphical multifunction EF : X →→ Z defined by

EF (x) :=
{
z ∈ Z

∣∣ z ∈ F (x) + Θ
}

with gph EF = epi F, (14)

where the ordering cone Θ is not mentioned in the epigraphical notation for
simplicity.

Our goal is to introduce appropriate subdifferentials of set-valued mappings
with values in partially ordered spaces by using the corresponding coderivatives
of the associated epigraphical multifunctions. Although there are many various
definitions of subdifferentials for (single-valued) vector functions with values
in partially ordered spaces, our coderivative approach and the subdifferential
constructions below are different from those known in the literature (see, e.g.,
a very good survey on vector subdifferentials by Stamate, 2003). Furthermore,
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our constructions apply to set-valued mappings/multifunctions with values in
partially ordered spaces, which is important for the main results of this paper.

The following definition contains only those subdifferential constructions,
which are used in this paper. Based on the coderivative approach and em-
ploying various limiting procedures on dual spaces, the reader can construct
other subdifferentials that may be different from the ones given below in infinite
dimensions.

Definition 1 (subdifferentials of set-valued mappings) Let F : X →→ Z be a
mapping between Banach spaces, let Θ ⊂ Z be a convex and closed cone that
generates a partial order on Z by (13), and let (x̄, z̄) ∈ epi F . We define the
following subdifferentials of F at (x̄, z̄) via the corresponding coderivatives of the
epigraphical multifunction (14):

—the ε-subdifferential of F at (x̄, z̄) by

∂̂εF (x̄, z̄) :=
{
x∗∈X∗

∣∣x∗∈D̂∗
εEF (x̄, z̄)(z∗), −z∗∈N(0; Θ), ‖z∗‖=1

}
, ε≥ 0, (15)

where ∂̂F (x̄, z̄) := ∂̂0F (x̄, z̄) is the Fréchet subdifferential of F at this
point;

—the normal subdifferential of F at (x̄, z̄) by

∂NF (x̄, z̄) :=
{
x∗ ∈ X∗

∣∣ x∗ ∈ D∗
NEF (x̄, z̄)(z∗), −z∗∈N(0; Θ), ‖z∗‖=1

}
; (16)

—the singular subdifferentials of F at (x̄, z̄) by

∂∞F (x̄, z̄) := D∗
MEF (x̄, z̄)(0). (17)

As usual, we drop z̄ = f(x̄) in the subdifferential notation (15)–(17) if
F = f : X → Z is single-valued. When ϕ : X → IR is an extended-real-valued
function finite at x̄ with the standard order Θ = IR+ on IR, the epigraphical mul-
tifunction (14) agrees with the standard one, Eϕ(x) = {µ ∈ IR| µ ≥ ϕ(x)}, and
the subdifferentials (15)–(17) reduce to their well-known prototypes, namely:

—construction (15) with ε = 0 reduces to the Fréchet subdifferential ∂̂ϕ(x̄)
in (5)—due to the geometric representation (8) of the latter;

—the normal subdifferential (16) reduces to the basic/limiting subdifferential
∂ϕ(x̄) by Mordukhovich (2006)

—the singular subdifferential in (17) reduces to ∂∞ϕ(x̄) in Mordukhovich (2006a).

Among the strongest advantages of the coderivative approach to subdiffer-
entials of set-valued and vector-valued mappings is full coderivative calculus of
Mordukhovich (2006a), which induces a variety of calculus rules for the subd-
ifferential constructions defined in (15)–(17). Other major advantages include
complete coderivative characterizations of fundamental properties in nonlinear
analysis related to metric regularity, linear openness, and robust Lipschitzian
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stability of set-valued mappings; see Mordukhovich (2006a), Rockafellar and
Wets (1998). These characterizations generate the corresponding results for
mappings with values in partial ordered spaces via the subdifferentials (15)–
(17) introduced in this paper.

In infinite-dimensional spaces, the afore-mentioned calculus and characteri-
zations require certain additional “sequential normal compactness” properties
of sets and mappings, which are automatic in finite dimensions, while turn out
to be a crucial ingredient of variational analysis in infinite dimensions; see the
books by Mordukhovich (2006a,b) for a comprehensive theory and numerous
applications of various properties of this type.

Let us recall some of these properties needed in the paper. Considering
generally a set Ω ⊂ X × Z in the product of Banach spaces, we say that it is
sequentially normally compact (SNC) at v̄ = (x̄, z̄) ∈ Ω if for any sequences

εk ↓ 0, vk
Ω
→ v̄, and (x∗

k, z∗k) ∈ N̂εk
(vk; Ω), k ∈ IN, (18)

one has the implication (x∗
k, z∗k)

w∗

→ 0 =⇒ ‖(x∗
k, z∗k)‖ → 0 as k → ∞. The

product structure of the space in question plays no role in this property (we
can put Z = {0} without loss of generality) in contrast to its following partial
modifications. We say that Ω is partially sequentially normally compact (PSNC)
with respect to X at v̄ ∈ Ω if for any sequences (εk, vk, x∗

k, z∗k) satisfying (18)
one has the implication

[
x∗

k

w∗

→ 0, ‖z∗k‖ → 0
]

=⇒ ‖x∗
k‖ → 0 as k → ∞.

Finally, a set Ω is strongly PSNC with respect to X at v̄ if for any sequences

(εk, vk, x∗
k, z∗k) satisfying (18) one has (x∗

k, z∗k)
w∗

→ 0 =⇒ ‖x∗
k‖ → 0 as k → ∞. We

can equivalently put εk = 0 in (18) for all the above properties if both spaces
X and Z are Asplund and if the set Ω is locally closed around v̄.

Given a set-valued mapping F: X→→Z between Banach spaces, its SNC/PSNC
properties at (x̄, z̄) ∈ gphF are induced by the corresponding properties of its
graph. In particular, we say that F is PSNC at (x̄, z̄) if its graph is PSNC
with respect to X at this point. The reader can find in Mordukhovich (2006a)
a number of efficient conditions for the fulfillment of SNC/PSNC properties of
sets and mappings, which often relate to their Lipschitzian behavior of some
kind. Furthermore, there is a well-developed SNC calculus in Mordukhovich
(2006a) ensuring the preservation of SNC and PSNC properties under natural
operations performed on sets and mappings.

For mappings F : X →→ Z with values in Banach spaces Z partially ordered
by convex cones Θ ⊂ Z as in (13), the above SNC and PSNC properties induce
the corresponding epigraphical counterparts by applying to their epigraphical
multifunctions (14). Following this way, we say that such a mapping F is
sequentially normally epicompact (SNEC) or, respectively, partially SNEC at
(x̄, z̄) ∈ epi F if the epigraphical multifunction EF is SNC (respectively PSNC)
at this point.



Variational principles for set-valued mappings applied to multiobjective optimization 539

Next, we formulate a robust Lipschitzian property of set-valued mappings
with values in ordered Banach spaces, which ensures simultaneously the partial
SNEC property and the triviality of the singular subdifferential (17), which are
both important in what follows. We say that a set-valued mapping F : X →→ Z is
epi-Lipschitz-like (ELL) around a point (x̄, z̄) ∈ epiF with respect to the order-
ing cone Θ ⊂ Z if the associated epigraphical multifunction (14) is Lipschitz-like
(or enjoys Aubin’s “pseudo-Lipschitzian” property; see Mordukhovich, 2006a;
Rockafellar and Wets, 1998) around this point, i.e., there are neighborhoods U
of x̄ and V of z̄ and a number ℓ ≥ 0 such that one has the inclusion

EF (x) ∩ V ⊂ EF (u) + ℓ‖x − u‖IB for all x, u ∈ U.

This robust Lipschitzian property of EF is known to be equivalent to both metric
regularity and linear openness properties of the inverse multifunction.

Proposition 1 (singular subdifferential and partial SNEC property of ELL
mappings) Let F : X →→ Z be a mapping between Banach spaces, where Z is
ordered by a cone Θ. Assume that F is ELL around (x̄, z̄) ∈ epi F . Then, F is
partially SNEC at (x̄, z̄), and one has the singular subdifferential condition

∂∞F (x̄, z̄) = {0}. (19)

Proof. The partial SNEC property of F follows from Mordukhovich (2006a,
Proposition 1.68) due to the above definitions of this and ELL properties, while
the subdifferential condition (19) as a consequence of definition (17) and Mor-
dukhovich (2006a, Theorem 1.44).

Finally, in this section, we formulate the (approximate) extremal principle
from Mordukhovich (2006a, Chapter 2), which is the main driving force for
the development of the afore-mentioned calculus results and characterizations
(including the SNC calculus in infinite dimensions) and plays a crucial role in
this paper. Given two sets Ω1, Ω2 ⊂ X locally closed around x̄ ∈ Ω1 ∩ Ω2,
we say that x̄ is a local extremal point of the set system {Ω1, Ω2} if there is a
neighborhood U of x̄ such that for any ε > 0 there is a ∈ εIB with

(Ω1 + a) ∩ Ω2 ∩ U = ∅.

The Extremal Principle. Let x̄ be a local extremal point of the set system
{Ω1, Ω2} in the Asplund space X, and let both Ω1 and Ω2 be locally closed around

x̄. Then for any ε > 0 there are xi ∈ Ωi ∩ (x̄ + εIB) and x∗
i ∈ N̂(xi; Ωi) + εIB∗,

i = 1, 2, such that

‖x∗
1‖ + ‖x∗

2‖ = 1, x∗
1 + x∗

2 = 0.

3. Variational principles for set-valued mappings

In this section we derive two major variational principles that are extensions of
the variational principles discussed in Section 1 from scalar functions to vector-
valued and set-valued mappings. Let us start with an appropriate extension of
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the Ekeland variational principle, which is of doubtless interest for its own sake
and is used in what follows for deriving a required extension of the subdifferen-
tial variational principle to set-valued mappings in terms of the subdifferential
constructions introduced in Section 2.

It is well understood that the conventional proof of the classical Ekeland vari-
ational principle for extended-real-valued functions (see Ekeland, 1974, 1979 and
also Mordukhovich, 2006a, Theorem 2.26) cannot be directly extended to the
vector and set-valued mappings with merely partially ordered (while not totally
ordered) range spaces. Several approaches to vector/set-valued extensions of
this fundamental result and its proof are suggested in the literature (based on
certain vector metrics, scalarization techniques, etc.—compare Bao and Khanh,
2003; Chen, Huang and Yang, 2005; Göpfert et al., 2003; Ha, 2005; Hamel,
2005; Hamel and Löhne, 2006; Khanh, 1989 for more details, discussions, and
references), but unfortunately they do not allow us to arrive at all the conclu-
sions needed for our purposes; see below. Our proof is based on a new iterative
procedure, which does not involve any scalarization technique and deals directly
with the set/vector-valued setting under consideration.

To formulate a set-valued extension of the Ekeland variational principle, we
first recall some relevant notions from set-valued optimization, mainly following
the book by Jahn (2004).

Let (X, d) be a complete metric space, and let Z be a partially ordered linear
topological space, where the partial order “≤” is generated by a closed and
convex cone Θ via (13). In what follows we always assume that the ordering
cone Θ is pointed, i.e., Θ ∩ (−Θ) = {0}.

Given a set Λ⊂Z and a point z̄∈Λ, we say that z̄ is a minimal point of Λ if

Λ ∩ (z̄ − Θ) = {z̄}.

The collection of minimum points to Λ can be equivalently described by

Min Λ :=
{
z̄ ∈ Λ

∣∣ z̄ − z /∈ Θ whenever z ∈ Λ, z 6= z̄
}
.

If intΘ 6= ∅, we similarly consider weak minimal points z̄ of Λ defined by

Λ ∩ (z̄ − intΘ) = ∅.

A set-valued mapping F : X →→ Z is epiclosed if its epigraph with respect to
the ordering cone Θ is closed in X × Z. This mapping is level-closed if for all
z ∈ Z its z-level set

L(z) :=
{
x ∈ X

∣∣ ∃ v ∈ F (x) with v ≤ z
}

is closed in X . It is clear that every epiclosed mapping is level-closed but not
vice versa. We say that the set-valued mapping F is quasibounded from below
if there exists a bounded and closed subset M ⊂ Z such that

F (X) ⊂ M + Θ,
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and that the mapping F is bounded from below if the set M above can be chosen
as a singleton. Correspondingly, a set Ω ⊂ Z is quasibounded (bounded) from
below if the constant mapping F (x) ≡ Ω has this property.

Now, having a mapping F : X →→ Z from a complete metric space (X, d)
to a partially ordered linear topological space Z with the ordering cone Θ, we
consider the set-valued optimization problem

minimize F (x) subject to x ∈ X (20)

with no explicit constraints on x, although they are hidden by

x ∈ domF :=
{
x ∈ X

∣∣ F (x) 6= ∅
}
.

In this paper we study the following notions of exact and approximate min-
imizers to set-valued and vector-valued mappings.

Definition 2 (minimizers and approximate minimizers in set-valued optimiza-
tion) Given a mapping F : X →→ Z, taking values in a partially ordered space
with the ordering cone Θ, we consider the set-valued minimization problem (20)
and say that:

(i) (x̄, z̄) ∈ gphF is a minimizer to (20)—or just to the mapping F—if
z̄ ∈ F (x̄) is a minimal point of the image set F (X) := ∪x∈XF (x), i.e.,

(z̄ − Θ) ∩ F (X) = {z̄}. (21)

(ii) (x̄, z̄) is a weak minimizer to (20) if z̄ ∈ F (x̄) is a weak minimum
point of the set F (X), i.e., (21) holds with the replacement of Θ by intΘ 6= ∅
and {z̄} by ∅.

(iii) Given ε > 0 and ξ ∈ Θ \ {0}, we say that (x̄, z̄) ∈ gphF is an approx-
imate εξ-minimizer to (20) if

z + εξ 6≤ z̄ for all z ∈ F (x) with x 6= x̄.

(iv) (x̄, z̄) ∈ gphF is a strict approximate εξ-minimizer to (20) if there
is a positive number ε̃ < ε such that (x̄, z̄) is an approximate ε̃ξ-minimizer to
this problem.

Now we are ready to formulate and prove our set-valued extension of the
Ekeland variational principle. Following Luc (1989), we say that F has the
domination property if

for every x ∈ X and z ∈ F (x) there is ẑ ∈ MinF (x) with ẑ ≤ z, (22)

where the minimum set Min F (x) is closed. In Luc (1989) and the references
therein, the reader can find some efficient conditions ensuring this property.



542 T.Q. BAO, B.S. MORDUKHOVICH

Theorem 1 (Ekeland variational principle for set-valued mappings) Let (X, d)
be a complete metric space, and let Z be a partially ordered linear topological
space with order (13) generated by a convex, closed, and pointed cone Θ 6= {0}.
Consider a set-valued mapping F : X →→ Z and assume that F is quasibounded
from below, level-closed, and has the domination property (22). Then for any
ε > 0, λ > 0, ξ ∈ Θ with ‖ξ‖ = 1, and (x0, z0) ∈ gphF there is a point
(x̄, z̄) ∈ gphF satisfying the relationships

z̄ − z0 +
ε

λ
d(x̄, x0)ξ ≤ 0, z̄ ∈ MinF (x̄), (23)

z − z̄ +
ε

λ
d(x̄, x)ξ 6≤ 0 for all (x, z) ∈ gphF with (x, z) 6= (x̄, z̄). (24)

If (x0, z0) is an approximate εξ-minimizer to F , then x̄ can be chosen such that
in addition to (23) and (24) we have

d(x̄, x0) ≤ λ. (25)

Proof. Note first that it is sufficient to prove the theorem in the case of ε = λ = 1.
Indeed, the general case can be easily reduced to this special case by applying
the special case to the mapping F̃ (x) := ε−1F (x) on the metric space (X, d̃)

with d̃(x, y) := λ−1d(x, y).
Having this in mind, introduce a set-valued mapping T : X × Z →→ X by

T (x, z) :=
{
y ∈ X

∣∣ ∃ v ∈ F (y) with v − z + d(x, y)ξ ≤ 0
}

(26)

and observe that T has the following properties:

• The sets T (x, z) are nonempty for all z ∈ F (x), since x ∈ T (x, z).

• The sets T (x, z) are closed for all z ∈ F (x), since the mapping F is level-
closed.

• The sets T (x, z) are uniformly bounded for all z ∈ F (x), since the mapping
F is quasibounded from below. Indeed, one has

T (x, z) ⊂
{
y ∈ X

∣∣ d(x, y)ξ ∈ z − M − Θ
}
,

where the bounded set M is taken from the above definition of quasi-
boundedness of F from below.

• One has the inclusion T (y, v) ⊂ T (x, z) for all y ∈ T (x, z) and v ∈ F (y)
with

v − z + d(x, y)ξ ≤ 0.
Indeed, pick u ∈ T (y, v) and by construction of T in (26) find w ∈ F (u)
satisfying the inequality w − v + d(y, u)ξ ≤ 0. Summing the last two
inequalities and taking into account that d(x, y)+d(y, u) ≥ d(x, u), ξ ∈ Θ,
and Θ + Θ ⊂ Θ, we have
w − z + d(x, u)ξ =

(
w − v + d(y, u)ξ

)
+

(
v − z + d(x, y)ξ

)

+
(
d(x, u) − d(y, u) − d(x, y)

)
ξ ∈ −Θ − Θ − Θ ⊂ −Θ,

which implies that u ∈ T (x, z).
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Let us inductively construct a sequence of pairs {(xk, zk)} ⊂ gphF by the
following iterative procedure: starting with (x0, z0) given in theorem and having
the k-iteration (xk, zk), we select the next one (xk+1, zk+1) by





xk+1 ∈ T (xk, zk),

d(xk, xk+1) ≥ sup
x∈T (xk,zk)

d(xk, x) −
1

k + 1
,

zk+1 ∈ F (xk+1), zk+1 − zk + d(xk, xk+1)ξ ≤ 0.

(27)

It is clear from the construction and properties of T (x, z) in (26) that the itera-
tive procedure (27) is well defined. Summing up the last inequality in (27) from
k = 0 to m, we get

( m∑

k=0

d(xk, xk+1)
)
ξ ∈ z0 − zm+1 − Θ ⊂ z0 − M − Θ

and, by passing to the limit as m → ∞ and using the quasiboundedness of
the mapping F from below and the pointedness of the ordering cone Θ with
0 6= ξ /∈ −Θ, we arrive at the conclusions

( ∞∑

k=0

d(xk, xk+1)
)
ξ ∈ z0 − M − Θ and

∞∑

k=0

d(xk, xk+1) < ∞.

Taking then into account that diamT (xk+1, zk+1) ≤ diamT (xk, zk) and the
choice of xk+1, we have the estimate

diamT (xk, zk) ≤ 2 sup
x∈T (xk,zk)

d(xk, x) ≤ 2
(
d(xk, xk+1) +

1

k + 1

)
,

and hence diamT (xk, zk) ↓ 0 as k → ∞. Due to the completeness of X we
conclude that the sets T (xk, zk) shrink to a singleton:

∞⋂

k=0

T (xk, zk) =
{
x̄
}

with some x̄ ∈ X. (28)

Let us next justify the existence of z̄ ∈ F (x̄) such that (x̄, z̄) satisfies rela-
tionships (23) and (24). For each zk ∈ Z from (27) define the set

R(xk, zk) :=
{
z ∈ Min F (x̄)

∣∣ z − zk + d(xk, x̄)ξ ≤ 0
}
, k = 0, 1, . . . . (29)

Then we have the following properties:

• The set R(xk, zk) is nonempty and closed for any k = 0, 1, . . . by the
assumptions made in the theorem. Indeed, it is easily implied by the last
line in (27) that whenever m ≥ 1 one has xk+m ∈ L(zk−d(xk, x̄)ξ) for the
level set of F , which is assumed to be closed. Hence x̄ ∈ L(zk −d(xk, x̄)ξ),
i.e., there is z̃ ∈ F (x̄) satisfying

z̃ − zk + d(xk, x̄)ξ ≤ 0.
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Furthermore, by the domination condition described in (22) there is an
element ẑ ∈ MinF (x̄) with ẑ ≤ z̃. Taking into account the previous
inequality, we get ẑ ∈ R(xk, zk), i.e., R(xk, zk) 6= ∅. The closedness of the
set R(xk, zk) follows directly from that of MinF (x̄) by construction (29).

• The set sequence {R(xk, zk)} is nonincreasing, i.e., R(xk+1, zk+1) ⊂ R(xk,
zk) for all k = 0, 1, . . .. To justify this, pick any z ∈ R(xk+1, zk+1) and
observe that

z − zk+1 + d(xk+1, x̄)ξ ≤ 0.
Adding the latter inequality to the one in (27), we have z−zk+d(xk, x̄)ξ ≤
0, i.e., z ∈ R(xk, zk) for all k = 0, 1, . . ..

It follows from the above properties that

∅ 6=
∞⋂

k=0

R(xk, zk) ⊂ MinF (x̄).

Take an arbitrary vector z̄ from the above intersection and by using domination
property (22) show that the pair (x̄, z̄) ∈ gphF satisfies relationships (23) and
(24). Indeed, the one in (23) immediately follows from z̄ ∈ R(x0, z0) and the
construction of R(·, ·) in (29). To justify (24), suppose that it does not hold and
then find a point

(x, z) ∈ gphF with (x, z) 6= (x̄, z̄) and z − z̄ + d(x, x̄)ξ ≤ 0. (30)

If x = x̄ in (30), then we obviously have z ≤ z̄, which contradicts the minimality
of z̄ on the set F (x̄). If x 6= x̄, then it follows from (30) and the construction of
z̄ that

z − z̄ + d(x̄, x)ξ ≤ 0 and z̄ − zk + d(x̄, xk)ξ ≤ 0, k = 0, 1, . . . .

Summing up the last two inequalities and combining this with the triangle one,
we get

z − zk + d(x, xk)ξ ≤ 0, i.e., x ∈ T (xk, zk) for all k = 0, 1, . . . .

This means that x from (30) belongs to the set intersection in (28). Thus x = x̄
by (28), which justifies (24).

To complete the proof of the theorem, it remains to estimate the distance
d(x̄, x0) when (x0, z0) is an approximate εξ-minimizer to F . Arguing by contra-
diction, suppose that (25) does not hold, i.e., d(x̄, x0) > λ. Since x̄ ∈ T (x0, z0),
we have

z̄ − z0 + εξ ≤ z̄ − z0 +
ε

λ
d(x̄, x0)ξ ≤ 0,

which contradicts the approximate minimum assumption on (x0, z0). Thus (25)
holds, and the proof of the theorem is finished.
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Note that, by the order definition (13), conclusion (23) of Theorem 1 im-
mediately implies that z̄ ≤ z0. When F = f : X → Z is single/vector-valued,
we have the following corollary (and simplification) of Theorem 1, which agrees
with the classical Ekeland variational principle for scalar functions.

Corollary 1 (Ekeland variational principle for vector-valued mappings) Let
(X, d), Z, and Θ be as in Theorem 1, and let f : X → Z be a single-valued
mapping, which is level-closed and quasibounded from below. Take any ε > 0,
λ > 0, ξ ∈ Θ \ {0}, and x0 ∈ X that is assumed to be an approximate εξ-
minimizers to f , i.e.,

f(x) + εξ 6≤ f(x0) whenever x ∈ X.

Then there is x̄ ∈ X such that d(x̄, x0) ≤ λ, f(x̄) ≤ f(x0), and

f(x) − f(x̄) +
ε

λ
d(x̄, x)ξ 6≤ 0 for all x ∈ X \ {x̄}.

Proof. It follows directly from Theorem 1 by observing that Min f(x) 6= ∅ when-
ever x ∈ X for single-valued mappings. In this case the part in the proof of
Theorem 1 related to considering the sets R(x, z) in (28) is not needed.

Remark 1 (comparison with other extensions of the Ekeland principle) Note
that the proofs of Theorem 1 and Corollary 1, based on the iteration technique
(27) involving the mapping T (x, z) in (26), do not use any scalarization and/or
vector metric as in Chen, Huang and Yang (2005), Göpfert et al. (2003), Ha
(2003, 2005, 2006), Hamel (2005), Hamel and Löhne (2006), Khanh (1989),
and do not impose any assumptions on nonempty interior, upper semiconti-
nuity/demicontinuity, compactness, boundedness from below (instead of quasi-
boundedness from below), etc. as in many previous results.

It is easy to check that the principal relationship (24) can be equivalently
rewritten as

z − z̄ +
ε

λ
d(x, x̄)ξ 6≤ 0 for all z ∈ F (x̄), z 6= z̄.

In comparison, we observe that the corresponding principal condition of Hamel
and Löhne (2006) can be written in our setting as

z /∈ z̄ −
ε

λ
d(x̄, x)ξ − Θ for all (x, z) ∈ gphF with x 6= x̄, (31)

while the one in Ha (2005) is equivalent to

F (x̄) 6⊂ F (x) +
ε

λ
d(x̄, x)ξ + Θ for all x ∈ X with x 6= x̄. (32)

We can easily see that (24)=⇒ (31) =⇒(32). Furthermore, (24) is strictly better
than both (31) and (32). A simple example is provided by F : IR →→ IR given as

F (x) :=

{
[−1, 1] for x = 0,
0 otherwise
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with Θ = IR+, we see that x̄ = 0 satisfies (31) and (x̄, z̄) = (0, 0) satisfies
(32) while not (24). On the other hand, relationship (31) together with the
domination property (22) imply (24). Indeed, by (22) there is ẑ ∈ MinF (x̄)
such that ẑ ≤ z̄, and hence

ẑ −
ε

λ
d(x̄, x)ξ − Θ ⊂ z̄ −

ε

λ
d(x̄, x)ξ − Θ.

The latter inclusion together with (31) give

z /∈ ẑ −
ε

λ
d(x̄, x)ξ − Θ for all z ∈ F (x), x 6= x̄,

which implies (24) for (x̄, ẑ) due to ẑ ∈ MinF (x̄).
We finally emphasize that the new condition (24) plays a crucial role in the

proof of the following Theorem 2: it allows us to organize an extremal system
of sets (see the proof), which does not seem to be possible by using conditions
(31) and (32).

Next, we establish a new set-valued extension of the subdifferential varia-
tional principle from Mordukhovich (2006a), Mordukhovich and Wang (2002)
by using the Fréchet subdifferential of set-valued/vector-valued mappings intro-
duced in Definition 1. Previous versions of this result, which either follow from
our theorem or are different from it in both assumptions and conclusions, can
be found in Ha (2003, 2005, 2006).

Theorem 2 (subdifferential variational principle for set-valued mappings) Let
F : X →→ Z be a set-valued mapping between Asplund spaces that is epiclosed,
quasibounded from below and satisfies the domination condition (22), where the
ordering cone Θ of Z satisfies the assumptions of Theorem 1. Take any ε > 0,
λ > 0, ξ ∈ Θ with ‖ξ‖ = 1 and consider a strict approximate εξ-minimizer
(x0, z0) ∈ gphF to the mapping F . Then there is (x̄, z̄) ∈ gphF such that
‖x̄ − x0‖ ≤ λ and the subdifferential condition

∂̂F (x̄, z̄) ∩
ε

λ
IB∗ 6= ∅ (33)

is satisfied. If, furthermore, ξ ∈ intΘ, then the pair (x̄, z̄) above can be selected
as an approximate εξ-minimizer to F .

Proof. Since (x0, z0) is a strict approximate εξ-minimizer to F , there is a positive
number ε̃ < ε such that (x0, z0) is an approximate ε̃ξ-minimizer to F . Define
the number

λ̃ :=
ε + ε̃

2
λ with 0 < λ̃ < λ (34)

and apply to the mapping F and its approximate ε̃ξ-minimizer (x0, z0) the
generalized Ekeland variational principle from Theorem 1 with the parameters
(ε̃, λ̃). Then we find by (23)–(25) a point (ū, v̄) ∈ gphF satisfying the conditions

v̄ − z0 +
ε̃

λ̃
‖x0 − ū‖ξ ∈ −Θ, ‖x0 − ū‖ ≤ λ̃, (35)
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z−v̄+
ε̃

λ̃
‖x−ū‖ξ 6∈ −Θ for all (x, z) ∈ gphF with (x, z) 6= (ū, v̄). (36)

Define further a set-valued mapping G : X →→ Z by

G(x) := v̄ −
ε̃

λ̃
‖x − ū‖ξ − Θ (37)

and consider the following two closed subsets of the product space X×Z (which
is well known to be Asplund; see, e.g., Phelps, 1993):

Ω1 := epiF and Ω2 := gphG. (38)

Let us check that (ū, v̄) is an extremal point of the set system {Ω1, Ω2} from
(38) in the sense of Mordukhovich (2006a, Definition 2.1); see the formulation
at the end of Section 2. Indeed, we obviously have (ū, v̄) ∈ Ω1 ∩ Ω2, and thus
the extremality of this system follows from the fact that

Ω1 ∩
(
Ω2 + (0,−k−1ζ)

)
= ∅ for all k ∈ IN, (39)

where ζ 6= 0 is an arbitrary fixed element of the cone Θ. Suppose that (39) does
not hold for some fixed k ∈ IN . By the constructions of Ω1 and Ω2 in (38) and
the fact that

epi F =
{
(x, w) ∈ X × Z

∣∣ ∃z ∈ Z, ∃ϑ ∈ Θ with w = z + ϑ, (x, z) ∈ gphF
}

our assumption means that there are (x, z + ϑ) 6= (ū, v̄) and ϑ ∈ Θ such that

(x, z + ϑ) ∈ epi F and
(
x, z + ϑ + k−1ζ

)
∈ gphG.

By the structure of G in (37) and the convexity of the cone Θ we have

z + ϑ +
ζ

k
∈ v̄ −

ε̃

λ̃
‖x − ū‖ξ − Θ

and hence z − v̄ +
ε̃

λ̃
‖x − ū‖ξ ∈ −ϑ −

ζ

k
− Θ ⊂ −Θ

for the point (x, z) ∈ gphF under consideration, which implies by (36) that
(x, z) = (ū, v̄). Since v̄ + ϑ = z + ϑ ∈ F (x) = F (ū), we get from (36) that
v̄ +ϑ− v̄ = ϑ ≤ 0, and so ϑ = 0. This clearly contradicts the above relationship
(x, z + ϑ) 6= (ū, v̄) and justifies therefore the extremality of the system (38) at
(ū, v̄).

Thus, we can apply the extremal principle from Mordukhovich (2006a, The-
orem 2.20) (this result is presented at the end of Section 2) to the extremal
system {Ω1, Ω2, (ū, v̄)} of the closed sets (38) at (ū, v̄) in the Asplund space
X × Z with the norm ‖(x, z)‖ := ‖x‖ + ‖z‖ for (x, z) ∈ X × Z. Observe that
the corresponding dual norm on X∗ × Z∗ is

‖(x∗, z∗)‖ = max
{
‖x∗‖, ‖z∗‖

}
for (x∗, z∗) ∈ X∗ × Z∗.
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Employing the extremal principle, for any ν > 0 we find (xi, zi, x
∗
i , z

∗
i ) ∈ X ×

Z × X∗ × Z∗ with i = 1, 2 satisfying the relationships




(xi, zi) ∈ Ω1 × Ω2, ‖xi − ū‖ + ‖zi − v̄‖ ≤ ν, i = 1, 2,

(x∗
i , z

∗
i ) ∈ N̂

(
(xi, zi); Ωi), i = 1, 2,

1

2
− ν ≤ max

{
‖x∗

i ‖, ‖z
∗
i ‖

}
≤

1

2
+ ν, i = 1, 2,

max
{
‖x∗

1 + x∗
2‖, ‖z

∗
1 + z∗2‖

}
≤ ν.

(40)

Observe that (x∗
2, z

∗
2) 6= 0 whenever ν > 0 is sufficiently small in (40). It also

follows from the second line in (40), the graphical structure of the set Ω2 in
(38), and the coderivative construction (10) as ε = 0 that

x∗
2 ∈ D̂∗G(x2, z2)(−z∗2). (41)

To proceed further with (40) and (41), let us check that the set-valued
mapping G is Lipschitz continuous on X with the (global) Lipschitz constant

ℓ := ε̃/λ̃, i.e.,

G(x) ⊂ G(y) + ℓ‖x − y‖IB whenever x, y ∈ X. (42)

To justify (42), take any z ∈ G(x) and find by (37) and the definition of ℓ such
ζ ∈ Θ that z = v̄ − ℓ‖x − ū‖ξ − ζ. Then we have the following relationships:

z = v̄ − ℓ‖x − ū‖ξ − ζ

= v̄ − ℓ‖y − ū‖ξ + ℓ‖x − y‖ξ + ℓ
(
‖x − ū‖ − ‖y − ū‖ − ‖x − y‖

)
ξ − ζ

⊂ v̄ − ℓ‖y − ū‖ξ + ℓ‖x − y‖ξ − Θ − ζ

⊂ v̄ − ℓ‖y − ū‖ξ − Θ + ℓ‖x − y‖ξ = G(y) + ℓ‖x − y‖ξ,

where the first inclusion holds due to

‖x − ū‖ − ‖y − ū‖ − ‖x − y‖ ≤ 0 and ξ ∈ Θ

and the second one holds due to the convexity of Θ. Since ‖ξ‖ = 1, we arrive
at (42).

Employing now the coderivative estimate for Lipschitzian mappings from
Mordukhovich (2006a, Theorem 1.43), we get from (41) that

‖x∗
2‖ ≤ ℓ‖z∗2‖ and hence ‖z∗2‖ 6= 0,

‖x∗
2‖

‖z∗2‖
≤ ℓ (43)

by the third line in (40) for i = 2. Furthermore, it gives

‖z∗2‖ ≥ min
{
ℓ
(1

2
− ν

)
,
(1

2
− ν

)}
. (44)

This inequality, together with the last line of (40), ensure that z∗1 6= 0 whenever
ν is sufficiently small. Then, by the structure of Ω1 and the second line of
(40) for i = 1, we have (x∗

1, z
∗
1) ∈ N̂((x1, z1)); epi F ), which implies—by the
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construction of the Fréchet normal cone in (7) and the structure of epi F—that
there is z̃1 ∈ F (x1) and ϑ ∈ Θ with

z̃1 = z1 − ϑ, (x∗
1, z

∗
1) ∈ N̂

(
(x1, z̃1); epi F

)
, and z∗1 ∈ N̂(0; Θ).

Taking (10) and (14) into account, we thus have

x∗
1

‖z∗1‖
∈ D̂∗EF (x1, z̃1)

( −z∗1
‖z∗1‖

)
with (x1, z̃1) ∈ gphF. (45)

It follows from (44) that ν/‖z∗2‖ → 0 as ν ↓ 0 and that, by the above estimates,

‖x∗
1‖

‖z∗1‖
<

‖x∗
2‖ + ν

‖z∗2‖ − ν
=

(‖x∗
2‖

‖z∗2‖
+

ν

‖z∗2‖

)/(
1 −

ν

‖z∗2‖

)
<

ε

λ

for all ν > 0 sufficiently small. Observe also that

‖x1 − x0‖ ≤ ‖ū − x0‖ + ‖x1 − ū‖ ≤ λ̃ + ν < λ

for all small ν > 0 by the second inequality in (35), the first line in (40) for

i = 1, and the choice of λ̃ in (34). Denoting (x̄, z̄) := (x1, z̃1) and taking
into account the subdifferential construction (15), we get from (45) and the
subsequent estimates that the desired relationship (33) is satisfied with ‖x̄ −
x0‖ < λ.

To complete the proof of the theorem, it remains to justify that (x̄, z̄) =
(x1, z̃1) is an εξ-minimizer to F provided that ξ ∈ intΘ. In this case (ε− ε̃)ξ ∈
intΘ, and for all ν > 0 sufficiently small we obviously have

νIB ⊂ (ε − ε̃)ξ − Θ. (46)

It follows from the first line of (40) that ‖z1 − v̄‖ ≤ ν. By (46) we find ζ ∈ Θ
such that z1 − v̄ = (ε − ε̃)ξ − ζ. If (x1, z̃1) is not an approximate εξ-minimizer
to F , then there is (x, z) ∈ gphF satisfying

z + εξ ∈ z̃1 − Θ = z1 − ϑ − Θ = v̄ + (ε − ε̃)ξ − ζ − ϑ − Θ.

Since v̄ ∈ z0 − Θ by (35), we get in this case that

z + ε̃ξ ∈ z0 − Θ,

which contradicts the strict approximate εξ-minimality of the initial pair (x0, z0)
to F and thus ends the proof of the theorem.
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4. Existence of optimal solutions to multiobjective prob-

lems

In this section we study the existence of optimal solutions to the constrained
multiobjective (set-valued and vector-valued) optimization problem:

minimize F (x) subject to x ∈ Ω, (47)

where F : X →→ Z is a mapping from a complete metric space (X, d) to a partially
ordered linear topological space Z with the ordering cone Θ ⊂ Z assumed to
be closed, convex, and pointed. Our goal in this section is to establish efficient
conditions for the existence of weak minimizers to (47), and thus we impose the
interiority requirement on the ordering cone: intΘ 6= ∅. The afore-mentioned
assumptions are standing throughout this section.

In what follows we present three results for the existence of weak minimizers
to (47). The first two results unified in one theorem employ our basic con-
struction in the proof of Theorem 1—an extension of the Ekeland variational
principle to set-valued mappings. We start with the compactness requirement
on the constraint set Ω and then replace it by a certain coercivity condition
imposed on the cost mapping. The third existence result is based on the ap-
plication of the subdifferential variational principle from Theorem 2 combined
with an appropriate subdifferential extension of the Palais-Smale condition and
generalized differential calculus rules developed in Mordukhovich (2006a).

Theorem 3 (existence of weak minimizers under either compactness of con-
straint sets or coercivity of cost mappings) Consider the constrained multiob-
jective optimization problem (47) under the standing assumptions made in this
section. Suppose also that F is quasibounded from below and level-closed. Then,
problem (47) admits a weak minimizer in each of the following cases:

(i) Let the constraint set Ω be compact, and let the cost mapping F satisfy
the limiting monotonicity condition as k → ∞:

[
xk → x̄, zk∈F (xk) with zk+1 ≤ zk

]
=⇒

[
∃ z̄∈Min F (x̄) with z̄ ≤ zk

]
(48)

for all k ∈ IN ; the latter is implied by the domination condition (22) of Theo-
rem 1 provided that F is level-closed.

(ii) Let the cost mapping F satisfy (48) and the coercivity condition:
there is a compact set Ξ ⊂ X such that

[
x ∈ X \ Ξ, z ∈ F (x)

]
=⇒

[
∃ (y, v) ∈ gphF with y ∈ Ξ and v ≤ z

]
. (49)

Proof. Since Ω is a closed subset of the complete metric space (X, d), the space
(Ω, d) is complete metric as well. Consider the unconstrained mapping FΩ : X →→ Z
defined by

FΩ(x) := F (x) + ∆(x; Ω) with ∆(x; Ω) :=

{
0 ∈ Z if x ∈ Ω,
∅ otherwise.

(50)
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Modify sequentially the mapping T (x, z) from (26) in the proof of Theorem 1
by

Tn(x, z) :=
{
y ∈ X

∣∣ ∃ v ∈ FΩ(y) with v − z + n−1d(x, y)ξ ≤ 0
}
, n ∈ IN. (51)

Fixing n ∈ IN and following the proof of Theorem 1 with Tn defined in (51), we
find a sequence {(xk, zk)} satisfying

(xk+1, zk+1) ∈ gphF, xk ∈ Ω, zk+1 − zk + n−1d(xk+1, xk)ξ ≤ 0 (52)

for all k = 0, 1, . . .. Furthermore, we get x̄ ∈ Ω (depending on n ∈ IN) by

∞⋂

k=0

Tn(xk, zk) =
{
x̄
}

for any fixed n ∈ IN. (53)

Since (52) obviously implies that zk+1 ≤ zk, we find by assumption (48) such
z̄ ∈ MinF (x̄) that z̄ ≤ zk for all k = 0, 1, . . .. It is not hard to observe,
arguing by contradiction and employing (52) and (53) together with the triangle
inequality for the metric d(·, ·), that

Tn(x̄, z̄) =
{
x̄
}

for all n ∈ IN.

Since the pair (x̄, z̄) constructed above depends on n ∈ IN , we denote it by
(xn, zn) and hence have a sequence {(xn, zn)} satisfying

xn ∈ Ω, zn ∈ F (xn), zn+1 ≤ zn, Tn(xn, zn) =
{
xn

}
(54)

for all n ∈ IN . By the compactness of Ω, we suppose without loss of generality
that xn → x̃ as n → ∞ for some x̃ ∈ Ω. Then, conditions (48) and (54) ensure
the existence of z̃ satisfying the relationships

z̃ ∈ MinF (x̃) and z̃ − zn ∈ −Θ for all n ∈ IN. (55)

We claim that the pair (x̃, z̃) is a weak minimizer to the multiobjective problem
(47). Indeed, taking an arbitrary (x, z) ∈ gphF with x ∈ Ω and (x, z) 6= (x̃, z̃)
and employing (54) and (55), we have by elementary transformations that

z − z̃ + n−1d(xn+1, x)ξ ∈ zn+1 − z̃ + Z \ (−Θ)

for all n ∈ IN , which easily implies that

z − z̃ + n−1d(xn+1, x)ξ ∈ Θ + Z \ (−Θ)

and hence z − z̃ + n−1d(xn+1, x)ξ ∈ Z \ (−Θ)

due to the convexity of the cone Θ. Now passing to the limit in the last inclusion
as n → ∞, we get z − z̃ ∈ Z \ (−intΘ), which justifies the weak minimality of
(x̃, z̃) to (47).

To complete the proof of assertion (i), it remains to justify that the limit-
ing monotonicity condition (48) is implied by the domination condition (22) of
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Theorem 1, where the minimum set Min F (x̄) is assumed to be closed. Indeed,
having the sequence {(xk, zk)} from the left-hand side of (48), define the sets

Q(xk) := MinF (x̄) ∩
(
zk − Θ

)
, k ∈ IN,

which are obviously nonempty, closed, and nonincreasing Q(xk+1) ⊂ Q(xk) by
the monotonicity zk+1 ∈ zk − Θ as k ∈ IN in (48). Hence

∞⋂

k=0

Q(xk) 6= ∅,

and any z̄ from the above intersection satisfies z̄ ≤ zk for all k ∈ IN .

Let us next proceed with the proof of assertion (ii). Having the compact
set Ξ from the coercivity condition (49), we consider the auxiliary problem:

minimize F (x) subject to x ∈ Ξ. (56)

By assertion (i) of the theorem applied to (56) there is x̄ ∈ Ξ and z̄ ∈ F (x̄) such
that (x̄, z̄) is a weak minimizer to problem (56). We claim that (x̄, z̄) is a weak
minimizer to F over Ω as well. Arguing by contradiction, suppose it does not
hold and then find x 6∈ Ξ and z ∈ F (x) with z ∈ z̄ − intΘ. By the coercivity
condition (49), there are y ∈ Ξ and v ∈ F (y) such that v ≤ z, i.e., v ∈ z − Θ.
The last two inclusions give

v ∈ z − Θ ⊂ z̄ − intΘ − Θ ⊂ z̄ − intΘ,

which means that (x̄, z̄) is not a weak minimizer to F over Ξ. This contradiction
completes the proof of (ii) and of the whole theorem.

Note that for scalar cost functions the coercivity condition of Theorem 3(ii)
agrees with those from Bao and Khanh (2003), Bianchi, Kassay and Pini (2005),
see also the references therein. Observe also that the limiting monotonicity
condition (48) in Theorem 3 is strictly better than the domination condition (22)
in Theorem 1. We illustrate this by the mapping F : IR2 →→ IR2 defined as

F (x) = F (x1, x2) :=

{ (
|x1|, |x2|

)
if (x1, x2) 6= 0,

IB \
{
(−1, 0), (0,−1)

}
otherwise.

It is easy to check that the limiting monotonicity condition (48) and relationships
in (22) are satisfied, while the minimum set MinF (0) is not closed.

Our next result establishes the existence of weak minimizers to the con-
strained multiobjective problem (47) under a new subdifferential extension of
the classical Palais-Smale condition to set-valued (and vector-valued) mappings.
To formulate this condition, we use the normal subdifferential (16) for set-valued
mappings with values in partially ordered spaces introduced in Section 2. Note
that new Palais-Smale condition and its application to the proof of the existence
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theorem rely on the subdifferential variational principle for set-valued mappings
established in Theorem 2 and on the basic intersection rule for the limiting
normal cone (9) derived in Mordukhovich (2006a, Chapter 3).

Recall that the classical Palais-Smale condition for differentiable real-valued
function ϕ : X → IR asserts that if a sequence {xk} ⊂ X is such that {ϕ(xk)}
is bounded and ‖∇ϕ(xk)‖ → 0 as k → ∞ for the corresponding derivative
sequence, then {xk} contains a convergent subsequence. Our subdifferential
extension for set-valued mappings is as follows:

Definition 3 (subdifferential Palais-Smale condition for set-valued mappings)
A set-valued mapping F : X →→ Z from a Banach space X to a partially ordered
Banach space Z with the ordering cone Θ ⊂ Z satisfies the subdifferential
Palais-Smale condition if any sequence {xk} ⊂ X such that

there are zk ∈ F (xk) and x∗
k ∈ ∂NF (xk, zk) with ‖x∗

k‖ → 0 as k → ∞ (57)

contains a convergent subsequence, where {zk} is selected to be quasibounded
from below.

The subdifferential Palais-Smale condition introduced clearly reduces to the
classical one for smooth functions F = ϕ. The next theorem employs the sub-
differential Palais-Smale condition to establish the existence of weak minimizers
via advanced techniques of variational analysis and generalized differentiation.
For simplicity and without loss of generality we consider the (formally) uncon-
strained case of Ω = X in (47). As in the proof of Theorem 3, the general
constrained case of (47) can be obviously reduced to the unconstrained one via
the restriction FΩ of F to Ω defined in (50).

Theorem 4 (existence of weak minimizers under the subdifferential Palais-S-
male condition) Let all the assumptions of Theorem 2 be satisfied together with
the subdifferential Palais-Smale condition (57). Then F admits a weak mini-
mizer.

Proof. As in the proof of Theorem 3, define the mapping Tn : X×Z →→ X by (51)
with FΩ = F and d(x, y) = ‖x−y‖; then construct a sequence {(xn, zn)} satisfy-
ing relationships (54), where the condition xn ∈ Ω can be omitted. Following the
proof of assertion (i) in Theorem 3, we establish the existence of weak minimizers
to F provided that the above sequence {xn} contains a convergent subsequence.
Let us justify the latter by using the subdifferential Palais-Smale condition of
Definition 3, the subdifferential variational principle from Theorem 2, and the
basic intersection rule from Mordukhovich (2006a, Theorem 3.4).

To proceed, consider for each n ∈ IN the set-valued mapping Fn : X →→ Z
given by

Fn(x) := F (x) + gn(x) with gn(x) := n−1‖x − xn‖ξ (58)

and conclude from (54) and from the structure of Tn in (51) that (xn, zn) is
a strict approximate n−2ξ-minimizer to Fn. Fix n ∈ IN and apply Theorem 2
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to Fn and its strict approximate εξ-minimizer (xn, zn) with ε = n−2 and λ =
n−1. Taking into account the structure of Fn in (58) and the subdifferential
construction (15), we find (x̄n, z̄n, v̄n, x̄∗

n, z̄∗n) ∈ X ×Z ×Z ×X∗ ×Z∗ satisfying
the relationships

z̄n ∈ F (x̄n), v̄n = gn(x̄n), (x̄n, z̄n + v̄n) ∈ gphFn, ‖x̄n − xn‖ ≤ n−1, (59)

(x̄∗
n,−z̄∗n) ∈ N̂

(
(x̄n, z̄n + v̄n); epi Fn

)
, −z̄∗n ∈ N(0; Θ), ‖z̄∗n‖ = 1, ‖x̄∗

n‖ ≤ n−1.
(60)

Define now the following two subsets of the product space X ×Z ×Z, which is
Asplund:

Ω1 :=
{
(x, z, v) ∈ X × Z × Z

∣∣ (x, z) ∈ epi F
}
, (61)

Ω2 :=
{
(x, z, v) ∈ X × Z × Z

∣∣ (x, v) ∈ epi gn

}
. (62)

It is easy to see that (x̄n, z̄n, v̄n) ∈ Ω1∩Ω2 and both sets Ωi, i = 1, 2, are locally
closed around this point by the epiclosedness of F and the Lipschitz continuity
of gn. Observe also that the implication

(x, z, v) ∈ Ω1 ∩ Ω2 =⇒ z ∈ F (x) + Θ, v ∈ gn(x) + Θ,

ensures that (x, z + v) ∈ epi Fn. Thus we have from (60) that

lim sup
(x,z,v)→(x̄n,z̄n,v̄n)

(x,z,v)∈Ω1∩Ω2

〈
(x̄∗

n,−z̄∗n,−z̄∗n), (x, z, v) − (x̄n, z̄n, v̄n)
〉

‖(x, z, v) − (x̄n, z̄n, v̄n)‖

≤ lim sup
(x,z)→(x̄n,z̄n+v̄n)

(x,z)∈epiFn

〈
x̄∗

n,−z̄∗n), (x, z) − (x̄n, z̄n + v̄n)
〉

‖(x, z) − (x̄n, z̄n + v̄n)‖
≤ 0,

which implies the inclusions

(x̄∗
n,−z̄∗n,−z̄∗n)∈N̂

(
(x̄n, z̄n, v̄n); Ω1 ∩ Ω2

)
⊂N

(
(x̄n, z̄n, v̄n); Ω1 ∩ Ω2

)
. (63)

Next, we are going to express basic normals to the set intersection in (63) via
basic normals to Ω1 and Ω2 and then—by taking into account the structures of
these sets—to arrive at the desired conclusions in terms of the mapping F under
consideration. To apply the basic intersection rule from Mordukhovich (2006a,
Theorem 3.4) to the intersection Ω1 ∩ Ω1, let us first check that the set system
{Ω1, Ω2} satisfies the limiting qualification condition at (x̄n, z̄n, v̄n) required in
the afore-mentioned theorem. The latter means that for any sequences

(xik, zik, vik)
Ωi→ (x̄n, z̄n, v̄n) and (x∗

ik, z∗ik, v∗ik)
w∗

→ (x∗
i , z

∗
i , v∗i ) as k → ∞

with (x∗
ik, z∗ik, v∗ik) ∈ N̂((x̄n, z̄n, v̄n); Ωi), k ∈ IN , i = 1, 2, one has the implication

[
‖(x∗

1k, z∗1k, v∗1k)+(x∗
2k, z∗2k, v∗2k)‖→0 as k→∞

]
=⇒ (x∗

i , z
∗
i , v∗i ) = 0 (64)
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for i = 1, 2. To proceed, we observe from the structures of Ωi in (61) and (62)
that v∗1k = z∗2k = 0 for all k ∈ IN , and hence (64) reduces to

[
‖x∗

1k+x∗
2k‖→0, ‖z∗1k‖→0, ‖v∗2k‖→0

]
=⇒ x∗

1 = x∗
2 = z∗1 = v∗2 = 0. (65)

Since the conclusions z∗1 =v∗2 =0 are obvious, it remains to show that x∗
1 =x∗

2 =0.
To this end, observe similarly to the proof of estimate (43) in Theorem 2—based
on Mordukhovich (2006a, Theorem 1.43)—that

(x∗
2k, v∗2k) ∈ N̂

(
(x2k, gn(x2k)); epi gn

)
=⇒ ‖x∗

2k‖ ≤ n−1‖v∗2k‖ for all k ∈ IN,

since the mapping gn : X → Z from (58) is Lipschitz continuous with modulus
ℓ = n−1. This gives ‖x∗

2k‖ → 0 and hence ‖x∗
1k‖ → 0 as k → ∞ by (65),

which justifies the fulfilment of the limiting qualification condition for {Ω1, Ω2}
at (x̄n, z̄n, v̄n).

To apply the intersection rule from Mordukhovich (2006a, Theorem 3.4),
we need also to check that Ω1 is strongly PSNC at (x̄n, z̄n, v̄n) with respect
to the last component Z in the product X × Z × Z and that Ω2 is PSNC at
this point with respect to X × Z. The former is obvious from the structure of
(61), while the latter follows from (62) due to the Lipschitz continuity of gn; see
Mordukhovich (2006a, Corollary 1.69(i)). Thus we have

N
(
(x̄n, z̄n, v̄n); Ω1 ∩ Ω2

)
⊂N

(
(x̄n, z̄n, v̄n); Ω1

)
+N

(
(x̄n, z̄n, v̄n); Ω2

)
. (66)

It follows from (63), (66), and the structures of Ωi that there are u∗
n, p∗n ∈ X∗

satisfying

(u∗
n,−z̄∗n) ∈ N

(
(x̄n, z̄n); epi F

)
, (p∗n,−z̄∗n) ∈ N

(
(x̄n, gn(x̄n)); epi gn

)
(67)

and such that x̄∗
n = u∗

n + p∗n. By the condition on z̄∗n in (60) and definition (16)
of the normal subdifferential we get from (67) the relationships

u∗
n ∈ ∂NF (x̄n, z̄n), p∗n ∈ ∂Ngn(x̄n), u∗

n + p∗n = x̄∗
n. (68)

It is easy to observe from the form of gn in (58) with ‖ξ‖ = 1 that ‖p∗n‖ ≤ n−1,
and thus—by using the last estimate in (60)—one has

‖u∗
n‖ = ‖x̄∗

n − p∗n‖ ≤ ‖x̄∗
n‖ + ‖p∗n‖ ≤ n−1 + n−1 = 2n−1.

Summarizing the above derivation, we have a sequence of triples {(x̄n, z̄n, u∗
n)} ⊂

X × Z × X∗ satisfying the relationships

(x̄n, z̄n) ∈ gphF, u∗
n ∈ ∂NF (x̄n, z̄n), and ‖u∗

n‖ → 0 as n → ∞. (69)

Furthermore, the sequence {z̄n} in (69) is quasibounded from below due to this
assumption on F induced by Theorem 2. Thus, the sequence {x̄n} contains a
convergent subsequence as n → ∞ by the subdifferential Palais-Smale condition
from Definition 3. Employing the estimate ‖xn − x̄n‖ ≤ n−1 from (59), we
conclude that the initial sequence {xn} selected in the beginning of the proof of
this theorem also contains a convergent subsequence. This completes the proof
of the theorem.
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Remark 2 (extensions of the subdifferential Palais-Smale condition and of the
weak minimality requirement in the existence theorem) Observe that, by certain
modifications of the above proof, we can relax the Palais-Smale condition (57)
of Theorem 4 needed for the existence of minimizers and also to relax the notion
of minimizers, whose existence is ensured by our approach. Indeed, it is suffi-
cient to replace the normal subdifferential ∂NF in (57) by its smaller Fréchet

counterpart ∂̂F from (15) to proceed in the proof of Theorem 4. To furnish
this, we employ in (63) the fuzzy intersection rule from Mordukhovich (2006a,
Lemma 3.1)—which is actually equivalent to the extremal principle—instead of
the limiting one from Mordukhovich (2006a, Theorem 3.4). It requires, however,
more involved arguments. Note to this end that the normal subdifferential form
(57) of the Palais-Smale condition from Definition 3 is essentially much more
convenient for applications, since our basic subdifferential construction (16) en-
joys comprehensive calculus rules (“full calculus”) in contrast to the Fréchet one
in (15).

Observe, furthermore, that the above arguments allow us in fact to ensure
the existence of intermediate minimizers (between Pareto (i) and weak Pareto
(ii) in Definition 2), which are defined by the replacement of the interior of Θ in
Definition 2(ii) with the relative interior ri Θ 6= ∅ of the ordering cone Θ 6= {0}.
Indeed, the relationship

z − z̄ + n−1d(xn+1, x)ξ ∈ Z \ (−Θ) (70)

established in the proof of Theorem 1 implies by passing to the limit as n → ∞
that

z − z̄ ∈ Z \ (−riΘ).

Arguing by contradiction, suppose that

z − z̄ /∈ Z \
(
− riΘ

)
, i.e. z − z̄ := θ ∈ −riΘ.

Hence, there is a number η > 0 such that

(
θ + ηIB

)
∩ spanΘ ⊂ −riΘ. (71)

We obviously have n−1d(xn+1, x)ξ ∈ ηIB for all n ∈ IN sufficiently large. By (71)
it gives

z − z̄ + n−1d(xn+1, x)ξ ∈ −riΘ,

which contradicts (70) and thus justifies the existence of intermediate minimiz-
ers to the multiobjective optimization problem (20) under the assumptions of
Theorem 4 and its modification mentioned in the first part of this remark.
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5. Necessary optimality and suboptimality conditions for

constrained multiobjective problems

In the concluding section of the paper we employ the variational principles es-
tablished in Section 3 and the tools of generalized differentiation from Section 2
to deriving new necessary optimality conditions and suboptimality conditions
for general constrained problems of multiobjective optimization. The neces-
sary optimality conditions established below concern minimizers (not just weak
minimizers) to multiobjective problems without any interiority requirements im-
posed on the ordering cone Θ of Z. The (strong) suboptimality conditions are
derived in this section for arbitrary approximate εξ-minimizers to multiobjective
problems defined by ordering cones with possible empty interiors.

For simplicity, we mainly focus in what follows on the class of constrained
multiobjective problems given in the form:

minimize f(x) subject to x ∈ Ω (72)

with a single-valued cost mapping f : X → Z between Asplund spaces and with
geometric constraints described by a closed subset Ω of X . The results obtained
can be extended to more general problems of set-valued optimization with var-
ious constraints (of operator, functional, and equilibrium types) based on the
extremal and variational principles and on the corresponding generalized dif-
ferential and SNC calculus rules (the latter calculus is needed only in infinite
dimensions)—similarly to the developments and applications in Mordukhovich
(2006a,b) for other classes of optimization and equilibrium problems. To illus-
trate this approach, we present some necessary optimality and suboptimality
conditions derived in this way for multiobjective problems with functional con-
straints given by finitely many equalities and inequalities via (generally non-
smooth) real-valued functions.

Let us start with necessary optimality conditions for local minimizers to
problem (72), where an optimal solution (minimizer) is understood in the sense
of Definition 2(i) with the usual neighborhood localization. Recall that the
corresponding subdifferential constructions and SNC properties used in the the-
orem are defined and discussed in Section 2.

Theorem 5 (necessary optimality conditions for multiobjective problems with
geometric constraints) Let x̄ be a local minimizer to problem (72) with z̄ := f(x̄),
where the ordering cone Θ ⊂ Z satisfies the standing convexity, closedness and
pointedness assumptions, where f is locally epiclosed around (x̄, z̄), and where
Ω is locally closed around x̄. Suppose also that Θ is SNC at the origin, that
either Ω is SNC at x̄ or f is partially SNEC at (x̄, z̄), and that the qualification
condition

∂∞f(x̄) ∩
(
− N(x̄; Ω)

)
= {0} (73)

is satisfied. Then one has the inclusion

0 ∈ ∂Nf(x̄) + N(x̄; Ω). (74)
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Proof. Consider the restriction fΩ of the mapping f to the set Ω given by

fΩ(x) := f(x) + ∆(x; Ω), (75)

where the indicator mapping ∆(·; Ω) of Ω is defined in (50). Taking any ξ ∈ Θ
with ‖ξ‖ = 1 and any k ∈ IN , observe that (x̄, z̄) is a (local) strict approximate
k−1ξ-minimizer to fΩ in the sense of Definition 2(iv). It is easy to see that
fΩ satisfies (locally) all the assumptions required by Theorem 2 except that of
ξ ∈ intΘ, which is not needed in what follows. Employing the latter theorem
and relationships (40) of the extremal principle in its proof, we find sequences
{(xk, x∗

k)} ∈ Ω × X∗ such that

x∗
k ∈ ∂̂fΩ(xk), ‖xk − x̄‖ ≤ k−1, and ‖x∗

k‖ ≤ k−1 for all k ∈ IN. (76)

By definition of the Fréchet subdifferential in (15) with ε = 0, for each k ∈ IN
we find zk ∈ f(xk) + Θ and −z∗k ∈ N(0; Θ) with ‖z∗k‖ = 1 such that

x∗
k ∈ D̂∗EfΩ

(xk, zk)(z∗k) for all k ∈ IN. (77)

Since the unit ball IB∗ of Z∗ is sequentially weak∗ compact, we select a sub-
sequence of {z∗k} that weak∗ converges to some z∗ ∈ IB∗. Note that z∗ 6= 0,

because the converse property implies that z∗k
w∗

→ 0 and hence ‖z∗k‖ → 0 as
k → ∞ by the assumed SNC property of Θ. Furthermore, by ‖x∗

k‖ → 0 in (76)
we may assume without loss of generality that ‖z∗‖ = 1, since otherwise we can
normalize the inclusion in (77) and keep the convergence ‖x∗

k‖ → 0. Passing
to the limit in (77) as k → ∞ and taking into account the structure of the
restriction fΩ in (75), we get

0 ∈ ∂NfΩ(x̄) = ∂N

[
f + ∆(·; Ω)

]
(x̄). (78)

It follows from (16) and (78) that

(0,−z∗)∈N
(
(x̄, z̄); epi f ∩ (Ω×Z)

)
for some − z∗∈N(0; Θ), ‖z∗‖=1. (79)

Employing now in (79) the basic intersection rule from Mordukhovich (2006a,
Theorem 3.4) whose requirements are satisfied due to the qualification condition
(73) and the SNC assumptions of this theorem, we get from (79) that

(0,−z∗) ∈ N
(
(x̄, z̄); epi f

)
+ N

(
x̄; Ω) × {0} with − z∗ ∈ N(0; Θ), ‖z∗‖ = 1,

which is obviously equivalent to (74). This completes the proof of the theorem.

It occurs that the qualification condition (73) and the partial SNEC condi-
tion of Theorem 5 are automatically fulfilled for a major class of epi-Lipschitz-like
(ELL) cost mappings f : X → Z described in Section 2.
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Corollary 2 (necessary optimality conditions for multiobjective problems
with Lipschitzian costs) Let x̄ be a local minimizer to (72), where the order-
ing cone Θ satisfies the assumptions of Theorem 5, where the constraint set Ω
is locally closed around x̄, and where the cost mapping f is epiclosed and ELL
around (x̄, z̄) with z̄ = f(x̄). Then the necessary optimality condition (74) is
satisfied.

Proof. This follows from Theorem 5 due to Proposition 1, ensuring simultane-
ously the partial SNEC property and the qualification condition (73) for ELL
mappings.

Next we present a specification of Theorem 5 for multiobjective problems
(72) with functional constraints given in the conventional form of mathematical
programming:

Ω :=
{
x∈X

∣∣ ϕi(x) ≤ 0, i=1, . . . , m; ϕi(x)=0, i=m + 1, . . . , m + r
}
. (80)

For simplicity we assume that all the functions ϕi : X → IR are locally Lip-
schitzian around the reference point; more general non-Lipschitzian settings
can be also considered based on the calculus rules of Mordukhovich (2006a).
The following consequence of Theorem 5 holds.

Corollary 3 (necessary optimality conditions in multiobjective mathematical
programming) Let x̄ be a local minimizer to problem (72) with the constraint
set Ω given by (80), where the ordering cone Θ satisfies the assumptions of
Theorem 5, where the cost mapping f is epiclosed around (x̄, z̄) with z̄ = f(x̄),
and where all the functions ϕi are locally Lipschitzian around x̄. Impose the two
qualifications conditions

[
0 ∈

m∑

i=1

λi∂ϕi(x̄) +

m+r∑

i=m+1

λi

(
∂ϕi(x̄) ∪ ∂(−ϕi)(x̄)

)
,

λi ≥ 0 for i = 1, . . . , m + r, λiϕi(x̄) = 0 for i = 1, . . . , m
]

=⇒ λi = 0 for all i = 1, . . . , m + r;

(81)

[
−∂∞f(x̄) ∋ −x∗ ∈

m∑

i=1

λi∂ϕi(x̄) +

m+r∑

i=m+1

λi

(
∂ϕi(x̄) ∪ ∂(−ϕi)(x̄)

)
with

λi ≥ 0 as i = 1, . . . , m, λiϕi(x̄) = 0 as i = 1, . . . , m
]

=⇒ x∗ = 0

(82)

formulated via the basic subdifferential, Mordukhovich (2006a), of Lipschitzian
functions ϕi. Then there are λi ≥ 0 for i = 1, . . . , m + r such that λiϕi(x̄) = 0
as i = 1, . . . , m and

0 ∈ ∂Nf(x̄) +

m∑

i=1

λi∂ϕi(x̄) +

m+r∑

i=m+1

λi

(
∂ϕi(x̄) ∪ ∂(−ϕi)(x̄)

)
. (83)
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Proof. First observe that the basic normal cone N(·; Ω) to the constraint set Ω
given in (80) satisfies the inclusion

N(x̄; Ω) ⊂
{ m∑

i=1

λi∂ϕi(x̄) +

m+r∑

i=m+1

λi

(
∂ϕi(x̄) ∪ ∂(−ϕi)(x̄)

) ∣∣∣

λi ≥ 0 as i = 1, . . . , m + r, λiϕi(x̄) = 0 as i = 1, . . . , m
} (84)

provided the fulfillment of the qualification condition (81); see, e.g., Mordukho-
vich (2006a, Corollary 4.36). Substituting (84) into (73) and (74), we get the
qualification condition (82) and optimality condition (83), respectively. Finally,
the qualification condition (81) ensures the SNC property of the constraint set
(80) at x̄; this follows from Mordukhovich (2006a, Theorem 3.86). Thus we
meet all the requirements of Theorem 5 and complete the proof of the corollary.

Note that the qualification condition (81) reduces to the classical Manga-
sarian-Fromovitz constraint qualification when the functions ϕi are strictly dif-
ferentiable at x̄ (in particular, when ϕi ∈ C1 around x̄); in this case ∂ϕ(x̄) =
{∇ϕ(x̄)}. Note, furthermore that, by Corollary 2, the qualification condition
(82) is automatic if the cost mapping f is ELL around x̄. For the latter class
we also have the partial SNEC property of f at (x̄, z̄), which is not needed
in the framework of Corollary 3 under the generalized Mangasarian-Fromovitz
constraint qualification (81).

Our final result concerns suboptimality conditions for problem (72) applied
to its approximate solutions—the exact minimizers may not even exist.

Theorem 6 (suboptimality conditions in multiobjective optimization) Let x̄ be
a local approximate εξ-minimizer to problem (72) in the sense of Definition 2(ii)
with ε > and 0 6= ξ ∈ Θ, let λ > 0, and let the ordering cone Θ ⊂ Z satisfy
the requirements of Theorem 5. Suppose, furthermore that for any approximate
εξ-minimizer x ∈ Ω∩(x̄+ηIB) with some η > λ and with z := f(x) ≤ f(x̄) =: z̄
the following assumptions hold:

—Ω is locally closed around x and f is epiclosed around (x, z);
—either Ω is SNC at x, or f is partially SNEC at (x, z);
—one has the qualification condition

∂∞f(x) ∩
(
− N(x; Ω)

)
= {0}. (85)

Then there is a local approximate εξ-minimizer x̂ ∈ Ω to problem (72) with
‖x̂ − x̄‖ ≤ λ and f(x̂) ≤ f(x̄) satisfying the suboptimality relationships

∥∥x̂∗
f + x̂∗

Ω

∥∥ ≤
ε

λ
for some x̂∗

f ∈ ∂Nf(x̂) and x̂∗
Ω ∈ N(x̂; Ω). (86)

Proof. Employing Corollary 1 with x0 := x̄ to the restricted mapping fΩ in (75),
we find x̂ ∈ Ω∩ (x̄ + λIB) with f(x̂) ≤ f(x̄), which is obviously a local approxi-
mate εξ-minimizer to f on Ω; furthermore, it provides an exact local minimum
to the perturbed mapping
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g(x) := f(x) +
ε

λ
‖x − x̂‖ξ over x ∈ Ω. (87)

Applying now Theorem 5 to (87), we get the optimality condition

0 ∈ ∂Ng(x̂) + N(x̂; Ω) (88)

under the assumptions of the latter theorem imposed on g. It follows from
definition (17) of the singular subdifferential, the Lipschitz continuity of the
perturbation in (87), and the mixed coderivative sum rule from Mordukhovich
(2006a, Theorem 3.10) that ∂∞g(x̄) = ∂∞f(x̄), and thus the qualification con-
dition (73) for g is equivalent to (85) at x = x̂. Taking into account the SNC
calculus result of Mordukhovich (2006a, Theorem 3.88), we easily conclude from
(87) that the SNEC requirement on g agrees with that on f at x̂. Finally, it
follows from the normal subdifferential construction (16) and from the normal
coderivative sum rule in Mordukhovich (2006a, Theorem 3.10) that

∂Ng(x̂) ⊂ ∂Nf(x̂) +
ε

λ
IB∗. (89)

Substituting (89) into (88), we arrive at the suboptimality relationships in (86)
and thus finish the proof of theorem.

Similarly to Corollaries 2 and 3, we can establish the corresponding conse-
quences of Theorem 6 that provide suboptimality conditions to multiobjective
problems with Lipschitzian costs and with functional constraints.
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Göpfert, A., Riahi, H., Tammer, C. and Zalinescu, C. (2003) Variatio-
nal Methods in Partially Ordered Spaces. CMS Books in Mathematics 17,
Springer, New York.

Ha, T.X.D. (2003) The Ekeland variational principle for set-valued maps in-
volving coderivatives. J. Math. Anal. Appl. 286, 509–523.

Ha, T.X.D. (2005) Some variants of the Ekeland variational principle for a
set-valued map. J. Optim. Theory Appl. 124, 187–206.

Ha, T.X.D. (2006) Variants of the Ekeland variational principle for a set-
valued map involving the Clarke normal cone. J. Math. Anal. Appl. 316,
346–356.

Hamel, A. (2005) Equivalents to Ekeland’s variational principle in uniform
spaces. Nonlinear Anal. 62, 913–924.
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