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Abstract: The classical mathematical programming problem
used for the determination of a production plan maximising total
income or profit is complemented with a second objective, concern-
ing the makespan of the products being manufactured on two ma-
chines. As a result, a bicriterial integer linear programming prob-
lem is obtained, which can be solved by means of classical methods.
A computational example is presented and discussed.
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1. Introduction

In the paper we consider a classical mathematical programming problem used
for the determination of a production plan maximising total income or profit,
complemented with a second objective, concerning the makespan of the products
being manufactured on two machines. This second objective is usually not
considered directly as an objective or even in the constraints. Even if the limit
of machine-hours is taken into account in the constraints, the idle time on the
machines is usually not counted. And the makespan may be of high importance
to the total profit as well as to the workers’ satisfaction with working conditions.

Thus, we propose to combine in one bicriterial problem the objective of in-
come (profit) maximisation and that of makespan minimisation. The compro-
mise solutions will be determined by solving mixed 0-1 single-objective mathe-
matical programming problem or a single objective mathematical programming
problem with continuous variables together with several open shop problems.
Two scheduling cases will be considered: the two machines flow shop and open
shop problem.
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2. Two machines flow shop problem

Before we go over to the two machines flow shop problem, we will consider two
more general problems: the m machines job shop problem, which is a more
general problem comprising the flow shop problem, and the m machines flow
shop problem.

Let us consider a problem in which we have m different machines (Mk(k=1,...,
m)) and n jobs Jj (j = 1, ..., n). Each job has to be processed on a sequence
(

i1j , i
2
j , ..., i

l(j)
j

)

(

iij ∈ {1, ...m}
)

of machines and the processing time of job Jj

on machine Mk (it may be equal to zero for those machines on which the given
job does not have to be processed) is equal to pk

j . In each moment on each
machine at most one job can be processed. We assume that we do not change
the processing order of jobs on different machines. We can ask the question
what is the optimal order in which the jobs should be processed so that the
makespan M , representing the earliest moment when all machines are free, is
minimal.

If we denote by sj(irj) (j = 1, ...n; r = 1, ...l(j)) the start of the processing
of job Jj on machine irj , define 0-1 variables yij equal to 0 if job Ji precedes
job Jj and to 1 otherwise, and choose C to be a sufficiently big constant, the
problem can be solved by means of the following mixed linear problem (Dauer,
Lin, 1990):

Objective function: M → min

Constraints ensuring that each job is processed on the correct sequence of ma-
chines:

sj(irj) > sj(ir−1
j ) + p

i
r−1
j

j (j = 1, . . . , n; r = 2, . . . , l(j)) (1)

Constraints ensuring the needed meaning of the objective function:

sj(i
l(j)
j ) + p

i
l(j)
j

j 6 M (j = 1, . . . , n) (2)

Constraints ensuring that in each moment on each machine there is at the most
one job being processed:

sj1(ir
∗

j1
) + p

ir∗

j1

j1
− sj2(is

∗

j2
) > Cyj1j2

for all j∗1 , r∗, j∗2 , s∗ such that ir
∗

j1
= is

∗

j2
= k, k = 1, . . ., m

yj1j2 + yj2j1 = 1 for all j1, j2 = 1, . . . , n (3)

The above problem is very hard from the computational point of view. In
the paper we will concentrate on a special case: the flow shop problem.

In the flow shop problem the order of processing is fixed and the same for
each job: each job has to go through M1 first, then M2 etc and finally through
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Mm. Thus (i1j , i
2
j , . . . , i

l(j)
j ) = (1, 2, . . . , m) for each j = 1, . . ., n. Here the above

mixed linear problem takes on the following form:

M → min

sj(k) > sj(k − 1) + pk−1
j (j = 1, . . . , n; k = 2, . . . , m) (4)

sj(m) + pm
j 6 M (j = 1, . . . , n) (5)

sj1(k) + pk
j1
− sj2(k) > Cyj1j2 , yj1j2 + yj2j1 = 1

for k = 1, . . ., m, j1, j2 = 1, . . . , n. (6)

If we consider the case with only two machines, the problems becomes easy
to solve. Johnson (1954) presented an O(n log n) algorithm for solving the
problem. An optimal solution is found in the following way:

1) all the jobs Jj(j = 1, . . . , n) should be divided into two sets: T1 is com-
posed of those jobs for which the condition p1

j 6 p2
j is fulfilled, T2 is formed

by the remaining jobs;
2) jobs from T1 are scheduled first, in the order of increasing p1

j

3) then jobs from T2 are scheduled, in the order of decreasing p2
j .

It follows that in the linear programming formulation for the two machines
case the number of variables (6) could be reduced. The model would be com-
posed of (3)(4)(5) and

sj1(k) + pk
j1
− sj2(k) > 0 for j1, j2 such that Jj1 ∈ T1 and Jj2 ∈ T2 (7)

sj1(k) + pk
j1
− sj2(k) > Cyj1j2 , yj1j2 + yj2j1 = 1

for j1, j2 such that Jj1 , Jj2 ∈ T1

sj1(k) + pk
j1
− sj2(k) > Cyj1j2 , yj1j2 + yj2j1 = 1

for j1, j2 such that Jj1 , Jj2 ∈ T2.

Now we will consider another two machines problem.

3. Two machines open shop problem

In the two machines open shop problem each job has to be processed on both
machines, but the order can be any: M1 first, then M2 or the other way round.
Thus, this is not a job shop, where the order of “visiting” the machines is
fixed for each job. In Gonzales and Sahni (1976) an O(n) algorithm has been
developed for solving the problem (again, with makespan minimization). We
will not quote this algorithm here, but we will restrict ourselves to quoting the
following theorem:

Theorem 1 The optimal makespan is equal to the maximum of

n
∑

j=1

p1
j ,

n
∑

j=1

p2
j , max

j=1,...,n
(p1

j + p2
j).
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4. Single-criterion production plan problem

Let us consider the following optimal production plan problem: suppose that
a company manufactures n products, one unit of the j-th product generating
the income cj . Let X = (x1, . . . , xn) denote the vector of decision variables
representing the amounts of each product to be manufactured in a given period,
and AX 6 B represent the constraints of the production plan. Then, of course,
the optimal production plan for the objective “total income” can be found by
means of the following programming problem and the classical methods of its
solution:

n
∑

j=1

cjxj → max (8)

AX 6 B, X > 0.

In the next section we will consider an additional criterion for the optimal
production plan problem.

5. Bi-criteria production plan problem

Let us suppose that the products considered in (8) should be processed on two
machines (a generalisation to m machines for any m will be straightforward, it
is just that it will be harder from the computational point of view). The total
available processing time on the machines may or may not be a part of the
constraints in (8), but the minimisation of the makespan may be an additional
objective. In fact, the longer the makespan, the higher the cost of executing the
obtained production plan, the higher the non-availability time of the machines
and of the persons operating them for other tasks etc. For this reason we propose
to complete (8) with additional criterion and consider the following bicriterial
problem:

n
∑

j=1

cjxj → max

M → min

constraints ensuring the proper meaning of M

AX 6 B, X > 0. (9)

We will consider the two machines flow shop and open shop problems. In the
flow shop case each product j has to be processed through M1 first, then through
M2, in the open shop case the order of processing trough both machines can be
either. In both cases let us denote as t1j (t2j) the time each unit of product j will
need to be processed on machine M1 (M2), thus the processing times will be
respectively p1

j = t1jxj (p2
j = t2jxj) and will depend on the solution selected. We
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assume that processing of all the units of one product on one machine cannot
be interrupted.

Thus we propose to solve the following bicriterial problem:

n
∑

j=1

cjxj → max

M → min

constraints ensuring the right meaning of M

AX 6 B, X > 0. (10)

For the flow shop case we make (10) concrete by using (4),(5),(7), as T1 and T2,
which depend only on the relations between t1j and t2j for each j = 1, . . . , n, will
be known without knowing the actual processing times, which depend, in turn,
on vector X. Thus, we will solve the following problem:

n
∑

j=1

cjxj → max

M → min

sj(k) > sj(k − 1) + tk−1
j xj (j = 1, . . . , n; k = 2, . . . , m)

sj(m) + tmj xj 6 M (j = 1, . . . , n)

sj1(k) + tkj1xj1 − sj2(k) > 0 for j1, j2 such that Jj1 ∈ T1 and Jj2 ∈ T2

sj1(k) + tkj1xj1 − sj2(k) > Cyj1j2 , yj1j2 + yj2j1 = 1

for j1, j2 such that Jj1 , Jj2 ∈ T1

sj1(k) + tkj1xj1 − sj2(k) > Cyj1j2 , yj1j2 + yj2j1 = 1

for j1, j2 such that Jj1 , Jj2 ∈ T2

AX 6 B, X > 0. (11)

We can use any of the multiple objective linear programming methods and
algorithms to solve the above problem, according to the needs of the decision
maker – some algorithms determine a collection of solutions (e.g. the non-
dominated ones) from which the decision maker has to choose one, some of them
determine just one solution thanks to a prior modification of the problem ac-
cording to the preferences of the decision maker (e.g. the lexigraphic approach).
It is beyond the scope of the paper to discuss the individual methods, details
can be found e.g. in Steuer (1986). We think that the most useful approach
would be either to use the goal programming (e.g. Schniederjans, 1995), which
is a method widely accepted in practical applications because of its simplicity
and intuitiveness, or to determine the whole set of non-dominated solutions,
which give the decision maker the possibility to select one from among a broad
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spectrum of solutions, changing with respect to the preferences given to indi-
vidual objectives. An algorithm for determining such a set can be found e.g.
in Gal (1977) and Dauer, Liu (1990). This algorithm allows to determine the
set of non-dominated solutions in case of any number of objective functions.
If there are just two objective functions, like in our case (with the objective
functions and constraints being linear, which assures that the non-dominated
set has ”good” properties, see, e.g., Galas, Nykowski, Żó lkiewski, 1987), it is
also possible to find the set of all non-dominated solutions by means of solving a
single-objective linear programming problem with a parameter in the objective
function, where the parameter runs the interval [0,1]. This is the method, called
weighted objective function approach (see, e.g., Steuer, 1986), that we use in
the computational example. This method has the drawback that if the para-
meter takes on the value 0 and 1, which corresponds to not taking into account
one of the objective functions, and if there are alternative solutions, the ones
obtained may not be non-dominated. Thus, at the parameter values 0 and 1 it
should be checked whether there are alternative solutions and if there are, all
the basic ones should be checked (e.g. by the classical simplex algorithm) and
the one which is non-dominated should be selected (there is always such one).
This problem is discussed more deeply in Galas, Nykowski, Żó lkiewski (1987)
and Wierzbicki (1986). The set of non-dominated solutions is characterized in
Gallager, Saleh (1993) and the problem of its stability in Gal and Wolf (1986).

For the open shop case we make (2) concrete in a two-stage algorithm. First
of all, we determine the compromise values of both objective functions together
with the production plans, without determining the corresponding schedules
yet. Thanks to Theorem 1, this is possible by solving the following bicriterial
problem:

n
∑

j=1

cjxj → max

M → min

M >

n
∑

j=1

tkj xj (k = 1, 2)

M > (t1j + t2j)xj (j = 1, . . . , n)

AX 6 B, X > 0 (12)

λ ∈ [0, 1] .

In the second stage, knowing for the solution of (12) (again, obtained by
means of any multicriteria linear programming algorithm) the corresponding
production plan, we will be able to find, using the algorithm from Gonzales and
Sahni (1976), the corresponding schedule.
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6. Computational example

A company manufactures 4 products. The income generated by one unit of
each of the products is as follows: c1 = 4; c2 = 3; c3 = 3; c4 = 12. Constraints
AX 6 B from (8) have the following form:

x1 + 2x2 + 15x3 + 6x4 6 90000

2x1 + 2x2 + 15x3 + 4x4 6 120000.

The processing times of one unit of each product on each machine are as follows:

t11 = 3; t12 = 1; t13 = 3; t14 = 2; t21 = 2; t22 = 4; t23 = 1; t24 = 5.

Let us consider the flow shop case. Set T1 will be composed of jobs representing
the manufacturing of the 2nd and the 4th product, jobs representing the man-
ufacturing of the 1st and 3rd product will form T2. Thus, using the weighted
function approach as a method of turning the bicriterial problem into a single
objective one, we will get the following concretisation of (11):

λ(4x1 + 3x2 + 3x3 + 12x4) − (1 − λ)M → max

x1 + 2x2 + 15x3 + 6x4 6 90000

2x1 + 2x2 + 15x3 + 4x4 6 120000

s1(1) + 3x1 6 s1(2)

s2(1) + x2 6 s2(2)

s3(1) + 3x3 6 s3(2)

s4(1) + 2x4 6 s4(2)

s1(2) + 2x1 6 M

s2(2) + 4x2 6 M

s3(2) + x3 6 M

s4(2) + 5x4 6 M

s2(1) + x2 − s1(1) 6 0

s2(1) + x2 − s3(1) 6 0

s4(1) + 2x4 − s1(1) 6 0

s4(1) + 2x4 − s3(1) 6 0

s2(2) + 4x2 − s1(2) 6 0

s2(2) + 4x2 − s3(2) 6 0

s4(2) + 5x4 − s1(2) 6 0

s4(2) + 5x4 − s3(2) 6 0
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s2(1) + x2 − s4(1) 6 Cy24; s4(1) + 2x4 − s2(1) 6 Cy42

s2(2) + 4x2 − s4(2) 6 Cy24; s4(2) + 5x4 − s2(2) 6 Cy42

y24 + y42 = 1

s1(1) + 3x1 − s3(1) 6 Cy13; s3(1) + 3x3 − s1(1) 6 Cy31

s1(2) + 2x1 − s3(2) 6 Cy13; s3(2) + x3 − s1(2) 6 Cy31

y13 + y31 = 1

y24, y42, y13, y31 = 0, 1, other variables non-negative,

λ ∈ [0, 1] .

In case of λ = 0 and λ = 1 there are no alternative solutions, thus by solving
the above problem we are sure to get all the basic non-dominated solutions.
Here they are, presented only in the criteria space:

Table 1. Basic non-dominated solutions for the example

Solution Income
n
∑

j=1

cjxj Makespan M

A1 0 0
A2 42 434 83 486
A3 209 423 112 500
A4 219 130 121 304
A5 270 000 240 000

The whole non-dominated set is composed of all the line segments combining
the points listed above.

Solutions A1 and A5 correspond to the single-objective problems: the first
one ignores the objective of income, the second one ignores the objective of
makespan. As we can see, if we ignore the objective of makespan, we miss
solutions like A3 and A4, where the income is not much smaller than the ideal
one (income for A4 is by less than 20% smaller than that for A5, for A3 the
corresponding difference is less than 25%) , but the makespan is considerably
shorter (by almost 50% in A4 and by more than 50% in A3). The thus freed
amount of time might be used to generate income significantly exceeding what
we lose with respect to A5.

It might be useful to consider the following trade-off:

R(j) =
Income(Aj) − Income(Aj−1)

Makespan(Aj) − Makespan(Aj−1)
(j = 2, . . . , 5)).

It shows how much income we gain if we gradually pass from solution Aj−1 to
solution Aj by allowing one more unit of time for the makespan. This value
should be compared with the additional cost linked to each additional unit of the
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makespan. The inverse of R (j) shows how much time we gain if we gradually
pass from solution Aj to solution Aj−1 by consenting to lose one unit of income.
This value should be compared to additional income we can get from the freed
amount of time. Here are both trade-offs calculated for the example:

Table 2. Ratios characterising moves from one basic non-
dominated solution to another one in the example

j R(j) 1/R(j)

2 1.97 0.51

3 0.17 5.75

4 0.91 1.10

5 2.33 0.43

For example, if we are at point A4 with makespan equal to 121 304 time units
and allow one time unit more for the makespan, we can increase our income by
2.33 units. The same decision taken in A3 would bring only 0.91 additional
income unit. If each additional unit of makespan causes the additional cost
of 1, the move from A4 towards A5 would be desirable, but the move from A3
towards A4 would not. Similarly, if we are at A5 (the point corresponding to
the ideal income) and consent to give up one unit of income, we would gain only
0.43 units of time, the same move from A4 towards A3 would free for us more
than 5 units of time. We would have to see how much additional income we can
generate in the freed amount of time.

In Kaliszewski (2000) a method is proposed which allows to set bounds on
the trade-offs in such a way that no solution with trade-offs above these bounds
is generated by the algorithm.

7. Conclusions

We have proposed a way of introducing the makespan, as a second criteria, into
the problem of determining an optimal production schedule. In this way, while
looking for the optimal production plan, we take into account also idle states of
machines, which obviously influence the cost and the satisfaction degree, but are
not taken into account in classical formulation. The cases discussed comprise
only the simplest scheduling cases and further research is needed to generalize
the approach to other situations that occur in reality.
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