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Abstract: We introduce in the context of Asplund spaces, a new
class of ϕ-regular functions. This new concept generalizes the one of
prox-regularity introduced by Poliquin & Rockafellar (2000) in R

n

and extended to Banach spaces by Bernard & Thibault (2004). In
particular, the class of ϕ-regular functions includes all lower semi-
continuous convex functions, all lower-C2 functions, and convexly
C1,0−composite functions as well. Geometrical and subdifferential
characterizations for this new class of functions are investigated.
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1. Introduction and preliminaries

The class of convex functions enjoys many nice properties. However, the con-
vexity is often a too strong assumption for the needs of applications. Recently,
much attention has been given to special classes of nonsmooth functions hav-
ing interesting properties which could serve as substitute to these assumptions.
Among these classes, the class of prox-regular functions was introduced and
studied by Poliquin & Rockafellar (2000) in finite dimension. It extends the
class of so-called lower nice functions introduced by Poliquin (1991). This no-
tion was motivated by the strong connection between functions and their Moreau
envelopes as defined in Moreau (1965). The class of prox-regular functions con-
tains lower semicontinuous convex functions, lower-C2 functions (i.e., functions
which are expressible locally as a difference between a finite convex function
and a positive multiple of ‖ ·‖2) and strongly amenable functions (i.e., functions
which are obtained by composing extended-real valued convex functions with
C2-mappings under a constraint qualification). Among the characterizations of
prox-regular functions, one of them is of particular importance, since it links
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prox-regularity of lower semicontinuous functions to hypomonotonicity of a lo-
calization of their subdifferential. Recently, Bernard & Thibault (2005) have
identified and extensively studied the prox-regularity in infinite dimension.

In another direction, Ngai-Luc & Théra (2000), have introduced the class
of approximately convex functions. This concept has also been considered in
Aussel, Daniilidis & Thibault (2005), Daniilidis & Georgiev (2004), Ngai &
Penot (2007). In the finite dimensional setting Daniilidis & Georgiev (2004)
have shown that the class of locally Lipschitz approximately convex functions
coincides with the one of lower-C1 functions. Following Spingarn (1981) we
recall that a locally Lipschitz real-valued function f defined on an open set Ω
of R

n is lower-C1, if for every x0 ∈ Ω, there exist a neighborhood V of x0, a
compact set S and a jointly continuous function g : V × S → R, such that for
all x ∈ V we have f(x) = maxs∈S g(x, s) and the derivative with respect to x
exists and is jointly continuous. We also refer to Rolewicz (2000, 2001) and the
references therein, showing that α(·)- paraconvex functions can be viewed as a
uniformization of the concept of approximately convex functions.

Motivated by the calmness property of inequality systems of lower semicon-
tinuous functions, Jourani (2006) has recently introduced the notion of weak-
regularity in the context of Asplund spaces, i.e., in Banach spaces where every
convex continuous function is generically Fréchet differentiable. In R

n, this class
of functions coincides with the one of the so-called Fréchet regular functions (see
Theorem 4.2, Jourani, 2006).

The purpose of this paper is to consider the class of ϕ-regular functions for
a suitable class of convex functions ϕ : R+ := [0, +∞[→ R+. We show that
this class includes all prox-regular functions as well as uniformly approximately
convex functions. We also observe that nice characterizations for prox-regular
functions can be extended naturally to ϕ-regular functions.

The paper is organized as follows. Below, we recall basic definitions and
preliminaries used throughout the paper. In Section 2, we introduce the concept
of ϕ-regular functions and sets. The equivalence between ϕ-regularity of a
function and ϕ-regularity of its epigraph is investigated. We also establish a
characterization of ϕ-regularity of sets using distance functions. We prove in
Section 2 that a lower semicontinuous function is ϕ-regular if and only if there
is a localization of its subdifferential (this notion was considered by Poloquin &
Rockafellar) which is ϕ-submonotone in a sense which is precised in the paper. In
the final section, we present a result on Moreau-envelopes of ϕ-regular functions,
which generalizes the works by Poliquin & Rockafellar (2000) and by Bernard
& Thibault (2004, 2005) for prox-regular functions.

Let X be a Banach space with closed unit ball BX and topological dual X⋆.
Let f : X → R∪{+∞} be a lower semicontinuous extended-real-valued function
defined on X . As usual

dom f := {x ∈ X : f(x) < +∞}, epi f := {(x, α) ∈ X × R : α ≥ f(x)}

denote the domain, the epigraph of f , respectively. Recall that the Fréchet
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subdifferential of f at x ∈ dom f is defined by

∂F f(x) :=
{

x⋆ ∈ X⋆ : lim inf
h→0

f(x + h) − f(x) − 〈x⋆, h〉

‖h‖
≥ 0

}

.

If x 6∈ domf , we set ∂Ff(x) = ∅. Most of the definitions below are standard
and can be found in Mordukhovich & Shao (1996) or in the new book by Mor-
dukhovich (2006). The limiting Fréchet subdifferential at x∈domf is defined by

∂f(x) = w⋆ − lim sup
(u,f(u))→(x,f(x))

∂F f(u),

where the w⋆ − lim sup is the set of weak⋆ cluster points of sequences (u⋆
n) with

u⋆
n ∈ ∂F f(un), (un) → x and (f(un)) → f(x). The Fréchet normal cone and

the limiting normal cone to a closed subset C of X at x ∈ C are defined by

NF (C, x) := ∂F δC(x) =
{

x⋆ ∈ X⋆ : lim sup
y

C
→x

〈x⋆, y − x〉

‖y − x‖
≤ 0

}

and N(C, x) := ∂δC(x), respectively. As usual δC(·) stands for the indicator
function of C, that is, δC(x) = 0 if x ∈ C and +∞, otherwise, and the notation

y
C
→ x means that y → x and y ∈ C. The function f (the set C, respec-

tively) is said to be Fréchet regular at x ∈ dom f (x ∈ C) if ∂f(x) = ∂F f(x)
(N(C, x) = NF (C, x)). Note that the normal cone can be also represented by
the subdifferential of the distance function:

NF (C, x) =
⋃

λ>0

λ∂F dC(x), and ∂F dC(x) = NF (C, x)∩BX⋆ for x ∈ C. (1)

The Fréchet subdifferential and the limiting Fréchet subdifferential of a lower
semicontinuous extended-real-valued function f can be defined by means of the
Fréchet and the limiting Fréchet normal cone to the epigraph of f as follows:

∂F f(x) = {x⋆ ∈ X⋆ : (x⋆,−1) ∈ NF (epi f(x, f(x))}.

∂f(x) = {x⋆ ∈ X⋆ : (x⋆,−1) ∈ N(epi f(x, f(x))}.

The history of these constructions can be found in Mordukhovich & Shao (1996)
and in Mordukhovich (2006).

An important property of the Fréchet subdifferential of the distance function
will be needed in the sequel (see, e.g., Borwein & Fitzpatrick, 1989; Jourani &
Thibault, 1995; Ngai & Théra, 2001).

Proposition 1 Suppose that C is a closed nonempty subset of an Asplund
space X and that x⋆ ∈ ∂F d(x, C) with x 6∈ C. Then, ‖x⋆‖ = 1 and there exists
a minimizing sequence {zn}n∈N of d(x, C) in C and z⋆

n ∈ NF (C, zn) such that

d(x, C) = lim
n→∞

〈z⋆
n, x − zn〉, ‖z⋆

n − x⋆‖ → 0 as n → ∞.
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In the framework of Asplund spaces, the Fréchet subdifferential enjoys a
fuzzy sum rule which was proved by Fabian (1989).

Theorem 1 (Fabian, 1989) Assume that X is Asplund and consider a finite
family (fi), (i = 1, · · · , n) of extended-real-valued mappings which are lower
semicontinuous and such that all but one of them is Lipschitzian around x̄ ∈
dom f1 ∩ · · · ∩ dom fn. Then, for each ε > 0, one has

∂F (f1 + · · · + fn)(x̄) ⊆
⋃

{∂F f1(x1) + · · · + ∂F fn(xn) + εBX⋆ : (xi, fi(xi)) ∈ (x̄, fi(x̄)) + εBX×R}
.

2. ϕ-regular functions and ϕ-regular sets

In what follows, X is supposed to be Asplund and C to be the set of all continu-
ously differentiable convex functions ϕ : R+ := [0, +∞) → R+, that are strictly
increasing on R+ and satisfy ϕ(0) = ϕ′(0) = 0; limt→+∞ ϕ(t) = +∞.

Let f : X → R ∪ {+∞} be a lower semicontinuous function defined on X.

Definition 1 Let ϕ ∈ C be given. The function f is said to be ϕ-regular at
x̄ ∈ dom f with respect to x̄∗ ∈ ∂F f(x̄), if there exist reals t, δ > 0 such that

〈x∗, y − x〉 ≤ f(y) − f(x) + ϕ(t‖y − x‖) (2)

for all x and y satisfying (x, f(x)) ∈ B((x̄, f(x̄)), δ), y ∈ B(x̄, δ) and all x∗ ∈
B(x̄∗, δ) ∩ ∂F f(x).

Definition 2 Let C ⊆ X be a closed subset of X, x̄ ∈ C and x̄∗ ∈ N(C, x̄)
be given. If the indicator function δC is ϕ-regular at x̄ with respect to x̄∗,
then we will say that C is ϕ-regular at x̄ ∈ C with respect to x̄∗. When a
function f (respectively a set C) is ϕ-regular at x̄ with respect to all x∗ ∈ ∂F f(x̄)
(x∗ ∈ NF (C, x̄), respectively), then f (respectively C) is said to be ϕ-regular at
x̄.

The definition above is inspired by the notion of weak regularity introduced
in Jourani (2006), which generalizes the one of prox-regularity (when ϕ(t) := t2)
introduced by Poliquin & Rockafellar (2000) in R

n, then extended to the infinite
dimensional setting and studied by Bernard & Thibault (2004, 2005). The
following proposition characterizes ϕ-regularity:

Proposition 2 Let f : X → R ∪ {+∞} be a lower semicontinuous function
and let x̄ ∈ dom f, x̄∗ ∈ ∂F f(x̄) be given. Then the following two statements
are equivalent:

(i) There exists ϕ ∈ C such that f is ϕ-regular at x̄ with respect to x̄∗;

(ii) There exists a real γ > 0 such that for all ε > 0 we can find δ > 0 such that

〈x∗, y − x〉 ≤ f(y) − f(x) + ε‖y − x‖

for all x, y ∈ B(x̄, γ); ‖x − y‖ < δ; |f(x) − f(x̄)| < γ; x∗ ∈ B(x̄∗, γ) with
x∗ ∈ ∂F f(x).
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Proof. (i) ⇒ (ii) is obvious from the definition of C. The proof of (ii) ⇒ (i) is
inspired by Spingarn (1981). Let σ : X × X × X∗ → R ∪ {+∞} and ξ : R+ →
R+ ∪ {+∞} be the functions defined by

σ(x, y, x∗) :=







0 if x = y
〈x∗, y − x〉 − f(y) + f(x)

‖y − x‖
otherwise

and ξ(t) := sup{σ(x, y, x∗) : x, y ∈ B(x̄, γ), ‖x − y‖ ≤ t, |f(x) − f(x̄| < γ, x∗ ∈
∂F f(x) ∩ B(x̄∗, γ)} if t 6= 0, ξ(0) := 0. By (ii), for all ε > 0, there exists δ > 0
such that (0 ≤)ξ(t) ≤ ε, for all t ∈ (0, δ). As limt→0+

ξ(t) = 0, by virtue of
Spingarn (1981), Lemma 3.7, there is a continuously differentiable function α(·)
defined on [0, s] for some s > 0 such that α(0) = α′(0) = 0, and α(t) ≥ tξ(t)
for all t ∈ [0, s]. Also, similarly to the proof of Lemma 3.7 in Spingarn (1981),
let sn = s/2n, n ∈ N and set β(·) be the infimum of all the affine functions
l : R → R satisfying l(sn) ≥ α′(t) for all t ∈ (0, sn), n ∈ N. Then β is continuous,
nondecreasing on [0, s], satisfies β(0) = 0 and β ≥ α′ on [0, s]. Let β̄ : R+ → R+

be the function defined by β̄(t) = β(t) for t ∈ [0, s] and β̄(t) := β(s), otherwise.
Let ϕ : R+ → R+ given by

ϕ(t) :=

∫ t

0

β̄(r)dr + t2.

Then, obviously ϕ ∈ C and ϕ ≥ α on [0, s]. Furthermore, for all x, y ∈ B(x̄, s/2)
with x 6= y, |f(x) − f(x̄)| < γ, x∗ ∈ ∂F f(x) ∩ B(x̄∗, γ), one has (t := ‖x − y‖ ∈
(0, s))

σ(x, y, x∗) :=
〈x∗, y − x〉 − f(y) + f(x)

‖y − x‖
≤ ξ(t) ≤

ϕ(t)

t
=

ϕ(‖x − y‖)

‖x − y‖
,

that is, 〈x∗, y − x〉 ≤ f(y) − f(x) + ϕ(‖x − y‖), establishing the proof.

According to Ngai-Luc & Théra (2000), we recall that a function f is ap-
proximately convex around x̄ ∈ dom f if for each ε > 0, there is some δ > 0
such that for all x, y ∈ B(x̄, δ) and λ ∈ [0, 1], one has

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) + ελ(1 − λ)‖x − y‖. (3)

We will say that a function f is uniformly approximately convex around x̄ ∈
dom f if there exists a real γ > 0 such that for each ε > 0, there is some δ > 0
such that (3) holds for all x, y ∈ B(x̄, γ) with ‖x − y‖ < δ, λ ∈ [0, 1].

The class of approximately convex functions contains all convex functions
as well as strictly differentiable functions (see Ngai-Luc & Théra, 2000). Obvi-
ously, the class of uniformly approximately convex functions includes all lower
C1−functions. Note that in finite dimension, by a compact argument, it is easy
to observe that a function f is uniformly approximately convex around x0 if
and only if f is approximately convex at all points in a neighborhood of x0.
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Corollary 1 Let f : X → R ∪ {+∞} be a lower semicontinuous function. If
f is uniformly approximately convex at x̄ ∈ dom f , then f is ϕ-regular at x̄ for
some ϕ ∈ C.

Proof. The proof follows directly from Proposition 2 and Theorem 10 in Ngai &
Penot (2007).

We say that a mapping h is convexly C1,0−composite over an open subset
U of X if h is of the form h := f ◦ F where f : Z → R ∪ {+∞} is a lower
semicontinuous convex function defined on a Banach space Y and F : X → Z
is uniformly continuously differentiable over U.

The following corollary shows that convexly C1,0−composite functions are ϕ-
regular under the Robinson qualification condition. Prox-regularity of convexly
C1,1−composite functions (i.e., instead of the uniformly continuous differentia-
bility of F , we suppose that ∇F is locally Lipschitz) has been established by
Bernard & Thibault (2004).

Corollary 2 Let h = f ◦ F be a convexly C1,0−composite function over an
open subset U ⊆ X. Suppose that the following Robinson qualification condition
is satisfied at x̄ ∈ domh:

R+(dom f − F (x̄)) −∇F (x̄)(X) = Y.

Then for all x̄∗ ∈ ∂F h(x̄), there is ϕ ∈ C such that h is ϕ-regular at x̄ with
respect to x̄∗.

Proof. It suffices to show that statement (ii) in Proposition 2 is verified. It is
well known (see, for example, Combari, Poliquin & Thibault, 1999, or Theorem
10.6 (basic chain rule) in Rockafellar & Wets, 2002) that under the Robinson
qualification condition, for all x sufficiently close to x̄, say x ∈ B(x̄, γ), one has

∂F h(x) = {z∗ ◦ ∇F (x) : z∗ ∈ ∂f(F (x))}.

Let x̄∗ ∈ ∂F h(x̄). Moreover, observe from the proof of Proposition 2.4 in Bernard
& Thibault (2005) that there are c > 0, γ1 ∈ (0, γ) such that

‖z∗‖ ≤ c(1 + ‖x∗‖) for all x ∈ B(x̄, γ1), x∗ = z∗ ◦ ∇F (x), z∗ ∈ ∂f(F (x)).

Let ε > 0 be given. Since F is uniformly continuously differentiable on U , there
exists δ > 0 such that

‖F (y)−F (x)−∇F (x)(y−x)‖ ≤ ε‖x−y‖ for all x, y ∈ U, ‖x−y‖ < δ. (4)

Let x, y ∈ B(x̄, γ1) with ‖x− y‖ < δ, x∗ = z∗ ◦∇F (x) ∈ ∂F h(x)∩B(x̄∗, γ) with
z∗ ∈ ∂f(F (x)). By relation (4), one has

〈x∗, y − x〉 = 〈z∗,∇F (x)(y − x)〉
= 〈z∗, F (y) − F (x)〉 + 〈z∗,∇F (x)(y − x) − F (y) + F (x)〉
≤ f ◦ F (y) − f ◦ F (x) + c(1 + ‖x̄∗‖ + γ)ε‖y − x‖.
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This shows that statement (ii) in Proposition 2 is verified, and the proof is
complete.

The next theorem characterizes the ϕ-regularity of sets using the distance
function.

Theorem 2 Let C be a closed subset of X and x̄ ∈ C. Let ϕ ∈ C be given. Then
the following statements are equivalent:

(i) C is ϕ-regular at x̄ with respect to x̄∗ ∈ NF (C, x̄) ∩BX∗ , where BX∗ stands
for the closed unit ball in X∗;

(ii) There exist t, δ > 0 such that for all x, y ∈ B(x̄, δ) with either x ∈ C or
y ∈ C, x∗ ∈ ∂F dC(x)∩B(x̄∗, δ), one has 〈x∗, y−x〉 ≤ dC(y)−dC(x)+ϕ(t‖y−x‖).
As result, if dC is ϕ-regular at x̄ with respect to x̄∗, then so is C.

Proof. (ii) ⇒ (i). If (ii) is satisfied, there exist t, δ0 > 0 such that whenever
x, y ∈ B(x̄, δ0), y ∈ C or x ∈ C, x∗ ∈ ∂F dC(x) ∩ B(x̄∗, δ0), one has

〈x∗, y − x〉 ≤ dC(y) − dC(x) + ϕ(t‖x − y‖).

If ‖x̄∗‖ < 1 by picking δ = min{δ0, 1 − ‖x̄∗‖}, then for all x, y ∈ C ∩ B(x̄, δ),
x∗ ∈ N(C, x) ∩ B(x̄∗, δ), one has x∗ ∈ ∂F dC(x) ∩ B(x̄∗, δ0) and therefore

〈x∗, y − x〉 ≤ ϕ(t‖x − y‖),

showing that C is ϕ-regular at x̄ with respect to x̄∗.

Assume now that ‖x̄∗‖ = 1. Pick a δ ∈ (0, δ0) such that δ(2+δ)(1+δ)−1 < δ0.
Let x, y ∈ B(x̄, δ), x∗ ∈ N(C, x) ∩ B(x̄∗, δ). Then x∗/(1 + δ) ∈ ∂F dC(x) since
‖x∗‖ ≤ 1 + δ. Moreover,

‖(1 + δ)−1x∗ − x̄∗‖ ≤ (1 + δ)−1δ‖x∗‖+ ‖x∗ − x̄∗‖ < (1 + δ)−1δ(2 + δ) < δ0.

That is, (1 + δ)−1x∗ ∈ ∂F dC(x) ∩ B(x̄∗, δ0). Hence,

〈(1 + δ)−1x∗, y − x〉 ≤ ϕ(t‖x − y‖).

By the convexity of ϕ, (1+δ)ϕ(t‖x−y‖) ≤ ϕ((1+δ)t‖x−y‖), and consequently,
〈x∗, y−x〉 ≤ ϕ((1+δ)t‖x−y‖). This shows that C is ϕ-regular at x̄ with respect
to x∗.

(i) ⇒ (ii). Assume that there exist t, δ > 0 such that

〈x∗, y−x〉 ≤ ϕ(t‖x−y‖), for all x, y ∈ C∩B(x̄, δ), x∗ ∈ N(C, x)∩B(x̄∗, δ). (5)

Let x, y ∈ B(x̄, δ/2) with either x ∈ C or y ∈ C, x∗ ∈ ∂F dC(x) ∩ B(x̄∗, δ/2).
Let us consider the following two cases:

Case 1. x ∈ C. Let (yn) be a sequence with yn ∈ C, n ∈ N such that
limn→∞ ‖y − yn‖ = dC(yn). Without loss of generality, we can assume that
yn ∈ B(x̄, δ), ∀n ∈ N. One has
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〈x∗, y−x〉 = 〈x∗, y−yn〉 + 〈x∗, yn−x〉 ≤ ‖y−yn‖ + ϕ(t‖yn−x‖)
≤ ‖y−yn‖ + ϕ(t(‖yn−y‖ + ‖y−x‖)).

By letting n → ∞ and using the the fact dC(y) ≤ ‖y − x‖, one obtains the
desired inequality 〈x∗, y − x〉 ≤ dC(y) + ϕ(2t‖y − x‖).

Case 2. x /∈ C. By assumption, y ∈ C. By virtue of Proposition 1, we can
select sequences (xn) in C; (x∗

n) with x∗
n ∈ N(C, xn) such that

‖x − xn‖ → dC(x); ‖x∗ − xn‖ → 0; 〈x∗
n, x − xn〉 → dC(x).

Without loss of generality, assume that xn ∈ B(x̄, δ) and x∗
n ∈ B(x̄∗, δ) ∀n ∈ N.

From (5), one has

〈x∗
n, y − x〉 = 〈x∗

n, xn − x〉 + 〈x∗
n, y − xn〉

≤ 〈x∗
n, xn − x〉 + ϕ(2t‖y − xn‖)

≤ 〈x∗
n, xn − x〉 + ϕ(2t(‖y − x‖ + ‖x − xn‖)).

By letting n → ∞, one obtains 〈x∗, y − x〉 ≤ −dC(x) + ϕ(4t‖y − x‖) as desired.

Remark 1 ϕ-regularity of a set does not imply necessarily ϕ-regularity of the
corresponding distance function. Indeed, consider the following example from
Ngai & Penot (2006):

Given p ∈(1, 2), let E be the hypograph of the function f :r 7→|r|p from R to R :

E := {(r, s) ∈ R
2 : s ≤ |r|p}.

In Ngai & Penot (2006), it was shown that E is intrinsically p−paraconvex
around (0, 0) but dE is not p-paraconvex around (0, 0). Note that the intrinsi-
cal p−paraconvexity implies ϕ-regularity for sets with ϕ(t) := tp. On the other
hand, observe from Theorem 8, Ngai & Penot (2006) that in the finite dimen-
sional setting, for a locally Lipschitzian Fréchet regular function at a point,
p−paraconvexity and tp−regularity at this point are equivalent. Hence, there
exists x∗ ∈ ∂F dE(0, 0) = NF (E, (0, 0)) ∩ BR2 such that dE is not tp−regular at
(0, 0) with respect to x∗.

The following theorem establishes the equivalence between ϕ-regularity of
a function and its epigraph (see Theorem 3.5, Poliquin & Rockafellar, 2000,
and Theorem 4.1 in Bernard & Thibault, 2004, for a similar result concerning
prox-regularity).

Theorem 3 Let f : X → R ∪ {+∞} be a lower semicontinuous function and
let ϕ ∈ C be given. Let x̄ ∈ dom f, x̄∗ ∈ ∂F f(x̄). Then f is ϕ-regular at x̄ with
respect to x̄∗ if and only if epi f is ϕ-regular at (x̄, f(x̄)) with respect to (x̄∗,−1).

Proof. For the necessary part, let f be ϕ-regular at x̄ with respect to x̄∗. Then,
there are t, δ0 > 0 such that whenever x, y ∈ B(x̄, δ0), |f(x) − f(x̄)| < δ0, x∗ ∈
∂F f(x) ∩ B(x̄∗, δ0), one has 〈x∗, y − x〉 ≤ f(y) − f(x) + ϕ(t‖x − y‖).
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Pick δ ∈ (0, δ0) such that 0 < δ(1− δ)−1(1 + ‖x̄∗‖) < δ0. Let (y, α), (x, β) ∈
epi f ∩B((x̄, f(x̄)), δ), (x∗,−λ) ∈ NF (epi f, (x, β))∩B((x̄∗,−1), δ). We observe
that necessarily λ > 0 since δ ∈ (0, 1). It implies, obviously, that β = f(x).
Moreover, x∗/λ ∈ ∂F f(x), and by the triangle inequality,

‖x∗/λ − x̄∗‖ ≤ ‖x∗‖|1 − λ|/λ + ‖x∗ − x̄∗‖ < δ(1 + ‖x̄∗‖)/(1 − δ) < δ0.

Hence, 〈x∗/λ, y−x〉 ≤ f(y)−f(x)+ϕ(t‖x−y‖). Since f(y) ≤ α, this inequality
implies

〈x∗, y − x〉 − λ(α − f(x)) ≤ λϕ(t‖x − y‖) ≤ ϕ(t(1 + δ)‖x − y‖).

The necessary part is proved.
Conversely, let t, δ0 ∈ (0, 1) such that

〈x∗, y − x〉 − (f(y) − f(x)) ≤ ϕ(t‖y − x‖ + t|f(y) − f(x)|) (6)

whenever

(x, f(x)), (y, f(y)) ∈ B((x̄, f(x̄)), δ0);
(x∗,−1) ∈ NF (epi f, (x, f(x))) ∩ B((x̄∗,−1), δ0).

Since lims→0+
ϕ(s)/s = 0, there exists δ1 ∈ (0, δ0) such that ϕ(s) < s/t, ∀s ∈

(0, 4tδ1). Next, by the lower semicontinuity of f, we can pick δ ∈ (0, δ1/2)
such that 2δ(‖x̄∗‖ + δ) < δ1/2 and f(y) > f(x̄) − δ1, ∀y ∈ B(x̄, δ). Let now
x, y ∈ B(x̄, δ) with |f(x)−f(x̄)| < δ and x∗ ∈ ∂F f(x)∩B(x∗, δ). We distinguish
the following two cases :

Case 1. |f(y) − f(x̄)| ≥ δ1. Then f(y) − f(x̄) ≥ δ1. Consequently,

f(y) − f(x) ≥ δ1/2 ≥ 2δ(‖x̄∗‖ + δ) > ‖x∗‖‖y − x‖ ≥ 〈x∗, y − x〉.

Case 2. |f(y)−f(x̄)| < δ1(< δ0). From the relation (6) and by the convexity
of ϕ, one has

〈x∗, y − x〉 ≤ f(y) − f(x) + ϕ(2t‖y − x‖)/2 + ϕ(2t|f(y) − f(x)|)/2. (7)

On the other hand, since ‖x − y‖, |f(y) − f(x)| ∈ (0, 2δ1), then

ϕ(2t‖x − y‖) ≤ 2‖x − y‖ and ϕ(2t|f(y) − f(x)|) ≤ 2|f(y) − f(x)|.

Hence, if M := (‖x̄∗‖ + δ + 1)/2, we have

f(y) − f(x) > (〈x∗, y − x〉 − ‖x − y‖)/2 ≥ −M‖x − y‖.

If |f(y) − f(x)| > 2M‖x − y‖, then f(y) − f(x) > 2M‖x − y‖ and obviously,
one has 〈x∗, y − x〉 < f(y) − f(x); otherwise, from inequality (6) and using the
fact that the function ϕ is increasing, one obtains

〈x∗, y − x〉 ≤ f(y) − f(x) + ϕ((2M + 1)t‖y − x‖).
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Combining the two cases, we see that the final inequality always holds. The
proof is complete.

When f is locally Lipschitzian, the ϕ-regularity of f is equivalent to the one
of depi f for some compatible norm on X×R as shown in the following corollary.

Corollary 3 Let ϕ ∈ C be given. Let f : X → R∪ {+∞} be a function which
is locally Lipschitzian with rate c on some ball B(x̄, ρ). Suppose that X × R

is endowed with the norm given by ‖(x, r)‖ = c‖x‖ + |r|. Then f is ϕ-regular
at x̄ with respect to x̄∗ ∈ ∂F f(x̄) if and only if the distance function depi f is
ϕ-regular at (x̄, f(x̄)) with respect to (x̄∗,−1).

Proof. Denote by E := epi f. As shown in Ginsburg & Ioffe (1996), when X ×R

is endowed with the norm described in the statement, we can find ρ′ ∈ (0, ρ)
such that

dE(x, r) = (f(x) − r)+ := max{f(x) − r, 0}

for (x, r) ∈ B((x, f(x̄)), ρ′). Let f be ϕ-regular at x̄ with respect to x̄∗ ∈ ∂F f(x̄).
Then there are t > 0 and δ ∈ (0, ρ′) such that whenever x, y ∈ B(x̄, δ), |f(x) −
f(x̄)| < δ, x∗ ∈ B(x̄∗, δ) one has 〈x∗, y − x〉 ≤ f(y) − f(x) + ϕ(t‖x − y‖).

Let (x, α), (y, β) ∈ B((x̄, f(x̄)), δ), (x∗,−λ) ∈ ∂F dE((x, α))∩B((x̄∗ ,−1), δ).
Let us consider the following two cases.

Case 1. (x, α) /∈ E. Obviously, λ = 1 and x∗ ∈ ∂F f(x). Therefore,

〈(x∗,−1), (y, β) − (x, α)〉 ≤ f(y) − f(x) + ϕ(t‖x − y‖) + α − β
≤ dE((y, β)) − dE((x, α)) + ϕ(t‖(y, β) − (x, α)‖).

(8)

Case 2. (x, α) ∈ E. By Theorem 3, E is ϕ-regular at (x̄, f(x̄) with respect
to (x∗,−1). Then, from Theorem 2, we see that the inequality (8) also holds for
some t, δ > 0. Hence, dE is ϕ-regular at (x̄, f(x̄)) with respect to (x̄∗,−1).

Conversely, let dE be ϕ-regular at (x̄, f(x̄)) with respect to (x̄∗,−1). By
Proposition 2, so is E. The conclusion follows directly from Theorem 3.

Let us recall that a closed subset C ⊆ X is epi-Lipschitzian at x̄ ∈ C if there
exist h ∈ X and r > 0 such that

C ∩ B(x̄, r) + λB(h, r) ⊆ C ∀λ ∈ (0, r).

As a result of Corollary 3, we derive

Corollary 4 C is ϕ-regular at x̄ ∈ C with respect to x̄∗ ∈ NF (C, x̄) ∩ BX∗ if
and only if dC is ϕ-regular at x̄ with respect to x̄∗ for some compatible norm on
X.
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Proof. It suffices to notice that if C is epi-Lipschitzian at x̄ then C has a locally
Lipschitz representation at x̄. This means that there exist ρ, σ > 0, some hy-
perplane H of X and some u ∈ X with ‖u‖ = 1 such that X = H ⊕ Ru and
a Lipschitzian function f : B(x̄, ρ) ∩ H → R such that E ∩ B(x̄, σ) = {x + ru :
x ∈ B(x̄, ρ), f(x) ≤ r}.

3. Subdifferential characterization of ϕ-regular functions

Poliquin & Rockafellar (2000) established a subdifferential characterization of
the prox-regularity in the finite dimensional setting. This result has been ex-
tended to Hilbert spaces and latter to Banach spaces by Bernard & Thibault
(2005). In this section, we prove that such a characterization for ϕ-regular
functions in Asplund spaces holds. For this purpose, let us recall the notion of
localization operators of the subdifferential operators (see Poliquin & Rockafel-
lar, 2000).

Given a set-valued mapping T : X ⇉ X∗, we use the notation gphT for the
graph of T , that is the set of those points (x, x∗) ∈ X×X∗ such that x∗ ∈ T (x).
Let f : X → R ∪ {+∞} be a lower semicontinuous function and suppose that
(x̄, x̄∗) ∈ gph ∂F f and δ > 0 are given. We say that the operator Tδ : X ⇉ X∗

defined by

(x, x∗) ∈ gphTδ ⇐⇒ (x, f(x)) ∈ B((x̄, f(x̄)), δ), x∗ ∈ ∂F f(x)∩B(x̄∗ , δ)

is the f−attentive δ-localization of the Fréchet subdifferential ∂F f .
In order to generalize the concept of hypomonotonicity (with ϕ(t) := t2)

introduced by Poliquin & Rockafellar (2000), we say that T : X ⇉ X∗ is ϕ-
submonotone for some ϕ ∈ C, if there exists t > 0 such that

〈x∗ − y∗, x − y〉 ≥ −ϕ(t‖x − y‖) for all (x, x∗), (y, y∗) ∈ gphT.

Then, we have the following characterization of ϕ-regularity:

Theorem 4 Let f : X → R∪ {+∞} be a lower semicontinuous. Let ϕ ∈ C and
x̄ ∈ dom f, x̄∗ ∈ ∂F f(x̄). The following two statements are equivalent:

(i) f is ϕ- regular at x̄ with respect to x̄∗;

(ii) there exist t0, δ0 > 0 such that

〈x̄∗, y − x̄〉 ≤ f(y) − f(x̄) + ϕ(t0‖y − x̄‖) ∀y ∈ B(x̄, δ0) (9)

and the f−attentive δ0−localization Tδ0
of ∂F f is ϕ-submonotone.

Proof. (i) ⇒ (ii) is obvious from the definitions, while the proof of (ii) ⇒ (i)
is based on the Ekeland Variational Principle, and is inspired from Bernard &
Thibault (2004). Let t0 > 0 and δ0 ∈ (0, 1) as in (9) and that

〈x∗ − y∗, x − y〉 ≥ −ϕ(t0‖x − y‖) ∀(x, x∗), (y, y∗) ∈ gphTδ0
. (10)
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Let δ ∈ (0, δ0) and t ∈ (4t0, +∞) (made more precise later on). Fix (u, f(u)) ∈
B((x̄, f(x̄)), δ/4), u∗ ∈ ∂F f(u) ∩ B(x̄∗, δ/4), and define the function g : X →
R ∪ {+∞} by

g(x) := gt(x) =

{

f(x) + 〈u∗, u − x〉 + ϕ(t‖x − u‖) if x ∈ B(x̄, δ),
+∞ otherwise

where B(x̄, δ) stands for the closed ball with center x̄ and radius δ. For any
x ∈ B(x̄, δ)\B(x̄, δ/2), then by the triangle inequality, ‖x−u‖ ≥ δ/4. Therefore,
from (9), one has

g(x) ≥ f(x̄) + 〈x̄∗, x − x̄〉 − ϕ(t0‖x − x̄‖) + 〈u∗, x − u〉 + ϕ(t‖x − u‖)
≥ f(u) − (5‖x̄∗‖ + 2)δ/4 + ϕ(tδ/4) − ϕ(t0δ).

(11)

On the other hand, by the convexity of ϕ and noting that ϕ(0) = 0,

ϕ(tδ/4) − ϕ(t0δ) ≥ (1 − 4t0/t)ϕ(tδ/4) ≥ (1 − 4t0/t)ϕ(t)δ/4.

Combining this inequality and (11), we obtain

g(x) ≥ g(u)+(1−4t0/t)ϕ(t)δ/4−(5‖x̄∗‖+2)δ/4 ∀x ∈ B̄(x̄, δ)\B(x̄, δ/2). (12)

Since lims→+∞ ϕ(s) = +∞, we can fix t > 4t0 such that

(1 − 4t0/t)ϕ(t) > 5‖x̄∗‖ + 3.

Consequently, for this t,

g(x) > g(u) + δ/4 for all x ∈ B̄(x̄, δ) \ B(x̄, δ/2). (13)

Pick a positive sequence (εn)n∈N such that εn ∈ (0, δ/4), and εn → 0 as n
goes to ∞. By the lower semicontinuity of f (so is g), g is bounded below for δ
sufficiently small. Then, by virtue of the Ekeland Variational Principle, we can
select a sequence (xn)n∈N with xn ∈ B(x̄, δ), ∀n ∈ N such that

g(xn) < inf
X

g(x) + ε2
n, and g(xn) ≤ g(x) + εn‖x − xn‖ ∀x ∈ X. (14)

By relation (13), then, xn ∈ B(x̄, δ/2) for all n ∈ N. Thus

0 ∈ ∂F (g + εn‖ · −xn‖)(xn).

Applying the fuzzy sum rule, we can find sequences (un), (u∗
n), (vn), (v∗n) with

un, vn ∈ B(x̄, δ/2), u∗
n ∈ ∂F f(un), v∗n ∈ ∂F ϕ(t‖ · −u‖)(vn) such that for all

n ∈ N we have

‖un−xn‖ < εn; |f(un)−f(xn)| < εn; ‖vn−xn‖ < εn; ‖u∗
n−u∗+v∗n‖ < 2εn.

(15)
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Since v∗n ∈ ∂F ϕ(t‖ · −u‖)(vn), then v∗n = tϕ′(t‖vn − u‖)z∗n for some z∗n ∈ X∗,
‖z∗n‖ ≤ 1 and 〈z∗n, vn − u〉 = ‖vn − u‖. Therefore,

‖u∗
n − x̄∗‖ ≤ ‖u∗ − x̄∗‖ + ‖v∗n‖ + ‖u∗

n − u∗ + v∗n‖
< δ/4 + tϕ′(t(3δ/4 + εn)) + 2εn

< 3δ/4 + tϕ(tδ).

On the other hand,

f(un) < f(xn) + εn = g(xn) + 〈u∗, xn − u〉 − ϕ(t‖xn − u‖)
< f(u) + ε2

n + (‖x̄∗‖ + 1)δ < f(x̄) + (2‖x̄∗‖ + 3)δ/2.

Hence, we can find δ > 0 such that (note that lims→0+
ϕ′(s) = 0)

3δ/4 + tϕ(tδ) < δ0, and |f(un) − f(x̄)| < δ0, for all n ∈ N.
Thus (un, u∗

n) ∈ gphTδ0
, for all n ∈ N. According to the ϕ-submonotonicity (10)

of Tδ0
, one has

−ϕ(t0‖un − u‖) ≤ 〈u∗ − u∗
n, u − un〉 ≤ 〈v∗n, u − un〉 + 2εn‖u − un‖

≤ 〈v∗n, u − vn〉 + δ0‖un − vn‖ + 2εn‖u − un‖
= −t‖u − vn‖ϕ

′(t‖vn − u‖) + δ0‖un − vn‖ + 2εn‖u − un‖.

By noticing that ϕ(s) ≤ sϕ′(s), ∀s ∈ R+, one obtains

ϕ(t‖vn − u‖)− ϕ(t0‖un − u‖) ≤ δ0‖un − vn‖ + 2εn‖u − un‖. (16)

Let us show that ‖un − u‖ → 0 as n → +∞. Indeed, if this were not the case,
since ‖un − vn‖ → 0, without loss of generality, we may assume that for all
n ∈ N, ‖vn − u‖ > ‖un − vn‖. By the convexity of ϕ, one has

2ϕ(t‖un − u‖/2) ≤ ϕ(t(‖un − u‖ − ‖un − vn‖)) + ϕ(t‖un − vn‖)
≤ ϕ(t‖vn − u‖) + ϕ(t‖un − vn‖).

This inequality, with (16), implies

2ϕ(t‖un−u‖/2)−ϕ(t0‖un−u‖) ≤ ϕ(t‖un−vn‖)+δ0‖un−vn‖+2εn‖u−un‖.

Moreover, since t > 4t0, then ϕ(t0‖un − u‖) ≤ 2t0/tϕ(t‖un − u‖/2). Conse-
quently,

2(1 − t0/t)ϕ(t‖un − u‖/2) ≤ ϕ(t‖un − vn‖) + δ0‖un − vn‖ + 2εn‖u − un‖.

This shows that ϕ(t‖un−u‖) → 0, and therefore ‖un−u‖ → 0 as n → ∞ (since
ϕ is strictly increasing), a contradiction. Consequently, (xn) converges to u. By
definition of g and relation (14) as well, one obtains

f(u) ≤ f(x) + 〈u∗, u − x〉 + ϕ(t‖x − u‖) ∀x ∈ B(x, δ).

This means that f is ϕ-regular at x̄ with respect to x̄∗.
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4. Regularization of ϕ-regular functions

In this final section, we consider general regularizations of Moreau type for ϕ-
regular functions. Let us recall that X is said to be uniformly convex if for each
ε > 0 there exists δ(ε) > 0 such that whenever

‖x‖ = ‖y‖ = 1 and ‖x − y‖ ≥ ε then ‖x + y‖ ≤ 2(1 − δ(ε)).

Prototypes of uniformly convex spaces are the spaces ℓp and Lp (1 < p < +∞)
and uniformly convex spaces constitute a subclass of the class of reflexive spaces.
Suppose X is uniformly convex with a smooth norm. As it is well known (see
Diestel, 1975, Benyamini & Lindenstrauss, 2000, for instance), the modulus of
convexity of X is defined by

δ(ε) := inf{1 − ‖x − y‖/2 : ‖x‖ = ‖y‖ = 1, ‖x − y‖ ≥ ε}.

For s > 1, we note Js(x) := ∇(1
s‖ · ‖

s)(x), the s−duality mapping. Then, by
Xu & Roach (1991), Theorem 1, there exists a real b > 0 such that

〈Js(x)−Js(y), x−y〉 ≥ b max(‖x‖, ‖y‖)sδ
( ‖x − y‖

2 max(‖x‖, ‖y‖)

)

, for all x, y ∈ X.

(17)

X is said to be uniformly convex of power type p (p ≥ 2) if for some c > 0, δ(ε) ≥
cεp, ∀ε ∈ [0, 2] (see Diestel, 1975; Benyamini & Lindenstrauss, 2000).

For each x∗ ∈ X∗, s > 1 and t > 0, similarly to Poliquin & Rockafellar
(2000), we may define x∗−envelopes of a given lower semicontinuous function f
by

gx∗

t (w) = inf
x∈X

{

f(x) − 〈x∗, x〉 +
t

s
‖x − w‖s

}

, w ∈ X.

We note P x∗

t the corresponding argmin.

Theorem 5 Let ϕ ∈ C, and s > 1 such that for each τ > 0 there exists
c := c(τ) > 0 such that whenever ε ∈ [0, 2] and α ∈ [ε/2, 1], one has

cτ min{ǫs, αsδ(ε/α)} ≥ ϕ(τε).

Let f be ϕ- regular at x̄ ∈ dom f with respect to x̄∗ ∈ ∂F f(x̄). Suppose that there
exists a real m > 0 such that the function f(·) + m‖ · ‖s is bounded below on X.
Then there is t0 > 0 such that for all t > t0, the function gt := gx̄∗

t is of class
C1 on some neighborhood Ut of x̄ and the mapping Pt := P x̄∗

t (·) is a singleton
and continuous on Ut.
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Proof. First, we prove that for each t sufficiently large, there exists η > 0 such
that Pt(·) is singleton and continuous on B(x̄, η). Let b > 0 as in (17). Let
t0, η0 ∈ (0, 2/t0) with η0 < 1/2. For all x, y ∈ B(x̄, η0), |f(x)− f(x̄)| < η0, x∗ ∈
∂F f(x) ∩ B(x̄∗, η0) one has

〈x∗, y − x〉 ≤ f(y) − f(x) + ϕ(t0‖x − y‖). (18)

Let c > 0 such that ϕ(2t0ε) ≤ cαsδ(ε/2α), for all ε ∈ [0, 2], α ∈ [ε/2, 1], and
ϕ(ε) ≤ cεs for all ε ∈ [0, 2]. By assumption, f(x) ≥ m‖x‖s−a ∀x ∈ X, for some
a ∈ R; obviously, we can find t1 = t(η0) > t0 such that for all w ∈ B(x, η0/2),

gx∗

t (w)
= infx∈X

{

f(x) − 〈x∗, x〉 + t
s‖x − w‖s

}

= infx∈B(x̄,η0)

{

f(x) − 〈x∗, x〉 + t
s‖x − w‖s

}

.

Let t > max{sc2s−1t0, t1, c/b} be given. Let η ∈ (0, η0/2) with η < 2/t (made
more precise later). Take u, v ∈ B(x̄, η) and consider arbitrary minimizing
sequences (un) and (vn) of gt(u) and gt(v), respectively. Then, without loss of
generality, assume that un, vn ∈ B(x̄, η0) for all n ∈ N. Then, there exists a
sequence (εn) of nonnegative numbers converging to zero such that

f(un) − 〈x̄∗, un〉 +
t

s
‖un − u‖s < gt(u) + ε2

n;

f(vn) − 〈x̄∗, vn〉 +
t

s
‖vn − v‖s < gt(v) + ε2

n.

For all n ∈ N, by definition of gt, one has

f(un) − 〈x̄∗, un〉 +
t

s
‖un − u‖s < f(x̄) − 〈x̄∗, x̄〉 +

t

s
‖x̄ − u‖s + ε2

n.

By relation (18), and noticing that ϕ(ε) ≤ cεs, for each ε ∈ [0, 2], the preceding
yields

t

s
‖un − u‖s − cts0‖un − x̄‖s ≤

t

s
‖x̄ − u‖s + ε2

n.

Using the fact that αs/2 + βs/2 ≥ (α + β)s/2s, ∀α, β > 0, one gets

(

t

s2s−1
− cts0

)

‖un − x̄‖s ≤ 2
t

s
‖u − x̄‖s + ε2

n < 2tηs/s + ε2
n.

Equivalently, this amounts to saying that

‖un − x̄‖ < γn := γ(η, t, εn) :=

(

2ts−1ηs + ε2
n

ts−121−s − cts0

)1/s

. (19)
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Similarly, one has ‖vn − x̄‖ < γ(η, t, εn). Let us pick η sufficiently small such
that for all n sufficiently say big, n ≥ n0, f(x)−f(x̄) > −η0 ∀x ∈ B(x̄, γn +2εn)
and that

t(γn + η + εn)s−1 + 2εn < η0, (γn + 2εn)‖x̄∗‖ + tηss−1 + εn + ε2
n < η0.

By virtue of the Ekeland Variational Principle, we can select sequences (wn)
and (zn) such that

wn ∈ B(un, εn), f(wn) − 〈x̄∗, wn〉 +
t

s
‖wn − u‖s < gt(u) + ε2

n; (20)

zn ∈ B(vn, εn), f(zn) − 〈x̄∗, zn〉 +
t

s
‖zn − v‖s < gt(v) + ε2

n (21)

and

f(wn)−〈x̄∗, wn〉+
t

s
‖wn−u‖s≤f(x)−〈x̄∗, wn〉+

t

s
‖x−u‖s + εn‖x−wn‖ ∀x∈X ;

f(zn)−〈x̄∗, zn〉+
t

s
‖zn−v‖s ≤ f(x)−〈x̄∗, zn〉+

t

s
‖x−v‖s + εn‖x−zn‖ ∀x∈X.

Hence, applying the Fabian fuzzy sum rule (Theorem 1), we obtain the ex-
istence of sequences in X (w1

n), (z1
n) with (w1

n, f(w1
n)) ∈ B((wn, f(wn)), εn);

(z1
n, f(z1

n)) ∈ B((zn, f(zn)), εn); (u∗
n), (v∗n) with ‖u∗

n‖, ‖v
∗
n‖ ≤ 1 such that

x̄∗ − tJs(wn −u)+2εnu∗
n ∈ ∂F f(w1

n); x̄∗ − tJs(zn − v)+2εnv∗n ∈ ∂F f(z1
n).

Since ‖Js(wn − u)‖ ≤ ‖wn − u‖s−1 < (γn + η + εn)s−1 and

‖Js(zn − v)‖ ≤ ‖zn − v‖s−1 < (γn + η + εn)s−1

and using the definition of η, one has

x̄∗ − tJs(wn −u)+2εnu∗
n ∈ B(x̄∗, η0); x̄∗− tJs(zn − v)+2εnv∗n ∈ B(x̄∗, η0).

Moreover, by (20), (21), we derive

|f(w1
n) − f(x̄)|, |f(z1

n) − f(x̄)| < η0.

Therefore, from (18), we obtain

〈−tJs(wn −u)+2εnun + tJs(zn − v)−2εnvn, w1
n − z1

n〉 ≥ −2ϕ(t0‖w
1
n − z1

n‖).

On the other hand, by (17), one gets, for some constant M > 0 and for n ≥ n0

tb max(‖wn − u‖, ‖zn − v‖)sδ
(

‖(wn−zn)−(u−v)‖
2max(‖wn−u‖,‖zn−v‖)

)

− 2ϕ(t0‖wn − zn‖)

≤ M(‖u − v‖ + εn).

Thus,

tb/cϕ(2t0‖(wn − zn) − (u − v)‖) − 2ϕ(t0‖wn − zn‖) ≤ M(‖u − v‖ + εn).
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By the convexity of ϕ, then,

ϕ(2t0‖(wn − zn) − (u − v)‖) ≥ 2ϕ(t0‖wn − zn‖) − ϕ(2t0‖u − v‖).

Hence, 2(tb/c − 1)ϕ(t0‖wn − zn‖) ≤ tb/cϕ(2t0‖u − v‖) + M(‖u − v‖ + εn).
Consequently,

2(tb/c− 1)ϕ(t0‖un − vn‖) ≤ (2tb/c− 1)ϕ(2t0εn) + tb/cϕ(2t0‖u − v‖)

+M(‖u − v‖ + εn).

Since ϕ is a strictly increasing continuous function and ϕ(0) = 0, this inequality
shows clearly that for each u ∈ B(x̄, η), Pt(u) is nonempty, singleton, and
moreover, by letting n → ∞,

2(tb/c− 1)ϕ(t0‖Pt(u) − Pt(v)‖) ≤ tc/bϕ(2t0‖u − v‖) + M‖u − v‖,

for all u, v ∈ B(x̄, η). (22)

Consequently, Pt(·) is continuous on B(x̄, η).
Note that under the assumptions of the theorem, the function gt is locally

Lipschitzian (see Attouch, 1984). Let us show that gt is continuously differen-

tiable on B(x̄, η). For any u ∈ B(x̄, η), h ∈ X , if we note g↑t (u, h) the Clarke
generalized directional derivative of gt, then we have,

g↑t (u, h) = lim sup
(y,λ)→(u,0+)

1
λ(gt(y + λh) − gt(y))

≤ t
s lim sup
(y,λ)→(u,0+)

1
λ (‖y + λh − Pt(y)‖s − ‖y − Pt(y)‖s)

≤ t lim sup
(y,λ)→(u,0+)

sup
θ∈[0,1]

〈Js(y − Pt(y) + θλh), h〉 = t〈Js(u − Pt(u)), h〉.

Hence, g↑t (u, ·) = t〈Js(u − Pt(u)), ·〉 and ∂↑gt(u) = tJs(u − Pt(u)). Since the
norm on X is Fréchet differentiable (and convex), the s−duality mapping J(.)
is continuous. Thus, gt(.) is continuously differentiable on B(x̄, η). The proof is
complete.

When X is uniformly convex of power type p (p ≥ 2) and ϕ(t) := tp, as
well as s ∈ (1, p], then the inequality (22) tells us that Pt(·) is 1/p−Hölderian
continuous on B(x̄, η). Note that in this case, Theorem 5 subsumes a partial
extension of Theorem 5.3 and Theorem 5.5 in Bernard & Thibault (2004) .
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