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Abstract: The first and probably the most important step in
predicting the tertiary structure of proteins from its primary struc-
ture is to predict as many as possible secondary structures in a pro-
tein chain. Secondary structure prediction problem has been known
for almost a quarter of century. In this paper, new machine learning
methods such as LAD, LEM2, and MODLEM have been used for
secondary protein structure prediction with the aim to choose the
best among them which will be later parallelized in order to handle
a huge amount of data sets.
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1. Introduction

Proteins represent one of the most exciting and complex products of nature.
They are the machinery of life, in the sense that they are involved in all the
processes, which regulate the functional cycles of living organisms. We can
observe proteins guiding the catalysis of biochemical reactions, signal transduc-
tion and transmission or the correct expression of genetic information. Basically,
proteins are the result of genetic code translation and the function of a protein
is closely related to its structure. It is therefore clear that being able to predict
structural features of a proteome could have a strong positive impact on any at-
tempt to discover unknown characteristics of a genome. Unfortunately, finding
the structure in laboratory is extremely difficult, cost prohibitive and can take
months or years in some cases. The ability to provide effective computational
tools for protein structure prediction is a key to overcome these experimental
problems and to guide a part of the future scientific effort in molecular biology.

1Partially supported by KBN grant 3T11F00227
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The growth of interest in ’non conventional computer algorithms’ (in particular
those offered by AI and machine learning) applied to biological domains relies
on the so called “data revolution". Since the beginning of the first genomic and
sequencing projects, the amount of information available concerning biological
molecules such as DNA, RNA and proteins (primarily in the form of sequences)
continues to grow at an exponential rate. Following this situation, bioinformat-
ics (the fusion of computer science and biology comprising many algorithmic
ideas coming from different disciplines and applied to molecular biology prob-
lems) has emerged as a key discipline for performing inference tasks on biological
sequences such as automatic analysis, interpretation and prediction (Baldi and
Brunak, 2001). Considering the variety of protein structure prediction prob-
lems, machine learning plays an increasingly significant role. Its techniques
have already been applied in a large number of important applications like
computational gene finding (Pevzner, 2000), prediction of DNA active sites, se-
quence clustering, analysis of gene expression data (Baldi and Brunak, 2001)
and knowledge discovery in biological domains. This paper is intended to show
a possibility of use of a new machine learning algorithm in secondary protein
structure prediction. Three approaches used are: LAD, LEM2 and MODLEM.
The aim of the study was to choose the best among them for the problem in
question. The winning approach will be parallelized in further studies, in order
to handle huge data sets (available protein chains).

The paper is organized as follows. Section 2 describes basic elements of
structural biology and the protein folding problem. Section 3 reviews the known
methods used for solving the problem. Section 4 lists machine learning algo-
rithms considered in our study, describes data used for experiments and presents
transformations of the data required by the algorithms, while Section 5 reports
the results of a set of experiments. Section 6 presents a discussion and conclu-
sions.

2. Description of the problem

Proteins are macromolecules built of 20 basic units, called amino acids. All
amino acids share the same generic chemical properties. There is a central
carbon atom (Cα) attached to a hydrogen atom, an amino group (NH 2), a
carboxy group (COOH) and a lateral chain or residue (R), which distinguishes
one amino acid from the others. Every residue is assigned a 3-letter or 1-letter
code. During DNA transcription-translation phases, proteins are assembled
through the formation of peptide bonds, where the carboxy group of one amino
acid is joined with the amino group of another to release water. So, we can talk
of a protein as a polypeptide formed by a backbone (the sequence of peptide
bonds) and a side chain (the sequence of residues).

The structure of a protein may be represented hierarchically at three struc-
tural levels. The primary structure is the sequence of amino acids in the polypep-
tide chain and it can be described as a string on the finite alphabet Σaa, with
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|Σaa| = 20. The secondary structure refers to the set of local conformation
motifs of the protein and schematizes the path followed by the backbone in
the space. The secondary structure is built from three main classes of motifs:
α-helix (H), β-strand (E) and loop or coil (C). An α-helix is built up from one
continuous region in the sequence through the formation of hydrogen bonds be-
tween residues in position i and i+4. A β-strand does not represent an isolated
structural element by itself, because it interacts with one or more β-strands
(which can be distant in a sequence) to form a pleated sheet called β-sheet.
Strands in a β-sheet are aligned adjacent to each other such that their amino
acids have the same biochemical direction (parallel β-sheet) or alternating di-
rections (anti-parallel β-sheet). The α-helices and β-strands are often connected
by loop regions, which can significantly vary in length and structure, having no
fixed regular shape as the other two elements. Every amino acid in the sequence
belongs to one of the three structural motifs, so the secondary structure can be
reduced to a string over the alphabet Σss= {H; E; C}, being of the same length
as the primary structure. The most important description level and main ob-
jective of experimental and prediction efforts is the so-called tertiary structure.
It describes the
3-dimensional organization of polypeptide chain atoms (both backbone and side
chain atoms). It is the result of the combinations of secondary structure elements
due to interactions between the amino acids and the solvent (the environment
of the protein, being water). Some proteins allow also for another level of de-
scription, called quaternary structure. It is introduced to describe the complex
spatial conformation of a protein composed of many distinct polypeptide chains
(multimeric protein). Chains of a multimeric protein are often called protein
sub-units.

Protein chains are subject to a folding process. Starting from the primary
structure, they are capable of organizing themselves into a unique 3-dimensional
stable (native) conformation which is responsible of their biological functions.
According to the experimentally confirmed Anfinsen’s hypothesis (Anfinsen,
1973), the tertiary structure depends only on lower order structures, plus the
native solution environment. This means that the primary sequence contains
all the information needed to reach the final stable conformation (a corollary
could involve also the functional dependence of the secondary structure on the
primary one).

This gave rise to the folding problem, the prediction of protein’s tertiary
structure from its amino acid sequence. Finding a solution to the folding prob-
lem is one of the most difficult and challenging open problem in structural
genomics. Despite many decades of intensive research efforts, the problem has
not a general solution yet. An evidence for this claim is the rapidly increas-
ing sequence-structure gap. The number of proteins for which the sequences
are known is about a half a million (Bairoch and Apweiler, 2000), whereas the
number of protein structures deposited in public databases is less than twenty
thousands (Berenstein et al., 1997). Excluding experimental difficulties, the
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reason for this impressive difference is largely due to the lack of a compre-
hensive theory of the folding. At present, we only know a few reliable facts
about the folding mechanism. The most accurate tools for doing protein folding
are knowledge-based methods, i.e. comparative (homology) modeling and fold
recognition. The next section overviews the homology based methods used so
far for solving the protein structure prediction problem.

3. The overview of homology based methods

Homology modeling techniques (Sanchez and Sali, 1997) assign a 3D structure
to a novel protein by searching for proteins with similar sequences. The basic
assumption is that proteins with similar sequences adopt similar folds and func-
tions. The unknown fold is then modeled using the structure of homologs as a
template. However, it is frequently found that two proteins with low sequence
identity have similar functions and three-dimensional structures. In this case,
fold recognition (threading) techniques can be applied (Fisher and Eisenberg,
1996; Jones, 1999), which select the target structure as the most compatible
one among those present in a library. Overall, it is estimated that knowledge
based methods can be applied to only about 20-30% of novel proteins. In the
majority of cases, the structure of a novel protein must be assigned ab initio,
not relying on the protein having a fold similar to the known one. Typical ab
initio approaches compute 3D structure by doing searches on the space of the
protein allowable conformations. Simulations employ the physical laws of mo-
tion in carefully devised potential fields (molecular dynamics). Unfortunately,
exact numerical calculations are beyond the possibilities of the present and near
future computers and results can be obtained only for small proteins. Another
obstacle is represented by the extremely small differences in energy between
native and unfolded structures (about 1 kcal/mol).

Secondary structure prediction was one of the first and most important prob-
lem faced by computer learning techniques. Its significance can be understood
by looking at the variety of prediction systems that were developed over time.
Roughly, one can distinguish between the 1st, 2nd and 3rd generation methods.
First generation methods are those making predictions only on the basis of in-
formation coming from a single residue, either in the form of statistical tendency
to appear in an α-helix, β-strand and coil region (Garnier et al., 1978), or in the
form of explicit biological expert rules (Lim, 1974). Average accuracy of these
methods (known as Q3 index) was limited to 55%.

Second generation methods basically apply the connection architecture, tak-
ing into account local interactions by means of an input-sliding window with
encoding. Values in the output layer discriminate each residue as belonging to
one of the three states α-helix (H), β-strand (E) and coil (C). The first original
work (Qian and Sejnowski, 1988) reports Q3 = 62.7%, and in Riis and Krogh
(1996), using techniques to reduce over fitting and incorporate prior knowledge,
the authors achieve an accuracy of 66.3%. One of the major difficulty of these
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methods is a correct location of β-strands, because they are predominantly de-
termined by long-range interactions. It is generally assumed that 65% of a
secondary structure depends on local interactions.

The 3rd generation methods started exploiting the information coming from
homologous sequences. The basic observation is that the secondary structure
within a family of evolutionary related proteins is more conserved than the se-
quences. The evolutionary pressure to conserve function has favored mutations
preserving structural characteristics. This information is processed first by do-
ing a multiple alignment between a set of similar sequences and extracting a
matrix of profiles (PSSM). Each matrix column represents the input given to
the network for the corresponding sequence position. PHD (Rost, 1996) was
the first method incorporating profile-based inputs and going beyond 70% in
accuracy. The system is composed of cascading networks. A final stage takes a
jury decision averaging the outputs from independently trained models. Other
well-known profile based methods are PSI-PRED (Jones, 1999), which uses two
neural networks to analyze profiles generated from a PSI-BLAST search, JNet
(Cuff and Barton, 2000) and SecPred. An alternative adaptive model is em-
ployed in Baldi et al. (1999). It employs bi-directional recurrent neural networks,
a non-causal architecture that exploits upstream and downstream dependencies
in the form of the contextual knowledge. This method is potentially capable of
capturing long-range information stored in hidden state variables. At present,
almost all 3rd generation methods lie in the accuracy range of 76-78%. Gener-
ally, it is believed that the hypothetical performance limit of SS predictors is not
at 100% but at around 90%. This belief stems from noise and inconsistencies
that are present in available sequence archives.

There are other predictors, which are not strictly based on neural network
implementations. NNSP (Salamov and Solovyev, 1995) uses a nearest-neighbor
algorithm where the SS state of the residue test segment is assigned scoring in-
formation coming from different templates according to their similarities. Tem-
plate segments are those of proteins with known 3D structures. The web-server
JPred (Cuff et al., 1998) integrates six different structure prediction methods
and returns a consensus based on the majority rule. The program DSC (King
and Sternberg, 1996) combines several explicit parameters in order to get a
meaningful prediction. It runs the GOR3 algorithm (Garnier et al., 1978) (an
evolution of GOR1 based on information theory applied to local interactions)
for every sequence, to provide mean potentials for the three states. A linear
combination of the different attributes gives an output, which is subsequently
filtered. The program PREDATOR (Frishman and Argos, 1997) is based on
the calculated propensities of the 400 amino acid pairs to interact inside an
α-helix or one upon three types of β-bridges. It then incorporates non-local in-
teraction statistics and propensities for α-helix, β-strand and coil derived from
a nearest-neighbor approach. To use information coming from homologous pro-
teins, PREDATOR relies on local pairwise alignments. Accuracy is claimed to
be at 75%.
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In principle, Hidden Markov Models (HMM) could be effectively used for
SS prediction allowing for the incorporation of syntactic restraints on the form
of the output strings. The method of profiles continues to improve as more
and more sequences are becoming available (Przybylski and Rost, 2002). The
reason for the success of the profile based method seems to be that it captures
the fact that protein structures conserve more information than sequences. Be-
cause only mutations that do not disrupt the three-dimensional structure of
a protein will survive the evolution, sequence divergence under the structural
constraints reflects the interactions between amino acid residues of a protein,
where the interactions could be either short range or long range in sequence.
Now, most secondary structure prediction methods achieving high average per-
formance with Q3 measure near 80% (Riis and Krogh, 1996; Baldi et al., 1999;
Cuff and Barton, 1999; Jones, 1999; Ouali and King, 2000; Pollastri et al.,
2002) make use of PSI-BLAST profiles (Altschul et al., 1997) in combination
with improvement of prediction algorithms. New machine learning methods
such as support vector machine (Hua and Sun, 2001) should also benefit from
PSI-BLAST profiles.

Lee (2005) proposed a new kind of HMMs, so called Hidden Markov mod-
els with states depending on observations (HMMSDO). HMMSDO may have
advantages over HMM in some cases such as prediction of protein secondary
structures. When using a HMM to predict protein secondary structure, the
observations are regarded as amino acid residues, and the states are regarded
as tokens of secondary structure (Asai et al., 1993). According to the basic as-
sumption of biochemistry, i.e. protein secondary structure depends on primary
structure, it may be theoretically better to use a HMMSDO than a HMM in
this case. At present, no HMM based method is able to outperform neural net-
works; not surprisingly, the literature in this case reports an improvement not
on accuracy, but on the length distribution of predicted segments. In the next
Section three new algorithms for the protein secondary structures will be briefly
described.

4. New approaches to the protein folding problem

In this paper three rule generation algorithms: LEM2 (Learning from Examples
Module ver. 2) used in LERS (Learning from Examples based on Rough Sets)
system (Stefanowski, 1998; Grzymała-Busse, 1992), MODLEM (Grzymała-Busse
and Stefanowski, 2001) and LAD (Logical Analysis of Data) (Boros et al., 1996;
Hammer 1986; Mayoraz, 1995), were used for the prediction of secondary protein
structures.

LEM2 and MODLEM are rule induction algorithms that generate a minimal
set of rules given a set of positive examples and a set of negative examples. A
minimal set of rules is the smallest set of rules that cover all positive examples
and do not cover any negative examples. Traditionally, both algorithms have
been used together with data analysis methods based on rough set theory to
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deal with inconsistent data sets. Rough set techniques have been used to iden-
tify approximations of decision classes (either lower or upper); then a selected
algorithm has been iteratively invoked for each decision class, with a positive set
including examples from a rough approximation of a currently processed class,
and a negative set including all the remaining examples.

LEM2 generates rules with conditions in the form of ‘attribute = value’,
so it is suited for symbolic data and may offer poorer performance (in terms
of a number of rules and their strength) for numerical data (generated rules
may be weak and their number may be high in comparison with the number
of examples). To overcome this limitation, numerical data sets are usually
discretized before running LEM2. MODLEM is an extension of LEM2 that
deals with this limitation. It generates rules with extended syntax of conditions,
i.e., ‘attribute >= value’, ‘attribute < value’ and ‘attribute in set of values’
(the algorithm uses entropy or Laplace estimate to evaluate conditions when
constructing them). Therefore no prior discretization is required – MODLEM
induces rules directly from numerical data. Moreover it can induce more general
rules for symbolic data, therefore, resulting sets of rules are better (considering
number of rules and their strengths) than rules generated by LEM2 from the
same data.

Both algorithms work in a similar way – the main difference is how possi-
ble conditions are identified (MODLEM uses much more advanced technique)
– and they both follow the “sequential covering” approach, where the positive
examples covered by the already induced rules are removed from a considered
set. LEM2 and MODLEM are built with two loops. Each iteration of an outer
loop starts from finding a working set of positive examples (a set of positive
examples with all examples covered by already constructed rules removed). If
the working set is not empty, an algorithm identifies possible conditions and in
an inner loop it constructs a rule that (possibly) covers the largest number of
examples from the working set and that covers no negative examples. The rule
is induced in a greedy fashion – in each iteration of the inner loop best available
conditions are added one by one. Then the rule is “optimized” (redundant con-
ditions are removed) and added to the set of constructed rules. If the working
set is empty (i.e., constructed rules cover all positive examples), the outer loop
is finished and the set of rules is “optimized” (redundant rules are removed). Fi-
nally, the “optimized” set of rules is returned by the algorithm. Considering the
way in which the data used by the algorithms were prepared and preprocessed
(described in detail below), they can be treated as belonging to the second gen-
eration of prediction algorithms but obtained results are comparable to the ones
produced by methods from the third generation. Additionally, rules generated
by these algorithms can be easily interpreted by domain experts.

Logical Analysis of Data algorithm consists of three stages: binarization, pat-
tern generation and rule classification. The data binarization stage is needed
only if data are in numerical or nominal formats (e.g. color, shape, etc.). To
make such problems useful for LAD one has to transform all data into a bi-
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nary format. The simplest non-binary attributes are the so-called nominal (or
descriptive) ones.

As a result of this stage, all attributes for each observation are changed
into binary attributes. After the binarization phase all of the observations that
belonged to different classes are still different when binary attributes are taken
into account.

In pattern generation stage every pattern is defined by a set of conditions,
each of which involves only one of the variables.

The precise definition of a pattern P1 involves two requirements. First, there
should be no observation belonging to other classes, satisfying the conditions
describing P1, and on the other hand, a vast number of observations belonging
to class H should satisfy the conditions describing P1.

Clearly, the satisfaction of condition describing P1 can be interpreted as a
sufficient condition for an observation to belong to class H.

The observation is covered by a pattern if it satisfies all conditions describing
P1.

The description of a pattern can be given in several forms. Pattern P1
given above is specified by its minimal description, which gives an essential set
of conditions identifying it. If any of these conditions is softened or entirely
eliminated the characteristic property of the pattern to cover only observations
from class H, disappears. On the other hand, all observations covered by pattern
P1 satisfy some additional conditions.

Symmetric definitions of positive and of negative patterns lead to symmetric
generation procedures. Based on this assumption only a procedure for gener-
ating positive patterns is described here. The generation of negative patterns
proceeds in a similar way (see Boros et al., 1996).

For the pattern generation stage it is important not to miss any of the “best”
patterns. Pattern generation procedure is based on the use of combinatorial enu-
meration techniques which can follow a “top-down” or a “bottom-up” approach.

The top-down approach starts by associating to every positive observation
its characteristic term. Such a term is obviously a pattern, and it is possible
that even after the removal of some literals the resulting term will remain a
pattern. The top-down procedure systematically removes literals one by one
until arriving at a prime pattern.

The bottom-up approach starts with the term that covers some positive
observations. If such a term does not cover any negative observation, it is
a pattern. Otherwise, literals are added to the term one by one as long as
necessary, i.e. until generating a pattern.

In the original LAD method (Boros et al., 1994, 1996, 1997) this stage has
been called twice. The first time for positive patterns generated for observations
belonging to class A, and the second time for negative patterns generated for
observations belonging to class B. In the discussed experiments, one has three
sets of secondary structures, thus, this stage had to be modified and patterns
have been generated in the first version six times. Each time an observation from
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one set of a secondary structure played a role of positive examples, the other sets
played roles of negative ones. A call for positive observations is repeated three
times, each time a different set of secondary structures playing a role of a positive
observation. A call for negative observations is also repeated three times but
now negative observations consist of the other two sets, respectively.

In classifier construction stage for any particular class there are numerous
patterns, which cover only observations belonging to that class. The list of these
patterns is too long to be used in practice. Therefore, we restricted our attention
to a subset of these patterns, called [class_indicator] model (e.g. H model).
Similarly, if one studied those observations which do not belong to the particular
class, one can consider the not H model.

Before this stage is performed, every positive (negative) observation point
is covered by at least one positive (negative) pattern, and it is not covered by
any negative (positive) patterns that have been generated. Based on that it
can be expected that an adequately chosen collection of patterns can be used
for construction of a general classification rule. This rule is an extension of a
partially defined Boolean function, and will be called below a theory.

A good classification rule should capture all the significant aspects of the
phenomenon.

Technical parameters for this stage remain unchanged during the experiment
as compared with the original approach (Hammer, 1986), but one had to call
this stage three times (each time for a different set of secondary structures). In
every call one tried to construct the best classifier for a particular structure.

The same rule as in the original method: winner takes all, is applied to calcu-
late weights of the three functions describing a structure, that each observation
belongs to.

To implement the three analyzed methods and extract the basic properties of
proteins, examples were obtained from the Dictionary of Secondary Structures
of Proteins (DSSP) (Kabsch and Sander, 1983). DSSP contains a description of
secondary structures for entries from the Brookhaven Protein Data Base (PDB)
(Berenstein et al., 1997). Moreover, it contains data calculated from protein
tertiary structures obtained by NMR or X-ray experiments and maintained in
PDB.

There are many ways to divide secondary structures into classes. Here we
used the most popular one, based on information obtained from DSSP.

Data retrieved from the DSSP set consist of eight types of secondary protein
structures. Usually one can reduce them into three main secondary structures
and this assumption has been made in this study. The following sets of secondary
structures have been created:

• helix (H) consisting of: α-helix (structure denoted by H in DSSP), 310-
helix (G) and π-helix (I);

• β−strand (E) consisting of E structure in DSSP;
• the rest (X) consisting of structures belonging neither to set H nor to

set E.
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The first step one has to do, is to prepare a set of observations (based on a
protein sequence) to be acceptable by algorithms. When making a transfor-
mation from a protein sequence to the set of observations one has to assume
that the main influence on the secondary structure have amino acids situated
in the neighbourhood of the observed amino acid. We also took into account
that some n-mers are known always to occur in the same structure in many
proteins, while others do not. Certain 4-mers and 5-mers are known to have
different secondary structures in different proteins. To fulfill this assumption
and avoid naive mistakes, a concept of windows (King and Sternberg, 1990) of
length equal to 7 was used.

Below, an example is presented, illustrating the way a protein chain is
changed into a set of observations. Let us consider a protein chain called 4gr1
(in PDB). The first and the last fifteen amino acids in the sequence are shown
below:

MKRIGVLTSGGDSPG ... TIDQRMYALSKELSI

For every amino acid the corresponding secondary structure in DSSP is given
as follows:

__EEEEEEESS__TT ... ___HHHHHHHHHH__

One may change this structure into secondary structures, involving three
main secondary structures only, in the way depicted below:

XXEEEEEEEXXXXXX ... XXXHHHHHHHHHHXX

At the end, a chain consisting of n amino acids is transformed into set
consisting of n observations as shown in Table 1.

A window of length 7 generates an observation with 7 attributes (a
−3, a−2,

a
−1, a0, a+1, a+2, a+3) representing a secondary structure corresponding to the

amino acid located in place a0. Of course, at this moment all values of attributes
are symbols of amino acids.

As one can see, secondary structures on the boundaries have been omitted.
Amino acids situated from the (i-3rd) to (i+3rd) position in the protein se-
quence, where the considered secondary structure is relevant to the i-th amino
acid, create the smallest number of attributes to be used to change protein chain
(assumed in experiments) into a unique set of observations without loosing more
than 1% of observations from the considered data set. By unique, we mean here
the fact that there are no two identical observations belonging to different sets
of secondary structures.

All observations were used to create a learning subset or a testing subset.
During creation of a learning subset one has to exclude the first three observa-
tions and the last three ones (one has not enough information to learn anything).
In the testing set, this exclusion is not important because in such a situation
one can get a decision for an observation without a complete set of attributes,
treating missing values as values playing against him.
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Table 1. An example of a transformation from a sequence to a set of observations

# Condition attributes Code in DSSP Codes of the three sets of
a
−3a−2a−1a0a+1a+2a+3 the main secondary structures

1 * * * M K R I -

2 * * M K R I G -

3 * M K R I G V E -

4 M K R I G V L E E

5 K R I G V L T E E

6 R I G V L T S E E

...

313 M Y A L S K E H H

314 Y L S K E L H H

315 A L S K E L S H H

316 L S K E L S I H H

317 S K E L S I * H -

318 K E L S I * * -

319 E L S I * * * -

The last step of the preprocessing is to replace in each observation, sym-
bols of amino acids (treated as attributes) with numbers representing relevant
properties of amino acids. All properties are received from ProtScale service at
http://expasy.hcuge.ch/cgi-bin/protscale.pl.

During experiment only the physical and chemical properties of the amino
acids offered by ProtScale have been taken into account. We considered here
the best ten properties obtained form previous experiments (Błażewicz et al.,
2001a,b, 2005), which had the most important influence on the created sec-
ondary structures (Table 2).

LEM2 required an extra step of preprocessing. As it is not well suited for
handling continuous data (it then usually generates a large number of weak
rules with poor classification abilities), values obtained in the last phase were
discretized using recursive minimal entropy partitioning (Catlett, 1991). The
other algorithms could work directly on observations described with real-valued
properties.

After the preprocessing stage, the three new algorithms have been used to
the problem of protein secondary structure prediction. A comparison of the
methods is described in the next section.

5. Results and discussion of the computational experi-

ments

During experiments nine protein chains have been chosen for consideration ran-
domly from the representative set of proteins defined in the benchmark set
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Table 2. Properties of amino acids considered in experiments

# Description Author(s) Reference

1 Mobilities of amino acids
on chromatography paper
(RF).

Aboderin A.A. Int. J. Biochem.

2:537-544 (1971).

2 Normalized consensus
hydrophobicity scale.

Eisenberg D., Schwarz E.,
Komarony M., Wall R.

J. Mol. Biol.

179:125-142 (1984).

3 Hydration potential
(kcal/mole) at 25˚C.

Wolfenden R.V.,
Andersson L., Cullis P.M.,
Southgate C.C.F.

Biochemistry

20:849-855 (1981).

4 Hydrophobicity indices at
ph 7.5 determined
by HPLC.

Cowan R., Whittaker R.G. Peptide Research

3:75-80 (1990).

5 Hydrophobicity indices at
ph 3.4 determined
by HPLC.

Cowan R., Whittaker R.G. Peptide Research

3:75-80 (1990).

6 Average surrounding
hydrophobicity.

Manavalan P.,
Ponnuswamy P.K.

Nature

275:673-674 (1978).

7 Hydrophobicity scale based
on free energy of transfer
(kcal/mole).

Guy H.R. Biophys J.

47:61-70 (1985).

8 Retention coefficient
in HPLC, pH 7.4.

Meek J.L. Proc. Natl. Acad. Sci.

USA

77:1632-1636 (1980).

9 Retention coefficient
in TFA.

Browne C.A.,
Bennett H.P.J., Solomon S.

Anal. Biochem.

124:201-208 (1982).

RS126 (Rost, 1993) (accession number given in Appendix). Based on these
nine protein chains 2100 observations have been created using the procedure
described above and ten-fold cross validation test was applied. In the first series
of experiments the partition into folds was done manually. First, the observa-
tions were ordered based on their positions in protein chains (i.e., observations
belonging to the first protein were put at the beginning of the set, then obser-
vations belonging to the second protein were considered etc.). Then the set of
2100 objects was divided into ten subsets (the first 210 objects were selected
to the first subset, the second 210 – to the second one, etc.). Results obtained
from experiments for each of three classes are presented in Figs. 1 through 3.
The Fig. 4 shows overall accuracy of prediction of LEM2, MODLEM and LAD.

As one can see, for class H (Fig. 1) the best average results were obtained
using LAD. For each protein chain prediction accuracies using LAD ranged
from 38% to 45%. In this case LAD was better than MODLEM, but for some
proteins the highest accuracy of prediction were obtained using LEM2 (50%).
Unfortunately, these impresive results were obtained only for some subsets of
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Figure 1. Accuracy of prediction for class H.

Figure 2. Accuracy of prediction for class E.

observations. In other cases performance of this algorithm was very poor (ac-
curacy below 10%).

For class E (Fig. 2) the best results were obtained by LEM2. For some
subsets average accuracy of prediction was over 80 %. LAD and MODLEM
were worse than LEM2. LAD was better than MODLEM by about 5%.
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Figure 3. Accuracy of prediction for class X.

Figure 4. Accuracy of the overall prediction for three classes.

The advantage of LEM2 disappeared for class X (Fig. 3), where it recognized
only about 45% of observations. For that class the best results were obtained
using LAD (about 75%). MODLEM also was better than LEM2 (about 70%).

In Fig. 4 one can see overall prediction for three classes. The best results
were produced by LAD (about 55%). MODLEM did not pass the limit of 50%.
The worst was LEM2 (about 45%).
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In the next series of experiments we checked if random selection of obser-
vations would have an impact on prediction accuracy. In previous approach
all observations of the same type might land in the same subset. Thus, if this
subset was used as a testing set in the validation test, the algorithms could
not generate any rules describing such observations (they were not present in
learning set) and prediction accuracy for them was poor. For these experiments
one used only the best two algorithms from the previous part, i.e. LAD and
MODLEM.

It has been shown (Fig. 5) that random selection resulted in an increase of
prediction power by about 5%. The accuracy of LAD was in the range of 63%
to 70% (60% before). MODLEM, similarly to the first set of experiments, was
worse than LAD, but its accuracy was better than before (55%) and oscillated
now around 60%.

Figure 5. Accuracy of prediction for 3 classes (stratified folds).

The analyzed set of proteins is limited to nine proteins and this set has
been used for evaluation of the obtained results. From these nine proteins 2100
residues have been chosen for construction of the observations. With these 2100
residues, the ten-fold cross-validation test was performed. It is hard to treat the
obtained results as representative for the whole set of proteins but the aim at
this stage of analysis was to examine different machine learning techniques for
prediction of secondary structures of proteins problem and to decide which of the
proposed method is more suitable for the considered problem, while taking into
consideration a compromise between computational time and size of the data
set. The reason for such a methodology was that many of the machine learning
methods have problems in dealing with large data sets because of the exponential
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complexity of algorithms. Thus, the ability to choose a proper method at the
first stage is crucial for a success of a further analysis. To analyze the whole
available set of proteins one should use about 30 000 protein chains what would
generate at least 4 000 000 observations. It is impossible to analyze this set
with a sequential version of the algorithms.

The amount of data analyzed in the paper is not impressive but it was
caused by the complexity of the problem. LEM2 and MODLEM used to have
good performance when someone deals with a huge number of observations with
a small number of attributes but LAD used to give good result for a reasonable
number of observations with a huge amount of attributes. The aim of the study
was to check which of the method behaves better in the considered environment.

The procedure used in the presented analysis considered two approaches: in
the first approach 2100 residues have been ordered in the dataset, in the second
approach the order has been randomized. The aim of these approaches was
to check whether or not whole protein can be used as a training set for the
prediction or it is better to combine information from different proteins. For
the analyzed set of observations the second approach has been more successful
by about 10% of prediction accuracy and it can give helpful directions for future
experiments with much more complicated data sets.

The obtained accuracy of predictions is not very impressive in comparison
with the currently used methods for prediction of protein secondary structures
and it is hard to conclude, based on the small set of observations (in compar-
ison with a number of available protein chains), that these methods can be
successfully/unsuccessfully applied for solving the problem of prediction of sec-
ondary structures. However, the obtained results based on the considered set of
proteins, are promising for future considerations of the analyzed approaches.

Nine physical and chemical properties of aminoacids, used during experi-
ments, have been chosen based on the previous experiments. The influence of
some of them as e.g. “mobility of amino acid on chromatography paper” seems
strange from the chemical and physical point of view, but this situation can be
interpreted in such a way that some characteristic is still hidden behind, and a
combination of numbers coming from such a property by chance gave a good
description of this something uncovered.

6. Conclusions

The paper presented an application of new machine learning algorithms which
have been used to solve the problem of prediction of the secondary structure of
proteins problem. The aim was to identify which of the considered methods is
more suitable for the analyzed problem and to find rules that would predict the
protein secondary structure, based on its primary structure. The best average
results were obtained using the LAD algorithm, but one has to mention that very
interesting results for class E were obtained by algorithm LEM2 (80%). The
results obtained from the experiments show that these methods are promising
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but to say definitely whether such an approach is successful/unsuccessful, it is
necessary to analyze the problem with a bigger amount of data. A recognition
of long-reach interactions is the weakest point in that kind of prediction. Un-
fortunately, weak overall accuracy for that method means that rules for class
E classified too many observations from classes X and H. An overall prediction
accuracy (for the considered data set) for LAD was better by about 5% as com-
pared to MODLEM and by more than 10% as compared to LEM2. Standard
deviation for overall accuracy for each algorithm was not higher than 6%, so
one can expect results in the range of 60-70% from LAD if considered protein
chains were representative for all proteins. The result of this study will be used
for further research, where the best of the analyzed methods, i.e. LAD, will
be parallelized and tested against the set of proteins of a considerably higher
dimension.

Appendix

Accession numbers of proteins used in the computational experiments: 1cbh,
1fdx, 1fkf, 1hip, 1mrt, 1pyp, 2cyp, 2fnr, 4gr1, 8adh.
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