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1. Introduction

The famous Lefschetz fixed point theorem proved by S. Lefschetz in 1923 is
still studied by many authors. The metric case of this theorem is quite well
developed (see: Fournier, 1975; Górniewicz, 2005; Górniewicz, Ślosarski, 2007;
Granas, 1967; Granas and Dugundji, 2003; Kryszewski, 1987). Nonmetric case
was considered in Andres and Górniewicz (2003), Fournier (1975), Fournier and
Granas (1973), Gróniewicz, Rozpłoch (1996). In this paper we shall prove some
further generalizations.

2. Klee admissible spaces

In what follows we shall consider linear vector spaces over the field of real num-
bers R (compare Andres and Górniewicz, 2003; Rolewicz, 1972). All mappings
are assumed to be continuous.

Definition 2.1 Let E be a topological vector space. We shall say that E is a
Klee admissible space provided for any compact subset K ⊂ E and for any open
neighbourhood V of 0 ∈ E there exists a map:

πV : K → E
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such that the following two conditions are satisfied:
(2.1.1) πV (x) ∈ (x + V ), for any x ∈ K,
(2.1.2) there exists a natural number n = nK such that πV (K) ⊂ En, where En

is an n-dimensional subspace of E.

Roughly speaking, a space E is Klee admissible, if compact mappings into
E can be approximated by compact finite dimensional mappings. Firstly, from
the Schauder approximation theorem it follows that any normed space is Klee
admissible (compare Fournier, 1973; or Andres and Górniewicz, 2003). It is
known (compare Andres and Górniewicz, 2003; Fournier and Granas, 1973; or
Górniewicz and Rozpłoch, 1996) that any locally convex topological vector space
is Klee admissible. The authors do not know any example of a topological vector
space which is not Klee admissible but the following problem is still open:

Open Problem 1 Is it true that any topological vector space is Klee admissible?

We need the following definition:

Definition 2.2 (Borsuk, 1966) Let X, Y be two topological Hausdorff spaces.
We shall say that X is r-dominated by Y provided there are two maps r : Y → X
and s : X → Y such that r ◦s = IdX , where IdX : X → X is a mapping defined
by IdX(x) = x for every x ∈ X.

Now, we shall formulate the main notion of this section.

Definition 2.3 A topological Hausdorff space X is called neighbourhoodly ac-
ceptable (written X ∈ NAC) provided there exists a Klee admissible space E and
an open subset U ⊂ E such that X is r-dominated by U ; we shall say that X is
AC-space if X is r-dominated by a Klee admissible space E.

Let us remark that NAC-spaces (AC -spaces) play the same role in the case
of nonmetric topological spaces as ANR-s (AR-s) in the case of metric spaces,
i.e., Klee admissible spaces play the role of normed spaces considered in the case
of metric spaces (compare Borsuk, 1966; Fournier, 1975; Fournier and Granas,
1973; Górniewicz and Rozpłoch, 1996; Górniewicz and Ślosarski, 2007; Granas,
1967; Granas and Dugundji, 2003).

Remark 2.1 Observe that if X ∈ NAC and U is an open subset of X, then
U ∈ NAC , too.

3. Abstract version of the Lefschetz fixed point theorem

Let Top2 be the category of pairs of Hausdorff topological spaces and continuous
mappings of such pairs. By a pair (X, A) in Top2 we understand a Hausdorff
topological space X and its subset, a pair (X, ∅) for short we shall denote by
X . By a map f : (X, A) → (Y, B) we shall understand a continuous map
from X to Y such that f(A) ⊂ B. In what follows we shall use the following
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notations: if f : (X, A) → (Y, B) is a map of pairs, then by fX : X → Y and
fA : A → B we shall denote the respective induced mappings. Let us denote by
V ectG the category of graded vector spaces over the field of rational numbers Q
and linear maps of degree zero between such spaces. By H : Top2 → V ectG we
shall denote the singular homology functor (see Rolewicz, 1972; or Granas and
Dugundji, 2003) with the coefficients in Q. Thus, for any pair (X, A) we have

H(X, A) = {Hq(X, A)}q≥0

a graded vector space in V ectG and for any map f : (X, A) → (Y, B) we have
the induced linear map of degree zero:

f∗ = {f∗q} : H(X, A) → H(Y, B),

where f∗q : Hq(X, A) → Hq(Y, B) is a linear map of q-dimensional homology of
(Y, B).

A non-empty space X is called acyclic provided:
(i) Hq(X) = 0 for all q ≥ 1,

(ii) H0(X) ≈ Q.

Let u : E → E be an endomorphism of an arbitrary vector space. Let us
put N(u) = {x ∈ E : un(x) = 0 for some n}, where un is the nth iterate of u
and Ẽ = E/N(u). Since u(N(u)) ⊂ N(u), we have the induced endomorphism
ũ : Ẽ → Ẽ defined by ũ([x]) = [u(x)]. We call u admissible provided dimẼ < ∞.

Let u = {uq} : E → E be an endomorphism of degree zero of graded vector
spaces E = {Eq}. We call u a Leray endomorphism if

(i) all uq are admissible,

(ii) almost all Ẽq are trivial. For such u, we define the (generalized) Lefschetz
number Λ(u) of u by putting

Λ(u) =
∑

q

(−1)qtr(ũq),

where tr(ũq) is the ordinary trace of ũq (compare Górniewicz and Rozpłoch 1996;
or Granas, 1967). The following important property of the Leray endomorphism
is a consequence of the well-known formula tr(u ◦ v) = tr(v ◦u) for the ordinary
trace.

Proposition 3.1 Assume that, in the category of graded vector spaces, the
following diagram commutes

E′ -u
E′′

6
u′′

E′′

Z
Z

Z
Z}

v

-E′

6
u′

u
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Then, if u′ or u′′ is a Leray endomorphism, so is the other; and, in that case,
Λ(u′) = Λ(u′′).

An endomorphism u : E →E of a graded vector space E is called weakly
nilpotent if for every q ≥ 0 and for every x ∈ Eq , there exists an integer n such
that un

q (x) = 0. Since, for a weakly nilpotent endomorphism u : E → E, we
have N(u) = E, we get:

Proposition 3.2 If u :E→E is a weakly-nilpotent endomorphism, then Λ(u)=0.

Let f : (X, X0) → (X, X0) be a map, f∗ : H(X, X0) → H(X, X0) be a
Leray endomorphism. For such f we define the Lefschetz number Λ(f) of f
by putting Λ(f) = Λ(f∗). Clearly, if f and g are homotopic f ∼ g, then Λ(f)
is well defined iff Λ(g) is well defined; and, in this case, Λ(f) = Λ(g). Let us
observe that if X is an acyclic space or, in particular, contractible, then for every
f : X → X the endomorphism f∗ : H(X) → H(X) is a Leray endomorphism
and Λ(f∗) = 1. Consequently, if X ∈ AR or, in particular, X is a convex subset
in a normed space, then for every continuous map f : X → X the Lefschetz
number Λ(f) = Λ(f∗) = 1. We have the following lemma (see: Bowszyc,
1968/1969; Fournier, 1975; Fournier and Granas, 1973; Granas and Dugundji,
2003).

Lemma 3.1 Let f : (X, X0) → (X, X0) be a map of pairs. If two of the en-
domorphisms f∗ : H(X, X0) → H(X, X0), (fX)∗ : H(X) → H(X), (fX0

)∗ :
H(X0) → H(X0) are Leray endomorphisms, so is the third; in that case:

Λ(f∗) = Λ((fX)∗) − Λ((fX0
)∗)

or equivalently

Λ(f) = Λ(fX) − Λ(fX0
).

We shall also use the following proposition:

Proposition 3.3 Assume that for a mapping f : X → X the Lefschetz number
Λ(f) is well defined and let p be a prime number, then Λ(fp) of fp is well defined
and Λ(f) ≡ Λ(fp) mod p.

For the proof see Peitgen (1976) or Granas (1967).
We shall use the following notion:

Definition 3.1 A map f : X → X is called a Lefschetz map provided Λ(f) of
f is well defined and Λ(f) 6= 0 implies that Fix(f) = {x ∈ X ; f(x) = x} 6= ∅.

Finally, we shall prove the following abstract version of the Lefschetz fixed
point theorem (for the metric case see 2.7 in Górniewicz and Ślosarski, 2007).
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Theorem 3.1 (Abstract version of the Lefschetz fixed point theorem). Let
(X, A) be a pair in Top2 and let f : (X, A) → (X, A) be a map such that:
(3.1.1) f∗ : H(X, A) → H(X, A) is weakly nilpotent,
(3.1.2) fA : A → A is a Lefschetz map.
Then fX : X → X is a Lefschetz map.

Proof. First, in view of Proposition 3.2, we have Λ(f) = 0. Consequently, by
Lemma 3.1, Λ(fX) is well defined and Λ(fX) = Λ(fX0

). Hence, Λ(fX) 6= 0
implies Λ(fX0

) 6= 0 and, by assumption (3.1.2), Fix(fX0
) 6= ∅. Finally, since

Fix(fX0
) ⊂ Fix(fX), our theorem is proved.

4. Consequences of Theorem 3.1

First, we recall the following result proved by G. Fournier and A. Granas (1973).

Theorem 4.1 If X is a NAC-space and f : X → X is a compact map, then f
is a Lefschetz map.

Our first application of Theorem 3.1 concerns compact absorbing contractions.

Definition 4.1 (compare Fournier, 1973; Fournier and Granas, 1973; Górnie-
wicz, 2005; Górniewicz, Rozpłoch, 1996; Górniewicz, Ślosarski, 2007; Granas
and Dugundji, 2003) A map f :X→X is called a compact absorbing contraction
(written f ∈CAC(X)) provided there exists an open set U ⊂ X such that:
(4.1.1) f(U) ⊂ U and the map fU : U → U fU (x) = f(x) for every x ∈ U is
compact,
(4.1.2) for every x ∈ X there exists n = nx such that fn(x) ∈ U .

We let

K(X) = {f : X → X ; f is compact}.

Evidently we have [K(X) ⊂ CAC(X). We prove:

Theorem 4.2 If X ∈ NAC and f ∈ CAC(X), then f is a Lefschetz map.

Proof. Let U be chosen according to Definition 4.1. In view of Remark 2.1
U ∈ NAC . Let f : (X, U) → (X, U) be defined by f(x) = f(x) for every
x ∈ X and let fU : U → U be induced by f . In view of Theorem 4.1 the map
fU is a Lefschetz map. Consequently, if we prove that f∗ is weakly nilpotent,
then our claim follows from Theorem 3.1. Let K be a compact subset of X .
Since U is open in X , then Definition 4.1 implies that there exists n = nK such
that f

n
(K) ⊂ U . Finally, from the fact that the singular homology theory is

a functor with compact carriers we deduce that f∗ is a weakly nilpotent linear
map of degree zero and the proof is complete.

Observe that Theorem 4.2 can be formulated in the following slightly more
general form:
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Theorem 4.3 Let (X, d) be a metric space and let f : X → X be a CAC-
mapping. Assume, further, that there exists an NAC-space A ⊂ X such that
f(U) ⊂ A, where U is chosen according to Definition 4.1, then f is a Lefschetz
map.

Now we shall generalize the class of CAC- mappings.

Definition 4.2 Let f, h : (X, A) → (X, A) be two mappings. We shall say
that fX : X → X is a generalized compact absorbing contraction (written fX ∈
GCAC(X)) provided the following conditions are satisfied:
(4.2.1) fA : A → A is a Lefschetz map,

(4.2.2) for every compact K ⊂ X there exists n = nK such that fn(h(K)) ⊂ A
(or h(fn(K)) ⊂ A and f(h−1(A)) ⊂ h−1(A)),
(4.2.3) h∗ : H(X, A) → H(X, A) is an epimorphism ( h∗ : H(X, A) → H(X, A)
is a monomorphism).

Remark 4.1 Observe that if X ∈ NAC A is an open subset of X and h =
Id(X,A) then the class GCAC reduces to CAC- mappings.

For more information on GCAC mappings see Górniewicz, Ślosarski (2007).
Now we shall formulate the following generalization of the Lefschetz fixed point
theorem.

Theorem 4.4 If fX ∈ GCAC(X), then fX is a Lefschetz map.

Proof. We have a map f : (X, A) → (X, A) such that fA is a Lefschetz map and
fX ∈ GCAC(X). In view of the abstract version of the Lefschetz fixed point
theorem for the proof it is sufficient to show that f∗ is weakly nilpotent. Let
h : (X, A) → (X, A) be chosen according to the definition of GCAC- mappings.
Firstly, let h∗ be a monomorphism and let z ∈ H(X, A). We have to prove that
there exists n = nz such that (f∗)

n(z) = 0. Observe that (f∗)
n = (fn)∗. Since

we consider the homology functor H with compact carriers we can assume that
supp(z) ⊂ K, where K is a compact subset of X . By assumption, there exists
n = nK such that h(fn(K)) ⊂ A. It implies that (h◦fn)∗(z) = 0. On the other
hand we have

[0 = (h ◦ fn)∗(z) = (h∗ ◦ (fn)∗)(z) = h∗((f∗)
n(z))] ⇒ [(f∗)

n(z) = 0].

Now, assume that h∗ is an epimorphism and let z ∈ H(X, A). There exists
y ∈ H(X, A) such that h∗(y) = z and again we can assume that supp(y) ⊂ K1,
where K1 is a compact subset of X . By assumption, there exists m = mK1

such
that fm(h(K1)) ⊂ A. It implies that (fm ◦ h)∗(y) = 0. We have

0 = (fm ◦ h)∗(y) = ((fm)∗ ◦ h∗)(y) = (f∗)
m(h∗(y)) = (f∗)

m(z).

The proof is complete.

Finally, we would like to prove a generalization of the Schauder fixed point
theorem.
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Definition 4.3 Let f : (X, A) → (X, A) be a given map. We shall say that
fX : X → X is an acyclically compact absorbing contraction (written fX ∈
ACAC(X)) provided the following conditions are satisfied,
(4.3.1) fA : A → A is a compact map,
(4.3.2) there exists an acyclic set K⊂X such that fA(A)⊂K and (K∩A)∈NAC ,

(4.3.3) there exists an n such that fn(K) ⊂ A.

Now we are able to prove:

Theorem 4.5 If fX ∈ ACAC(X), then Fix(fX) 6= ∅.

Proof. By assumption, there exists n such that (fX)n(K) ⊂ A and (fX)n+k(K) ⊂
(fX)k(A) ⊂ K, for all k ≥ 1, where A is chosen according to Definition 4.3. We
can assume that n + k = p is a prime number for some k ≥ 1. We have the
following commutative diagram:

K ∩ A -i
K

6
fp
2

K
Z

Z
Z

Z}
fp
3

-K ∩ A

6
fp
1

i

in which fp
1 , fp

2 , fp
3 are the respective contractions of fp

X . By assumption, fp
1

is a compact map and (K ∩A) ∈ NAC , consequently Λ(fp
1 ) is well defined. By

using Proposition 3.1 we deduce that:

Λ(fp
1 ) = Λ(fp

2 ) = 1.

Now, by using Proposition 3.3 we get:

Λ(fp
1 ) ≡ Λ(f1) mod p,

where f1 ≡ (fX)/K∩A is the contraction of fX . By Definition 4.3 (see 4.3.1 and
4.3.2) a compact map (fX)/K∩A is well defined. This implies that Λ((fX)/K∩A) 6=
0. Finally, Fix((fX)/K∩A) 6= ∅ and Fix((fX)/K∩A) ⊂ Fix(fX), so the proof is
complete.

By using similar arguments one can prove Theorem 4.5 in a slightly different
form. Firstly, we shall say that a set K ⊂ X is f -admissible, where f : X → X
a continuous map, provided there exists m ∈ N such that for every n ≥ m the
following conditions are satisfied:

(a) fn : K → K,
(b) fn

∗ : H(K) → H(K) is a Leray endomorphism,
(c) Λ(fn) = Λ(fn+1) 6= 0.

We shall say that a map f : X → X is an ÂCAC-mapping provided the
following conditions are satisfied:

(i) there exists A ⊂ X such that f(A) ⊂ A and a map fA : A → A given by
the formula fA(x) = f(x) is a compact map,
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(ii) there exists an f - admissible subset K ⊂ X such that fA(A) ⊂ K and
K ∩ A is a NAC -space,

(iii) there exists an n such that fn(K) ⊂ A.

Now, we are able to formulate the following:

Theorem 4.6 If f : X → X is an ÂCAC-mapping, then Fix(f) 6= ∅.

Finally, let us remark that all results presented in this paper can be taken
up for admissible multivalued mappings (compare Andres and Górniewicz, 2003;
Górniewicz, 2005).

Added in proof: Let us remark that Theorem 4.2 was proved (by using dif-
ferent methods) in the paper by R.P. Agarwal and D. O’Regan (2005) but only
for compact mappings.
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