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Abstract: It is proved that many known convergences (e.g., con-
tinuous convergence, Isbell topology, compact-open topology, point-
wise convergence) on the space of continuous maps (valued in a
topological space) can be represented as the dual convergences with
respect to collections of families of sets, and that they can be char-
acterized in terms of the corresponding hyperspace convergences of
the inverse images of closed sets. As a result, the convergence of
real-valued functions for a dual convergence implies the convergence
of their sets of minima on the corresponding hyperspace.
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1. Introduction

It is a well-known and simple fact (see, e.g., Dolecki, 1986) that the continuous
convergence of real-valued functions entails the upper Kuratowski convergence
of the corresponding sets of minimizers:

f0 ∈ lim[X,R] F =⇒ Min f0 ∈ lim[X,$] MinF .

If X and Z are topological spaces, then the continuous convergence [X,Z] is
the coarsest convergence on the set C(X,Z) of continuous functions, for which
the coupling map 〈x, f〉 = f(x) is (jointly) continuous. As the usual topology
of the real line is the supremum of the upper and the lower topologies inher-
ited from the extended line R̄, the continuous convergence is the supremum of
the upper and the lower continuous convergences. On the other hand, the up-
per Kuratowski convergence is the continuous convergence on C(X, $), where $
stands for the Sierpiński topology {∅, {1} , {0, 1}} on {0, 1}. The space C(X, $)
can be identified with the hyperspace of closed subsets of X . Therefore, the
discussed stability result is the consequence of the following two observations:
the continuous convergence with respect to the lower topology is equivalent to
the upper Kuratowski convergence of the corresponding lower level sets; the
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continuous convergence with respect to the upper topology implies the upper
convergence of the corresponding infima.

Similarly, numerous topologies (and convergences) defined on the setC(X,R)
with the aid of families of subsets of X , like compact-open topology or point-
wise convergence, entail the convergence of the sets of minima with respect to
the corresponding topologies on the hyperspace of closed subsets of X . We ob-
serve that this is still true for the Isbell topology, that is, the topology defined
on C(X,R) with the aid of the collection of compact families of subsets of X
(Isbell, 1975 a,b). It follows from Dolecki, Greco and Lechicki (1995) that the
Isbell topology of C(X, $) is homeomorphic to the upper Kuratowski topology,
that is, to the topological reflection of the upper Kuratowski convergence.

In this paper I show that all the mentioned convergences and topologies on
C(X,R) can be represented as dual with respect to some collections of families
of subsets of X . In particular, continuous convergence is dual with respect to a
subcollection of compact families. Similarly the Isbell topology is dual with re-
spect to all compact families, the compact-open topology is dual with respect to
compact sets, and the pointwise convergence is dual with respect to finite sets.
Moreover dual convergences can be represented in terms of the corresponding
hyperspace convergences of the inverse images of closed sets (Dolecki and My-
nard, 2007). In our special setting of lower and upper topologies on C(X, R̄),
this specializes to the corresponding convergences of lower and upper levels. As
a consequence, many results (known and new) on stability of minima appear as
corollaries of a single general fact. For example,

(1) The continuous convergence of functions implies the upper Kuratowski
convergence of their minima;

(2) The convergence of functions in the Isbell topology implies the convergence
of their minima in the topologization of the upper Kuratowski convergence;

(3) The convergence of functions in the compact-open topology implies the
convergence of their minima in the upper Wijsman topology;

(4) The pointwise convergence of functions implies the convergence of their
minima in the upper set-theoretic convergence;

(5) The convergence of functions in the closed-open topology implies the con-
vergence of their minima in the upper Vietoris topology.

2. Continuous convergence

Although our framework is that of topological spaces, we are confronted with
non-topological convergences as soon as we investigate spaces of (continuous)
maps. Indeed, as mentioned in the Introduction, even if X,Z are topologi-
cal spaces, the least structure on C(X,Z), for which the canonical coupling
is continuous, is, in general, non-topological. Actually the emergence of non-
topological convergence theory (Choquet, 1947-48) was motivated by this fact.

A convergence on Y is a relation between the filters F on Y and the elements
y of Y , denoted by y ∈ limF (= limY F) provided that F ⊂ G =⇒ limF ⊂ limG
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and y ∈ lim Nι(y) for every y ∈ Y , where Nι(y) is the principal ultrafilter
determined by y (see Dolecki, 2007). A set O in a convergence space Y is open
if O ∩ limY F 6= ∅ implies O ∈ F . The family of open subsets of a convergence
space fulfils all the axioms on open sets of a topology. This topology is called the
topologization of the convergence (the topological reflection in terms of category
theory).

If X,Z are convergence spaces, then C(X,Z) stands for the subset of ZX

consisting of all the maps continuous from X to Z. The continuous convergence
[X,Z] (of X with respect to Z) is the coarsest among the convergences on
C(X,Z) for which the evaluation is continuous from X × C(X,Z) to Z. The
convergence [X,Z] exists for arbitrary spacesX and Z. Let us describe explicitly
the continuous convergence in the case of topological spaces X and Z. If G is
a filter on X , and F is a filter on C(X,Z), then 〈G,F〉 stands for the filter
generated by {

⋃

f∈F f(G) : G ∈ G, F ∈ F}. Then

f ∈ lim[Y,Z] F

if and only if f(x) ∈ limZ〈N (x),F〉 for every x ∈ X (where N (x) is the neigh-
borhood filter of x); in other terms, if for each x ∈ X and every open subset O
of Z such that f(x) ∈ O there is a neighborhood W of x and F ∈ F such that
⋃

f∈F f(W ) ⊂ O.
The convergence [X,Z] is Hausdorff (that is, two filters that converge to dis-

tinct elements do not mesh) provided that Z is Hausdorff. If, however, Z is the
Sierpiński topological space $, then [X, $] is the upper Kuratowski convergence
on the space of X-closed sets, and if D is a closed set such that D ⊃ A, and
A ∈ lim[X,$] F , then also D ∈ lim[Y,$] F . Moreover [X, $] is hypercompact, which
means that every filter converges (in this case, to the whole of X).

3. Dual topologies

Let X,Z be topological spaces. A family A of open subsets of X is openly
isotone if O ⊃ A ∈ A implies that O ∈ A. If A is openly isotone and O is an
open subset of Z, then let

[A, O] := {f ∈ C(X,Z) : f−1(O) ∈ A}. (1)

We denote by OX the family of open subsets of X , and by OX(A) := {O ∈
OX : A ⊂ O}. If A = OX(A) then (1) is abridged to

[A,O] := {f ∈ C(X,Z) : A ⊂ f−1(O)}.

It is straightforward that

[
⋃

i∈I
Ai, O] =

⋃

i∈I
[Ai, O], (2)

[A0 ∧A1, O] = [A0, O] ∩ [A1, O], (3)
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where A0 ∧ A1 := {A0 ∪A1 : A0 ∈ A0, A1 ∈ A1}. In general, [A, O0] ∩ [A, O1]
is not equal to [A, O0 ∩O1].

If α is a collection of openly isotone families A of subsets of X , and OZ is
the family of open subsets of Z, then

{[A, O] : A ∈ α,O ∈ OZ} (4)

is a subbase for a topology on C(X,Z). This topology will be denoted α(X,Z)
and the space of continuous maps endowed with it by Cα(X,Z). If, in particular,
α = {OX(D) : D ∈ D}, where D is a family of subsets of X , then (4) is a base
for a topology on the function space, sometimes denoted by CD(X,Z).

Many classical topologies on spaces of continuous maps are defined with the
aid of bases of the form [D,O], where D ∈ D and O is open.

Example 1 If we consider the family X<ℵ0 of finite subsets of X, then

{[F,O] : F ∈ X<ℵ0 , O ∈ OZ}

is a base of a topological space denoted by Cp(X,Z); the corresponding topology
is that of pointwise convergence.

Example 2 If K = KX stands for the family all compact subsets X, then

{[K,O] : K ∈ KX , O ∈ OZ}

is a base of a topological space Ck(X,Z), called the compact-open topology.

Example 3 If Z = ZX stands for the family all closed subsets X, then

{[Z,O] : Z ∈ ZX , O ∈ OZ}

is a base of a topological space Cz(X,Z), called the closed-open topology. It is
a very strong topology (see Example 7).

A family A of open subsets of a topological space X is called compact
(Dolecki, Greco and Lechicki, 1985) if, whenever a family P of open sets fulfils
⋃

P ∈ A, then there exists a finite subfamily P0 such that
⋃

P0 ∈ A. The

family O(x), of open neighborhoods of x, is compact; if K is a compact set,
then the family O(K) is compact. Denote by κ = κ(X) the collection of all
(openly isotone) compact families on X . We notice that

(∀i∈I Ai ∈ κ(X)) =⇒
⋃

i∈I
Ai ∈ κ(X),

hence for every family C of compact subsets of X , the the family
⋃

K∈C
OX(K)

is compact.1

1A topological space is called consonant if every compact family is of that form (Dolecki,
Greco and Lechicki, 1995).
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Example 4 The topology for which

{[A, O] : A ∈ κ(X), O ∈ OZ}

is a subbase, is called the Isbell topology (see, e.g., Dolecki and Mynard, 2007).

Assume α and γ are two collections of families on X , and let Z be a topo-
logical space. Obviously, if γ ⊂ α then γ(X,Z) ≤ α(X,Z), because there are
more open sets for α than for γ. In particular, the Isbell topology is finer than
the compact-open topology, which is finer than the pointwise convergence. In
fact,

p(X,Z) ≤ k(X,Z) ≤ κ(X,Z) ≤ [X,Z],

and all the inequalities can be strict (see Dolecki and Mynard, 2007).
As for the closed-open topology, it is finer than the compact-open topology,

provided that X is Hausdorff (because in this case, each compact subset of X
is closed). In Section 5, regularity of X is shown to be sufficient for z(X,Z) to
be finer than [X,Z].

The collection o(X) := {OX(x) : x ∈ X} (consisting of all the families
of open neighborhoods of elements of X) is a subclass of κ(X).2 Therefore,
the topology generated by {[A, O] : A ∈ o(X), O ∈ OZ} is coarser than the
Isbell topology. This topology is closely related to the continuous convergence.
Namely,

Theorem 1 f0 ∈ lim[X,Z] F if and only if f0 ∈ [OX(x), O] implies that there is
W ∈ OX(x) such that [W,O] ∈ F for every x ∈ X and each O ∈ OZ .

Proof. By definition, f0 ∈ lim[X,Z] F if 〈x, f0〉 ∈ limσ〈OX(x),F〉 for every x ∈
X , that is, whenever for every O ∈ OZ(f0(x)) there is W ∈ OX(x) and F ∈ F
such that f ∈ [W,O] for each f ∈ F . In other words, if for every open set O
such that f0 ∈ [x,O] and there is W ∈ OX(x) such that [G,O] ∈ F . Now,
f0 ∈ [x,O] if and only if f0 ∈ [OX(x), O], because f0 is continuous.

More is true: it was proved in Dolecki and Mynard (2007) (in full generality)
that

Theorem 2 f0 ∈ lim[X,Z] F if and only if f0 ∈ [A, O] implies that there is
A ∈ A such that [A,O] ∈ F for every A ∈ κ(x) and each O ∈ OZ .

4. Hyperspaces and function spaces

We have said that if $ is the Sierpiński topology (on a two-element set), then
C(X, $) can be identified with the hyperspace of all the closed subsets of X .
The dual topologies with respect to collections α, also admit specializations to
that case, as does the continuous convergence. The following proposition is a
special case of a general fact in convergence spaces (see, e.g., Dolecki, 2007):

2A general case of arbitrary convergences is considered in Dolecki and Mynard (2007).



652 Sz. DOLECKI

Proposition 1 The continuous convergence [X, $] is homeomorphic to the up-
per Kuratowski convergence.

Proof. Let ψA0
∈ C(X, $) and F be a filter on C(X, $). By definition ψA0

∈
lim[X,$] F if and only if ψA0

(x) = 1 implies that there exists W ∈ OX(x) such
that [W, {1}] ∈ F . Now, the hypothesis is equivalent to x /∈ A0 and the thesis
means that there is F ∈ F and W ∈ OX(x) such that ψA(W ) = {1} for every

A ∈ F , that is, W ∩
⋃

A∈F
A = ∅, in other words, x /∈ cl

(

⋃

A∈F
A
)

. On

rewriting, ψA0
∈ lim[X,$] F if and only if

⋂

F∈F

cl

(

⋃

A∈F

A

)

⊂ A0.

Open sets for a topology α(X, $) are generated by a subbase

[A, {1}] = Ac = {B ∈ OX : X \B ∈ A}, (5)

where A ∈ α. Actually, it is a base if α contains finite intersections of its
elements, and it is a collection of all open sets (of α(X, $)) if α is stable by
unions. Therefore

Proposition 2 A0 ∈ limα(X,$) F if and only if A0 ∈ Ac then Ac ∈ F for every
A ∈ α(X).

It was proved in Dolecki, Greco and Lechicki (1995) that D is an open set
for [X, $] if and only if Dc is an openly isotone compact family on X . There-
fore, it follows from (5) that the Isbell hyperspace topology κ(X, $) is equal to
the topologization T [X, $] of [X, $], that is, to the upper Kuratowski topology.
Nevertheless, in general, T [X,Z] is not equal to κ(X,Z) (Escardó, Lawson and
Simpson, 2004).

If α = {OX(D) : D ∈ D} then

Corollary 1 A0 ∈ limD(X,$) F if and only if for every D ∈ D such that
A0 ∩D = ∅ there is F ∈ F such that A ∩D = ∅ for each A ∈ F.

Example 5 (pointwise topology) If D is the family of all finite subsets of X,
then we get on C(X, $) the upper set-theoretic convergence, that is, B ∈ lim F

whenever
⋂

F∈F

⋃

F∈F
F ⊂ B. We denote this space by Cp(X, $).

Example 6 (cocompact topology) (also called upper Wijsman topology) If K is
the family of compact subsets of X, then A ∈ NK(B) if for every K ∈ K disjoint
from B, one has {A ∈ C(X, $) : A ∩K = ∅} ⊂ A. We denote it Ck(X, $).

Example 7 (upper Vietoris topology) If Z = C(X, $) is the family of closed
subsets of X, then A ∈ Nz(B) if for every O ∈ OX such that B ⊂ O, one has
{A ∈ C(X, $) : A ⊂ O} ⊂ A. This is a very strong topology, as indicated by the
Choquet theorem (Choquet, 1947-48; Dolecki, 2000).
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If F is a filter on C(X,Z) then for every closed subset C of Z the filter

F−1(C) is generated by {
⋃

f∈F
{f−1(C)} : F ∈ F} on C(X, $). It is proved in

Dolecki and Mynard (2007) that

Theorem 3 f0 ∈ lim[X,Z] F if and only if f−1
0 (C) ∈ lim[X,$] F

−1(C) for each
closed subset C of Z.

Theorem 4 f0 ∈ limα(X,Z) F if and only if f−1
0 (C) ∈ limα(X,$) F

−1(C) for
each subset C of Z.

5. Closed-open topology

Although the upper Vietoris topology Cz(X, $) has been known for a long time
(see, e.g., Costantini, Holá and Vitiolo, 2004), the corresponding convergence of
functions (the closed-open topology) Cz(X,R) appeared in McCoy and Ntantu
(1988), but seems to be studied for the first time in the present paper.

It is well-known and straightforward that if X is a regular topological space
then the upper Vietoris topology is stronger than the upper Kuratowski con-
vergence. Choquet (1947-48) observed that the upper Vietoris topology is very
strong, and for that reason he deemed it uninteresting. He noticed that if a
countably based filter F in a metrizable space X converges to A in the upper
Vietoris topology 3, then there is a compact subset K of A such that the filter
generated by {F \A : F ∈ F} converges to K in the upper Vietoris topology
(see also Dolecki, 1977; Dolecki and Rolewicz, 1979; Labuda, 1987). Nowadays,
some weaker conditions on the space and the filter have similar consequences,
Dolecki (2000).

The considerations above indicate that, more generally, closed-open topology
is very strong. I observe that

Proposition 3 If the underlying topology is regular, then the closed-open topol-
ogy is stronger than the continuous convergence.

Proof. Let f0 ∈ limz(X,Z) F and let x ∈ X . Then, for every open neighborhood
O of f(x0) and an open neighborhood V of x such that f0(V ) ⊂ O there exists
a closed neighborhood W of x such that f0(W ) ⊂ O. It follows that [W,O] ∈ F .

Denote by Nι(y) the principal ultrafilter of y. If F is a filter on C(X,Z)
then F(x) is the filter generated by {{f(x) : f ∈ F} : F ∈ F}. Finally, if a filter
F on C(X,Z) converges to f0 in z(X,R), then define the active set of F by

act(F) := {x ∈ X : F(x) 6= Nι(f0(x))} .

Recall that a (Hausdorff) topological X space is hemicompact if there exists a
sequence (Kn)n of compact subsets of X such that each compact subset of X

3Actually, the set A was an arbitrary (not necessarily closed) subset of X.
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is included in one of the elements of this sequence; it is a k-space if a set is
closed provided that its intersection with each compact set K is closed in K.
There exist hemicompact spaces, which are not k-spaces; on the other hand, each
locally compact space of countable weight is a hemicompact k-space (Engelking,
1989, p.165).

Theorem 5 Let X be a hemicompact k-space and let F be a countably based
filter on C(X,R). Then f0 ∈ limz(X,R) F if and only if f0 ∈ limk(X,R) F and
there is a compact subset K of X such that f0(act(F)\K) is finite, where act(F)
is the active set of F , and F converges to a constant function z uniformly on
f−1
0 (z) for each z ∈ f0(act(F) \K).

Proof. As in a Hausdorff space each compact set is closed, z(X,R) is stronger
than k(X,R). Assume that f0(act(F) \ K) is infinite for each compact set
K. Thus, if (Kn)n is as in the definition of hemicompactness, then there is
a sequence (xn)n such that xn /∈ Kn and {f0(xn) : n ∈ N} are all distinct.
The set C := {xn : n ∈ N} is closed, because it intersection with each compact
set is finite, but it is not compact. Consequently, there exist (ηk)k such that
{B(f0(xk), ηk) : k ∈ N} is pairwise disjoint. As F is generated by a decreasing
sequence (Fn)n, there exists a sequence (εk)k and a subsequence (nk)k and
fk ∈ Fnk

such that fk(xk) ∈ B(f0(xk), ηk) \ B(f0(xk), εk). Therefore, f0 ∈

[C,
⋃

k∈N
B(f0(xk), εk)] /∈ F . As f−1

0 (z) is closed (for each z), if F converges

to f0 in z(X,R), then the convergence on f−1
0 (z) is uniform. Conversely, if

f0 ∈ limk(X,R) F and the condition holds, then there exist finitely many closed

sets, say, C0, C1, . . . , Cm such that X =
⋃m

l=1
Cl, and the set C0 is compact,

and F converges uniformly to a constant function on Cl for each 1 ≤ l ≤ m.

Corollary 2 If X is a hemicompact k-space, and if f = limz(X,R)(fn), then
f is bounded on {x ∈ X : ∀n fn(x) 6= f(x)} .

Corollary 3 Let X be a k-space in which a sequence (Kn)n of compact sets is
cofinal for compact sets, and X\Kn is connected for each n. If f = limz(X,R)(fn)
and the active set of (fn) is X, then there is a compact subset K of X such that
f is constant on X \K.

Proof. By Theorem 5, there is n such that f takes finitely many values onX\Kn,
say {r1, r2, · · · , rm}. Therefore the sets f−1(rj)\Kn are clopen in a (connected)
set X \Kn for 1 ≤ j ≤ m. Hence m = 1.

6. Convergence of infima and of sets of minimizers

In our case, Theorems 3 and 4 take a particular form. A function f : V → R̄ =
R∪{−∞,∞} is lower semicontinuous whenever it is continuous with respect to
the lower topology of R̄ (for which {(r,∞] : −∞ ≤ r ≤ ∞} is a base). Therefore
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C(V, R̄) is the space of maps that are continuous from X to R̄ endowed with
the lower topology, in other words, lower semicontinuous functions.

A subset A of V is closed if and only if its indicator function ψA

ψA(x) =

{

−∞ if x ∈ A
∞ if x /∈ A

(6)

is continuous for the lower topology of {−∞,∞}. Actually, this topology is
homeomorphic to the Sierpiński topology.

The well-known fact that a function is lower semicontinuous if and only if
its every lower level is closed, links up with Theorem 3 as follows: let F be a
filter on C(X, R̄) and f0 ∈ C(X, R̄). We denote by {F ≤ r} the filter (on the
set of closed subsets of X) generated by {

⋃

f∈F {f ≤ r} : F ∈ F}. Then

Proposition 4 If R̄ is endowed with the lower topology, then f0 ∈ lim[X,R̄] F
if and only if {f0 ≤ r} ∈ lim[X,$]{F ≤ r} for each r ∈ R.

Similarly, Theorem 4 specializes to

Proposition 5 If R̄ is endowed with the lower topology, then f0 ∈ limα(X,R̄) F
if and only if {f0 ≤ r} ∈ limα(X,$){F ≤ r} for each r ∈ R.

The lower convergence of the infima of functions can be interpreted in terms
of a set-open topology. Indeed, if we consider the family o(X) consisting of a
single set (the whole space X), and R̄ is endowed with the lower topology, then

Proposition 6 If R̄ is endowed with the lower topology, and f0 ∈ limo(X,R̄) F ,
then infX f0 ≤ supF∈F inff∈F infX f .

Proof. Suppose the former and let r < infX f0. Then f0 ∈ [X, (r,∞]], hence, by
assumption, [X, (r,∞]] ∈ F , thus there is F ∈ F such that inf f ≥ r for each
f ∈ F .

The topology o(X, R̄) is coarser than the (lower) closed-open topology z(X, R̄),
because X is a closed set. Therefore

Corollary 4 If R̄ is endowed with the lower topology, and f0 ∈ limz(X,R̄) F ,
then infX f0 ≤ supF∈F inff∈F infX f .

It is well-known that the continuous (lower) convergence does not imply the
lower convergence of the corresponding infima, and that some supplementary
conditions related to compactness are needed to assure it (e.g., Dolecki, 1984).
In some sense, closed-open topology encompasses such conditions. Of course, all
the topologies and convergences on C(X, R̄) (for R̄ with the lower topology) that
are weaker than the continuous convergence, do not imply the lower convergence
of infima.

On the other hand, the lower convergence of the suprema of functions follows
from the lower pointwise convergence of the corresponding functions. Indeed,
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Proposition 7 If R̄ is endowed with the lower topology, and f0 ∈ limp(X,R̄) F ,
then supX f0 ≤ supF∈F inff∈F supX f .

Proof. If r < supX f0 then there is x ∈ X such that r < f0(x), thus by the
(lower) pointwise convergence, there is F ∈ F such that r < f(x) for each
f ∈ F , that is, r ≤ supF∈F inff∈F supX f .

As the pointwise convergence is the weakest among all the topologies and
convergences considered in this paper, each of them implies the lower continuity
of suprema.

If we endow the extended real line R̄ with the upper topology (the sets
{[−∞, r) : −∞ ≤ r ≤ ∞} constitute a base), then a mirror proposition holds.

Proposition 8 If R̄ is endowed with the upper topology, and f0 ∈ limp(X,R̄) F ,
then infX f0 ≤ infF∈F supf∈F infX f .

Corollary 5 Let R̄ be endowed with the upper topology. If α(X) is a col-
lection of families with X<ℵ0 ⊂ α(X) and f0 ∈ limα(X,R̄) F , then infX f0 ≤
infF∈F supf∈F infX f .

For simplicity sake, I shall prove the following auxiliary fact. Denote g0 :=
f0 + rf0

, g := f + rf ,G a filter generated by {{f + rf : f ∈ F} : F ∈ F}, where
rf is a real number depending on the function f .

Lemma 1 Let R̄ be endowed with the lower topology. If f0 ∈ limα(X,R̄) F and
rf0

≤ supF∈F inff∈F rf , then g0 ∈ limα(X,R̄) G.

Proof. If f0+rf0
∈ [A, (s,∞]], then there is A0 ∈ A such that s < f0(x)+rf0

for
each x ∈ A0. On the other hand, there exist s0 and s1 such that s = s0 +s1 and
s0 < f0(x) for each x ∈ A0 and s1 < rf0

. By assumption, there is F ∈ F such
that F ⊂ [A, (s0,∞]] and s1 < rf for every f ∈ F . Therefore, for every f ∈ F ,
there is Af ∈ A such that s0 ≤ infAf

f, thus s < infAf
f + rf for each f ∈ F .

Consequently f + rf ∈ [Af , (s,∞]] for every f ∈ F , that is, [A, (s,∞]] ∈ G.

We notice that the set of minimizers of a function f : X → R̄ can be
represented as

MinX f = {x : f(x) ≤ infX f}.

We will use this representation in establishing a general convergence result
for the sets of minimizers. Denote by MinF the filter generated by {

⋃

f∈F Min f :
F ∈ F}.

Theorem 6 If α is a collection of families that fulfils X<ℵ0 ⊂ α(X), and if
f0 ∈ limα(X,R) F and infX f0 > −∞, then Min f0 ∈ limα(X,$) MinF .

Proof. As the considered functions f do not take infinite values, infX f <∞ for
each f , and since − infX f0 < ∞, there is F ∈ F such that − infX f < ∞ for
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each f ∈ F . Therefore, MinX f = {x : f(x) − infX f ≤ 0} for all such f . As
f0 − infX f0 ∈ limα(X,R)(f − inf f)F it follows that the 0-lower levels converge
in α(X, $).

Another formalism describing the situation above is based on Γ-convergence
(see Dolecki, 1986).
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