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Abstract: We describe a class of metric spaces such that for
set-valued mappings into such spaces it is possible to give a pre-
cise expression of regularity moduli in terms of slopes of DeGiorgi-
Marino-Tosques. We also show that smooth manifolds in Banach
spaces endowed with the induced metric belong to this class.
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1. Introduction

The metric theory of metric regularity (that is to say, metric regularity of set-
valued mappings between metric spaces) has by now been sufficiently well devel-
oped (see Ioffe, 2000, for the latest survey). The only infinitesimal mechanism
available in such a general setting is provided by the slopes of DeGiorgi-Marino-
Tosques (1980). It allows to get one side estimate for regularity moduli (that
is, a lower estimate for the modulus of surjection or, equivalently, an upper
estimate for the modulus of metric regularity). Moreover, under a certain as-
sumption on the range space, the estimates give the exact value of the moduli.
This assumption was first introduced in Ioffe (2000) in the form of a certain geo-
desic property, namely that any two points of the space must have an “almost”
middle point whose distances to the given points are arbitrarily close. Later,
Azé and Corvellec (2004) gave an elegant infinitesimal characterization of the
property in terms of slopes of the distance function and called spaces having this
property coherent. Every Banach space is coherent. Nonetheless, the coherency
assumption seems to be sufficiently restrictive in the general nonlinear context.
For instance, as we shall see, a closed subset of a locally uniformly convex Ba-
nach space being supplied with the induced metric is a coherent space if and
only if it is convex.

The main purpose of this note is to show that “localization” of the coherency
property allows to get an exact expression (in terms of slopes of the distance
function) for the regularity moduli of set-valued mappings for a substantially
broader class of range spaces, which in particular includes all smooth submani-
folds of Banach spaces with the induced metric.
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2. Coherent and locally coherent spaces

We start with some basic definitions. Let (X, d) be a metric space, and let f be
an extended-real-valued function, which is finite at x. The slope of f at x is

|∇|f(x) = lim sup
u→x

u6=x

(f(x) − f(u))+

d(x, u)‖
.

In other words, slope at x is the greatest speed of decrease of the function from
x. The slope of a differentiable function on a normed space is the norm of its
derivative; the slope of a function satisfying the Lipschitz condition near the
point cannot be greater than the Lipschitz constant of the function. X is called
a coherent space if for any z 6= x

|∇d(·, z)|(x) = 1

(slope of x → d(x, z) at x). It was shown in Azé and Corvellec (2004) that
coherent spaces are characterized by the following geodesic property: for any two
points x1, x2 ∈ X and any ε>0 there is a z such that d(z, xi)≤(1/2)d(x1, x2)+ε,
i = 1, 2.

Proposition 1 Let X be a locally uniformly convex Banach space. Then a
closed subset of X is a coherent space in the induced metric if and only if it is
convex.

Proof. Clearly, a convex set endowed with the induced metric is a coherent space,
so we have to check the opposite implication.

Let u and x be a pair of points such that

‖u‖ ≤
‖x‖

2
+ ε; ‖x− u‖ ≤

‖x‖

2
+ ε. (1)

We claim that

‖u‖ ≥
‖x‖

2
− ε, ‖u− x‖ ≥

‖x‖

2
− ε, ‖u+

x

2
‖ ≥ ‖x‖ − ε. (2)

Indeed, the first two inequalities are immediate from (1) as ‖u‖+‖u−x‖ ≥ ‖x‖.
Set now uλ = (1 − λ)u + (λ/2)x. Then, for any λ ∈ [0, 1] we have

‖uλ‖ ≤ (1 − λ)‖u‖ + λ
‖x‖

2
≤

‖x‖

2
+ (1 − λ)ε

and

‖uλ − x‖ ≤ (1 − λ)‖u− x‖ + λ
‖x‖

2
≤

‖x‖

2
+ (1 − λ)ε.

Thus, any uλ with λ ∈ [0, 1] also satisfies (1) and therefore the first two inequal-
ities in (2) (with ε replaced by (1 − λ)ε). By replacing u by u1/2 in the first
inequality of (2), we get the last inequality of (2).
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Returning to the proof of the proposition, letQ ⊂ X be closed and a coherent
space in the induced metric. Take x1, x2 ∈ Q and let zk ∈ Q, k = 1, 2, ... be
such that ‖xi−zk‖ ≤ (1/2)‖x1−x2‖+1/k. Setting x = x2−x1 and uk = zk−x1,
we see that x and u satisfy (1) and hence (2). In other words

∣

∣

∣
‖uk‖ −

‖x‖

2

∣

∣

∣
≤

1

k
; ‖uk +

x

2
‖ ≥ ‖x‖ +

1

k
.

As X is locally uniformly convex, it follows that uk → (1/2)x and therefore
zk → (1/2)(x1 + x2). As Q is a closed set, it follows that (1/2)(x1 + x2) ∈ Q.
This means that Q contains the middle point of the segment joining any two
points of Q. Using again the fact that Q is a closed set, we conclude that Q
contains the entire segment joining any two its points, as claimed.

We shall call a metric space X locally coherent if for any z ∈ X

lim
x,v →

x 6=v
z
|∇d(v, ·)|(x) = 1.

Our purpose is to show that the collection of subsets of a Banach space which,
being supplied with the induced metric, become locally coherent metric spaces,
is much richer than the collection of sets which are just coherent spaces. Specif-
ically, we shall show that any smooth manifold belongs to this class.

Recall (see, e.g., Aubin and Ekeland, 1984) that a subset M of a Banach
space X is a Ck-submanifold if for any x there are a closed subspace Lx of X ,
open neighborhoods Ux of x and Vx of zero and a Ck-diffeomorphism ϕx of Vx

onto Ux such that

M
⋂

Ux = ϕx(Lx

⋂

Vx).

This definition is somewhat different from the standard definition involving
local charts. It has been chosen to facilitate using the induced metric structures
on submanifolds along with differential structures. To emphasize the difference
we shall call the triple (Lx, Vx, ϕx) a local parameterization of M at x. (It can
be shown, however, that this definition implies the existence of local charts if
all spaces Lx split X . In the context of variational analysis the latter property
may not always be natural.) We shall use some very special parameterization
to prove the result we need.

Proposition 2 Let M ⊂ X be a Ck-submanifold. Then for any x ∈ M there
is a local parameterization of M at x with a Ck-diffeomorphism ψ such that
ψ′(0) = I, the identity map.

Proof. Let (L, V, ϕ) be some parameterization of M at x, that is M
⋂

U =
ϕ(L

⋂

V ), where U = ϕ(V ). Set ψ = ϕ◦ [ϕ′(0)]−1, then (TxM,U, ψ) is a desired
representation. (Here TxM is the tangent space to M at x.)
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Proposition 3 A smooth manifold in a Banach space is locally coherent with
respect to the induced metric.

Proof. The inequality |∇d(z, ·)|(y) ≤ 1 holds unconditionally. We therefore have
to establish the limit version of the opposite inequality under the assumptions.

So, let X be a Banach space, let M ⊂ X be a C1-submanifold, let x ∈ M ,
and let (U,L, ϕ) be a local parameterization of M at x, with L being a closed
subspace of X and ϕ′(0) = I. As ϕ is continuously (hence strictly) differentiable
at zero, for any δ > 0 there is an ε > 0 such that

B(x, ε) ⊂ U & ‖ϕ(x)−ϕ(u)− (x−u)‖ ≤ δ‖x−u‖, ∀ x, u ∈ B(x̄, ε). (3)

Take a y ∈ M with ‖y − x‖ < ε, and let h ∈ L ∩ U be such that ϕ(h) = y.
Then (1 − t)h ∈ B(x̄, ε) for small positive t, so we have

‖ϕ(h) − ϕ((1 − t)h) − th‖ ≤ δt‖h‖ (4)

and

‖y − x− h‖ = ‖ϕ(h) − ϕ(0) − h‖ ≤ δ‖h‖. (5)

The latter implies, in particular, that

∣

∣

∣

‖y − x‖

‖h‖
− 1

∣

∣

∣
≤ δ. (6)

It easily follows from (4) and (5) that

‖ϕ((1 − t)h) − x− (1 − t)(y − x)‖ ≤ 2tδ‖h‖.

Let d stand for the induced metric in M . We therefore have

|∇d(x, ·)|(y) ≥ lim
t→0

d(x, y) − d(x, ϕ((1 − t)h)

d(y, ϕ((1 − t)h)

= lim
t→0

‖y − x‖ − ‖ϕ((1 − t)h− x‖

‖ϕ(h) − ϕ((1 − t)h)‖

≥
t‖y − x‖ − 2tδ‖h‖

t‖y − x‖ + δt‖h‖

=

1 − 2δ
‖h‖

‖y − x‖

1 +
δ‖h‖

‖y − x‖

≥ 1 − 3δ

(the last inequality following from (6)).
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3. Regularity

Recall the definitions of the two main regularity properties (we refer to Ioffe,
2000, for details). The notation F : X ⇉ Y is, as usual, used to denote a
set-valued mapping from X into Y . So, let an F be given, let V ⊂ X × Y , and
let (x, y) ∈ Graph F

⋂

V . F is said to be

(a) open at a linear rate near (x, y) if there are γ > 0, ε > 0 such that

B(v, γt) ⊂ F (B(x, t))

(B(x, r) being the closed ball of radius r around x) whenever v ∈ F (x), d(x, x) <
ε, d(v, y) < ε, 0 ≤ t < ε. The upper bound of all such γ is called the modulus
of surjection of F near (x, y). We shall denote it by surF (x|y);

(b) metrically regular near (x, y) if there are K > 0, ε > 0 such that

d(x, F−1(y)) ≤ Kd(y, F (x))

whenever d(x, x) < ε, d(y, y) < ε. The lower bound of all such K is called the
modulus of metric regularity of F near (x, y). We shall denote it by regF (x|y).

For single-valued F we shall use the notation surF (x) and regF (x). If F is
not open at a linear rate near (x, y), we set surF (x|y) = 0; if F is not metrically
regular near (x, y), we set regF (x|y) = ∞. A well known fact is that the two
properties are equivalent and, moreover, we always have

surF (x|y) · regF (x|y) = 1

(if we agree that 0 ×∞ = 1). This allows us to simply say that the mapping is
regular near (x, y) if the two properties are satisfied. There is a third property
equivalent to these two (psedo-Lipschitz or Aubin property) but we shall not
need it in this note.

What we do need is that regularity of any set-valued mapping F can be
equivalently characterized in terms of regularity of a certain single-valued map-
ping canonically associated with F . This mapping is the restriction to Graph F
of the projection (x, y) → y; call it PF . Namely, the following is true:

Proposition 4 Let X and Y be complete metric spaces. Endow X × Y with
the α-metric (α > 0):

dα((x, y), (u, v)) = max{d(x, u), αd(y, v))}.

Let (x, y) ∈ Graph F . Then

surPF ((x, y)) = min{surF (x|y),
1

α
}.

In particular, if F is regular near (x, y), then PF is also regular near (x, y) and
surPF (x, y) = surF (x, y) if surF (x, y) <∞ and α is sufficiently small.
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The following fact serves as a basis for obtaining various regularity criteria.
We supply it with a proof as it is stated here in a slightly different form (compare
to Ioffe, 2000):

Proposition 5 (Basic lemma) Let f be an l.s.c. extended-real valued function
on X, and let U ⊂ X be an open set. Assume that there is a positive γ such
that for any x ∈ U with f(x) > 0 there is a u ∈ X, u 6= x such that

f(u) ≤ f(x) − γd(x, u). (7)

If there is an x with f(x) < d(x,X\U), then [f ≤ 0] 6= ∅ and

d(x, [f ≤ 0]) ≤ γ−1f+(x).

Remark. If U = X , then the complement of U is empty and according to our
general convention, the distance to the empty set is ∞. So, in this case the
conclusion of the theorem is valid for all x.
Proof If f(x) ≤ 0, we have nothing to prove. So, assume that f(x) > 0. Set
ε = f(x) and apply Ekeland’s variational principle with λ = ε/γ. It follows that
there is a w such that

d(w, x) ≤ γ−1ε; f(u)+ + γd(u,w) > f(w), ∀ u 6= w. (8)

We claim that f(w) ≤ 0. Indeed d(w, x) ≤ γ−1f(x) ≤ d(x,X\U) which
implies that w ∈ U . So, if f(w) were positive then there would be a u 6= w such
that f(u) ≤ f(w) − γd(u,w), in contradiction with (8). Thus, w ∈ [f ≤ 0] 6= ∅
and

d(x, [f ≤ 0]) ≤ d(x,w) ≤ γ−1ε = γ−1f(x).

This lemma is essentially an existence theorem, but if we already have an x
with f(x) = 0, and U is a neighborhood of x, then it gives a sufficient condition
for metric regularity of the epigraphic mapping x→ epi f(x) near (x, f(x)). An
infinitesimal version of the Basic Lemma is given below.

Proposition 6 Let f be a lower semicontinuous function on X, and let U be
an open subset of X. Suppose that there is a positive γ such that |∇f |(x) ≥ γ
whenever f(x) > 0, x ∈ U ∩ dom f . If there is an x ∈ U satisfying

f(x) < γd(x,X\U) (9)

then [f ≤ 0] 6= ∅ and for any x satisfying (9)

d(x, [f ≤ 0]) ≤ γ−1(f(x))+.

Proof. If |∇f |(x) > γ, then there is a u 6= x arbitrarily close to x such that
f(x) − f(u) > γd(x, u). Apply Basic Lemma.
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4. Main theorems

We start with a special case (still sufficiently general, as we shall see).

Theorem 1 [special case]. Assume that X and Y are complete metric spaces.
Set ϕy(x) = d(y, F (x)) and assume that this function is lower semicontinuous
for each y. Suppose further that there are ε > 0, γ > 0 and a neighborhood V
of (x, y) such that

|∇ϕy|(x) > γ > 0 (10)

for any (x, y) ∈ Graph F of the neighborhood satisfying 0 < d(y, F (x)) < ε.
Then

surF (x|y) ≥ γ.

Conversely, assume that

(i) Y is locally coherent space;
(ii) for any (x, y) of a neighborhood of (x, y) the distance d(y,F(x)) is attained

(that is, there is a v ∈ F (x) with d(y, v) = d(y, F (x)));
(iii) surF (x) > γ.

Then, for any δ > 0 there is a neighborhood of (x, y) in X × Y and an
r > 0 such that |∇ϕy |(x) ≥ (1− δ)γ for all (x, y) of the neighborhood satisfying
0 < d(y, F (x)) < r. Thus, in this case

surF (x) = lim inf
x →
domF

x

y→y, y 6=F (x)

|∇ϕy|(x). (11)

Remark. The strict inequality sign before γ in both parts of the theorem is
solely due to the possibility that the quantity to the left of the sign may be ∞.
If it is finite, the proof goes through if it is replaced by a non-strict inequality
or even by an equality.

Proof. We shall show that F is metrically regular near (x, y) to prove the first
statement, while in the proof of the second statement we shall start with open-
ness at a linear rate.

We first observe that

[ϕy ≤ 0] = F−1(y).

Choose r > 0 such that (10) holds if d(x, x) < 2r, d(y, y) ≤ γr/2 and y 6∈ F (x).

Set U =
◦

B (x, 2r) (the open ball of radius 2r around x). Then, for any y 6∈ F (x)
and satisfying d(y, y) ≤ γr/2, we have ϕy(x) < γd(x,X\U), so by Proposition
6 the set F−1(y) is nonempty and d(x, F−1(y)) ≤ γ−1d(y, y) < r/2. For the
same reason the inequality

d(x, F−1(y)) = d(x, [ϕy ≤ 0]) ≤ γ−1ϕy(x) = γ−1d(y, F (x))
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also holds for any x such that d(x, x) < r/2 and ϕy(x) < r.
Now, take arbitrary x such that d(x, x) < r/2 and y 6∈ F (x). If ϕy(x) >

γd(x,X\U) > γr, then

d(x, F−1(y)) ≤ d(x, x) + d(x, F−1(y))

≤ d(x, x) + γ−1d(y, F (x)) < r ≤ γ−1d(y, F (x)),

and we again get the desired inequality. This completes the proof of the first
part of the theorem.

Let us prove the second. Since Y is locally coherent, for any δ > 0 there
is an ε > 0 such that |∇d(y, ·)|(v) ≥ 1 − δ whenever y 6= v and both y and v
belong to the ε-ball around y . Let us fix such an ε for every δ > 0.

Since surF (x) > γ, the inclusion

B(v, γt) ⊂ F (B(x, t)) (12)

holds for (x, v) ∈ Graph F sufficiently close to (x, y) and sufficiently small t.
We may assume that ε is so small that the inclusion holds, in particular, for
x, v, t satisfying

v ∈ F (x), d(x, x) < ε, d(v, y) < ε, 0 ≤ t < ε.

Now fix a y with d(y, y) < ε/2, and let x be such that d(x, x) < ε, 0 <
d(y, F (x)) < ε/2. By (ii) there is a v ∈ F (x) such that d(y, v) = d(y, F (x)) <
ε/2. It follows that d(v, y) < ε/2, so (12) holds for the given X and v.

As both y and v belong to the open ε-ball around y, there is a sequence (vn)
converging to v and such that

d(y, v) − d(y, vn)

d(vn, v)
→ |∇d(y, ·)|(v) ≥ 1 − δ. (13)

By (12) for sufficiently large n there are xn such that vn ∈ F (xn) and d(xn, x) ≤
γ−1d(vn, v) which implies together with (4) that

lim sup
n→∞

d(y, F (x)) − d(y, F (xn))

d(x, xn)
≥
d(y, v) − d(y, vn)

d(x, xn)

≥ γ
d(y, v) − d(y, vn)

d(v, vn)
≥ γ(1 − δ),

which means that |∇ϕy|(x) ≥ (1 − δ)γ.

The theorem applies, in particular, to continuous single-valued mappings
and upper-semicontinuous compact-valued mappings. In the first case the re-
quirement that d(y, F (x)) be bounded from above can be dropped, since it is
automatically satisfied due to continuity.
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The general case of a set-valued mapping F : X ⇉ Y with closed graph
is reduced, through Proposition 4, to the study of regularity of the standard
projection PF : (x, y) → y from Graph F into Y . Being closed, Graph F is
itself a complete metric space and we can apply Theorem 1 to this mapping.

Let F : X ⇉ Y . Consider the family of functions

fy(x, v) = d(y, v) + iGraph F (x, v),

with y being the parameter of the family and (x, v) being the arguments. Clearly,
dom fy = Graph F for every y. For any α > 0 and any f on X × Y , we denote
by |∇αf | the slope of f with respect to the α-metric dα.

Theorem 2 (regularity criterion – general case) Let X and Y be complete
metric spaces, let the graph of F : X ⇉ Y be closed, and let (x, y) ∈ Graph F .
Suppose there are ε > 0, and γ > 0 such that for some α > 0

|∇αfy|(x, v) > γ (14)

if

v ∈ F (x), d(x, x) < ε, d(y, y) < ε, d(v, y) < ε, v 6= y. (15)

Then

surF (x, y) ≥ γ.

Conversely, let Y be a locally coherent space. Assume that surF (x|y) > γ > 0.
Take an α < γ−1. Then for any δ > 0 there is an ε > 0 such that |∇αfy|(x, v) ≥
(1 − δ)γ whenever (x, y, v) satisfy (14). Thus, in this case

surF (x, y) = lim inf
(x,v) →

GraphF
(x,y)

y→y, y 6=v

|∇αfy|(x, v). (16)

Proof. Again we consider Graph F with the α-metric. Applying Theorem 1 to
PF (and keeping in mind that PF is single-valued continuous), we conclude that
surPF (x, y) ≥ γ. On the other hand, as follows from Proposition 4, surF (x|y) ≥
surPF ((x, y)). This completes the proof of the first statement.

To prove the second part, we first note that surαPF (x, y) > γ as α−1 > γ.
Therefore, by Theorem 1, |∇αfy|(x, v) ≥ (1 − δ)γ for all (x, v) ∈ Graph F suf-
ficiently close to (x, y) as claimed.

Remark The relation |∇αfy|(x, v) > γ automatically implies that 1 > αγ as
follows from the simple inequality

d(y, v) − d(y, w)

dα((x, v), (u,w))
≤
d(y, v) − d(y, w)

αd(v, w)
≤

1

α
.
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The proof of the second part of Theorem 1 suggests that for a (globally)
coherent space we can probably replace (11) and (16) by the nicer expressions:

surF (x) = lim inf
x →
domF

x
inf

y 6=F (x)
|∇ϕy |(x) (17)

for a single-valued mapping and

surF (x, y) = lim inf
(x,v) →

GraphF
(x,y)

inf
y 6=v

|∇αfy|(x, v) (18)

if F is set-valued.
This is indeed so, but under a slightly stronger assumption (which is still

sufficiently general as it is satisfied in Banach spaces and connected locally
compact Riemannian manifolds).

Theorem 3 Suppose that Y have the following geodesic

(GP) ∀ y1, ∀ y2 ∈ Y ∃y : [d(yi, y) = (1/2)d(y1, y2)].

Then (17) and (18) hold true (under the assumptions of Theorems 1 and 2,
respectively), whenever αγ ≤ 1.

Proof. It is clear that (GP) implies that the space is coherent. Hence, in view
of Theorem 1 we only need to show that for any z, any v and any w there is a
y 6= v arbitrarily close to v and such that

d(z, v) − d(z, w) ≥ d(y, v) − d(y, w).

But as follows from (GP), for any natural k, we may find a y such that d(y, v) =
2−kd(z, v), d(z, y)=(1− 2−k)d(z, v) for which the inequality is trivially valid.
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