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Abstract: Condition numbers for infinite-dimensional optimiza-
tion, as defined in Zolezzi (2002, 2003), are shown to exhibit a stable
behavior when employing finite-dimensional solution methods of the
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Introduction

We consider scalar optimization problems without constraints in the infinite-
dimensional setting. Following a general pattern, we embed the given optimiza-
tion problem in a suitable family of parameterized problems. Then, we define
the condition number of the given problem as a measure of sensitivity of the op-
timal solution with respect to small changes of the relevant parameters (within
the chosen embedding). This approach makes sense for mathematical problems
of a very general nature (not necessarily optimization problems) and leads to
a general definition of the absolute condition number, see e.g. Demmel (1987).
The chosen embedding selects those problem data (parameters) of interest, with
respect to which the sensitivity of the solutions needs to be considered.

In the context of infinite-dimensional scalar optimization, definitions of con-
dition numbers were presented in Zolezzi (2002, 2003) based on the above proce-
dure. Such condition numbers share the following significant properties. First,
they generalize to the infinite-dimensional setting the familiar notion of absolute
condition number of matrix theory. Second, they are directly related with mea-
suring the distance to ill-conditioning, thereby generalizing the distance theorem
of numerical linear algebra (sometimes referred to as the Eckart-Young theorem)
to the infinite-dimensional setting, as shown in Zolezzi (2002, 2003). Third, they
exhibit a stable behavior under variational perturbations, as shown in Zolezzi
(2007).
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Such properties justify the definition of condition numbers we introduced,
provided the following further crucial property is true. The behavior of these
condition numbers is stable when employing standard finite-dimensional meth-
ods (of the Ritz type) for the numerical solution of the given optimization prob-
lem.

The purpose of this paper is to answer positively such a basic question by
showing that several convex optimization problems fulfil the following property.
When using suitable finite-dimensional numerical solution methods of the Ritz
type, the condition number of the finite-dimensional approximations converges
to that of the original infinite-dimensional problem as the dimension tends to
infinity. Such a property means that the (appropriately defined) condition num-
ber remains stable as the finite-dimensional approximations are employed. So, if
the distance to ill-conditioning of the finite-dimensional approximations remains
large, i.e. the Ritz type approximate problems are (uniformly) well-conditioned,
then the same is true for the original problem, and conversely.

The paper is organized as follows. In Section 1 we collect the relevant back-
ground and definitions. In Section 2 we prove the convergence of condition num-
bers for methods of the Ritz type and of finite elements applied to quadratic
functionals of the calculus of variations. In Section 3 the same convergent be-
havior is proved in an abstract framework for some classes of uniformly convex
functionals. In Section 4, convergence is shown to hold, within an abstract
setting, of the condition numbers for uniformly convex problems by using the
so called extended Ritz method, which is relevant in approximate optimization
using, e.g., neural networks.

1. Preliminaries

We consider scalar optimization problems depending on a parameter p ∈ X ,
each of which has a unique global optimal solution m(p) ∈ Y . Both X and Y
are real normed spaces. Let p∗ correspond to the unperturbed problem, whose
condition number we want to define. Then the (absolute) condition number of
the unperturbed problem is defined as

lim supp→p∗
‖m(p) − m(p∗)‖

‖p− p∗‖ . (1)

For related definitions see Demmel (1987), Gill, Murray and Wright (1991,
p. 43), Zolezzi (2003). More precisely, we deal with two real Hilbert spaces E, F
such that E ⊂ F with continuous and dense embedding, and we identify F with
its dual space F ∗. Thus we have in the standard fashion E ⊂ F = F ∗ ⊂ E∗

with continuous and dense embeddings. We consider a real-valued function
f : E → R and the embedding of the global optimization problem (E, f) defined
by (p, x) → f(x)− < p, x >, p ∈ F, x ∈ E. Here, < ·, · > denotes the duality
pairing between E∗ and E. We remark that, if (·, ·) denotes the scalar product
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of F , then < p, x >= (p, x) if p ∈ F, x ∈ E. Throughout this paper we assume
that

0 = arg min(E, f) (2)

and that for every sufficiently small p ∈ F there exists a unique global minimizer

m(f, p) = arg min [E, f(·) − (p, ·)].

Taking p∗ = 0, according to (1) and (2) the condition number of the global
optimization problem (E, f) (with respect to the chosen embedding) is given by
the extended real number

cond f = lim supp → 0
‖m(f, p)‖F

‖p‖F

(3)

where we emphasize that the norms are taken in the (larger) space F , and the
convergence of p towards 0 takes place in F . This choice is partially motivated
by applications of the Ritz method to the calculus of variations and of the finite
element methods to the Dirichlet problem for partial differential equations of
elliptic type, as in Section 2. We shall consider sequences En of subsets of E, and
we shall denote by fn the restriction of f to En, more precisely fn = f + ind En,
where ind denotes the indicator function. Accordingly, we shall write

cond fn = lim supp→0

‖m(fn, p)‖F

‖p‖F

(4)

(whenever this makes sense) for the condition number of the optimization prob-
lem (En, fn). The global optimization problem (E, f) is called well-conditioned
if cond f < +∞, otherwise it is called ill-conditioned. (However, from a prac-
tical point of view, it is well known that a finite value of cond f , which is in
some sense very large, reveals numerical features of (E, f) which are close to
ill-conditioning.)

The absolute condition number (3) is a modification of the Lipschitz modulus
at p∗ = 0 of the arg min map m. It differs from the relative condition number
often used in linear algebra, e.g. in the error analysis of linear systems. The
absolute condition number is the relevant one for measuring the distance to
ill-conditioning (see Zolezzi, 2002), while the relative condition number serves
different purposes, see e.g. Demmel (1987).

2. Ritz and finite element methods

We start by an abstract version of the Ritz method for quadratic functionals.
We fix A : E → E∗ a linear continuous symmetric coercive operator, such
that there exists an orthonormal basis {ϕn} of F consisting of eigenfunctions
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ϕn ∈ E, n = 1, 2, . . . of A. We consider the Ritz method for minimizing the
quadratic form

f(x) =
1

2
< Ax, x >, x ∈ E,

by employing the sequence of finite-dimensional subspaces En = sp {ϕ1, . . . , ϕn},
n = 1, 2, . . . , whose union is obviously dense in F . We assume that the sequence
of eigenvalues λn of A fulfills

+∞
∑

n=1

1

λ2
n

< +∞. (5)

Theorem 1 All problems (E, f), (En, fn) are well-conditioned. If (5) is fulfilled,
then

cond fn → cond f as n → +∞.

Proof. Well-conditioning comes from Proposition 3.1 of Zolezzi (2002). The
restriction fn of f to each finite-dimensional subspace En gives rise to the strictly
convex functional

fn(x)− < p, x >, x ∈ En, p ∈ F

which has exactly one minimizer un = m(fn, p), so that definition (4) applies.
Having fixed p, let

u = arg min (E, f(·)− < p, · >),

then standard calculations (see, e.g., Strang and Fix, 1973, Chapter 1) yield

u =
+∞
∑

k=1

(p, ϕk)ϕk

λk

, un =
n

∑

k=1

(p, ϕk)ϕk

λk

in F,

so that (norms of F )

‖un − u‖2

‖p‖2
≤

+∞
∑

k=n+1

1

λ2
k

. (6)

Since for every n and p 6= 0

‖un‖
‖p‖ ≤ ‖un − u‖

‖p‖ +
‖u‖
‖p‖ (7)

we get by (6), as n → +∞, lim sup cond fn ≤ cond f. Exchanging the roles of
un and u in (7) we obtain lim inf cond fn ≥ cond f, which ends the proof.
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Now we consider a class of finite element methods employed in the numer-
ical solution of the Dirichlet problem for a quadratic integral functional in the
calculus of variations. Let

f(w) =

∫

Ω

[

d
∑

i,k=1

aik(x)
∂w

∂xi

∂w

∂xk

+ c(x)w2]dx, w ∈ E = H1
0 (Ω)

where d = 2 or d = 3, Ω is the interior of a polygon of R2 or a polyhedron of
R3; of course Ω is open, bounded and convex with a Lipschitz boundary. We
consider F = L2(Ω) and a sequence of positive numbers hn → 0 as n → +∞.
Let Tn be a corresponding regular triangulation of Ω̄ as defined in Quarteroni
and Valli (1994), Chapter 3, so that hn is an upper bound of the diameter of
each element of Tn. See also Ciarlet (1978), Chapter 2. Let En be the linear
space of those v ∈ C0(Ω̄) such that v = 0 on ∂Ω and the restriction of v to
each element of Tn is a polynomial of degree less or equal to 1. Thus, every
En is the space (corresponding to Tn) of linear triangular or parallelepipedal
finite elements. We assume that every aik = aki ∈ C1(Ω̄), i, k = 1, . . . , d, that
c ∈ L∞(Ω), c(x) ≥ 0 a.e., and that there exist positive constants α, ω such that

α|λ|2 ≤
d

∑

i,k=1

aik(x)λiλk ≤ ω|λ|2

for a.e x ∈ Ω, every λ ∈ Rd.

Theorem 2 Under the previous assumptions all problems (E, f), (En, fn) are
well-conditioned, and

cond fn → cond f as n → +∞.

Proof. Well-conditioning follows by Proposition 3.1 of Zolezzi (2002). For any
fixed p ∈ L2(Ω) denote by

un = m(fn, p), u = m(f, p)

the unique minimizers of fn(w)− (p, w) on En, and of f(w)− (p, w) on H1
0 (Ω).

We apply Theorem 6.2.1, p. 171, of Quarteroni and Valli (1994), so we get

‖u − un‖H1

0

≤ (constant) hn‖u‖H2. (8)

Indeed, the regularity theorem applies, see Remark 6.2.1, p. 173, of Quarteroni
and Valli (1994) due to the smoothness of the coefficients aik. By Proposition
6.2.2 of Quarteroni and Valli (1994) we know that

‖u‖H2 ≤ (constant) ‖p‖L2
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hence by (8)

‖u − un‖L2 ≤ (constant) hn‖p‖L2.

Since hn → 0, by (7) we obtain as n → +∞ lim sup cond fn ≤ cond f, and by
exchanging the roles of un, u in (7) we obtain lim inf cond fn ≥ cond f, hence
the conclusion.

Similar convergence theorems can be obtained by using different finite ele-
ments as described in Quarteroni and Valli (1994) and Ciarlet (1978).

Remark 1 There is no contradiction between Theorem 2 and the well known
ill-conditioning of the stiffness matrix, corresponding to finite element methods,
as hn → 0. The reason is that the condition number of the stiffness matrix is
obtained by using a family of norms on En, depending on hn, which are not
equivalent to the norm of F = L2(Ω) as hn → 0: see Quarteroni and Valli
(1994), Proposition 6.3.1.

3. Abstract finite element method

We present an abstract extension of Theorem 2 to a class of uniformly convex
functionals, as follows. Let f : E → [0, +∞), f(0) = 0 be a given Gâteaux
differentiable functional which is absolutely continuous on the segments of E,
i.e. t → f(tx + (1 − t)y) is absolutely continuous on [0, 1] for every x and y.
Suppose that there exist continuous functions

α, β : [0, +∞) → [0, +∞)

such that

α(‖x − y‖E) ≤ < ∇f(x) −∇f(y), x − y > ≤ β(‖x − y‖E) (9)

for all x, y ∈ E. Moreover, we assume that the functions ᾱ, β̄ given by

ᾱ(t) =

∫ 1

0

α(tx)

x
dx, β̄(t) =

∫ 1

0

β(tx)

x
dx

are well-defined on the whole interval [0, +∞), continuous, strictly increasing,
such that

ᾱ(0) = β̄(0) = 0,
ᾱ(t)

t
→ +∞ as t → +∞. (10)

Then, as well known (e.g. see Melkes, 1970, Lemma 2), for every p ∈ E∗ there
exists a unique global minimizer m(f, p) of f(·)− < p, · > on E. Let En be a
sequence of nonempty closed convex subsets of E. Suppose that there exists a
sequence εn → 0 such that for every sufficiently small p ∈ E∗ we have

dist (m(f, p), En) ≤ εnϕ(‖p‖F ) (11)
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for some ϕ : [0, +∞) → R, which is continuous and increasing; the distance
from En is taken with respect to the norm of E. Furthermore we assume that,
for some δ > 0,

sup{γ[qϕ(x)]

x
: 0 < x ≤ δ} → 0 as q → 0+ (12)

where γ = ᾱ−1(β̄). We denote again by fn the restriction of f to En, and
consider the condition numbers as in (3) and (4).

Theorem 3 If (9), (10), (11) and (12) are fulfilled, then

cond fn → cond f as n → +∞.

Proof. Write

un = arg min (En, f(·)− < p, · >), u = arg min (E, f(·)− < p, · >)

having fixed p ∈ E∗ (sufficiently small). From Theorem 1 of Melkes (1970),
applied to f(·)− < p, · > it follows that

‖u − un‖E ≤ γ(‖u − x‖E), γ = ᾱ−1(β̄),

for every n and x ∈ En. Since γ is continuous and strictly increasing, by taking
the infimum with respect to x we get

‖u − un‖E ≤ γ[ dist (u, En)].

Then by (11) and (7)

‖un‖
‖p‖ ≤ C

‖p‖γ[εnϕ(‖p‖)] + ‖u‖
‖p‖ , (13)

where C is a suitable constant and the norm is that of F . By (12), given ε > 0,
we have

γ[qϕ(x)]

x
≤ ε

if 0 < x ≤ δ and q is sufficiently small. Then, by (13), if n is sufficiently large
(independently of p)

‖un‖
‖p‖ ≤ ε +

‖u‖
‖p‖

whence

lim sup
p→0

‖un‖
‖p‖ ≤ ε + lim sup

p→0

‖u‖
‖p‖

for all sufficiently large n. It follows that lim supn→+∞
cond fn ≤ cond f. By

exchanging the roles of un and u in (13), we get lim inf cond fn ≥ cond f, which
completes the proof in cases of both cond f < +∞ and cond f = +∞.
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Remark 2 Absolute continuity of f on segments, as required in Theorem 3,
is needed in order to apply the Lagrange formula in the proof of Theorem 1 of
Melkes (1970). Such a condition is automatically fulfilled provided f is contin-
uous (see Phelps, 1989, Proposition 2.8).

The following result is a modification of Theorem 3 (not requiring assump-
tion (12)). Let again f : E → [0, +∞), f(0) = 0, be Gâteaux differentiable such
that

< ∇f(x) −∇f(y), x − y > ≥ ‖x − y‖E θ(‖x − y‖E) (14)

where θ = θ(t), t ≥ 0, is strictly increasing, θ(0) = 0, θ(t) ≥ C1 t for every t,
some C1 > 0. Assume that:

(a) for every r > 0 and every x, y in E with ‖x‖E ≤ r, ‖y‖E ≤ r we have

‖∇f(x) −∇f(y)‖ ≤ (constant) r ‖x − y‖E; (15)

(b) there exists a sequence εn → 0 such that

dist (m(f, p), En) ≤ εn (16)

for every n and sufficiently small p ∈ F ; the distance is considered with respect
to the norm of E.

Theorem 4 If (14), (15) and (16) hold then

cond fn → cond f as n → +∞.

Proof. We follow the proof of Theorem 5.3.4 in p. 323 of Ciarlet (1978) obtaining
for every n

θ(‖u − un‖E) ≤ (constant) θ−1(‖p‖E∗)‖u − x‖E

for every x ∈ En, where u, un are as in the proof of Theorem 3. Then

‖u − un‖E ≤ C1θ(‖u − un‖E) ≤ (constant) ‖p‖F dist (u, En)

and, by (16),

‖u − un‖F ≤ αn‖p‖F

where αn → 0 as n → +∞ (αn independent of p) provided p is sufficiently
small. Then the conclusion follows as in Theorem 3.

Remark 3 Suppose that E = H1
0 (Ω), F = L2(Ω) and En are finite dimensional

subspaces corresponding to a finite element method. Then, conditions (11) and
(16) are fulfilled provided the minimizers m(f, p) ∈ H2(Ω) with ‖m(f, p)‖ ≤
constant if p is sufficiently small, and the finite elements allow the inequality

‖m(f, p) − m(fn, p)‖H1(Ω) ≤ (constant) hn‖m(f, p)‖H2(Ω), (17)

hn being the supremum of the diameters of the considered finite elements. See
Ciarlet (1973) for examples where (17) is fulfilled.
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4. Extended Ritz method

We fix again a function f : E → [0, +∞), f(0) = 0, within a different functional
analytic setting than before. Namely we consider a single Hilbert space E, the
embedding of (E, f) defined by

(p, x) → f(x)− < p, x >, x ∈ E, p ∈ E∗

and the corresponding new condition number

c̄(f) = lim sup
p→0

‖m(f, p)‖E

‖p‖E∗

,

where p → 0 in E∗. This setting is appropriate whenever a single space suffices
in order to describe the features of the optimization problem we consider.

Let G be a fixed nonempty bounded subset of E. A modification of the
Ritz method for approximately minimizing f , called in Zoppoli, Sanguineti
and Parisini (2002) the extended Ritz method, works as follows. Let, for n =
1, 2, 3, . . .

En = sp nG = {
n

∑

i=1

αigi : g1, . . . , gn ∈ G, α1, . . . , αn ∈ R}

be the set of all linear combinations of at most n elements from G. We consider
the restriction fn of f to spnG and we assume that for every sufficiently small
p ∈ E∗ there exist unique minimizers

un = m(fn, p) = arg min (En, f(·)− < p, · >);

u = m(f, p) = arg min (E, f(·)− < p, · >).

See Kurkova and Sanguineti (2005), Zoppoli, Sanguineti and Parisini (2002)
and the references therein for a detailed analysis of this extended Ritz method,
motivations and applications to several optimization problems. Denote by M
the Minkowski functional of the closed convex hull cl co (G∪−G), and consider

s = sup{‖x‖ : x ∈ G}.

We posit the following assumptions. The function f is Gâteaux differentiable
and absolutely continuous on the segments of E. There exist real-valued func-
tions α, β such that (9) and (10) hold. There exists a function ϕ : [0, +∞) →
[0, +∞) such that

‖m(f, p)‖ ≤ ϕ(‖p‖) (18)

for every sufficiently small p ∈ E∗, moreover, (12) holds. Finally, there exists a
real number z > 1/s such that

{x ∈ E : ‖x‖ = 1} ⊂ z cl co (G ∪ −G). (19)
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Lemma 1 There exists a constant k > 0 such that

√

s2M(u)2 − ‖u‖2 ≤ k‖u‖.

Proof. The conclusion is obvious if u = 0. If not, let k =
√

s2z2 − 1. Then the
inequality to be proved is equivalent to

M(u)2

‖u‖2
≤ (1 + k2)

1

s2

or, equivalently, to

M(
u

‖u‖) ≤ z

which is true because of (19).

Theorem 5 If the previous assumptions are fulfilled, then

c̄(fn) → c̄(f) as n → +∞.

Proof. Let γ = ᾱ−1(β̄). Arguing as in the proof of Theorem 3 we have, for
every n, that

‖u − un‖ ≤ γ[ dist (u, spnG)].

From Theorem 3.1 p. 467 of Kurkova and Sanguineti (2005) it follows that

‖u − un‖ ≤ γ(

√

s2M(u)2 − ‖u‖2

n
)

for every n and sufficiently small p. Then by Lemma 1 and (18)

‖u − un‖ ≤ γ(
k‖u‖√

n
) ≤ γ[

kϕ(‖p‖)√
n

].

Then, from (12) we see that, given ε > 0,

‖u‖
‖p‖ ≤ 1

‖p‖γ[
kϕ(‖p‖)√

n
] +

‖un‖
‖p‖ ≤ ε +

‖un‖
‖p‖

for all sufficiently small p 6= 0 and for every sufficiently large n. Then

lim inf
n→+∞

c̄(fn) ≥ c̄(f);

the conclusion obtains by exchanging the role of u and un.
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Remark 4 Assuming existence of global minimizers of f on spnG is a restrictive
condition in general. A more natural pattern would use approximate solutions
of (spnG, f). However, this would require a reasonable definition of a condition
number of optimization problems based on approximate solutions only, which
is by now an open problem.

Given two Banach spaces E, F and the real-valued function f as in Section 1,
we compare now the condition numbers

c̄(f) = lim sup
p→0

‖m(f, p)‖E

‖p‖E∗

where p → 0 in E∗, and

cond f = lim sup
p→0

‖m(f, p)‖F

‖p‖F

where p → 0 in F , we have employed in the previous sections.

Proposition 1 There exists a constant T > 0 (not depending of f) such that

cond f ≤ T c̄(f).

Proof. By the continuous embedding E ⊂ F , for every p ∈ F we have

‖m(f, p)‖F ≤ (constant) ‖m(f, p)‖E.

Similarly

‖p‖E∗ ≤ (constant) ‖p‖F

hence

‖m(f, p)‖F

‖p‖F

≤ (constant)
‖m(f, p)‖E

‖p‖E∗

,

whence

lim sup
p→0

‖m(f, p)‖F

‖p‖F

≤ (constant) lim sup
p→0

‖m(f, p)‖E

‖p‖E∗

where p → 0 in F . Such constants depend only on the norms of the embedding
maps. By the continuous embedding F ⊂ E∗,

lim sup
p→0 in F

‖m(f, p)‖E

‖p‖E∗

≤ lim sup
p→0 in E∗

‖m(f, p)‖E

‖p‖E∗

,

ending the proof.
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