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Abstract: An approach to nonlinear constrained mathematical
programming problems which makes use of a second order derivative
is presented. By using a second order modified objective function
method, a modified optimization problem associated with a primal
mathematical programming problem is constructed. This auxiliary
optimization problem involves a second order approximation of an
objective function constituting the primal mathematical program-
ming problem. The equivalence between the original mathemati-
cal programming problem and its associated modified optimization
problem is established under second order convexity assumption.
Several practical O.R. applications show that our method is effi-
cient. Further, an iterative algorithm based on this approach for
solving the considered nonlinear mathematical programming prob-
lem is given for the case when the functions constituting the prob-
lem are second order convex. The convergence theorems for the
presented algorithm are established.
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1. Introduction

In the paper, we consider the nonlinear constrained mathematical programming
problem

f0(x) → min

subject to fi(x) ≤ 0, i = 1, ..., m, (P)

x ∈ X,

where fi : X → R, i = 0, 1, ..., m, are twice continuously differentiable functions
on a nonempty open set X ⊂ Rn.
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Let

D := {x ∈ X : fi(x) ≤ 0, i ∈ J = {1, ..., m}}

denote the set of all feasible solutions in (P).
Throughout the paper we also use the following sets of indices: J (x) :=

{i ∈ J : fi(x) = 0} and J0 (x) = {0} ∪ J (x).
Convexity plays a central role in the analysis of mathematical programming

problems. The problem of minimizing a convex function subject to convex con-
straints is of a fundamental importance in mathematical programming. How-
ever, for many optimization problems, notably in mathematical programming,
the characterization of optimal solutions with the help of second order conditions
was always of a great interest as a means of refining the first order optimality
conditions (for example, the need of second order information appears in nu-
merical algorithms).

Mond and Weir (1981) and Bector and Chandra (1985) independently in-
troduced second order convex and generalized convex functions (Bector and
Chandra called them bonvex and pseudo/quasi bonvex functions). Using second
order conditions, duality results were established on various duality theorems,
for example, by Bector and Bector (1986).

Considerable attention has been given recently to devising new methods
which solve the original mathematical programming problem and its duals with
the help of some associated optimization problem (see, for example, Antczak,
2004).

In this paper, we present a new approach for solving a constrained mathe-
matical programming problem involving twice differentiable functions. The aim
of the present paper is to show how one can obtain optimality conditions for
a nonlinear constrained mathematical programming problem with strong nonlin-
ear objective function by constructing for it an equivalent minimization problem
with a second order modified objective function. This associated modified op-
timization problem is obtained by a second order modification of the objective
function in the given mathematical programming problem at an arbitrary but
fixed feasible point x. To prove the equivalence between the original mathemat-
ical programming problem and its associated modified optimization problem we
use the second order convexity assumption imposed on the functions involved
in the original programming problem. Moreover, the equivalent optimization
problem obtained in this approach is, in general, less complicated and its opti-
mal solutions are connected to the optimal points of the original minimization
problem. In this way, we obtain the associated modified optimization problem
with the same optimality solution as the original mathematical programming
problem and the optimality value equal to the optimality value in the original
mathematical programming problem.

Further, some example of O.R. problem is given for which the presented
second order modified objective function method can be applied to find an op-
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timal solution. The second order objective function optimization problem is
constructed for the considered O.R. problem.

Finally, based on the approach introduced in the paper, an iterative method
for solving a nonlinearly constrained mathematical programming problem with
second order convex functions is proposed. This method consists of solving a se-
quence of second order modified objective function optimization problems which
are constructed at feasible points obtained from successive steps of the respec-
tive algorithm. Thus, the method generates an iterative sequence of feasible
solutions which, under suitable conditions, converges to an optimal solution of
the original mathematical programming problem. The superlinear convergence
rate of this sequence is proved. Moreover, it turns out that, when the Hessian
matrix of the objective function is assumed to satisfy the Lipschitz condition on
the set of all feasible solutions, the convergence rate of this algorithm increases
to quadratic.

2. Preliminaries

Throughout the paper we write ∇f (x) and ∇2f (x) for the gradient of f and
for the Hessian of f evaluated at x, respectively. We recall some definitions and
properties that will be used in the present paper.

Definition 1 Let f : X → R be a differentiable function on a nonempty open
set X ⊂ Rn. Then f is first order convex (or shortly, convex) at u ∈ X on X,
if the inequality

f(x) − f(u) ≥ (x − u)
T
∇f(u) (1)

holds for all x ∈ X. If the inequality (1) holds for each u ∈ X then f is convex
on X.

Definition 2 Let f : X → R be a twice differentiable function on a nonempty
open set X ⊂ Rn. Then f is said to be second order convex at u ∈ X on X if
the following inequality

f(x) − f(u) ≥ (x − u)
T [

∇f(u) + ∇2f(u)y
]
−

1

2
yT∇2f(u)y (2)

holds for all y ∈ Rn and for all x ∈ X. If the inequality (2) holds for each
u ∈ X then f is said to be second order convex on X. If the inequality in (2)
is sharp for each x ∈ X, x 6= u then the function f is said to be second order
strictly convex function on X.

Lemma 1 Let f : X → R be a second order convex function defined on a
nonempty convex set X ⊂ Rn and u ∈ X be a minimum point of f on X. Then
the following inequality

(x − u)
T
∇f(u) ≥ 0

holds for all x ∈ X.
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Lemma 2 Let f : X → R be a second order strictly convex function defined on
a nonempty convex set X ⊂ Rn and u ∈ X. Then there exists M > m > 0 such
that the inequality

m ‖y‖ ≤ yT∇2f(u)y ≤ M ‖y‖

holds for all y ∈ Rn.

Definition 3 We define the Lagrange function or the Lagrangian L : D×R+×
Rm

+ → R in the considered mathematical programming problem (P) as follows

L (x, λ, ξ) := λf0(x) +

m∑

i=1

ξifi(x) .

Definition 4 A set

C (x) :=
{
d ∈ Rn : dT∇fi (x) ≤ 0, i ∈ J0 (x)

}

is said to be the set of critical directions at x.

Definition 5 A point x ∈ D is said to be an optimal point in (P) if, for all
x ∈ D,

f0(x) ≥ f0(x).

It is well-known (see, for example, Bazaraa, Sherali, Shetty, 1991) that the
Karush-Kuhn-Tucker optimality conditions are the first-order necessary opti-
mality conditions for x to be an optimal solution in the considered mathematical
programming problem.

Theorem 1 (Bazaraa, Sherali, Shetty, 1991) Let x be an optimal solution in
(P) and some suitable constraint qualification be satisfied at x. Then, there exist
λ ∈ R+ and ξ ∈ Rm

+ , such that

∇L
(
x, λ, ξ

)
= 0, (3)

ξifi (x) = 0, i ∈ J (x) , (4)

λ > 0, ξ ≥ 0. (5)

It is also a well-known fact that under the suitable condition of the regu-
larity of constraints, for example Linear Independence Constraint Qualification
(LICQ) (Bazaraa, Sherali, Shetty, 1991), without loss of generality, it can be
assumed that λ = 1.

For optimization problems with twice differentiable functions, it is known
(for example, see Ben-Tal, 1980) that the second-order optimality conditions
(in the so-called dual form) are necessary for x to be an optimal solution in the
considered mathematical programming problem.
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Theorem 2 (Ben-Tal, 1980) Let x be an optimal solution in (P) and the suitable
constraint qualification be satisfied at x. Then, for every d ∈ C (x), there exist
λ ∈ R+ and ξ ∈ Rm

+ such that

∇L
(
x, λ, ξ

)
= 0, (6)

dT∇2L
(
x, λ, ξ

)
d ≥ 0, (7)

ξifi (x) = 0, i ∈ J (x) , (8)

λdT∇f0 (x) = 0, (9)

ξid
T∇fi (x) = 0, i ∈ J0 (x) , (10)

λ > 0, ξ ≥ 0. (11)

3. Second order modified objective function method

Let x be the given feasible solution in (P). We construct the following opti-
mization problem (P2(x)), that is, an optimization problem with a second order
modified objective function, given by

f0(x) + (x − x)T ∇f0(x) + 1
2 (x − x)T ∇2f0(x) (x − x) → min

subject to fi(x) ≤ 0, i = 1, ..., m,
x ∈ X ,

(P 2(x))

where fi, i = 0, 1, ..., m, X are defined as in problem (P). We will call (P 2(x))
the associated second order modified objective function optimization problem
or the associated optimization problem with a second order modified objective
function.

In the following theorems, we prove the equivalence between the original
mathematical programming problem (P) and its associated second order modi-
fied objective function optimization problem (P2(x)) under second order convex-
ity assumption imposed on the functions constituting the original optimization
problem (P).

Theorem 3 Let x be an optimal solution in the associated second order modi-
fied objective function optimization problem (P2(x)) and the suitable constraint
qualification (Bazaraa, Sherali, Shetty, 1991) be satisfied at x. Moreover, we
assume that the objective function f0 in the original mathematical programming
problem (P) is second order convex at x on D. Then, x is also optimal in
problem (P).

Proof. We proceed by contradiction. Suppose that x is not optimal in (P). Then
there exists x̃ ∈ D such that

f0 (x̃) < f0 (x) . (12)
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By assumption, f0 is second order convex at x on D. Then, by Definition 2, the
following inequality

f0(x̃) − f0(x) ≥ (x̃ − x)
T [

∇f0(x) + ∇2f0(x)y
]
−

1

2
yT∇2f0(x)y (13)

holds for all y ∈ Rn. Hence, by (12) and (13), the inequality

(x̃ − x)
T [

∇f0(x) + ∇2f0(x)y
]
−

1

2
yT∇2f0(x)y < 0 (14)

holds for all y ∈ Rn. Therefore, it is also satisfied for y = x̃−x. Hence, by (14),

(x̃ − x)
T
∇f0(x) +

1

2
(x̃ − x)

T
∇2f0(x) (x̃ − x) < 0. (15)

Thus, (15) implies the inequality

f0(x) + (x̃ − x)
T
∇f0(x) + 1

2 (x̃ − x)
T
∇2f0(x) (x̃ − x) <

f0(x) + (x − x)
T
∇f0(x) + 1

2 (x − x)
T
∇2f0(x) (x − x) ,

which is a contradiction to the optimality of x in the associated second order
modified objective function optimization problem (P2(x)). This means that x

is optimal in (P).

Theorem 4 Let x be a feasible solution in the original nonlinear mathematical
programming problem (P) and the second order necessary optimality conditions
in the dual form be satisfied at x. Moreover, we assume that fi, i ∈ J(x), are
second order convex at x on D. Then, x is also optimal in an associated second
order modified objective function optimization problem (P2(x)).

Proof. We proceed by contradiction. Suppose that x is not an optimal solution
in the second order modified objective function optimization problem (P2(x)).
Then, there exists a feasible solution x̃ ∈ D such that

f0(x) + (x̃ − x)
T
∇f0(x) + 1

2 (x̃ − x)
T
∇2f0(x) (x̃ − x) <

f0(x) + (x − x)
T
∇f0(x) + 1

2 (x − x)
T
∇2f0(x) (x − x) .

Thus,

(x̃ − x)T ∇f0(x) +
1

2
(x̃ − x)T ∇2f0(x) (x̃ − x) < 0. (16)

By assumption, f0 is a second order convex function on D. Hence, (16) implies

(x̃ − x)
T
∇f0(x) < 0. (17)

By assumption fi, i ∈ J(x), are second order convex at x on D. Then, by
Definition 2, it follows that, for i ∈ J(x), the inequality

fi(x̃) − fi(x) ≥ (x̃ − x)
T [

∇fi(x) + ∇2fi(x)y
]
−

1

2
yT∇2fi(x)y (18)
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holds for all y ∈ Rn. Then, for y = x̃ − x and i ∈ J(x), we get

fi(x̃) ≥ (x̃ − x)T ∇fi(x) +
1

2
(x̃ − x)T ∇2fi(x) (x̃ − x) . (19)

Also, by (18), for y = 0 and i ∈ J(x), it follows that

fi(x̃) ≥ (x̃ − x)
T
∇fi(x) . (20)

Since x̃ ∈ D, then we obtain from (19) and (20) for i ∈ J(x), respectively,

(x̃ − x)
T
∇fi(x) +

1

2
(x̃ − x)

T
∇2fi(x) (x̃ − x) ≤ 0, (21)

(x̃ − x)
T
∇fi(x) ≤ 0. (22)

Thus, by (17) and (22) it follows that x̃ − x ∈ C (x), that is, x̃ − x is a critical
direction at x. By assumption, x is such a feasible solution in the original math-
ematical programming problem, at which the second order necessary optimality
conditions in the dual form (6)-(11) are satisfied. Then, for every d ∈ C (x),
there exist λ ∈ R+ and ξ ∈ Rm

+ such that the second order necessary optimality
conditions in the dual form are satisfied at x. Since x̃− x ∈ C (x) then they are
satisfied at x for d = x̃ − x. Hence, using λ ∈ R+ and ξ ∈ Rm

+ , we obtain from
(16) and (21), respectively,

(x̃ − x)
T

λ∇f0(x) +
1

2
(x̃ − x)

T
λ∇2f0(x) (x̃ − x) < 0, (23)

(x̃ − x)
T

ξi∇fi(x) +
1

2
(x̃ − x)

T
ξi∇

2fi(x) (x̃ − x) ≤ 0, i ∈ J(x). (24)

Thus, by the second order necessary optimality conditions (9) and (10), we
obtain from (23) and (24), respectively

(x̃ − x)
T

λ∇2f0(x) (x̃ − x) < 0, (25)

(x̃ − x)T
ξi∇

2fi(x) (x̃ − x) ≤ 0, i ∈ J(x). (26)

Hence, by Definition 3, we get the inequality

(x̃ − x)T ∇2L(x, λ, ξ) (x̃ − x) < 0,

which contradicts the second order necessary optimality condition (7). Thus,
the conclusion of the theorem is proved and, therefore, x is also optimal in
(P2(x)).

Based on the theorem above, the following result is true:
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Theorem 5 Let x be a optimal solution in the original nonlinear mathematical
programming problem (P). Moreover, we assume that fi, i ∈ J0(x), are second
order convex at x on D. Then x is optimal in an associated second order modified
objective function optimization problem (P2(x)).

Proof. Follows from Theorem 4.

4. Applications to O.R. problems

In this section, we discuss the potential applications of the introduced approach
to solving certain O.R. problems.

Now, we present an example of economic optimization problems involving
second order convex functions, which we solve by using the introduced second
order modified objective method.

A common problem in organizations is determining how much of a needed
item should be kept on hand. For producers, the problem may relate to how
many units of each raw material should be kept available. This problem is iden-
tified with an area called inventory control, or inventory management. Con-
cerning the question of how much ”inventory” to keep on hand, there may be
costs associated with having too little or too much inventory on hand.

Now, we consider more precisely an example of an economic problem of a
similar nature.

Example 1 (Police Patrol Allocation) A police department has determined
that the average daily crime rate in the city depends upon the number of officers
assigned to each shift. Specifically, the function describing this relationship is

N = 200 − 5xe−0.02x,

where N equals the average daily crime rate and x equals the number of officers
assigned to each shift. Police analysts indicate that the function f is valid for x

assumed to satisfy the condition: f1(x) = x2 − 50x ≤ 0 (this condition follows,
for example, from the possibility of employing officers in this department). It is
not difficult to see that the feasible solution x = 50 is optimal in the considered
optimization problem.
Thus, we obtain the following constrained mathematical programming problem:

f0(x) = 200 − 5xe−0.02x → min
f1(x) = x2 − 50x ≤ 0

(P)

Since both the objective function f0 and the constraint function f1 are second
order convex at x then this optimization problem can be solved by using the
second order modified objective function method. Then, we construct the fol-
lowing optimization problem (P2(x)) for the considered Police Patrol Allocation
problem:

200 + 0.1e−1(x − 50)2 → min
x2 − 50x ≤ 0.

(P
2
(50))
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Thus, we obtain a quadratic optimization problem. We are in position to solve
the above optimization problem immediately. It is not difficult to see that the
feasible solution x = 50 is optimal in this optimization problem.

5. Computational algorithm

In this section, based on the second order modified objective function approach,
we discuss the potential algorithms for solving the nonlinear optimization prob-
lems in which functions involved are second order convex on the set of all feasible
solutions.

As follows from the preceding section, using the second order objective func-
tion approach, in place of solving the original mathematical programming with
nonlinear objective function, we can solve some auxiliary optimization problem
with a second order modified objective function. Hence, in place of solving the
original mathematical programming problem (P) with a strongly nonlinear ob-
jective function, we have to solve a quadratic optimization problem. Based on
Theorems 3 and 5, we conclude that the original programming problem (P) and
its associated second order modified objective function optimization problem
are equivalent in the following sense: x is optimal in the original programming
problem (P) if and only if x is optimal in the second order modified optimiza-
tion problem (P2(x)). However, the second order modified objective function
optimization problem (P2(x)) is easier to solve.

This conclusion follows from the fact that, over the years, a large number
of methods have been developed for solving quadratic optimization problems.
These methods can be divided into two categories: finite methods and iterative
methods. Finite methods solve a given optimization problem by some kind of
pivoting procedures and terminate in finite time (see, for example, Dantzing,
1963; Cottle and Dantzing, 1968; Zangwill, 1969). On the other hand, iterative
methods generate an infinite sequence, which converges to a limit point that
solves a given optimization problem (see, for example, Bazaraa, Sherali, Shetty,
1991; Fletcher, 2000; Pang, 1984).

In this section, we shall present an algorithm of an iterative method for the
solution of the considered nonlinear mathematical programming problem which
is based on solving the second order modified objective function optimization
problem. This algorithm reduces the solution of the original mathematical pro-
gramming with a nonlinear objective function to a sequence of such auxiliary
optimization problems.

To prove convergence of the presented algorithm to an optimal point in the
original mathematical programming problem (P), we shall use the concept of R-
superlinear and R-quadratic convergence rate as defined in Ortega, Rheinboldt
(1970).

Definition 6 The sequence {xk} in Rn is said to converge to x with R-
superlinear rate if, for each δ ∈ (0, 1), no matter how small, there exist α > 0,
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p ≥ 0 such that the following inequality

‖xk − x‖ ≤ αδk

holds for all k ≥ p.

Definition 7 The sequence {xk} in Rn is said to converge to x with R-quadratic
rate if there exist δ ∈ (0, 1), α > 0, p ≥ 0 such that the following inequality

‖xk − x‖ ≤ αδ2k

holds for all k ≥ p.

Now, we present an algorithm for solving the considered nonlinear mathe-
matical programming problem (P) with second order convex functions. Based
on the second order modified objective function approach, to solve the original
mathematical programming problem (P), this method consists of generating
the sequence of second order modified objective function optimization problems
(P 2(xk)). At each step an optimization problem of such a type is solved by
means of a finite algorithm to obtain the next point xk+1 and hence the next
auxiliary optimization problem (P 2(xk+1)).

Sukharev, Timokhov and Fedorov (1986) and Fletcher (2000) considered
some finite method for solving a differentiable quadratic optimization problem
with linear inequality constraints. Based on this method, we propose an it-
eration method for solving a nonlinear optimization problem with inequality
constraints. This method consists of solving the following auxiliary optimiza-
tion problem (P 2(xk))

Fk(x) :=f0 (xk)+(x−xk)T ∇f0 (xk)+
1

2
(x−xk)T ∇2f0 (xk) (x−xk) → min

fi(x) ≤ 0, i ∈ J , (P 2(xk))

to obtain the next point xk+1 in the iteration sequence generated in this method.
At this point, we construct a successive optimization problem (P 2(xk)) with a
second order modified objective function.

Note that, since f0 is assumed to be a twice continuously differentiable func-
tion, then ∇2f0 (xk) is the continuous, symmetric n × n Hessian matrix.

Proposition 1 Let the objective function f0 in the original mathematical pro-
gramming problem be a second order convex function on the set of all feasible
solutions D. Then:

i) the objective function Fk in the second order modified objective optimiza-
tion problem

(
P 2(xk)

)
is a second order convex function at xk on the set

of all feasible solutions D.

ii) Fk(xk) ≥ Fk(xk+1) + (xk − xk+1)
T
∇Fk(xk+1)

+ 1
2 (xk − xk+1)

T
∇2Fk(xk+1) (xk − xk+1) .
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iii) (xk − xk+1)
T ∇Fk(xk+1) ≥ 0.

iv) Moreover, the objective function Fk in the second order modified objective
optimization problem

(
P 2(xk)

)
is a second order convex function on the

set of all feasible solutions D.

Proof. Proofs of Propositions i) and ii) follow by Definition 2 and the definition
of the objective function Fk in the second order modified objective function
optimization problem (P 2(xk)).

Proof of Proposition iii) follows from Proposition 1 i) and ii).

Proof iv) Let z, x be any feasible solutions in problem (P), that is, z, x ∈ D.
Then, the following inequality

1

2

[
(z−xk)T ∇2f0 (xk) (z−xk)−2 (z−xk)T ∇2f0 (xk) y+yT∇2f0 (xk) y

]
≥0

holds. Since f0 is a C2 function then the matrix ∇2f0 (xk) is symmetric. Hence,
the inequality above gives

1
2 (z − xk)

T
∇2f0 (xk) (z − xk) − (z − xk)

T
∇2f0 (xk) y + 1

2yT∇2f0 (xk) y ≥
1
2 (z − x)

T
∇2f0 (xk) (x − xk) − 1

2 (x − xk)
T
∇2f0 (xk) (z − x) ,

and, so

1
2 (z − xk)

T
∇2f0 (xk) (z − x) ≥ 1

2 (z − x)
T
∇2f0 (xk) (x − xk)+

(z − x)
T
∇2f0 (xk) y − 1

2yT∇2f0 (xk) y.

Thus,

1
2 (z − xk)

T
∇2f0 (xk) (z − xk) ≥ 1

2 (z − xk)
T
∇2f0 (xk) (x − xk)

+ 1
2 (z−x)

T
∇2f0 (xk) (x−xk) + (z−x)

T
∇2f0 (xk) y− 1

2yT∇2f0 (xk) y,

and, so

1
2 (z − xk)T ∇2f0 (xk) (z − xk) ≥ 1

2 (x − xk)T ∇2f0 (xk) (x − xk)

+ 1
2 (z − x)∇2f0 (xk) (x − xk) + 1

2 (z − x)∇2f0 (xk) (x − xk)

+ (z − x)∇2f0 (xk) y − 1
2y∇2f0 (xk) y.

Hence,

f0 (xk) + (z − xk)
T
∇f0 (xk) + 1

2 (z − xk)
T
∇2f0 (xk) (z − xk) ≥

f0 (xk) + (x − xk)
T
∇f0 (xk) + 1

2 (x − xk)
T
∇2f0 (xk) (x − xk)+

(z − x)
T
∇f0 (xk) + (z − x)

T
∇2f0 (xk) (x − xk)+

(z − x)T ∇2f0 (xk) y − 1
2yT∇2f0 (xk) y.
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We write down the inequality above

f0 (xk) + (z − xk)
T
∇f0 (xk) + 1

2 (z − xk)
T
∇2f0 (xk) (z − xk) ≥

f0 (xk) + (x − xk)
T
∇f0 (xk) + 1

2 (x − xk)
T
∇2f0 (xk) (x − xk)+

(z − x)
T [

∇f0 (xk) + ∇2f0 (xk) (x − xk) + ∇2f0 (xk) y
]
− 1

2yT∇2f0 (xk) y.

Then, by the definition of the objective function Fk in the second order modified
objective function optimization problem (P 2(xk)), we get

Fk(z) ≥ Fk(x) + (z − x)
T [

∇Fk(x) + ∇2Fk(x)y
]
−

1

2
yT∇2Fk(x)y.

Thus, by Definition 2, we conclude that Fk is second order convex on the set of
all feasible solutions D.

We shall establish that the convergence rate of the proposed algorithm is
superlinear, and that it is at least quadratic if the Hessian of the objective
function f0 in the original mathematical programming problem (P) is assumed
to satisfy the Lipschitz condition on the set of all feasible solutions.

Theorem 6 Let D be a convex compact subset of Rn and f0 be a twice contin-
uously differentiable function on D. Moreover, we assume that f0 is a second
order strictly convex function on D. Then, the iteration sequence {xk} gen-
erated by solving the sequence of optimization problems

(
P 2(xk)

)
satisfies the

following conditions:

i) f0 (xk+1) ≤ f0 (xk) for any k,

ii) if f0 is a second order strictly convex function on D then the iteration
sequence {xk} converges superlinearly to x,

iii) if f0 is a second order strictly convex function on D and the matrix ∇2f0

satisfies the Lipschitz condition on D then the iteration sequence {xk}
converges quadratically to x.

Proof. i) By assumption, f0 is a second order convex function on D. Then, by
Definition 2, the following inequality

f0(x) ≥ f0 (xk) + (x − xk)T [
∇f0 (xk) + ∇2f0 (xk) y

]
− 1

2yT∇2f0 (xk) y

holds for any x ∈ D and all y ∈ Rn. Hence, for x = xk+1 and y = xk+1 − xk, it
follows that

f0(x)≥f0 (xk)+(xk+1−xk)
T
∇f0 (xk)+ 1

2 (xk+1−xk)
T
∇2f0 (xk) (xk+1−xk) .

(27)

From the algorithm follows that xk+1 is an optimal point of the function Fk (x).
Then, by Proposition 1 iii),

(xk − xk+1)
T ∇Fk (xk+1) ≥ 0.
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Thus,

(xk+1 − xk)
T
∇f0 (xk) + (xk+1 − xk)

T
∇2f0 (xk) (xk+1 − xk) ≤ 0. (28)

Since f0 is a second order convex function, then (28) gives

(xk+1 − xk)
T
∇f0 (xk) ≤ 0.

The inequality above implies that

f0 (xk+1) ≤ f0 (xk) .

This means that the iterative sequence {f0 (xk)} is a monotonic decreasing
sequence. Hence, the proof is complete.

Proof. ii) Let xk+1 be optimal in (P 2(xk)). By assumption, the objective f0 is
a second order strictly convex function and the set of all feasible solutions D

in the original optimization problem (P) is convex. Then, by Proposition 1 iii),
the inequality

(xk − xk+1)
T
∇Fk (xk+1) ≥ 0

holds. Thus,

(xk+1 − xk)T ∇f0 (xk) + (xk+1 − xk)T ∇2f0 (xk) (xk+1 − xk) ≤ 0. (29)

By definition, we have

Fk(xk+1) = f0 (xk) + (xk+1 − xk)
T [

∇f0 (xk) + ∇2f0 (xk) (xk+1 − xk)
]

− 1
2 (xk+1 − xk)

T
∇2f0 (xk) (xk+1 − xk) .

By Lemma 2, it follows that (xk+1−xk)T∇2f0 (xk) (xk+1−xk)≥m ‖xk+1−xk‖
2.

Then, by (29),

Fk(xk+1) − f0 (xk) ≤ −
m

2
‖xk+1 − xk‖

2
. (30)

By assumption, f0 is a second order strictly convex function on the set of all
feasible solutions D. Then, by Definition 2, the inequality

f0 (xk+1) ≥ f0 (xk) + (xk+1 − xk)
T [

∇f0 (xk) + ∇2f0 (xk) (xk+1 − xk)
]

− 1
2yT∇2f0 (xk) y

holds for all y ∈ Rn. Hence, it is also satisfied for y = xk+1 − xk. Thus, the
inequality above yields

f0 (xk+1) ≥ f0 (xk) + (xk+1 − xk)
T
∇f0 (xk)

+ 1
2 (xk+1 − xk)T ∇2f0 (xk) (xk+1 − xk) , (31)
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and, so

f0 (xk+1) ≥ Fk(xk+1). (32)

By Theorem 6 i), it follows that f0 (xk) ≥ f0 (xk+1). Then, by (31) and (32),

f0 (xk) − Fk(xk+1) ≥ f0 (xk+1) − Fk(xk+1) ≥ 0.

Thus, we have

Fk(xk+1) − f0 (xk) = (xk+1 − xk)
T
∇f0 (xk)

+ 1
2 (xk − xk+1)

T
∇2f0 (xk) (xk+1 − xk)

and, so

Fk(xk+1) − f0 (xk) ≥ (xk − xk+1)
T ∇f0 (xk) . (33)

Now, we use the Lagrange formula for the function Ψ(x) = (xk+1 − xk)
T
∇f0(x).

Then, we obtain

(xk+1 − xk)T [∇f0 (xk) −∇f0 (xk−1)] = (xk+1 − xk)T ∇2f0 (x̃k) (xk − xk−1) ,

where x̃k = xk−1 + θk (xk − xk−1), θk ∈ (0, 1). Note that x̃k ∈ D since by
assumption D is a convex set. Hence,

(xk+1 − xk)
T
∇f0 (xk) ≥ (xk+1 − xk)

T
∇f0 (xk−1)

+ (xk+1 − xk)
T
∇2f0 (x̃k) (xk − xk−1) . (34)

By (33) and (34),

Fk(xk+1) − f0 (xk) ≥ (xk+1 − xk)
T
∇f0 (xk−1)

+ (xk+1 − xk)
T
∇2f0 (x̃k) (xk − xk−1) .

Thus,

Fk(xk+1)−f0 (xk)≥(xk+1−xk)
T [

∇f0 (xk−1)+∇2f0 (xk−1) (xk−xk−1)
]
+

(xk+1−xk)
T [

∇2f0 (x̃k)−∇2f0 (xk−1)
]
(xk − xk−1) .

(35)

Since xk is optimal in the second order modified objective function optimization
problem (P 2(xk−1)) then, by Lemma 1,

(xk+1 − xk)
T [

∇f0 (xk−1) + ∇2f0 (xk−1) (xk − xk−1)
]
≥ 0.

Thus, (35) gives

Fk(xk+1)−f0 (xk) ≥ (xk+1−xk)T [
∇2f0 (x̃k)−∇2f0 (xk−1)

]
(xk − xk−1) ,
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and by (30),

f0 (xk)−Fk(xk+1) ≤ ‖xk+1 − xk‖
∥∥∇2f0 (xk−1) −∇2f0 (x̃k)

∥∥ ‖xk − xk−1‖ .

(36)

Using (30) together with (36), we obtain

m

2
‖xk+1 − xk‖

2
≤ ‖xk+1 − xk‖

∥∥∇2f0 (xk−1) −∇2f0 (x̃k)
∥∥ ‖xk − xk−1‖

and, so

‖xk+1 − xk‖ ≤
2

∥∥∇2f0 (xk−1) −∇2f0 (x̃k)
∥∥

m
‖xk − xk−1‖ . (37)

We denote by εk the sequence εk =
2‖∇2f0(xk−1)−∇2f0(exk)‖

m
. Then,

‖xk+1 − xk‖ ≤ εk ‖xk − xk−1‖ . (38)

Since f0 is twice continuously differentiable on the set D then, by the definition
of the point x̃k, it follows that εk → 0 for k → ∞.

Now, we show that the sequence {xk} generated by the algorithm converges
superlinearly to x. Thus, by induction, we get from (38),

‖xk+1 − xk‖ ≤ εkεk−1...ε1 ‖x1 − x0‖ . (39)

Hence, we have for any j > k,

‖xj − xk‖ ≤ ‖xj − xj−1‖ + ... + ‖xk+1 − xk‖ .

Then, by (39),

‖xj − xk‖ ≤ [(εj−1εj−2...ε1) + ... + (εkεk−1...ε1)] ‖x1 − x0‖ . (40)

For the given δ ∈ (0, 1), we set p > 0 such that εk ≤ δ for any k > p. We denote
β = εp...ε2ε1δ

p. Then, for any j > k > p, (40) yields,

‖xj − xk‖ ≤ β
(
δj−1 + δj−2 + ... + δk

)
‖x1 − x0‖ .

Hence,

‖xj − xk‖ ≤
β ‖x1 − x0‖

1 − δ
δk. (41)

Let α = β‖x1−x0‖
1−δ

. Then, α < ∞ and (41) gives

‖xj − xk‖ ≤ αδk.
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From the inequality above it follows that ‖xj − xk‖ → 0 as j, k → ∞. Hence, the
sequence {xk} is a Cauchy sequence, which converges to x. Since xj converges
to x then by letting k → ∞ in (41), we get the inequality

‖xk − x‖ ≤ αδk,

which, by Definition 6, provides that the sequence {xk} converges superlinearly
to x.

Proof. iii) Now, we assume that the matrix ∇2f0 satisfies the Lipschitz condition
on D. Then

∥∥∇2f0 (x̃k) −∇2f0 (xk−1)
∥∥ ≤ L ‖x̃k − xk−1‖ . (42)

By definition, x̃k = xk−1 + θk (xk − xk−1), θk ∈ (0, 1). Hence,

x̃k − xk−1 = θk (xk − xk−1) .

Using (42) together with (37), we get

‖xk+1 − xk‖ ≤
2θkL

m
‖xk − xk−1‖

2
. (43)

Now, we show that the sequence {xk} generated by the algorithm converges
quadratically to x. We denote ε = 2L

m
‖xk − xk−1‖. Since ‖xk+1 − xk‖ converges

to 0 then there exists p such that for any k > p it follows that ε < 1. Thus, by
induction, it follows from (43) that, for any k ≥ p,

‖xk+1 − xk‖ <
mθk

2L
ε2k−p

. (44)

Then, using (44), we obtain, for any j > k ≥ p,

‖xj − xk‖ ≤
mθk

2L

j−1∑

i=1

ε2i−p

.

Hence,

‖xj − xk‖ ≤
mθk

2L
ε2k−p

∞∑

i=0

ε2i−1. (45)

We define δ = ε2−p

and α = mθk

2L

∑∞
i=0 ε2i−1. Note that

∑∞
i=0 ε2i−1 is a series

of positive numbers for which

ε2i+1−1

ε2i−1
= ε2i

< 1 .
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Hence, the series
∑∞

i=0 ε2i−1 in the definition of α is convergent. Thus, by (45),
for any j > p,

‖xj − xk‖ ≤ αδ2k

.

Since xj converges to x then letting k → ∞ in (41), we get the inequality

‖xk − x‖ ≤ αδ2k

which, by Definition 7, provides that the sequence {xk} converges quadratically
to x.

Proposition 2 Let the objective function f0 be a second order function on the
set of all feasible solutions D. Then, for each k,

Fk (xk+1) ≤ Fk (xk) .

Proof. By definition,

Fk(xk+1) =f0 (xk) + (xk+1 − xk)
T
∇f0 (xk)

+ 1
2 (xk+1 − xk)

T
∇2f0 (xk) (xk+1 − xk) (46)

and

Fk(xk) = f0 (xk) . (47)

Hence, by (46) and (47)

Fk(xk+1) − Fk(xk) = (xk+1 − xk)
T
∇f0 (xk)

+ 1
2 (xk+1 − xk)T ∇2f0 (xk) (xk+1 − xk) . (48)

By assumption, f0 is a second order function on the set of all feasible solutions
D. Then, by Definition 2,

f0(xk+1)−f0(xk)≥(xk+1−xk)
T
∇f0 (xk)+

1

2
(xk+1−xk)

T
∇2f0 (xk) (xk+1−xk) .

Hence, by Theorem 6 i),

(xk+1 − xk)
T
∇f0 (xk) +

1

2
(xk+1 − xk)

T
∇2f0 (xk) (xk+1 − xk) ≤ 0. (49)

Hence, by (48) and (49), we get the inequality

Fk(xk+1) − Fk(xk) ≤ 0.
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Theorem 7 Let D be a convex compact subset of Rn and f0 be a twice contin-
uously differentiable function on D. Moreover, we assume that f0 is a second
order convex function on D. Then,

lim
k→∞

f0 (xk) = f0 (x) = min
x∈D

f0 (x) .

Proof. By assumption, D is a compact subset of Rn. As follows from the proof of
Theorem 6, the iterative sequence {xk} generated by the algorithm is a Cauchy
sequence. Then, it is convergent and its accumulation point x belongs to D. By
assumption, f0 is a second order convex function on D. Then it is continuous
on D and, by Weierstrass’ theorem, f0 attains minimum at point x. Hence, the
sequence {f0 (xk)} converges to f0 (x).

Now, we prove that the sequence {Fk (xk+1)} is a monotonic decrease se-
quence. In other words, we show that the sequence of the values of objective
functions at the optimal points in optimization problems

(
P 2(xk)

)
is monoton-

ically decreasing.

Proposition 3 Let the objective function f0 be a second order function on the
set of all feasible solutions D. Then, for any k,

Fk+1 (xk+2) ≤ Fk (xk+1) .

Proof. From the definition of the objective function in the second order modified
objective function optimization problem, we have

Fk+1 (xk+2) − Fk (xk+1) = f0 (xk+1) + (xk+2 − xk+1)
T
∇f0 (xk+1)+

1
2 (xk+2 − xk+1)

T
∇2f0 (xk+1) (xk+2 − xk+1)−[

f0 (xk)+(xk+1−xk)T ∇f0 (xk)+ 1
2 (xk+1 − xk)T ∇2f0 (xk) (xk+1 − xk)

]
.

By assumption, f0 is second order convex on D. Then, by Definition 2,

f0 (xk+2) ≥f0 (xk+1) + (xk+2 − xk+1)
T
∇f0 (xk+1) +

1
2 (xk+2 − xk+1)

T
∇2f0 (xk+1) (xk+2 − xk+1) .

Hence,

Fk+1 (xk+2) − Fk (xk+1) ≤ f0 (xk+2)−[
f0 (xk) + (xk+1 − xk)

T
∇f0 (xk) + 1

2 (xk+1 − xk)
T
∇2f0 (xk) (xk+1 − xk)

]
,

and, so

Fk+1 (xk+2)−Fk (xk+1)≤f0 (xk+2)−f0 (xk)−
[
(xk+1−xk)

T
∇f0 (xk)+

(xk+1−xk)
T
∇2f0 (xk) (xk+1−xk)

]
+ 1

2 (xk+1−xk)
T
∇2f0 (xk) (xk+1−xk) .
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Since xk+1 is an optimal point in the second order modified objective optimiza-
tion problem

(
P 2(xk)

)
and f0 is second order convex on D then by Lemma 1,

we get

(xk+1 − xk)
T
∇f0 (xk) + (xk+1 − xk)

T
∇2f0 (xk) (xk+1 − xk) ≤ 0.

Hence, using the two last inequalities, it follows that

Fk+1 (xk+2) − Fk (xk+1) ≤ f0 (xk+2) − f0 (xk)

+ 1
2 (xk+1 − xk)T ∇2f0 (xk) (xk+1 − xk) . (50)

Since f0 is second order convex on D then by Lemma 2,

(xk+1 − xk)
T
∇2f0 (xk) (xk+1 − xk) ≥ 0. (51)

Then, by (50) and (51), we obtain

Fk+1 (xk+2) − Fk (xk+1) ≤ f0 (xk+2) − f0 (xk) .

Thus, by Theorem 6 i), it follows that the following inequality

Fk+1 (xk+2) − Fk (xk+1) ≤ 0

is satisfied. This means that the conclusion of this proposition is established.

Theorem 8 Let D be a convex compact subset of Rn and f0 be a twice contin-
uously differentiable function on D. Moreover, we assume that f0 is a second
order convex function on D. Then,

lim
k→∞

Fk (xk+1) = F (x) = min
x∈D

F (x) .

6. Preliminary computational results

In order to gain some understanding of the practical performance of the pro-
posed method, we have implemented the iterative algorithm from the preceding
section.

We describe the implementation details for the nonlinear mathematical pro-
gramming problem from Example 1. We have used various starting points,
where these starting points are feasible for the optimization problem considered
in Example 1.

We write the auxiliary optimization problem (P 2(xk)) for the considered
O.R. problem from Section 4 in the following form:

Fk(x) = ak

(
x2 + bkx

)
+ ck → min

f1(x) ≤ 0.
(P

2
(xk))
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In the following tables we report the computational results obtained with
the above implementation by using two values of x0 in the iterative sequence
generated by the algorithm presented in the preceding section.

xk f0 (xk) Fk−1 (xk) ak bk ck

0.000000000000 200.0000 0.100000 -50.000000 200.0000

25.000000000000 124.1836 137,5000 0.045489 -83.333333 190.5230

41.666666666667 109.4587 111,5476 0.025351 -97.619047 168.5621

48.809523809524 108.0566 108,1653 0.019285 -99.944629 156.1914

49.972314507198 108.0301 108,0306 0.018414 -99.9999693 154.0660

49.999984678753 108.0301 108,0301 0.018393 -99.9999999 154.0151

49.999999999995 108.0301 108,0301 0.018393 -100.0000000 154.0151

50.000000000000 108.0301 108,0301 0.018393 -100.0000000 154.0151

xk f0 (xk) Fk−1 (xk) ak bk ck

39.000000000000 110.6108 0.027962 -96.032786 172.8078

48.016393442623 108.1045 108.3376 0.019897 -99.848617 157.6256

49.924308926697 108.0302 108.0320 0.018449 -99.999771 154.1542

49.999885590424 108.0301 108.0301 0.018394 -99.999999 154.0153

49.999999999738 108.0301 108.0301 0.018393 -100.000000 154.0151

50.000000000000 108.0301 108.0301 0.018393 -100.000000 154.0151

From the results reported in the tables, we see that the implemented iter-
ative method has been able to find a very good approximation of the optimal
solution within an acceptable solution set. For different start points x0, the
method is convergent to an unique solution x = 50 of the considered optimiza-
tion problem. The iterative method used to solve of this optimization problem
generates feasible iterates that mark an improvement of the objective value at
each iteration.

Further, the proposed algorithm has several advantages. First of all it fea-
tures sure convergence properties and has fast (quadratic) rate of convergence.
It also requires a feasible starting point but then generates a sequence of feasible
points. Thus, the method is globally convergent if a starting point is chosen as
feasible in the optimization problem.

Because of the remarks above and because of the uncertainty of the con-
vergence properties, due mainly to the use of a suitable method for solving
auxiliary optimization problems (P 2(xk)), research on the algorithm will con-
tinue. However, the discussion and the numerical results presented suggest that
the method as is stands will solve many constrained minimization problems
with twice differentiable functions, more precisely, with second order convex
functions.
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7. Conclusions

In the paper, we present the second order modified objective function method for
solving constrained optimization problems with second order convex functions.
Further, we develop an algorithm for finding an optimal solution to the original
mathematical programming problem by using the proposed approach. Since
the functions constituting the original programming problem are assumed to be
second order convex then the presented algorithm requires calculations with the
Hessian matrix. As follows from the construction of the introduced method,
the original programming problem is equivalent to an associated second order
modified objective function optimization problem. However, to solve the second
order objective function optimization problem the presented iterative algorithm
requires to solve the sequence of optimization problems of such type.

To prove most of results in the paper, the objective function f0 in the original
mathematical programming problem (P) is assumed to be a (strictly) second
order convex function on the set of all feasible solutions D. However, to establish
the equivalence between the original mathematical programming problem (P)
and its second order modified objective function optimization problem (P 2(x)),
it is sufficient to assume only that the objective function f0 is second order
convex at the point x.

It is known that efficient and finite methods for solving subproblems (P 2(xk))
exist. For example, if xk is known then the next point xk+1 can be determined
by the principal pivoting method, Cottle and Dantzing (1968), or the finite
method, Stoer (1971). Further, finite methods for solving a quadratic optimiza-
tion problem have been considered also by Fletcher (2000), Sukharev, Timokhov
and Fedorov (1986).

In this paper, we give an example of O.R. problem which can be solved by
using the second order modified objective function method. Of course, there
exist O.R. problems with more complicated objective function, which can be
solved by the introduced method. As follows from the example of the O.R.
problem given in the paper, we obtain, using the presented method, a simpler
optimization problem to solve. Thus, the computational procedures for solving a
quadratic optimization problem can be applied. In this way, O.R. problems with
a strongly nonlinear objective function can be solved by using computational
algorithms for solving quadratic optimization problems (moreover, we are in
a position to solve immediately some second order modified objective function
optimization problems ).

Acknowledgements

The author thanks the anonymous referee for his helpful suggestions on improv-
ing the exposition of the paper.



182 T. ANTCZAK

References

Antczak, T. (2004) An η-approximation approach for nonlinear mathemat-
ical programming problems involving invex functions. Numerical Func-
tional Analysis and Optimization 25 (5&6), 423-438.

Bazaraa, M.S., Sherali, H.D. and Shetty, C.M. (1991) Nonlinear Pro-
gramming: Theory and Algorithms. John Wiley and Sons, New York.

Bector, C.R. and Bector, B.K. (1986) On various duality theorems for
second order duality in nonlinear programming. Cahiers Centre Etudes
Rech. Opér. 28, 283-292.

Bector, C.R. and Chandra, S. (1985) Generalized bonvex functions and
second order duality in mathematical programming. Res. Rep. 85-2, De-
partment of Actuarial and Management Sciences, University of Manitoba,
Winnipeg, Manitoba, Canada.

Ben-Tal, A. (1980) Second-order and related extremality conditions in non-
linear programming. Journal of Optimization Theory and Applications
31, 143-165.

Cottle, R.W. and Dantzing, G.B. (1968) Complementary pivot theory of
mathematical programming. Journal of Linear Algebra and Applications
1, 103-125.

Dantzing, G.B. (1963) Linear Programming and Extensions. Princeton Uni-
versity Press, Princeton, N.J.

Fiacco, A.V. and McCormick, G.P. (1968) Nonlinear Programming: Se-
quential Minimization Techniques. John Wiley & Sons.

Fletcher, R. (2000) Practical methods ofoptimization, Second Edition. John
Wiley & Sons, Ltd.

Mond, B. and Weir, T. (1981) Generalized convexity and higher order du-
ality. Pure Math. Res. Rep. 81-16, Math. Dept., La Trobe University,
Australia.

Ortega, J.M. and Rheinboldt, W.C. (1970) Iterative Solution of Nonlin-
ear Equations of Several Variables. Academic Press, New York

Pang, J.S. (1984) Necessary and sufficient conditions for the convergence of
iterative methods for the linear complementarity problem. Journal of
Optimization Theory and Applications 42, 1-17.

Stoer, J. (1971) On the numerical solution of constrained least-squares prob-
lems. SIAM Journal of Numerical Analysis, 8, 382-411.

Sukharev, A.G., Timokhov, A.W. and Fedorov, W.W. (1986) Course of
optimization methods (in Russian). “Nauka”, Moscow.

Zangwill, W.I. (1969) Nonlinear Programming. Prentice Hall, Englewood
Cliffs.


