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1. Introduction

Let Ω ⊆ R
N be a bounded domain with Lipschitz boundary ∂Ω. The problem

under consideration is as follows: Find u ∈W 1,p(Ω) such that

{
−∆pu(x) ∈ −∂j(x, u(x)) a.e. on Ω

∂u
∂n

|∂Ω = 0, 2 ≤ p <∞.
(1)

where −∆pu := − div
(
|Du|p−2Du

)
stands for the p-Laplacian operator. By

∂j(x, u) we denote the generalized gradient of Clarke (Clarke, 1983) of a locally
Lipschitz R ∋ ξ 7→ j(x, ξ) (for a.e. x ∈ Ω). For the right hand side of (1) we
suppose only that it satisfies the unilateral growth condition (Naniewicz, 1994)

j0(x; ξ,−ξ) ≤ κ(1 + |ξ|q), ∀ ξ ∈ R, for a.e. x ∈ Ω, q < p⋆, p⋆ =
Np

N − p
.
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Thus, the problem to be studied involves nonlinear, nonconvex function j(·, u)
which is not summable for every u ∈W 1,p

0 (Ω) and consequently, the correspond-
ing energy functional R(u) = 1

p
‖Du‖p

Lp(Ω;RN ) +
∫
Ω j(x, u(x)) dx has no longer

the whole space W 1,p(Ω) as its effective domain. The direct use of the crit-
ical point theory developed for locally Lipschitz functionals (Chang, 1981) is
therefore not available. We use the Galerkin method and solve the discretized
problems in finite dimensional subspaces of W 1,p(Ω) ∩ L∞(Ω) by making use
of the recession technique for semicoercive problems introduced in Naniewicz
(2003) and then pass to the limit to get a solution.

The class of hemivariational inequalities considered in the paper can be re-
ferred to as variational problems with discontinuities, widely studied recently.
For the Neumann problem involving p-Laplacian we refer to Papalini (2002)
where under the classical growth condition the existence and multiplicity of solu-
tions have been established. Dirichlet problems driven by the p-Laplacian can be
found in Gasiński & Papageorgiou (2001a, b), Papageorgiou & Papalini (2000),
Halidias & Naniewicz (2004), Naniewicz (2004) and the references therein. See
also Arcoya & Orsina (1997), Bouchala & Drabek (2000), Anane & Gossez
(1990) for such problems involving smooth potentials.

The notion of hemivariational inequalities has been first introduced in the
early eighties with the works of P.D. Panagiotopoulos (Panagiotopoulos 1981,
1983). The main reason for its birth was the need for description of important
problems in physics and engineering, where nonmonotone, multivalued bound-
ary or interface conditions occur, or where some nonmonotone, multivalued
relations between stress and strain, or reaction and displacement have to be
taken into account. The theory of hemivariational inequalities (as the general-
ization of variational inequalities, see Duvaut & Lions, 1972) has been proved to
be very useful in understanding of many problems of mechanics and engineering
involving nonconvex, nonsmooth energy functionals. For the general study of
hemivariational inequalities in both scalar and vector-valued function spaces the
reader is referred to Motreanu & Naniewicz (1996, 2001, 2002, 2003), Motreanu
& Panagiotopoulos (1995, 1996, 1999), Goeleven, Motreanu & Panagiotopoulos
(1997), Naniewicz (1995, 1997), Naniewicz & Panagiotopoulos (1995), Pana-
giotopoulos (1985, 1993), Radulescu (1993), Gasiński & Papageorgiou (2005)
and the references quoted there.

2. Mathematical background

Let us recall some facts and definitions from the critical point theory for locally
Lipschitz functionals and the generalized gradient of Clarke (Clarke, 1983).

Let Y be a subset of a Banach space X . A function f : Y → R is said to
satisfy a Lipschitz condition (on Y ) provided that, for some nonnegative scalar
K, one has

|f(y) − f(x)| ≤ K‖y − x‖X
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for all points x, y ∈ Y . Let f be Lipschitz near a given point x, and let v be any
vector in X . The generalized directional derivative of f at x in the direction v,
denoted by f0(x; v), is defined as follows:

f0(x; v) = lim sup
y→x
t↓0

f(y + tv) − f(y)

t

where y is a vector in X and t a positive scalar. If f is Lipschitz of rank K near
x then the function v → f0(x; v) is finite, positively homogeneous, subadditive
and satisfies the conditions |f0(x; v)| ≤ K‖v‖X and f0(x;−v) = (−f)0(x; v).
Now we are ready to introduce the generalized gradient ∂f(x) defined by Clarke
(1983):

∂f(x) = {w ∈ X∗ : f0(x; v) ≥
〈
w, v

〉
X

for all v ∈ X}.

Some basic properties of the generalized gradient of locally Lipschitz functionals
are as follows:

(a) ∂f(x) is a nonempty, convex, weakly-star compact subset of X⋆ and
‖w‖X⋆ ≤ K for every w in ∂f(x).

(b) For every v in X , one has

f0(x; v) = max{
〈
w, v

〉
: w ∈ ∂f(x)}.

(c) If f1, f2 are locally Lipschitz functions then

∂(f1 + f2) ⊆ ∂f1 + ∂f2.

Let us recall the (P.S.)-condition introduced by Chang (Chang, 1981):

Definition 1 A locally Lipschitz function f is said to satisfy the Palais - Smale
condition if any sequence {xn} along which |f(xn)| is bounded and

λ(xn) = min
w∈∂f(xn)

‖w‖X⋆ → 0

possesses a convergent subsequence.

Let us mention some facts about the first nonzero eigenvalue of the p-
Laplacian.

Consider the first nonzero eigenvalue λ1 of (−∆p,W
1,p(Ω)) for the p-Laplacian

with homogeneous Neumann boundary condition. It is well known (see Papalini,
2002) that λ1 > 0 and it is characterized by (Rayleigh quotient):

λ1 := inf

{
‖Dw‖p

Lp(Ω;RN )

‖w‖p

Lp(Ω)

: w ∈ W , w 6= 0

}
,
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where W :=
{
v ∈ W 1,p(Ω) :

∫
Ω
v(x) dx = 0

}
. Thus, for any v ∈ W we have

‖Dv‖p

Lp(Ω;RN )
≥ λ1‖v‖

p

Lp(Ω),

which means that the norms ‖D(·)‖Lp(Ω;RN ) and ‖·‖W 1,p(Ω) are equivalent on
W . Moreover, each eigenfunction w ∈ W corresponding to λ1 has the properties
that ‖Dw‖p

Lp(Ω;RN )
= λ1‖w‖

p

Lp(Ω) and it is a solution of the problem

{
−∆pw = λ1|w|p−2w a.e. on Ω
∂w
∂n

|∂Ω = 0, 2 ≤ p <∞.
(2)

Let f : X → R be a locally Lipschitz function on a Banach space. A point
x ∈ X is said to be a critical point if 0 ∈ ∂f(x) and c = f(x) is called a critical
value of f .

The results below characterize conditions under which the existence of crit-
ical points follows. They are due to Chang (Chang, 1981) and extend to a
nonsmooth setting the well known theorems of Ambrosetti and Rabinowitz.
They will be used to obtain the main results of the paper.

Theorem 1 If a locally Lipschitz function f : X → R on the reflexive Banach
space X satisfies the (PS)-condition and there exist a positive constant ρ > 0
and e ∈ X with ‖e‖ > ρ such that

max{f(0), f(e)} < inf
‖x‖=ρ

{f(x)},

then f has a critical point u ∈ X with its critical value c = f(u) characterized
by

c = inf
g∈G

max
t∈[0,1]

f(g(t))

where

G = {g ∈ C([0, 1], X) : g(0) = 0, g(1) = e}.

Theorem 2 Suppose that a reflexive Banach space X can be represented as
X = X1⊕X2 with a finite dimensional X1. Let f : X → R be a locally Lipschitz
function satisfying the (PS)-condition and there exist positive constants b1 < b2
and a neighborhood N of 0 in X1 such that

inf
x∈X2

{f(x)} ≥ b2,

inf
x∈∂N

{f(x)} ≤ b1,

∂N being the boundary of N . Then f has a critical point.
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3. Auxiliary results

It is well known that not vanishing constant functions on Ω are eigenfunctions
corresponding to the first eigenvalue λ0 = 0 of the p-Laplacian in W 1,p(Ω). Let
us denote by V0 = {sθ}s∈R the one-dimensional subspace of W 1,p(Ω) spanned
by a constant function θ ∈ W 1,p(Ω) normalized by θ > 0 and ‖θ‖W 1,p(Ω) = 1

(θ(x) = θ0 := 1/|Ω|
1
p for a.e. x ∈ Ω). Concerning the first nonzero eigenvalue

we know that (see Papalini, 2002)

λ1 := inf

{
‖Dw‖p

Lp(Ω;RN )

‖w‖p

Lp(Ω)

: w ∈ W , w 6= 0

}
,

is positive, i.e. λ1 > 0, where W :=
{
w ∈W 1,p(Ω) :

∫
Ωw(x) dx = 0

}
, and if

w ∈ W has the properties that ‖w‖p

Lp(Ω) = 1 and ‖Dw‖p

Lp(Ω;RN )
= λ1 then w is

the normalized eigenfunction of the problem

{
−∆pw = λ1|w|

p−2w a.e. in Ω
∂w
∂n

|∂Ω = 0.
(3)

Thus, for any u ∈ W 1,p(Ω) we have the decomposition u = eθ + û with e =∣∣∫
Ω
u(x) dx

∣∣ ≥ 0, û ∈ W and θ ∈ {±θ} ⊂ V0, for which

‖Dû‖p

Lp(Ω;RN ) ≥ λ1 ‖û‖
p

Lp(Ω). (4)

Hence the equivalence of the norms ‖D(·)‖Lp(Ω;RN ) and ‖·‖W 1,p(Ω) on W results.

Lemma 1 Assume that
(H1) j(·, 0) ∈ L1(Ω) and j(x, ·) is Lipschitz continuous on the bounded subsets

of R uniformly with respect to x ∈ Ω, i.e., ∀ r > 0 ∃Kr > 0 such that
∀ |y1|, |y2| ≤ r,

|j(x, y1) − j(x, y2| ≤ Kr|y1 − y2|, for a.e. x ∈ Ω;

(H2) One of the two conditions below holds (the Ambrosetti-Rabinowitz type
conditions):

(i) There exist µ > p, 1 ≤ σ < p, a ∈ L1(Ω) and a constant k ≥ 0 such
that

µj(x, ξ)− j0(x, ξ; ξ) ≥ −a(x)−k|ξ|σ, ∀ ξ ∈ R and for a.e. x ∈ Ω;

(ii) There exist 0 < ν < p, 1 ≤ σ < p, a ∈ L1(Ω) and a constant k ≥ 0
such that

−νj(x, ξ)−j0(x, ξ;−ξ) ≥ −a(x)−k|ξ|σ, ∀ ξ ∈ R and for a.e. x ∈ Ω;



732 Z. NANIEWICZ

(H3) Suppose that J∞(θ) > 0 for each θ ∈ {±θ}, where

J∞(θ) := lim inf
t→+∞
η−→θ

Lp(Ω)

∫

Ω

−j0
(
x, tη(x);−θ(x)

)
dx, θ ∈ {±θ},

is the recession function of nonconvex, nonsmooth J(·) =
∫
Ω j(x, ·) dx as

introduced in Naniewicz (2003) to study semicoercive problems (see also
Goeleven & Théra, 1995; Baiocchi, Buttazzo, Gastaldi & Tomarelli, 1988).

Moreover, suppose that for a sequence {un} ⊂ W 1,p(Ω) ∩ L∞(Ω) there exists
εn ց 0 such that the conditions below are fulfilled:

∫

Ω

|Dun(x)|p−2
〈
Dun(x), Dv(x) −Dun(x)

〉
RN dx

+

∫

Ω

j0
(
x, un(x); v(x) − un(x)

)
dx ≥ −εn‖v − un‖W 1,p(Ω),

∀ v ∈ Lin({un, θ}), (5)

and
∣∣∣∣
1

p

∫

Ω

|Dun(x)|p dx+

∫

Ω

j
(
x, un(x)

)
dx

∣∣∣∣ ≤ C, C > 0, (6)

where Lin({un, θ}) is the linear subspace of W 1,p(Ω) spanned by {θ, un}. Then
the sequence {un} is bounded in W 1,p(Ω), i.e. there exists M > 0 such that

‖un‖W 1,p(Ω) ≤M. (7)

Proof. Suppose, on the contrary, that the claim is not true, i.e. there exists a
sequence {un}∞n=1 ⊂ W 1,p(Ω) ∩ L∞(Ω) with ‖un‖W 1,p(Ω) → ∞, for which (5)
and (6) hold. Under (H2)(i), combining (6) multiplied by µ > p with (5) (with
v = 2un substituted) we get

µC + εn‖un‖W 1,p(Ω) ≥
µ−p

p
‖Dun‖

p

Lp(Ω;RN )
+

∫

Ω

(
µj(un) − j0(un;un)

)
dx. (8)

From (4) the decomposition results: un = enθn + ûn, where en =
∣∣∫

Ω
un dx

∣∣,
ûn ∈ W , θn ∈ {±θ}, ‖θ‖W 1,p(Ω) = 1, such that

‖Dûn‖
p

Lp(Ω;RN )
≥ λ1 ‖ûn‖

p

Lp(Ω). (9)

Since Dun = Dûn, by (H2)(i) we have

µC + εn‖un‖W 1,p(Ω) ≥
µ−p

p
‖Dun‖

p

W 1,p(Ω) − c1‖un‖
σ
Lp(Ω) − ‖a‖L1(Ω) (10)

≥ cµ−p
p

‖ûn‖
p

W 1,p(Ω) − c2‖un‖
σ
W 1,p(Ω) − ‖a‖L1(Ω). (11)
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Hence

µC+εn(‖ûn‖W 1,p(Ω)+en)≥cµ−p
p

‖ûn‖
p

W 1,p(Ω)−c3‖ûn‖
σ
W 1,p(Ω)−c4e

σ
n−‖a‖L1(Ω).

(12)

Thus, it follows that en → ∞ because, otherwise, we would get the boundedness
of {ûn} and consequently, the boundedness of {un} in W 1,p(Ω), contrary to our
supposition. Dividing (12) by en we obtain the estimate

µC+‖a‖
L1(Ω)

en
+ εn(‖ bun

en
‖W 1,p(Ω) + 1) ≥ ep−1

n cµ−p
p

‖ bun

en
‖p

W 1,p(Ω)

−c3e
σ−1
n ‖ bun

en
‖σ

W 1,p(Ω) − c4e
σ−1
n (13)

which, in view of en → ∞ and σ < p, allows for the conclusion that

‖ bun

en
‖W 1,p(Ω) → 0. (14)

Now, let us turn back to (5). By passing to a subsequence one can suppose also
that θn = θ (or θn = −θ). Thus, substituting v = ûn into (5) yields

ep
n

∫

Ω

|D( bun

en
) +Dθ)|p−2

〈
D( bun

en
) +Dθ),−Dθ

〉
RN dx

+en

∫

Ω

j0
(
en( bun

en
+ θ);−θ

)
dx ≥ −εnen.

In view of Dθ = 0 this gives
∫

Ω

j0
(
en( bun

en
+ θ);−θ

)
dx ≥ −εn (15)

and consequently

J∞(θ) ≤ lim sup
n→∞

∫

Ω

−j0
(
en( bun

en
+ θ);−θ

)
dx ≤ 0, (16)

the contradiction with (H3).
Under (H2)(ii), combining (6) multiplied by ν < p with (5) (with v = 0

substituted), we arrive at

νC+ εn‖un‖W 1,p(Ω) ≥
p−ν

p
‖Dun‖

p

Lp(Ω;RN )
+

∫

Ω

(
−νj(un)− j0(un;−un)

)
dx.

Now we can proceed as previously to establish the result. The proof of Lemma 1
is complete.

Lemma 2 Assume that (H1) and the hypotheses below hold:
(H4) The unilateral growth condition (Naniewicz, 1994):
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There exist 1 ≤ q < p⋆, p⋆ = Np
N−p

, and a constant κ ≥ 0 such that

j0(x, ξ;−ξ) ≤ κ(1 + |ξ|q), ∀ ξ ∈ R and for a.e. x ∈ Ω;

(H5) Uniformly for a.e. x ∈ Ω,

lim inf
ξ→0

pj(x, ξ)

|ξ|p
≥ ϕ(x) ≥ 0,

with ϕ(x) ∈ L∞(Ω), ϕ(x) > 0 on a set of positive measure of Ω and
ϕ(x) < λ1 for a.e. x ∈ Ω.

Then there exists ρ > 0 such that

R(u) := 1
p
‖Du‖p

Lp(Ω;RN ) +

∫

Ω

j(u) dx ≥ η, η = const > 0, (17)

is valid for any u ∈W 1,p(Ω) ∩ L∞(Ω) with ‖u‖W 1,p(Ω) = ρ.

Proof. Suppose the assertion is not true. Thus, there exist sequences {un} ⊂
W 1,p(Ω) ∩ L∞(Ω) and ρn ց 0 such that ‖un‖W 1,p(Ω) = ρn and R(un) ≤ ρ p+1

n .
So we have

‖Dun‖
p

Lp(Ω;RN ) +

∫

Ω

pj(un) dx ≤ pρ p+1
n . (18)

Further, from (H5) it follows that for any ε > 0 one can find δ > 0 such that

pj(x, ξ) ≥ ϕ(x)|ξ|p − ε|ξ|p, |ξ| ≤ δ, uniformly for all x ∈ Ω.

Moreover, (H4) allows to conclude that (see Lemma 2.1, pp. 119-120, Naniewicz,
1997):

j(x, ξ) ≥ −κ1(1 + |ξ|q), ∀ ξ ∈ R, x ∈ Ω; κ1 = const > 0.

Thus, it is easy to see that

pj(x, ξ) ≥ (ϕ(x) − ε)|ξ|p − γ|ξ|q, ∀ ξ ∈ R, x ∈ Ω,

for some positive constant γ = γ(δ) > 0. Then, by (18) it follows that

‖Dun‖
p

Lp(Ω;RN )
+

∫

Ω

(ϕ(x) − ε)|un(x)|p dx

≤ pρ p+1
n + γ

∫

Ω

|un(x)|q dx

≤ pρ p+1
n + γ1‖un‖

q

W 1,p(Ω).
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Taking into account that un = ûn + enθn, ûn ∈ W , en =
∣∣∫

Ω
un dx

∣∣, θn ∈ {±θ}
and ‖Dûn‖

p

Lp(Ω;RN )
≥ λ1‖ûn‖

p

Lp(Ω) we obtain

‖Dûn‖
p

Lp(Ω;RN ) − λ1‖ûn‖
p

Lp(Ω) +

∫

Ω

(ϕ(x) − ε)|ûn(x) + enθn|
p dx

+

∫

Ω

λ1|ûn(x)|p dx ≤ pρ p+1
n + γ1ρ

q
n.

Hence

‖Dûn‖
p

Lp(Ω;RN )
− λ1‖ûn‖

p

Lp(Ω) +

∫

{ϕ<ε}

(
ϕ(x) − ε

)
|ûn(x) + enθn|

p dx

+

∫

Ω

λ1|ûn(x)|p dx +

∫

{ϕ>ε}

(
ϕ(x) − ε

)
|ûn(x) + enθn|

p dx ≤ pρ p+1
n + γ1ρ

q
n.

By the inequality |a± b|p ≥ 1
2p−1 |a|p − |b|p, a, b ∈ R, it follows that

‖Dûn‖
p

Lp(Ω;RN )
− λ1‖ûn‖

p

Lp(Ω) +

∫

{ϕ<ε}

(
ϕ(x) − ε

)
|ûn(x) + enθn|

p dx

+

∫

{ϕ>ε}

(
(ϕ(x) − ε)

( ep
n

2p−1 |θ|
p − |ûn|

p
)

+ λ1|ûn|
p
)
dx ≤ pρ p+1

n + γ1ρ
q
n.

This can be written as

‖Dûn‖
p

Lp(Ω;RN )
− λ1‖ûn‖

p

Lp(Ω) +

∫

{ϕ<ε}

(
ϕ(x) − ε

)
|ûn(x) + enθn|

p dx

+
ep

n

2p−1|Ω|

∫

{ϕ>ε}

(
ϕ(x)−ε

)
dx+

∫

{ϕ>ε}

(
λ1−ϕ(x) + ε

)
|ûn|

p dx ≤ pρ p+1
n + γ1ρ

q
n.

Let us set yn = 1
bρn
ûn, where ρ̂n := ‖Dûn‖Lp(Ω;RN ). Dividing this inequality by

ρ̂ p
n yields

‖Dyn‖
p

Lp(Ω;RN )
− λ1‖yn‖

p

Lp(Ω) +

∫

{ϕ<ε}

(
ϕ(x) − ε

)
|yn(x) + en

bρn
θn|

p dx

+
(

en

bρn

)p 1
2p−1|Ω|

∫

{ϕ>ε}

(
ϕ(x) − ε

)
dx+

∫

{ϕ>ε}

(
λ1 − ϕ(x) + ε

)
|yn|

p dx

≤
(

ρn

bρn

)p(
pρn + γ1ρ

q−p
n

)
.

By making use of the inequality |a1 + a2|p ≤ 2p−1(|a1|p + |a2|p), a1, a2 ∈ R, we
obtain

‖Dyn‖
p

Lp(Ω;RN )
− λ1‖yn‖

p

Lp(Ω) + 2p−1

∫

{ϕ<ε}

(
ϕ(x) − ε

)
|yn(x)|p dx

+
(

en

bρn

)p 2p−1

|Ω|

∫

{ϕ<ε}

(
ϕ(x) − ε

)
dx+

(
en

bρn

)p 1
2p−1|Ω|

∫

{ϕ>ε}

(
ϕ(x) − ε

)
dx

+

∫

{ϕ>ε}

(
λ1 − ϕ(x) + ε

)
|yn|

p dx ≤
(

ρn

bρn

)p(
pρn + γ1ρ

q−p
n

)
.
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Further, notice that

(
ρn

ρ̂n

)p

=1+

(
‖un‖Lp(Ω)

ρ̂n

)p

≤1+

(
‖ûn‖Lp(Ω)

‖Dûn‖Lp(Ω;RN )

)p

+

(
en

ρ̂n

)p

‖θn‖
p

Lp(Ω)

≤ 1 +
2p−1

λ1
+ 2p−1

(
en

ρ̂n

)p

.

Thus, we arrive at the estimate

‖Dyn‖
p

Lp(Ω;RN )
− λ1‖yn‖

p

Lp(Ω) + 2p−1

∫

{ϕ<ε}

(
ϕ(x) − ε

)
|yn(x)|p dx

+
(

en

bρn

)p
(

2p−1

|Ω|

∫

{ϕ<ε}

(
ϕ(x) − ε

)
dx+ 1

2p−1|Ω|

∫

{ϕ>ε}

(
ϕ(x) − ε

)
dx

−2p−1(pρn + γ1ρ
q−p
n )

)
+

∫

{ϕ>ε}

(
λ1 − ϕ(x) + ε

)
|yn|

p dx

≤ (1 + 2p−1

λ1
)
(
pρn + γ1ρ

q−p
n

)
.

By (H5) and ρn → 0 it follows that for sufficiently large n and small ε > 0,

2p−1

|Ω|

∫

{ϕ<ε}

(
ϕ(x)−ε

)
dx+ 1

2p−1|Ω|

∫

{ϕ>ε}

(
ϕ(x)−ε

)
dx−2p−1(pρn−γ1ρ

q−p
n )≥γ0,

γ0 > 0,

which leads to

‖Dyn‖
p

Lp(Ω;RN ) − λ1‖yn‖
p

Lp(Ω) + 2p−1

∫

{ϕ<ε}

(
ϕ(x) − ε

)
|yn(x)|p dx

+
(

en

bρn

)p
γ0 +

∫

{ϕ>ε}

(
λ1 − ϕ(x) + ε

)
|yn|

p dx ≤ (1 + 1
λ1

)
(
pρn + γ1ρ

q−p
n

)
.

(19)

Thus, { en

bρn
} is bounded. Further, since the norm ‖D(·)‖Lp(Ω;RN ) is equivalent to

the usual norm ‖·‖W 1,p(Ω) on W =
{
v ∈W 1,p(Ω):

∫
Ω v dx = 0

}
, yn ∈ W and

‖Dyn‖Lp(Ω;RN ) = 1, we get the boundedness of {yn} in W 1,p(Ω). This, together
with the boundedness of { en

bρn
}, allows to conclude that for some y ∈ W 1,p(Ω),

e0 ∈ R+ and θ0 ∈ {±θ} a subsequence can be extracted (again denoted by the
same symbol) such that yn ⇀ y weakly in W 1,p(Ω), yn → y strongly in Lp(Ω)
(the Rellich theorem), en

bρn
→ e0 and θn = θ0. Passing to the limit with n → ∞

in (19) and taking into account the weak lower semicontinuity of the norm leads
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to the inequality

‖Dy‖p

Lp(Ω;RN )
− λ1‖y‖

p

Lp(Ω) + 2p−1

∫

{ϕ<ε}

(
ϕ(x) − ε

)
|y(x)|p dx

+ep
0γ0 +

∫

{ϕ>ε}

(
λ1 − ϕ(x) + ε

)
|y|p dx ≤ 0,

which is valid for an arbitrary ε > 0. Therefore we get

‖Dy‖p

Lp(Ω;RN ) − λ1‖y‖
p

Lp(Ω) + ep
0γ0 +

∫

Ω

(λ1 − ϕ)|y|p dx ≤ 0. (20)

Using the quotient characterization of λ1 and (H5) we arrive at e0 = 0 and

‖Dy‖p

Lp(Ω;RN )
= λ1‖y‖

p

Lp(Ω), (21)
∫

Ω

(
λ1 − ϕ(x)

)
|y(x)|p dx = 0. (22)

Now we show that y 6= 0. Indeed, from the results obtained it follows that

‖Dyn‖
p

Lp(Ω;RN )
− λ1‖yn‖

p

Lp(Ω) → 0

and by the compactness of the imbedding W 1,p(Ω) ⊂ Lp(Ω) we get

‖yn‖Lp(Ω) → ‖y‖Lp(Ω).

Since ‖Dyn‖Lp(Ω;RN ) = 1, we arrive at ‖y‖p

Lp(Ω) = 1
λ1

which establishes the

assertion. Finally, in view of y 6= 0 the contradiction between (22) and (H5) is
clearly seen. The proof of Lemma 2 is complete.

Lemma 3 Assume the hypotheses (H1), (H3) and
(H4)1 There exists 1 ≤ s < p and a constant κ ≥ 0 such that

j0(x, ξ;−ξ) ≤ κ(1 + |ξ|s), ∀ ξ ∈ R and for a.e. x ∈ Ω.

Moreover, suppose that for a sequence {un} ⊂ W 1,p(Ω) ∩ L∞(Ω) there exists
εn ց 0 such that the condition below is fulfilled:

∫

Ω

|Dun(x)|p−2
〈
Dun(x), Dv(x) −Dun(x)

〉
RN dx

+

∫

Ω

j0
(
x, un(x); v(x) − un(x)

)
dx ≥ −εn‖v − un‖W 1,p(Ω),

∀ v ∈ Lin({un, θ}). (23)

where Lin({un, θ}) is the linear subspace of W 1,p(Ω) spanned by {θ, un}. Then
the sequence {un} is bounded in W 1,p(Ω), i.e. there exists M > 0 such that

‖un‖W 1,p(Ω) ≤M. (24)
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Proof. Suppose, on the contrary, that the claim is not true, i.e. there exists a
sequence {un}∞n=1 ⊂ W 1,p(Ω) ∩ L∞(Ω) with ‖un‖W 1,p(Ω) → ∞ for which (23)
holds. By substituting v = 0 into (23) we obtain

εn‖un‖W 1,p(Ω) ≥ ‖Dun‖
p

Lp(Ω;RN )
−

∫

Ω

j0(un;−un) dx. (25)

Taking into account the decomposition: un = enθn + ûn, where en =
∣∣∫

Ω
un dx

∣∣,
ûn ∈ W , θn ∈ {±θ}, ‖θ‖W 1,p(Ω) = 1, in view of Dun = Dûn and (H4)1 we have

εn‖un‖W 1,p(Ω) ≥ ‖Dûn‖
p

Lp(Ω;RN )
− κ‖un‖

s
Ls(Ω) − κ|Ω|

≥ c‖ûn‖
p

W 1,p(Ω) − c1‖un‖
s
W 1,p(Ω) − κ|Ω|. (26)

Hence

εn(‖ûn‖W 1,p(Ω) + en) ≥ c‖ûn‖
p

W 1,p(Ω) − c2‖ûn‖
s
W 1,p(Ω) − c3e

s
n − κ|Ω|. (27)

Thus, it follows that en → ∞ because, otherwise, we would get the boundedness
of {ûn} and consequently, the boundedness of {un} in W 1,p(Ω), contrary to our
supposition. Dividing (27) by en leads to the estimate

εn(‖ bun

en
‖W 1,p(Ω) + 1) ≥ ep−1

n c‖ bun

en
‖p

W 1,p(Ω) − c2e
s−1
n ‖ bun

en
‖s

W 1,p(Ω)

−c3e
s−1
n − κ|Ω|

en
, (28)

which, in view of en → ∞ and s < p, allows for the conclusion that

‖ bun

en
‖W 1,p(Ω) → 0. (29)

Then, we proceed like in the proof of Lemma 1.

Lemma 4 Assume that (H1)-(H2) hold. Moreover, let
(H6)

∫
Ω
j(x, 0) dx ≤ 0 and either

lim inf
s→+∞

∫

Ω

j(x, s) dx < 0, (30)

or

lim inf
s→−∞

∫

Ω

j(x, s) dx < 0, (31)

or there exists v0 ∈ W 1,p(Ω) ∩ L∞(Ω) such that (Motreanu & Pana-
giotopoulos, 1999):

lim inf
s→+∞

s−σ

∫

Ω

j
(
x, sv0(x)

)
dx <

k

σ − µ
‖v0‖

σ
Lσ(Ω) (32)

with the positive constants k, µ, σ entering (H2).
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Then there exists e ∈ W 1,p(Ω) ∩ L∞(Ω), e 6= 0, such that

R(se) ≤ 0, ∀ s ≥ 1.

Proof. If (30) or (31) is fulfilled then the assertion holds for e = s0θ, or e =
s0(−θ) with sufficiently large s0 > 0, respectively.

For the case (32) we follow the lines of Motreanu & Panagiotopoulos (1999). For
all τ 6= 0, ξ ∈ R, the formula below of the generalized gradient (with respect to
τ) holds

∂τ (τ−µj(x, τξ)) = τ−µ−1[−µj(x, τξ) + ∂ξj(x, τξ)(τξ)],

for the constant µ > p fulfilling (H2). Since the function τ 7→ τ−µj(x, τξ) is
differentiable a.e. on R, the equality above and a classical property of Clarke’s
generalized directional derivative imply that

t−µj(x, tξ) − j(x, ξ) =

∫ t

1

d

dτ
(τ−µj(x, τξ))dτ

≤

∫ t

1

τ−µ−1[−µj(x, τξ) + j0(x, τξ; τξ)]dτ, ∀ t > 1, a.e. x ∈ Γ, ξ ∈ R.

In view of assumption (H2) we infer that

t−µj(x, tξ) − j(x, ξ) ≤

∫ t

1

τ−µ−1[a(x) + kτσ|ξ|σ] dτ

=

[
a(x)

(
−

1

µ
t−µ +

1

µ

)
+ k|ξ|σ

( 1

σ − µ
tσ−µ −

1

σ − µ

)]

≤ µ−1a(x) + (µ− σ)−1k|ξ|σ, ∀ t > 1, a.e. x ∈ Γ, ξ ∈ R. (33)

Set ξ = sv0(x) with x ∈ Γ and s > 0. We find from (33) the estimate

j(x, tsv0(x)) ≤ tµ[j(x, sv0(x)) + µ−1a(x)

+(µ− σ)−1ksσ|v0(x)|
σ ], ∀ t > 1, s > 0, a.e. x ∈ Γ. (34)

Combining (34) with (32) yields

R(tsv0) ≤
1
p
tpsp‖Dv0‖

p

Lp(Ω;RN )

+tµsσ
[
s−σ

∫

Ω

j(x, sv0(x))dx + k(µ− σ)−1‖v0‖
σ
Lσ(Ω) + s−σµ−1‖a‖L1(Ω)

]
,

∀ t > 1, s > 0. (35)

Assumption (32) allows for fixing some number s0 > 0 such that

s−σ

∫

Ω

j(x, sv0(x))dx + k(µ− σ)−1
(
‖v0‖

σ
Lσ(Ω)

)
+ s−σµ−1

(
‖a‖L1(Ω)

)
< 0.
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With such an s0 > 0 we can pass to the limit as t → +∞ in (35) and obtain
(in view of µ > p) that R(ts0v0) → −∞ as t→ +∞. Consequently, setting e =
t0s0v0 with sufficiently large t0 > 0 we establish the assertion. This completes
the proof of Lemma 4.

4. Finite dimensional approximation

Let Λ be the family of all finite dimensional subspaces F of W 1,p(Ω) ∩ L∞(Ω)
including θ and an element e as constructed in the proof of Lemma 4.

For every subspace F ∈ Λ we introduce the functional RF : F → R which is
the restriction of R to F , i.e.

RF (v) = 1
p
‖Dv‖p

Lp(Ω;RN ) +

∫

Ω

j
(
x, v(x)

)
dx, ∀ v ∈ F. (36)

It is obvious that the functional RF is locally Lipschitz and its generalized
gradient is expressed by

∂RF (v) ⊂ i⋆FAiF v + i
⋆

F ∂J (v), ∀ v ∈ F, (37)

where iF : F → W 1,p(Ω), iF : F → L∞(Ω) are the inclusion maps with their
dual projections i⋆F : (W 1,p(Ω))⋆ → F ⋆ and i

⋆

F : L1(Ω) → F ⋆, respectively,
while A : W 1,p(Ω) → (W 1,p(Ω))⋆ is defined by

〈
Au, v

〉
W 1,p(Ω)

=

∫

Ω

|Du|p−2
〈
Du,Dv

〉
RN dx. (38)

By ∂F(·) the generalized Clarke gradient of J : L∞(Ω) → R given by

J (v) =

∫

Ω

j(x, v(x)) dx, ∀ v ∈ L∞(Ω)

have been denoted. Notice that in view of (H1), the functional J is locally
Lipschitz on L∞(Ω), so the generalized gradient ∂J (·) is well defined. The
pairing over F ⋆ × F will be denoted by

〈
·, ·
〉

F
.

Proposition 1 Assume the hypotheses (H1)-(H6). Then, for each F ∈ Λ there
exists uF ∈ F such as to satisfy the hemivariational inequality
∫

Ω

|DuF |
p−2
〈
DuF , Dv −DuF

〉
RN dx+

∫

Ω

j0(uF ; v−uF ) dx ≥ 0, ∀ v ∈ F. (39)

Moreover, there exist constants M > 0, γ1 > 0 and γ2 > 0 not depending on
F ∈ Λ such that

‖uF‖W 1,p(Ω) ≤M, ∀F ∈ Λ (40)

γ1 ≤ R(uF ) ≤ γ2, ∀F ∈ Λ. (41)
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Proof. First we show that the functional RF : F → R satisfies the Palais-Smale
condition in the sense of Chang (Chang, 1981). Let {un} ⊂ F and {wn} ⊂ F ⋆

be sequences such that |RF (un)| ≤ c, for all n ≥ 1, with a constant c > 0, and
wn ∈ ∂RF (un), ‖wn‖F ⋆ = εn → 0 as n → ∞. Since F is finite dimensional, it
remains to show that {un} is bounded in F . According to (37) we see that wn

can be expressed as follows

wn = i⋆FAun + i
⋆

Fχn, with χn ∈ ∂J (un). (42)

Let us notice that the hypothesis of Theorem 2.7.3 in Clarke (Clarke, 1983),
p. 80, is verified. Therefore we obtain

∂J (v) ⊂

∫

Ω

∂j(x, v(x)) dx, ∀ v ∈ L∞(Ω).

Thus

〈
Aun, v−un

〉
W 1,p(Ω)

+

∫

Ω

j0(un; v−un) dx ≥
〈
wn, v−un

〉
F
≥ −εn‖v−un‖F

≥ −cεn‖v − un‖W 1,p(Ω), ∀ v ∈ F, c = const > 0,

because the norms ‖·‖F and ‖·‖W 1,p(Ω) are equivalent in F (F is finite dimen-
sional). Since Lin(θ, un) ⊂ F , the hypotheses of Lemma 1 are verified. Conse-
quently {un} is bounded in W 1,p(Ω), which means that

‖uF‖W 1,p(Ω) ≤MF (43)

for some MF > 0.
Following the lines of the proof of Lemma 2 (with W 1,p(Ω) replaced by F )

we conclude the existence of positive constants ρF > 0 and ηF > 0 such that

RF (v) ≥ ηF , ∀ v ∈ {w ∈ F : ‖w‖F = ρF }. (44)

By Lemma 4 we know that R(te) ≤ 0 for any t ≥ 1, therefore ρF < ‖e‖F .
Thus, taking into account that RF (0) ≤ 0 and RF (e) ≤ 0 we are allowed to
apply Theorem 1 to deduce the existence of a critical point uF ∈ F of RF . This
leads to the finite dimensional hemivariational inequality (39) (see Motreanu &
Panagiotopoulos, 1999).

Let us recall that the critical value RF (uF ) is characterized by (see Motreanu
& Panagiotopoulos, 1999)

RF (uF ) = inf
γ∈CF

max
t∈[0,1]

RF (γ(t)), (45)

where

CF = {γ ∈ C([0, 1], F )γ(0) = 0, γ(1) = e},
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is the the family of all continuous curves in F joining points 0 and e in F i.e.
γ(0) = 0 and γ(1) = e, γ(t) ⊂ F . Further, from Lemma 2 it follows that for a
certain positive ρ > 0 one can find η > 0 with

R(v) ≥ η, ∀ v ∈ Sρ ∩ L∞(Ω), (46)

where Sρ := {v ∈ W 1,p(Ω): ‖v‖W 1,p(Ω) = ρ}, while Lemma 4 ensures the exis-
tence of e ∈W 1,p(Ω), e 6= 0, such that

R(te) ≤ 0, ∀ t ≥ 1. (47)

Therefore, for any F ∈ Λ, if γ ∈ CF ([0, 1];F ) then γ meets points of Sρ which
means that

max
t∈[0,1]

RF

(
γ(t)

)
≥ η. (48)

Hence

η ≤ R(uF ) = inf
γ∈CF

max
t∈[0,1]

RF (γ(t)) ≤ max
t∈[0,1]

R(te), ∀F ∈ Λ (49)

and (41) results.
Now we are ready to show that MF > 0 in (43) is independent of F ∈ Λ.

For this purpose suppose that a sequence {uFn
}Fn∈Λ of solutions of (PFn

) has
the property that ‖uFn

‖W 1,p(Ω) → ∞. Taking into account (39) and (49) it is
easy to check that the hypotheses (6) and (5) of Lemma 1 hold (with F replaced
by Fn and εn = 0). Following the lines of the proof of Lemma 1 we arrive at
the contradiction, which establishes the assertion. The proof of Proposition 1
is complete.

Proposition 2 Assume the hypotheses (H1), (H3), (H4)1. Moreover, let

(H6)1 lim inf
t→±∞

∫

Ω

j(x, t) dx = −∞.

Then, for each F ∈ Λ there exists uF ∈ F such as to satisfy the hemivariational
inequality (39). Moreover, condition (40) is fulfilled.

Proof. Since W 1,p(Ω) = R ⊕W , where W = {v ∈ W 1,p(Ω):
∫
Ω v(x) dx = 0},

‖v‖p

Lp(Ω;RN )
≥ λ1‖v‖

p

Lp(Ω), ∀ v ∈ W ,

and by (H4)1 there follows (see Lemma 2.1, pp. 119-120, Naniewicz, 1997):

j(ξ) ≥ −c(1 + |ξ|s), ∀ ξ ∈ R,

so we easily deduce that

inf{RF (v) : v ∈ W} = α > −∞,
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with α ∈ R independent of the choice of F ∈ Λ. By making use of (H6)1 we
infer the existence of ρ > 0 with the property that

|ξ| = ρ ⇒ RF (ξ) < α.

By Theorem 2 this allows the conclusion that RF has a critical point uF ∈ F
which means that (39) holds (see Motreanu & Panagiotopoulos, 1999).

In order to show (40) suppose, on the contrary, that the claim is not true, i.e.
there exist a family {Fn}∞n=1 ⊂ Λ and the corresponding sequence {un}∞n=1 ⊂
W 1,p(Ω) of solutions of (39) (with F replaced by Fn) such that ‖un‖W 1,p(Ω) →
∞. By substituting v = 0 into (39) we have

∫

Ω

j0(un;−un) dx ≥ ‖Dun‖
p

Lp(Ω;RN )
. (50)

From (4) the decomposition results: un = enθn + ûn, where en =
∣∣∫

Ω
un dx

∣∣,
ûn ∈ W , θn ∈ {±θ}, ‖θ‖W 1,p(Ω) = 1, such that

‖Dûn‖
p

Lp(Ω;RN ) ≥ λ1 ‖ûn‖
p

Lp(Ω). (51)

Since Dun = Dûn, by (H4)1 we have

k + k‖un‖
s
W 1,p(Ω) ≥ c‖ûn‖

p

W 1,p(Ω). (52)

Hence

k + k1‖ûn‖
s
W 1,p(Ω) + k1e

s
n ≥ c‖ûn‖

p

W 1,p(Ω). (53)

Thus, it follows that en → ∞ because, otherwise, we would get the boundedness
of {ûn} and consequently, the boundedness of {un} in W 1,p(Ω), contrary to our
supposition. Dividing (53) by en we get the estimate

k
en

+ k1e
s−1
n ‖ bun

en
‖s

W 1,p(Ω) + k1e
s−1
n ≥ ep−1

n c‖ bun

en
‖p

W 1,p(Ω)

which, in view of en → ∞ and s < p, allows for the conclusion that

‖ bun

en
‖W 1,p(Ω) → 0. (54)

Now let us turn back to (39). By passing to a subsequence one can suppose also
that θn = θ (or θn = −θ). Thus, substituting v = ûn into (39) yields

ep
n

∫

Ω

|D( bun

en
) +Dθ)|p−2

〈
D( bun

en
) +Dθ),−Dθ

〉
RN dx

+en

∫

Ω

j0
(
en( bun

en
+ θ);−θ

)
dx ≥ −εnen.
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In view of Dθ = 0 this yields
∫

Ω

j0
(
en( bun

en
+ θ);−θ

)
dx ≥ −εn (55)

and consequently, by (54),

J∞(θ) ≤ lim sup
n→∞

∫

Ω

−j0
(
en( bun

en
+ θ);−θ

)
dx ≤ 0,

the contradiction with (H3). The proof of Proposition 2 is complete.

For the restriction JF := J |F : F → R we have ∂JF (uF ) ⊂ i
⋆

F ∂J (uF ).
Therefore, Propositions 1 and 2 can be reformulated as follows:

Corollary 1 Assume that the hypotheses {(H1)-(H6)} or {(H1),(H3),(H4)1,
(H6)1} hold. Then for each F ∈ Λ
Problem (PF ): Find uF ∈ F and χF ∈ L1(Ω) such that
∫

Ω

|DuF |
p−2
〈
DuF , Dv −DuF

〉
RN dx+

∫

Ω

χF (v − uF ) dx = 0, ∀ v ∈ F, (56)

χF ∈ ∂j(uF ) a.e. in Ω, (57)

has at least one solution.

According to the results obtained we know that to any F ∈ Λ a pair
(uF , χF ) ∈ F × L1(Ω)) can be assigned, which is a solution of the problem
(PF ). Moreover, the family {uF }F∈Λ is uniformly bounded in W 1,p(Ω), i.e.
(40) holds. The question arises concerning the behavior of {χF }F∈Λ.

Proposition 3 Assume that a pair (uF , χF ) ∈ F × L1(Ω)) satisfies (56) and
(57). Then, {χF }F∈Λ is weakly precompact in L1(Ω).

Proof. See the proof of Proposition 3.3, pp. 198-199, Naniewicz, 2004.

5. Main result

Now we are ready to formulate our main result.

Theorem 3 Assume the hypotheses (H1)-(H6) and also:
(H7) For any sequence {vk} ⊂ L∞(Ω), vk → 0 strongly in Lp(Ω), the condition

∫

Ω

min
{
ψ(x)vk(x) : ψ(x) ∈ ∂j

(
x, vk(x)

)}
dx ≤ 0,

implies

lim sup
k→∞

∫

Ω

j
(
x, vk(x)

)
dx ≤ 0.
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Then there exists u ∈ W 1,p(Ω) with u 6= 0 and j(u) ∈ L1(Ω), such as to satisfy
the hemivariational inequality
∫

Ω

|Du|p−2
〈
Du,Dv −Du

〉
RN dx+

∫

Ω

j0(u; v−u) dx ≥ 0, ∀ v ∈W 1,p(Ω). (58)

Moreover, there exists χ ∈ L1(Ω) with the property that
∫

Ω

|Du|p−2
〈
Du,Dv −Du

〉
RN dx+

∫

Ω

χ(v − u) dx = 0,

∀ v ∈W 1,p(Ω) ∩ L∞(Ω), (59)

χu ∈ L1(Ω) and χ ∈ ∂j(u) a.e. in Ω. (60)

Proof. The proof is carried out in a sequence of steps.

Step 1. For every F ∈ Λ we introduce

UF =
{
uF ∈ W 1,p(Ω) : for some χF ∈ L1(Ω),

(uF , χF ) is a solution of (PF )
}

and

WF =
⋃

F ′∈Λ
F ′⊃F

UF ′ .

By Proposition 1, WF is nonempty (even UF is nonempty) and contained in
the ball BM = {v ∈ W 1,p(Ω) : ‖v‖W 1,p(Ω) ≤ M}. We denote by weakcl(WF )
the closure of WF in the weak topology of W 1,p(Ω). Proposition 1 ensures
that weakcl(WF ) is weakly compact in W 1,p(Ω). We claim that the family
{weakcl(WF )}F∈Λ has the finite intersection property. Indeed, if F1, . . . , Fk ∈ Λ
then WF1 ∩ . . . ∩WFk

⊃WF , with F = F1 + . . .+ Fk and the assertion follows.
So, we are allowed to conclude that there exists an element u ∈ W 1,p(Ω) with

u ∈
⋂

F∈Λ

weakcl(WF ).

Let us choose G ∈ Λ arbitrarily. Since W 1,p(Ω) is reflexive, one can extract
an increasing sequence of subspaces {Gn} ⊂ Λ, each containing G, and for
each n an element un ∈ UGn

such that un → u weakly in W 1,p(Ω) as n → ∞
(Proposition 11, p. 274, Browder & Hess, 1972). Let us denote by {χn} ⊂ L1(Ω)
the corresponding sequences with the property that for each n a pair (un, χn) is
a solution of (PGn

). By Proposition 3 we can suppose without loss of generality
that χn → χG weakly in L1(Ω) for some χG ∈ L1(Ω). Thus, we have asserted
that

un → u weakly in W 1,p(Ω) (61)

χn → χG weakly in L1(Ω) (62)
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and that (56), with F replaced by Gn, reads

〈
Aun, v − un

〉
W 1,p(Ω)

+

∫

Ω

χn(v − un) dx = 0, ∀ v ∈ Gn, (63)

where A : W 1,p(Ω) → (W 1,p(Ω))⋆ is defined by (38).

Step 2. Now we claim that χG ∈ ∂j(u) a.e. in Ω. (See the proof of Theo-
rem 4.1, Step 2, p. 201, Naniewicz, 2004).

Step 3. Now it will be shown that

lim sup
n→∞

∫

Ω

j0(un; v − un) dx ≤

∫

Ω

j0(u; v − u) dx, (64)

holds for any v ∈ W 1,p(Ω) ∩ L∞(Ω). (See the proof of Theorem 4.1, Step 3,
pp. 201-202, Naniewicz, 2004).

Step 4. Now we show that

χGu ∈ L1(Ω). (65)

lim inf
n→∞

∫

Ω

χnun dx ≥

∫

Ω

χGu dx. (66)

For this purpose let {ǫk} ⊂ L∞(Ω) be such that (Hedberg, 1978):

{(1 − ǫk)u} ⊂W 1,p(Ω) ∩ L∞(Ω), 0 ≤ ǫk ≤ 1

ũk := (1 − ǫk)u→ u strongly in W 1,p(Ω) as k → ∞.
(67)

Without loss of generality it can be assumed that ũk → u a.e. in Ω. Since it
is already known that χG ∈ ∂j(u), one can apply (H4) to obtain χG(−u) ≤
j0(u;−u) ≤ κ(1 + |u|q). Hence

χGũk = (1 − ǫk)χGu ≥ −κ(1 + |u|q). (68)

This implies that the sequence {χGũk} is bounded from below by an integrable
function and χGũk → χGu a.e. in Ω. On the other hand, one gets

∫

Ω

χn(ũk − un) dx ≤

∫

Ω

j0(un; ũk − un) dx.

Thus, passing to the limit with n→ ∞ yields

∫

Ω

χGũk dx− lim inf
n→∞

∫

Ω

χnun dx ≤ lim sup
n→∞

∫

Ω

j0(un; ũk − un) dx,
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and due to (64) we are led to the estimate

∫

Ω

χGũk dx ≤ lim inf
n→∞

∫

Ω

χnun dx+

∫

Ω

j0(u; ũk − u) dx

≤ lim inf
n→∞

∫

Ω

χnun dx+

∫

Ω

j0(u;−ǫku) dx

≤ lim inf
n→∞

∫

Ω

χnun dx+

∫

Ω

ǫkκ(1 + |u|q) dx ≤ C, C = const .

Thus, by Fatou’s lemma we are allowed to conclude that χGu ∈ L1(Ω), i.e. (65)
holds. Taking into account that ǫk → 0 a.e. in Ω as k → ∞ (passing to a
subsequence if necessary) we establish (66), as required.

Step 5. It will be shown that

〈
Au, v − u

〉
W 1,p(Ω)

+

∫

Ω

χG (v − u) dx = 0, ∀ v ∈
∞⋃

n=1

Gn ⊃ G

χG ∈ ∂j(u).

(QG)

Since A is bounded and {uF}F∈Λ ⊂ {v ∈W 1,p(Ω) : ‖v‖W 1,p(Ω) ≤M}, there

exists K > 0 such that {AuF}F∈Λ ⊂ {l ∈ W 1,p(Ω)
⋆
: ‖l‖W 1,p(Ω)⋆ ≤ K}. From

(63) it follows that for any fixed G ∈ Λ we get

∣∣∣∣
∫

Ω

χGv dx

∣∣∣∣ ≤ K‖v‖W 1,p(Ω), ∀ v ∈
∞⋃

n=1

Gn, χG ∈ ∂j(u), (69)

because {Gn} is an increasing sequence. Further, by making use of (65) and
(66) we have χGu ∈ L1(Ω) and

lim sup
n→∞

〈
Aun, un − v

〉
W 1,p(Ω)

≤

∫

Ω

χG(v − u) dx, ∀ v ∈
∞⋃

n=1

Gn. (70)

Since un ∈ Gn and un → u weakly in W 1,p(Ω), the closure of
⋃∞

n=1Gn in the

strong topology of W 1,p(Ω),
⋃∞

n=1Gn, must contain u. Thus there exists a
sequence {wi} ⊂

⋃∞
n=1Gn converging strongly to u in W 1,p(Ω) as i → ∞. We

claim that for such a sequence,

∫

Ω

χG wi dx→

∫

Ω

χG u dx as i→ ∞. (71)

Indeed, let {ũk}∞k=1 be given by (67). From (68) it follows that

−κ(1 + |u|q) ≤ χG ũk ≤ |χGu|, k = 1, 2 . . . , (72)
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with the bounds −κ(1 + |u|q) and |χGu| being integrable in Ω. Thus, there
exists a constant C > 0 such that

∣∣∣∣
∫

Ω

χG ũk dx

∣∣∣∣ ≤ C‖ũk‖W 1,p(Ω), k = 1, 2, . . . . (73)

Denote by A a linear subspace spanned by {ũk}
∞
k=1 and define a linear functional

l̂χG :
(⋃∞

n=1Gn + A
)
→ R by the formula

l̂χG(v) :=

∫

Ω

χG v dx, v ∈
∞⋃

n=1

Gn + A.

Taking into account (69) and (73), from the Hahn-Banach theorem it follows

that l̂χG admits its linear continuous extension onto W 1,p(Ω), lχG ∈ W 1,p(Ω)
⋆
.

By the dominated convergence,

∫

Ω

χG ũk dx→

∫

Ω

χG u dx, as k → ∞,

so we get lχG(u) =
∫
Ω χ

G u dx which, in particular, implies (71), as claimed.
Taking into account (70) and (71) we conclude that

lim sup
n→∞

〈
Aun, un − u

〉
W 1,p(Ω)

≤ 0, (74)

which, by the pseudomonotonicity of A, implies

Aun → Au weakly in W 1,p(Ω) (75)
〈
Aun, un

〉
W 1,p(Ω)

→
〈
Au, u

〉
W 1,p(Ω)

. (76)

Hence from (63) we are led to (QG), as desired. Notice that (75) and (76) imply
the strong convergence un → u in W 1,p(Ω).

Step 6. It remains to show that there exists χ ∈ ∂j(u) with the associated
linear functional defined by

l̂χ(v) :=

∫

Ω

χ v dx, ∀ v ∈W 1,p(Ω) ∩ L∞(Ω),

admitting a continuous extension lχ ∈ W 1,p(Ω)
⋆

such that

Au+ lχ = 0,
〈
lχ, u

〉
W 1,p(Ω)

=

∫

Ω

χu dx. (77)

For every G ∈ Λ let us introduce

V (G) =
{
χG ∈ L1(Ω): (QG) holds

}
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and

Z(G) =
⋃

G′∈Λ
G′⊃G

V (G′).

As in the proof of Proposition 3 we show that the family {χG}G∈Λ is weakly
precompact in L1(Ω). Denoting by weakcl(Z(G)) the closure of Z(G) in the weak
topology of L1(Ω) we prove, analogously, that the family {weakcl(Z(G))}G∈Λ has
the finite intersection property. Thus, there exists an element χ ∈ ∂j(u) such
that for any G ∈ Λ there is

〈
Au, v

〉
W 1,p(Ω)

+

∫

Ω

χ v dx = 0, ∀ v ∈ G.

Since G ∈ Λ has been chosen arbitrarily and Λ is dense in W 1,p(Ω), (77) results,
as desired.

Step 7. It remains to demonstrate (58). For that we refer the reader to the
proof of Theorem 4.1, Step 7, pp. 205-206, Naniewicz, 2004.

Step 8. In order to show that j(u) ∈ L1(Ω) we use (40) and (41) to get

∫

Ω

j(un) dx ≤ γ2 −
1
p
‖Dun‖

p

Lp(Ω;RN ) ≤ γ2.

Next, in view of the conditions

j(un) ≥ −κ0(1 + |un|
q),

j(un) → j(u) a.e. in Ω as n→ ∞ and un → u strongly in Lq(Ω), we are allowed
to apply Fatou’s lemma which yields the assertion.

Step 9. The existence of a nontrivial solution u 6= 0 follows from (H7). The
supposition u = 0 leads to the contradiction. Indeed, since {un} ⊂ W 1,p(Ω) ∩
L∞(Ω) and un → 0 strongly in W 1,p(Ω) as shown previously, by making use
of (63) with v = 2un we get

∫
Ω

min{ψun : ψ ∈ ∂j(un)} dx ≤
∫
Ω
χnun dx =

−‖Dun‖
p

Lp(Ω;RN ) ≤ 0. Hence, lim supn→∞

∫
Ω j(un) dx ≤ 0, and consequently,

lim supn→∞ R(un) ≤ 0, which contradicts (41). This contradiction yields the
assertion. The proof of Theorem 3 is complete.

Analogously we prove the following:

Theorem 4 Assume the hypotheses (H1), (H3), (H4)1, (H6)1. Then there
exists u ∈ W 1,p(Ω) with j(u) ∈ L1(Ω), such as to satisfy the hemivariational
inequality (58). Moreover, there exists χ ∈ L1(Ω) such that (59) and (60) hold.

From (59) and (60) we obtain now
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Corollary 2 Assume that the hypotheses {(H1)-(H7)} or {(H1),(H3),(H4)1,
(H6)1} are fulfilled. Then the problem: Find u ∈ W 1,p(Ω), χ ∈ L1(Ω) such that

(P )






−∆pu = −χ in Ω (in the distributional sense)
χ ∈ ∂j(u) a.e. in Ω
χu ∈ L1(Ω)
j(u) ∈ L1(Ω)

∂u
∂n

= 0 on ∂Ω (in the distributional sense).

has at least one nontrivial solution.

6. Remarks and comments

As it is well known, see Naniewicz & Panagiotopoulos (1995), in case of the
classical growth condition of the form

|∂j(ξ)| ≤ c(1 + |ξ|p−1), ξ ∈ R
s, (78)

the problem described by hemivariational inequality (58) admits a solution u ∈
V and, moreover, there exist χ ∈ Lq(Ω; Rs), 1/p + 1/q = 1, and ψ ∈ V ⋆ such
that

χ ∈ ∂j(u) a.e. in Ω and ψ ∈ ∂Φ(u),

g = Au+ ψ + lχ,

where lχ ∈ V ⋆ is a linear continuous functional defined by

〈
lχ, v

〉
:=

∫

Ω

χ · v dΩ, v ∈ V. (79)

Recall that the subdifferential ∂Φ(u) ⊂ V ⋆ in the sense of Convex Analysis
(Ekeland & Temam, 1976) is defined for u ∈ DomΦ by means of the formula

Φ(v) − Φ(u) ≥
〈
ψ, v − u

〉
, ∀ v ∈ V.

Thus, in case of (78) a statement that u ∈ V is a solution of hemivariational
inequality (58) is equivalent to

g −Au− lχ ∈ ∂Φ(u). (80)

The situation changes essentially when (78) is replaced by the unilateral
growth condition (H4). In such a case we have only ensured the L1(Ω)-regularity
of χ and consequently, the corresponding functional lχ (given by the formula
(79)) is linear on its domain Dom lχ ⊃ L∞(Ω; Rs) ∩ V , but not necessarily
continuous. It may happen that lχ does not have the continuous extension onto
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the whole space V (lχ is discontinuous). If it is the case, lχ can be extended
onto the whole space V as a function from V into R ∪ {+∞,−∞} by setting

lχ(v) :=





∫
Ω
χ · v dΩ if χ · v ∈ L1(Ω)

+∞ if
∫
Ω[χ · v]+ dΩ = +∞

−∞ if
∫
Ω
[χ · v]+ dΩ < +∞ and

∫
Ω
[χ · v]− dΩ = +∞,

(81)

for each v ∈ V . Thus, we deal with a functional lχ : V → R ∪ {+∞,−∞}
which is discontinuous whenever lχ(v) = +∞ or lχ(v) = −∞ for at least one
point of V . Notice that lχ can be expressed as a difference of two convex
lower semicontinuous proper functions l+χ (v) :=

∫
Ω[χ · v]+ dΩ and l−χ (v) :=∫

Ω
[χ · v]− dΩ, v ∈ V , i.e.

lχ(v) = l+χ (v) − l−χ (v), ∀ v ∈ V. (82)

Denote by L(V ) the class of all linear densely defined functions l : V →
R ∪ {+∞,−∞} which can be represented by a difference of two convex lower
semicontinuous proper functions l+ : V → R ∪ {+∞} and l− : V → R ∪ {+∞},
i.e. l = l+ − l−, with the convention that

l(v) :=






l+(v) − l−(v) if v ∈ Dom l+ ∩ Dom l−

+∞ if v 6∈ Dom l+

−∞ if v ∈ Dom l+ and v 6∈ Dom l−.

(83)

For a convex, lower semicontinuous, proper function ϕ : V → R ∪ {+∞}

we introduce ∂̂ϕ(u) ⊂ L(V ) as follows: if u 6∈ Domϕ then ∂̂ϕ(u) = ∅ while if
u ∈ Domϕ then we set

l ∈ ∂̂ϕ(u) ⇔ l(u) ∈ R and ϕ(v) − ϕ(u) ≥ l(v − u), ∀ v ∈ V. (84)

The formal definition of ∂̂ϕ(u) coincides with that of ∂ϕ(u) ⊂ V ⋆ in the sense

of convex analysis. However, ∂̂ϕ(u) apart from containing elements of ∂ϕ(u),
may contain also some discontinuous linear functionals which will be called here
discontinuous subgradients. Notice that if u ∈ Int(DomΦ), where “Int” means

“the interior”, then by the Banach-Steinhaus theorem it follows that ∂̂ϕ(u) and
∂ϕ(u) coincide.

In the terminology of Pallaschke & Rolewicz (1997) a function l ∈ ∂̂ϕ(u)
fulfilling (84) is said to be a L(V )-subgradient of Φ at u ∈ V . We refer the
reader to Pallaschke & Rolewicz (1997) for the general abstract subdifferential
theory.

As we shall see below, the notion of discontinuous subgradient is specially
useful in describing some particular aspects of Theorem 4.
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Theorem 5 Assume all the hypotheses of Theorem 4. Then there exists u ∈ V
such that

〈
Au− g, v − u

〉
V

+ Φ(v) − Φ(u) +

∫

Ω

j0(u; v − u) dΩ ≥ 0, ∀ v ∈ V. (85)

Moreover, there exists χ ∈ L1(Ω; Rs), χ ∈ ∂j(u) a.e. in Ω, such that for lχ
defined by (81) it follows that

g −Au− lχ ∈ ∂̂Φ(u). (86)

Proof. Following the lines of the proof of Theorem 4 we can deduce that the
inequality

〈
Au− g, v − u

〉
V

+ Φ(v) − Φ(u) +

∫

Ω

χ · (v − u) dΩ ≥ 0

holds for any v ∈ V ∩ L∞(Ω; Rs). It can be written equivalently as

Φ(v) −Φ(u) ≥
〈
−Au+ g, v − u

〉
V
− lχ(v − u), ∀ v ∈ V ∩L∞(Ω; Rs), (87)

where lχ(v− u) =
∫
Ω
χ · (v− u) dΩ. It must be shown that this inequality holds

for any v ∈ V . If v 6∈ DomΦ then there is nothing to prove because Φ(v) = +∞.
Let us consider the case of v ∈ DomΦ. If χ ·v ∈ L1(Ω) then −χ · ṽk ≥ −|χ ·v|

which, by Fatou’s lemma, yields lim infk→∞ −lχ(ṽk) ≥ −lχ(v). Thus, in view of
(H) the assertion follows (ṽk has been taken as in the hypothesis (H)). If χ · v 6∈
L1(Ω) then there is nothing to prove if lχ(v) = +∞, while, as it will be shown,
the case lχ(v) = −∞ cannot happen. Indeed, suppose that lχ(v) = −∞, i.e.∫
Ω
[χ ·v]+ dΩ < +∞ and

∫
Ω
[χ ·v]− Ω = +∞. Taking into account (87) we are led

to lχ(ṽk) ≥ −C for a constant C. Hence D ≥
∫
Ω[χ · ṽk]+ dΩ ≥

∫
Ω[χ · ṽk]− dΩ−C

for someD = const. But, due to Fatou’s lemma this yields
∫
Ω
[χ·v]− dΩ ≤ C+D

contrary to
∫
Ω[χ · v]− dΩ = +∞. This contradiction completes the proof.
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