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Abstract: The paper gives a basis for solving many problems of
numerically reliable synthesis of sub-optimal discrete-time control
in H∞. The approach is based on J-lossless factorisations of the
delta-domain chain-scattering descriptions of continuous-time plants
being controlled. Relevant properties of poles and zeros of chain-
scattering models are given. Necessary and sufficient conditions for
the existence of stabilising J-lossless conjugators are presented and
discussed. Some aspects of numerical conditioning of synthesis of
such conjugators are considered. A numerical example illustrating
synthesis of stabilising right J-lossless conjugators is also included.
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1. Introduction

It is known that a unified and systematic frequency-domain approach to con-
trol design in H∞ can be established on the three main key notions called
chain-scattering representation, J-lossless factorisation and J-lossless conjuga-
tion (Kimura, 1989, 1995, 1997; Green, 1992; Tsai and Postlethwaite, 1991). In
this modern methodology, the H∞ control problem can be effectively reduced to
certain J-lossless factorisations of chain-scattering representations of the con-
trolled plant, making it possible to facilitate the cascade structure of generic
feedback control systems. The chain-scattering framework was introduced in
the control literature by Kimura and the relevant J-lossless factorisations were
recognised as an alternative expression of the well known factorisations referred
to as J-spectral factorisations (Green, 1992; Zhou et al., 1996). Finally, prop-
erly defined J-lossless conjugations turned out to be a powerful tool for carrying
out the J-lossless factorisations.

In this paper, which is intended as a first part of the work concerning con-
ditioning of fundamental discrete-time H∞-optimisation problems related to
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robust control design, we consider numerical conditioning of the problem of
synthesis of the so-called stabilising J-lossless conjugators for systems described
by their properly defined chain-scattering models. It is a commonly accepted
opinion that sensitivity analysis of the optimal and sub-optimal H∞ problems is
still an open problem, although some advancing contributions have been made
in recent years (Christov et al., 2005; Gahinet and Laub, 1997; Higham et al.,
2004; Konstantinov et al., 1995; Lin et al., 2000). The part of the sensitivity
analysis that is most complete can by found in Konstantinov et al. (1995) where
conditioning of the generic ’two-Riccati’ approach to the H∞-optimisation was
studied. In our approach to the sensitivity analysis of the H∞ synthesis, we will
employ a different way for the linear real-rational plant modelling in the the so-
called δ-domain, based on a convenient chain-scattering methodology. Problems
associated with the J-lossless factorisations will be discussed in a forthcoming
second part of this work.

The δ-operator methodology promoted by Midd on and Goodwin (1986,
1990) and Goodwin, Middleton and Poor (1992) has been widely accepted as
an effective tool of modern control system design procedures including those
based on the H∞ paradigm (Collins et al., 1997; Collins and Song, 1999; Su-
chomski, 2002, 2003a). It is mainly due to the fact that the δ operator offering
a convenient tool for describing asymptotic properties of discrete-time models
of continuous-time systems as the sampling period ∆ tends to zero has several
advantages as compared to the common forward shift operator q, often yield-
ing ill-conditioned processes (Feuer and Middleton, 1995; Goodwin et al., 1992;
Li and Fan, 1997; Middleton and Goodwin, 1986, 1990; Salgado, Middleton
and Goodwin, 1988). It was also observed that at higher sampling rates the
δ-domain algorithms are much less sensitive to arithmetic roundoff errors than
their counterparts algorithms based on the q operator (Fan, 1997; Fan and Liu,
1994; Feuer and Middleton, 1995; Li and Fan, 1997; Williamson, 1991).

It is worth noting that the meaning of the δ-domain representation is ba-
sically not a straightforward bilinear transform in the frequency domain. A
meaningful and advantageous property of models based on the δ-operator is
that the sampling period ∆ appears apparently as a factor in the relevant for-
mulas, which makes easier an extraction of all these ’algorithmic places’ that
may lead to a potential numerical instability (Suchomski, 2001a, b, 2003b).

A survey presentation of different developments in the δ-domain approaches
for high-speed digital signal processing, computer control, system modelling,
and control-oriented identification was given in Suchomski (2001c). Some recent
results concerning robust proportional-integral-derivative control using gener-
alised Kalman-Yakubowich-Popov synthesis were reported in Hara et al. (2006).

The rest of this paper is organised as follows. In Section 2, some facts of
the δ-domain models of linear dynamic systems are recalled. Section 3 gives
a unified treatment of discrete-time Riccati and Lyapunov equations based on
the theory of matrix pencils. In Section 4, dealing with the δ-domain chain-
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scattering models of generalised plants, we consider pole-zero properties of such
models. An important class of linear dynamic systems, called J-lossless systems,
is discussed in Section 5. Necessary and sufficient conditions for the existence of
properly defined stabilising J-lossless conjugators are derived and some aspects
of numerical conditioning of synthesis of such conjugators are considered. In
Section 6, we present a numerical example illustrating synthesis of a stabilising
right J-lossless conjugator. Some concluding remarks are given in Section 7.

2. Delta-domain modelling

We start by listing some facts and concepts concerning modelling in the δ do-
main. After some basic recalls, we concentrate on system poles and zeros as
well as on the so-called coprime factorisations over the RH∞.

2.1. Elements

Let R and C be the real and complex field, respectively, while Z+ = N ∪ {0}
denotes the set of all non-negative integers. Assume that l2 = l2[0,∞) = {y :
‖y‖2 < ∞} is a Banach space defined for sequences y = {yk}k∈Z+

= {yk}∞k=0,
where yk ∈ R

r. Let q be the forward-shift linear operator q : l2 → l2,
established as qyk = yk+1, ∀y ∈ l2 . The delta operator δ : l2 → l2 is defined
as the following first-order divided difference δ = (q−1)/∆, where ∆ > 0 ∈ R is
the sampling period (Middleton and Goodwin, 1986, 1990). Thus, the operators
q and δ are affinely connected via the relation q = ∆ · δ + 1. Let (q, z) and
(δ, ζ) denote the pairs of discrete-time operators q and δ, and the corresponding
complex variables z and ζ, where z = es∆ and ζ = (es∆ − 1)/∆, while s ∈ C.

Let D∆ = {ζ : | ζ + 1/∆| < 1/∆} be the open ∆-scaled shifted circle
with the boundary ∂D∆. The corresponding closed circle is denoted as D̄∆.
The homographic mapping (conjugation, para-Hermitian conjugation) C ∋ ζ 7→
ζ∼ = −ζ/(1 + ∆ζ) ∈ C transforms a complex number into its reflection with
regard to the ∂D∆.

Let a linear time-invariant (LTI ) continuous-time (ρ = d/dt) system be
described be the following state-space model

{

ρx(t) = Aρx(t) + Bρu(t)
y(t) = Cρx(t) + Dρu(t)

(1)

where x(t) is the state vector, u(t) is the input, y(t) denotes the output, while
ρ = d/dt. If u(t) is piece-wise constant and right-continuous (which means that a
common discretisation mechanism with the first order hold is used) the following
discrete-time (δ-domain) state-space model can be obtained (Goodwin et al.,
1992; Middleton and Goodwin, 1986, 1990; Rao and Sinha, 1991; Rostgaard et
al., 1993):

{

δx(t) = Aδx(t) + Bδu(t)
y(t) = Cδx(t) + Dδu(t)

(2)
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where now we have: x(t) = x(k∆), u(t) = u(k∆), y(t) = y(k∆), and

Aδ = ∆−1Γ∆Aρ, Bδ = ∆−1Γ∆Bρ, Cδ = Cρ, Dδ = Dρ (3)

while Γ∆ =
∫ ∆

0
eτAρdτ . The integral involved in the definition of Γ∆ can

be effectively computed by using methods given in Cheng and Yau (1997),
Johnson and Phillips (1971), Moler and Van Loan (1978), Ward (1977). The
standard q-domain model of the continuous-time system (1) has the realisation
(Aq, Bq, Cq, Dq) with

Aq = I + ∆Aδ, Bq = ∆Bδ, Cq = Cδ, Dq = Dδ (4)

where I acts as the properly dimensioned identity matrix.
The set of all eigenvalues of a square matrix A ∈ R

n×n is denoted by λ(A).
A matrix A is said to be stable if λ(A) ⊂ D∆. Moreover, A is said to be regular
while −∆−1 /∈ λ(A).

Remark 1 If ∆ → 0, then (Aδ → Aρ, Bδ → Bρ), while the corresponding q-
domain model loses its identity: (Aq → I, Bq → 0), where 0 denotes the properly
dimensioned zero matrix (Goodwin, Middleton and Poor, 1992; Middleton and
Goodwin, 1990; Neuman, 1993a,b; Ninness and Goodwin, 1991; Premaratne et
al., 1994). Clearly, a deep dependence of ∆ is hidden in Γ∆ and, as a matter
of fact, we should write Aq(∆) = I + ∆Aδ(∆) and Bq(∆) = ∆Bδ(∆). Many
aspects of different consequences imposed by a high sampling rate are discussed
in Åström et al. (1984), Feuer and Middleton (1995), Gessing (1993, 2002),
Goodwin et al. (1992), Li and Fan (1997), Middleton and Goodwin (1990),
Wahlberg (1988, 1990).

2.2. Systems

Let Rp×r
P be the space of all proper real-rational p × r matrix-valued functions

in ζ ∈ C and RLp×r
∞ ⊂ Rp×r

P denote the sub-space of all proper real-rational
p × r matrix-valued functions that are analytical on ∂D∆. RHp×r

∞ ⊂ RLp×r
∞

consists of all stable functions (i.e. functions that are analytical in C \ D̄).
The set of all functions that are unitary bounded in RHp×r

∞ is described as
BHp×r

∞ =
{

G ∈ RHp×r
∞ : ‖G‖∞ < 1

}

, where ‖ · ‖∞ is the RHp×r
∞ infinity

norm defined as

‖G‖∞ = sup
ω∈[0, 2π/∆)

∣

∣

∣

∣

∣

∣

∣

∣

G

(

ejω∆ − 1

∆

)∣

∣

∣

∣

∣

∣

∣

∣

2

. (5)

The set (a group) of all units of RHp×p
∞ , denoted as GHp

∞, is defined as GHp
∞ =

{

G ∈ RHp×p
∞ : G−1 ∈ RHp×p

∞

}

. A function G ∈ GHp
∞ is called unimodular

(Feintuch, 1998). Symbols ‖G‖∞, ‖G(δ)‖∞ and ‖G(ζ)‖∞ are equivalent. Note
that the non-compact set [0, 2π/∆) appears in (5).
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Given a G(ζ) ∈ Rp×r
P , we have the transfer function (transfer matrix) being a

map G : U → Y from a space U of input signals to a space Y of output signals.
Taking ζ = (ejω∆ − 1)/∆ with ω ∈ [0, 2π/∆) we obtain the frequency response
G(jω) corresponding to (6). The (para-Hermitian) conjugate of G(ζ) is defined
as G∼(ζ) = GT (−ζ/(1 + ∆ζ)). The Hermitian conjugate is G⋆(ζ) = GT (ζ⋆).
Hence, for ζ ∈ ∂D∆ we have G⋆(ζ) = G∼(ζ).

Let (A, B, C, D) denote properly dimensioned matrices and

G(ζ) = C(ζI − A)−1B + D =

[

A B
C D

]

(6)

be the associated transfer matrix G(ζ). Each (A, B, C, D) leading to the given
function G(ζ) ∈ Rp×r

P is called its realisation. The eigenvalues of A are called
the poles of the realisation of G(ζ). Let A ∈ Rn×n be regular. It implies that
In + ∆A is non-singular and

G∼(ζ) =

[

−IAAT −IACT

BT IA DT − ∆BT IACT

]

(7)

where In ∈ Rn×n is the identity matrix and IA = (In +∆AT )−1. For λ ∈ λ(Aρ)
we have (eλ∆ − 1)/∆ ∈ λ(Aδ). Moreover, A∼ = −IAAT ∈ Rn×n.

Let R[s] be the polynomial ring with real coefficients. A square matrix with
entries in R[s] is called a unimodular polynomial matrix if its determinant is a
non-zero constant. Any G(ζ) ∈ Rp×r

P can be reduced to its canonical McMillan
form MG(ζ) through some pre- and post-unimodular operations (Fuhrmann,
1996). Therefore, there exist properly dimensioned unimodular matrices UG(ζ)
and VG(ζ) such that

UG(ζ)G(ζ)VG(ζ) = MG(ζ) =



















α1(ζ)
β1(ζ) 0 · · · 0 0

0 α2(ζ)
β2(ζ) · · · 0 0

...
...

. . .
...

...

0 0 · · · αrG
(ζ)

βrG
(ζ) 0 0

0 0 · · · 0 0



















(8)

and αi(ζ) divides αi+1(ζ) and βi+1(ζ) divides βi(ζ), respectively. The num-
ber

∑rG

i=1 deg(βi(ζ)) is called the McMillan degree of G(ζ) and is equal to the
dimension of a minimal realisation of G(ζ). The roots of all the polynomi-
als βi(ζ) in the McMillan form for G(ζ) are called the poles of G(ζ) and are
denoted as p(G(ζ)). A complex number ζ0 is a pole of G(ζ) if and only if
ζ0 ∈ λ(A) where A comes from a minimal realisation (A, B, C, D) of G(ζ). The
roots of all the polynomials αi(ζ) in the McMillan form for G(ζ) are called
the transmission zeros of G(ζ) and are denoted as z(G(ζ)). A transfer ma-
trix G(ζ) is stable if p(G(ζ)) ⊂ D∆. Let us introduce the useful notation
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MG(ζ) = NG(ζ) ·D−1
G (ζ), where NG(ζ) = diag{αi(ζ)}rG

i=1 ⊕ 0(p−rG)×(r−rG) and
DG(ζ) = diag{βi(ζ)}rG

i=1 ⊕ Ir−rG
are polynomial matrices. Note that DG(ζ) has

full normal rank.

Following some standard algebras established for real-rational functions
(Fuhrmann, 1996; Zhou et al., 1996) we can derive a useful lemma.

Lemma 1 (on system poles and zeros)

(i) Assume a G(ζ) = G1(ζ) · G2(ζ). Then

p(G(ζ)) ⊂ {p(G1(ζ)), p(G2(ζ))}. (9)

If G1(ζ) has full column normal rank or G2(ζ) has full row normal rank,
then

z(G(ζ)) ⊂ {z(G1(ζ)), z(G2(ζ))}. (10)

(ii) Assume a G(ζ) ∈ R(m+q)×(r+p)
P suitably partitioned as

G(ζ) =

[

G11(ζ) G12(ζ)
G21(ζ) G22(ζ)

]

. (11)

Then

p(G11(ζ)), p(G12(ζ)), p(G21(ζ)), p(G22(ζ)) ⊂ p(G(ζ)) (12)

p(G(ζ)) ⊂ {p(G11(ζ)), p(G12(ζ)), p(G21(ζ)), p(G22(ζ))}. (13)

Let G(ζ) of (11) be a block upper triangular matrix with G21(ζ) = 0q×r.
If G11(ζ) has full row normal rank, then

z(G22(ζ)) ⊂ z(G(ζ)). (14)

If G22(ζ) has full column normal rank, then

z(G11(ζ)) ⊂ z(G(ζ)). (15)

Moreover, for a quadratic block upper triangular G(ζ) with G11(ζ) = Im

and G22(ζ) = Iq it holds that

p(G(ζ)) = z(G(ζ)) = p(G12(ζ)). (16)

Let U, W ∈ Rm×m. The set of all m×m matrices of the form U − ζW with
ζ ∈ C is said to be a matrix pencil. The eigenvalues of this pencil are elements
of the set λ(U, W ) defined by λ(U, W ) = {ζ ∈ C : det (U − ζW ) = 0}. If
λ ∈ λ(U, W ) and Ux = λWx with x 6= 0 then x is referred to as an eigenvector
of the pencil U − ζW associated with the eigenvalue λ. A pencil U − ζW is
said to be non-singular if matrix U − ζW is non-singular for almost all ζ ∈ C.
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Non-singular pencil U − ζW is of full normal rank, normrank (U − ζW ) = m.
We say that ∞ ∈ λ(U, W ) if rank(W ) < normrank (U − ζW ). Similarly, we say
that a transfer matrix G(ζ) has normal rank normrank (G(ζ)) = nr if G(ζ) has
maximally possible rank nr for at least one ζ ∈ C. Let

SG(ζ) =

[

A − ζIn B
C D

]

(17)

denote the system matrix associated with the realisation (A, B, C, D) of a given
transfer matrix G(ζ). The normal rank of this generally non-quadratic pencil,
denoted as normrank (SG(ζ)), is the maximally possible rank of SG(ζ) for at
least one ζ ∈ C. A ζ0 ∈ C is called an invariant zero of this ralisation if it
satisfies rank (SG(ζ0)) < normrank (SG(ζ)). The set of all invariant zeros of
(A, B, C, D) is denoted as z(A, B, C, D). It is clear that G(ζ) has full column
(row) normal rank if and only if SG(ζ) has full column (row) normal rank and
normrank (SG(ζ)) = n + normrank (G(ζ)). A ζ0 ∈ C is a transmission zero
of a transfer matrix G(ζ) if and only if it is an invariant zero of any minimal
realisation of G(ζ). Moreover, every transmission zero of a transfer matrix G(ζ)
is an invariant zero of all its realisations, and every pole of a G(ζ) is a pole of
all its realisations.

For matrix-valued functions in δ we need two definitions being extensions
of some standard formulations (Dullerud and Paganini, 2000; Feintuch, 1998;
Francis, 1987; Kailath, 1980; Vidyasagar, 1985; Zhou et al., 1996).

Definition 1 (of coprimeness over RH∞)
(i) Two matrices M and N in RH∞ are right coprime over RH∞ if they have

the same number of columns and if
»

M
N

–

is left-invertible in RH∞, i.e.

if there exist Xr and Yr in RH∞ such that XrM + YrN = I.

(ii) Two matrices M̃ and Ñ in RH∞ are left coprime over RH∞ if they have
the same number of rows and if [ M̃ Ñ ] is right-invertible in RH∞,

i.e. if there exist Xl and Yl in RH∞ such that M̃Xl + ÑYl = I.

These two equations are often called Bezout identities. A pair of matrices that
are coprime over RH∞ is also called coprime over RH∞.

Definition 2 (of coprime factorisation over RH∞) Let G ∈ RP .

(i) A right coprime factorisation of G is a factorisation G = NM−1 where
(M, N) is right coprime over RH∞.

(ii) A left coprime factorisation of G is a factorisation G = M̃−1Ñ where
(M̃, Ñ) is left coprime over RH∞.

Implicit in these definitions is the requirement that both M and M̃ are
square and non-singular.



104 P.J. SUCHOMSKI

3. Discrete-time Riccati and Lyapunov equations

Algebraic Riccati equations and Lyapunov equations appear in different fields
of linear systems and control theory, and play a fundamental role in many
modern algorithms for control synthesis including approaches based on the H∞

paradigm (Datta, 2004; Ionescu et al., 1999; Lancaster and Rodman, 1995). In
this section, some properties of the δ-domain Riccati and Lyapunov equations
are considered.

3.1. Riccati equations in the delta-domain

Consider the discrete-time algebraic Riccati equation (DARE )

PT
q XqPq − Xq

−(PT
q XqQq + Sq)(Tq + QT

q XqQq)
−1(QT

q XqPq + ST
q ) + Rq = 0n×n

(18)

where Xq, Pq, Rq = RT
q ∈ Rn×n, Qq, Sq ∈ Rn×m, and Tq = T T

q ∈ Rm×m.
Taking Pq = In + ∆P , where P ∈ Rn×n, two sets of matrices (Qq, Rq, Sq, Tq)
can be examined

(R1) (∆ · Q, R, S, T )
(R2) (Q, ∆2 · R, ∆ · S, T )

(19)

where R = RT ∈ Rn×n, Q, S ∈ Rn×m and T = T T ∈ Rm×m (Suchomski,
2003a, b, 2004). In both cases we obtain the following δ-domain discrete-time
algebraic Riccati equation (δARE)

PT X + XP + ∆PT XP − ((In + ∆PT )XQ + S)

×(T + ∆QT XQ)−1(QT X(In + ∆P ) + ST ) + R = 0n×n
(20)

where X ∈ Rn×n and

(R1) X = ∆ · Xq

(R2) X = ∆−1 · Xq.
(21)

Note that, in fact, we have X = X(∆) and Xq = Xq(∆). The distinguished
types of parameterisation (R1 and R2 ) follow from a simple observation that
they are directly connected with all generic ’two-Riccati’ formulations of the
standard H∞ problem for discrete-time linear systems (Iglesias and Glower,
1991; Ionescu and Weiss, 1993; Kongprawechnon and Kimura, 1998).

Let (U, W ) denote a pair of real matrices associated with the δARE of (20)
(Suchomski, 2003a, b, 2004)

(U, W )=









P 0n×n Q
−R −PT −S
ST QT T



 ,





In 0n×n 0n×m

0n×n In + ∆PT 0n×m

0m×n −∆QT 0m×m







 . (22)
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The set of all (2n + m) × (2n + m) matrices of the form U − ζW with ζ ∈ C is
said to be an extended matrix pencil. A non-singular pencil U − ζW is of full
normal rank, normrank (U − λW ) = 2n + m. A non-singular pencil U − λW
with a regular P is said to be a regular pencil while −∆−1 /∈ λ(U, W ) .

In many applications, the matrix T of (22) is often diagonal or even the
identity, which makes T−1 trivial to determine and in such cases a reduced in-
order generalised eigenvalue problem based on standard techniques for 2n× 2n
matrix pencils can be utilised (Arnold and Laub, 1984; Benner et al., 1997;
Datta, 2004; Ionescu et al., 1997, 1999; Lancaster and Rodman, 1995; Saberi et
al., 1995; Suchomski, 2003b). In general, T may instead be non-diagonal and
ill-conditioned with respect to inversion, or possibly even singular, in which case
the considered technique for (2n + m) × (2n + m) extended pencils should be
used (Arnold and Laub, 1984; Datta, 2004; Ionescu et al., 1997, 1999; Ionescu
and Weiss, 1992, 1993; Stoorvogel and Saberi, 1998; Suchomski, 2003b, 2004).

Consider the DARE

PT
q XqPq − Xq − PT

q XqRq(In + XqRq)
−1XqPq + Qq = 0n×n (23)

where Xq, Pq, Rq = RT
q , Qq = QT

q ∈ Rn×n. Taking Pq = In + ∆P , where
P ∈ Rn×n, two sets of matrices (Qq, Rq) can be examined

(R1) (Q, ∆2 · R)
(R2) (∆2 · Q, R)

(24)

where Q = QT , R = RT ∈ Rn×n (Suchomski, 2003d, 2001e). In both cases we
obtain the following δARE

PT X + XP + ∆PT XP
−(In + ∆PT )XR(In + ∆XR)−1X(In + ∆P ) + Q = 0n×n

(25)

where X ∈ Rn×n satisfies the suitable scaling relation (21).
Let (U, W ) denote a pair of real matrices associated with the δARE of (25)

(Suchomski, 2002, 2003d, e)

(U, W ) =

([

P −R
−Q −PT

]

,

[

In ∆R
0n×n In + ∆PT

])

. (26)

A non-singular pencil U − ζW is regular if and only if P is regular.

For a triple (P, Q, R) with a regular P the following (n + n) × (n + n)-
partitioned matrix M∆ = M∆(U, W ) ∈ R2n×2n can be defined

M∆ = W−1U =

[

P + ∆RIP Q −RIP

−IP Q −IP PT

]

. (27)

This regular matrix satisfying I−1
−nnMT

∆I−nn = −(In + ∆M∆)−1M∆, where

I−mn =

[

0m×n −Im

In 0n×m

]

∈ R
(m+n)×(n+m) (28)
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will be called a generalised Hamiltonian matrix (Suchomski, 2003e, 2004). Since
I−1
−nn(In + ∆MT

∆)I−nn = (In + ∆M∆)−1 then In + ∆M∆ is a symplectic (Jn-
orthogonal) matrix (Bunse-Gerstner et al., 1992). Moreover, if λ ∈ λ(M∆) then
λ⋆, λ∼ as well as (λ∼)⋆ are also the eigenvalues of M∆.

Remark 2 A generalised Hamiltonian matrix can also be introduced as a
regular matrix M̃ ∈ R2n×2n satisfying I−1

−nnM̃T I−nn = −(In+∆M̃)−1M̃ . Given
a generalised Hamiltonian matrix M̃ of the (n + n) × (n + n) partitioning with
a regular lower right-corner submatrix, we conclude that M̃ can be represented
as

M̃ =
1

∆
·
[

P̃ + R̃P̃−T Q̃ − In −R̃P̃−T

−P̃−T Q̃ P̃−T − In

]

(29)

where P̃ ∈ Rn×n is a non-singular matrix and Q̃ = Q̃T , R̃ = R̃T ∈ Rn×n.
Taking P̃ = In + ∆P , where P ∈ Rn×n is a suitable regular matrix we obtain

M̃ =

[

P + ∆RIP Q −∆RIP

−∆−1IP Q −IP PT

]

(30)

where Q̃ = Q, R̃ = ∆2R ∈ Rn×n. Assuming that X ∈ Rn×n and X̃ ∈ Rn×n

satisfy the following equations
[

−X̃ In

]

M̃
[

In X̃
]T

= 0n×n (31)
[

−X In

]

M∆

[

In X
]T

= 0n×n (32)

yields X = ∆X̃ (Suchomski, 2003e, 2004).

Lemma 2 (on similarity of generalised Hamiltonian matrices, Suchomski, 2004)
Let M∆0 ∈ R2n×2n be a generalised Hamiltonian matrix. Taking M∆ =
TM∆0T

−1 with a symplectic T ∈ R2n×2n we obtain a generalised Hamiltonian
matrix M∆ ∈ R2n×2n.

3.2. Basic properties of solutions of Riccati equations

Consider a pair (U, W ) of (22). Let X−(U, W ) of dimension n− = dim (X−(U,
W ) ) ≤ n denote an invariant subspace corresponding to stable eigenvalues of the
given extended matrix pencil U−ζW . Let [ XT

1 XT
2 XT

3 ]T ∈ R(n+n+m)×n−

be a matrix of a full column rank whose columns form a basis for X−(U, W ).
This means that X−(U, W ) = Im [ XT

1 XT
2 XT

3 ]T and

U





X1

X2

X3



 = W





X1

X2

X3



Λ (33)

where Λ ∈ Rn−×n− is stable, λ(Λ) ⊂ D∆. Let dom(δRic) ⊂ R(2n+m)×(2n+m) ×
R(2n+m)×(2n+m) denote a set of all those pairs (U, W ) for which n− = n and
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X1 ∈ Rn×n is non-singular. It follows that X = X2X
−1
1 ∈ Rn×n is uniquely

determined by (U, W ) ∈ dom(δRic), i.e. we have a mapping

δRic : dom(δRic) → R
n×n. (34)

Consider a pair (U, W ) of (26). Let X−(U, W ) of dimension n− = dim (X−(U,
W ) ) ≤ n be a stable invariant subspace of the pencil U − ζW . Assume that
columns of X̄ = [ XT

1 XT
2 ]T ∈ R(n+n)×n− form a basis of this subspace.

Hence, X−(U, W ) = ImX̄ and UX̄ = WX̄Λ, where Λ ∈ Rn−×n− is a sta-
ble matrix, λ(Λ) ⊂ D∆. If n− = n and X1 ∈ R

n×n is non-singular we can
set δRic(U, W ) = X2X

−1
1 obtaining a mapping (34), where now dom(δRic) ⊂

R2n×2n × R2n×2n. (U, W ) ∈ dom(δRic) only if U − λW has no eigenvalues on
the ∂D∆.

Let X−(M∆) denote a stable invariant subspace of M∆. We have dim (X−

(M∆)) = n if and only if M∆ has no eigenvalues on the ∂D∆. Then, consider
an n-dimensional subspace X−(M∆) and its basis established by columns of a
matrix X̄ ∈ R

(n+n)×n partitioned as X̄ = [ X1
T X2

T ]T . Specifically, in this
case, dom(δRic) ⊂ R

2n×2n consists of all generalised Hamiltonian matrices M∆

for which the corresponding submatrices X1 ∈ Rn×n are non-singular. Now,
taking δRic (M∆) = X2X

−1
1 we establish a suitable mapping (34). In this

way, having an M∆ = M∆(U, W ) ∈ dom(δRic) we can also say that (U, W ) ∈
dom(δRic).

The following lemma is a δ-domain restatement of the standard result (Arnold
and Laub, 1984; Datta, 2004; Lancaster and Rodman, 1995; Laub, 1991; Van
Dooren, 1981) that recasts the δARE of (20) as a generalised eigenvalue problem
(Suchomski, 2003b, c, 2004).

Lemma 3 (on δ-domain Riccati equations)

(I ) Consider a pair (U, W ) of (22) associated with an appropriate (2n + m) ×
(2n + m) extended matrix pencil. Let (U, W ) ∈ dom(δRic) and X =
X2X

−1
1 ∈ Rn×n. Then:

(i) X = δRic(U, W ) is unique and symmetric, X = XT ;

(ii) T + ∆QT XQ is non-singular and X satisfies the δARE of (20);

(iii) Gδ = X1ΛX−1
1 = P + QFδ is stable, λ(Gδ) ⊂ D∆, where

Fδ = X3X
−1
1 = −(T + ∆QT XQ)−1((In + ∆PT )XQ + S)T . (35)

(II ) Consider a pair (U, W ) of (26) associated with an appropriate 2n × 2n
matrix pencil. Let (U, W ) ∈ dom(δRic) and X = X2X

−1
1 ∈ Rn×n. Then:

(i) X = δRic(U, W ) is unique and symmetric, X = XT ;
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(ii) In + ∆XR is non-singular and X satisfies the δARE of (25) and its
two equivalent forms

(PT − XR)(In + ∆XR)−1X

+(In + ∆PT )(In + ∆XR)−1 + XP + Q = 0n×n (36)

(In + ∆PT )(In + ∆XR)−1X(P − RX) + PT X + Q = 0n×n;
(37)

(iii) Gδ = P + RFδ = (In + ∆RX)−1(P − RX) is stable, λ(Gδ) ⊂ D∆,
where

Fδ = −(In + ∆XR)−1X(In + ∆P ). (38)

(III ) Consider a generalised Hamiltonian matrix M∆(U, W ) of (27). Let M∆ ∈
dom(δRic) and X = X2X

−1
1 ∈ Rn×n. Then:

(i) X = δRic(U, W ) is unique and symmetric, X = XT ;

(ii) In + ∆XR is non-singular and X satisfies the δARE of (25) and its
two equivalent forms

XP + (In + ∆XR)IP Q − (XR − PT )IP X = 0n×n (39)

(In + ∆XR)IP (X − ∆Q) − X(In + ∆P ) = 0n×n; (40)

(iii) Gδ = P − RIP (X − ∆Q) is stable, λ(Gδ) ⊂ D∆.

Remark 3 Let M∆(U, W ) ∈ dom(δRic) and X = δRic(M∆). Matrices M∆

and
[

P − RIP (X − ∆Q) −RIP

0n×n (XR − PT )IP

]

(41)

are similar, hence λ(M∆) = λ(P − RIP (X − ∆Q)) ∪ λ((XR − PT )IP ). Since
λ(P − RIP (X − ∆Q)) ⊂ D∆, we have λ((XR − PT )IP ) ⊂ C \ D̄∆. It follows
that M∆ does not have eigenvalues on the ∂D∆. Moreover, M∆ ∈ dom(δRic)
only if (P, R) is stabilisable.

Consider a generalised Hamiltonian matrix M∆ with Q = 0n×n. Now,
M∆ ∈ dom(δRic) only if P has no eigenvalues on ∂D∆. Let x ∈ Rn denote an
eigenvector associated with a λ ∈ λ(P ). Taking X = δRic(M∆) yields (λIn −
(XR−PT )IP )Xx = 0n. Moreover, for λ ∈ D∆ the instability of (XR−PT )IP

implies x ∈ KerX . It follows that KerX is a stable invariant subspace of P ,
and the rank of X is equal to the number of those eigenvalues of P which belong
to C \ D̄∆.
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Lemma 4 (on translation and congruence of solutions of δ-domain Riccati equa-
tions, Suchomski, 2004) Let M∆0 ∈ R2n×2n be a generalised Hamiltonian ma-
trix, M∆0 ∈ dom(δRic) and X0 = δRic(M∆0). Matrix M∆ = TM∆0T

−1 ∈
R2n×2n with the following non-singular T ∈ R2n×2n

a) T =

[

In 0n×n

T0 In

]

, T0 = T T
0 ∈ R

n×n (42)

b) T =

[

T−1
0 0n×n

0n×n T T
0

]

, T0 ∈ R
n×n, det (T0) 6= 0 (43)

is a generalised Hamiltonian matrix, M∆ ∈ dom(δRic), and X = δRic(M∆).
There is

a) X = X0 + T0 (44)

b) X = T T
0 X0T0. (45)

Any Schur-like numerical method based on estimating the bases of stable
invariant subspaces and deflating subspaces can be utilised for solving the con-
sidered δAREs (Arnold and Laub, 1984; Bunse-Gerstner et al., 1992; Kenney et
al., 1989; Laub, 1979, 1991; Pappas et al., 1980; Petkov et al., 1987; Van Dooren,
1981). The recently derived inverse-free generalized Schur method should be
recommended for its numerical stability properties (Datta, 2004; Van Dooren,
1981, 2004). Abundant collections of suitable benchmark numerical examples
prepared for testing different methods for solving Riccati equations are given in
Abels and Benner (1999), Benner et al. (1995), Benner et al. (1997), Petkov et
al. (1998).

3.3. Lyapunov equations in the delta-domain

Consider the discrete-time Lyapunov (Stein) equation

PT
q XqPq − Xq + Qq = 0n×n (46)

where Xq = Xq(∆), Pq, Qq = QT
q ∈ Rn×n. Taking Pq = In + ∆P , where

P ∈ Rn×n, two sets of matrices Qq can be examined

(L1) Q
(L2) ∆2 · Q (47)

where Q = QT ∈ Rn×n. In both cases we obtain the following δ-domain discrete-
time Lyapunov equation

PT X + XP + ∆PT XP + Q = 0n×n (48)

where X = X(∆) ∈ Rn×n and

(L1) X = ∆ · Xq

(L2) X = ∆−1 · Xq.
(49)



110 P.J. SUCHOMSKI

The equation (48) has a unique solution if and only if λi(P )+λj(P )+∆λi(P )λj

(P ) 6= 0, ∀ i, j. A numerically robust method for solving the δ-domain Lyapunov
equations was presented in Suchomski (2001a).

Suppose that P is stable. X ≥ 0 if Q ≥ 0. If Q ≥ 0, then (P, Q) is observable
if and only if X > 0. On the other hand, suppose that X is the solution of the
Lyapunov equation (48), then λ(P ) ⊂ D̄∆ if X > 0 and Q ≥ 0. Moreover, P is
stable if X ≥ 0, Q ≥ 0 and (P, Q) is detectable.

3.4. Numerical conditioning of discrete-time Riccati and Lyapunov
equations

Many questions concerning numerical conditioning of the considered discrete-
time Riccati and Lyapunov equations were discussed in Suchomski (2001a, b,
2003b) where some useful sensitivity characteristics of these equations were eval-
uated by using suitably defined condition numbers. It was demonstrated that
for many standard (non-singular) problems in the H∞, having the assumed
types of parameterisation, most of the δ-domain formulations are much better
conditioned than their conventional shift operator counterparts as the sampling
period is sufficiently small.

Let (U, W ) ∈ dom(δRic) and P , Q, R, S and T be subject to additive per-
turbations εP̄ , εQ̄, εR̄, εS̄ and εT̄ , respectively. It is assumed that R̄ and T̄
are both symmetric, and ε ∈ R. Note that when (20) is solved on a computer
having machine precision ε̂, rounding errors of order ε̂ ‖P‖F , ε̂ ‖Q‖F , ε̂ ‖R‖F ,
ε̂ ‖S‖F , and ε̂ ‖T ‖F will be present in the corresponding matrices, where ‖ · ‖F

denotes the Frobenius matrix norm (Higham, 1996; Konstantinov et al., 2003).
Let ∇εX( P̄ , Q̄, R̄, S̄, T̄

∣

∣ P, Q, R, S, T ) and ∇X(P, Q, R, S, T ) denote the direc-
tional derivative and the corresponding Fréchet derivative of X = δRic(U, W ),
respectively. The following norm of ∇X(P, Q, R, S, T ) serves as a useful measure
of a local sensitivity of X with respect to small perturbations in data matrices
(Suchomski, 2001b, 2003b)

‖∇X(P, Q, R, S, T )‖ = (50)

sup
‖(P̄ ,Q̄,R̄,S̄,T̄ )‖ 6=0

‚

‚∇εX
`

‖P‖F P̄ , ‖Q‖F Q̄, ‖R‖F R̄, ‖S‖F S̄, ‖T‖F T̄
˛

˛ P, Q, R, S, T
´‚

‚

F
‚

‚(P̄ , Q̄, R̄, S̄, T̄ )
‚

‚

F

A perturbed solution has the form X̃ = X + ε∇εX(‖P‖F P̄ , ‖Q‖F Q̄, ‖R‖F R̄,
‖S‖F S̄, ‖T ‖F T̄ |P, Q, R, S, T ). Based on the above, the following relative condi-
tion number of the δARE of (20) can be defined

κ(P, Q, R, S, T ) =
‖∇X(P, Q, R, S, T )‖

‖X‖F

, ‖X‖F 6= 0. (51)

A relative condition number of the q-domain ARE of (18), denoted as κq(Pq,
Qq, Rq, Sq, Tq), is defined in a similar manner and the following lemma can be
derived by using a first-order-in-∆ analysis.
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Lemma 5 (on conditioning of discrete-time Riccati equations, Suchomski, 2001b,
2003b) For a sufficiently small sampling period ∆ there is

κq(Pq, Qq, Rq, Sq, Tq) ∝
1

∆
· κ(P, Q, R, S, T ). (52)

Remark 4 If some knowledge about structural properties of the perturbations
affecting (P, Q, R, S, T ) is available it can be employed by using an injective
linear mapping e → vec(P̄ , Q̄, R̄, S̄, T̄ ) characterised by properly defined ’pat-
tern’ matrices (EP , EQ, ER, ES , ET ) describing linearised models of the par-
ticular perturbations, where e denotes an appropriate dimensioned vector of
unstructured perturbations (Suchomski, 2003b). Clearly, if the structure of
perturbations is taken into account, it may essentially change the estimates for
relative condition numbers.

Conclusion 1 For non-singular problems the δ-domain approach based on the
Riccati equation machinery is much better conditioned than the corresponding
q-domain approach as ∆ → 0. For some singular problems both the δ- and the
q-operator methods exhibit an undesirable high sensitivity, but the δ-domain
approach is no worse than the q-domain approach, in the sense that κq and κ
are of the same order (Suchomski, 2003b).

4. Chain-scattering models and their properties

Staying in the δ-domain we can consider a so-called generalised plant described
by its scattering matrix

P :

[

W
U

]

→
[

Z
Y

]

, P (ζ) =

[

Pzw(ζ) Pzu(ζ)
Pyw(ζ) Pyu(ζ)

]

(53)

with four input/output signals (Fig. 1): w ∈ W is the exogenous input of
dimension r, u ∈ U of dimension p denotes the controlling input, z ∈ Z of
dimension m is the controlled output (objective) and y ∈ Y acts as the measured
output of dimension q (see Kimura, 1995, 1997, and Zhou et al., 1996).

Figure 1. Generalised plant described by scattering matrix.

For a P ∈ R(m+q)×(r+p)
P we can assume that its realisation (A, B, C, D),

where A, B, C and D are properly dimensioned real matrices with A ∈ Rn×n,
is represented as

P (ζ) =

[

A B
C D

]

=





A Bw Bu

Cz Dzw Dzu

Cy Dyw Dyu



 . (54)
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4.1. Basic facts

The main reason for using the so-called chain-scattering notations for plant
modelling lies in their simplicity of representing cascade connections (Devilde
and Dym, 1981; Genin et al., 1983; Green, 1992; Green et al., 1990; Kimura,
1991, 1995, 1997; Kimura and Okunishi, 1995; Kongprawechnon and Kimura,
1996, 1998; Lee et al., 1996; Tsai and Postlethwaite, 1991; Tsai and Tsai, 1992,
1993, 1995; Tsai et al., 1993). The cascade connection of two chain-scattering
models, which actually contains feedback connections of two suitable systems, is
represented simply as a product of each chain-scattering matrix. This property
of the chain-scattering models is widely employed in various fields of system
theory and engineering to represent some scattering properties of a physical
system, the relationship between the power ports, etc. (Kimura, 1997; Tsai and
Tsai, 1992, 1993; Kongprawechnon and Kimura, 1998).

Any plant P of (53) with q = r and an invertible Pyw(ζ) can be characterised
via its chain-scattering representation

G :

[

U
Y

]

→
[

Z
W

]

, G(ζ) =

[

Gzu(ζ) Gzy(ζ)
Gwu(ζ) Gwy(ζ)

]

(55)

where the appropriate chain transformation is defined as

G = Fc(P ) =

[

Pzu − PzwP−1
yw Pyu PzwP−1

yw

−P−1
yw Pyu P−1

yw

]

. (56)

Similarly to the above, any plant with m = p and an invertible Pzu(ζ) can be
characterised via its dual chain-scattering representation

H :

[

Z
W

]

→
[

U
Y

]

, H(ζ) =

[

Huz(ζ) Huw(ζ)
Hyz(ζ) Hyw(ζ)

]

(57)

where the dual chain transformation is defined as

H = Fdc(P ) =

[

P−1
zu −P−1

zu Pzw

PyuP−1
zu Pyw − PyuP−1

zu Pzw

]

. (58)

For a real-rational P ∈ R(m+q)×(r+p)
P the above mentioned invertibility refers

to Rr×r
P and Rm×m

P , respectively.

4.2. Poles and zeros of chain-scattering models

Let G of (55) be the chain-scattering model of a certain generalised plant P .
Then P is represented in terms of G

P = F−1
c (G) =

[

GzyG−1
wy Gzu − GzyG−1

wyGwu

G−1
wy −G−1

wyGwu

]

. (59)
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An analogous reasoning applies to the dual case. Assuming that H of (57) is
the dual chain-scattering model of a P , yields

P = F−1
dc (H) =

[

−H−1
uz Huw H−1

uz

Hyw − HyzH
−1
uz Huw HyzH

−1
uz

]

. (60)

Let (56) and (59) be rewritten as factored forms, respectively:

G =

[

Im Pzw

0r×m Ir

] [

Pzu 0m×r

0r×p P−1
yw

] [

Ip 0p×r

−Pyu Ir

]

(61)

P =

[

Im Gzy

0r×m Ir

] [

Gzu 0m×r

0r×p G−1
wy

] [

0p×r Ip

Ir −Gwu

]

. (62)

Let (58) and (60) be rewritten as factored forms, respectively:

H =

[

Im 0m×q

Pyu Iq

] [

P−1
zu 0m×r

0q×m Pyw

] [

Im −Pzw

0r×m Ir

]

(63)

P =

[

0m×q Im

Iq Hyz

] [

Hyw 0q×m

0m×r H−1
uz

] [

Ir 0r×m

−Huw Im

]

. (64)

Lemma 6 (on poles and zeros of chain-scattering models)

(i) Assume a G(ζ) = Fc(P )(ζ). Then

p(G(ζ)) ⊂ {p(Pzw(ζ)), p(Pzu(ζ)), z(Pyw(ζ)), p(Pyu(ζ))} (65)

z(G(ζ)) ⊂ {p(Pzw(ζ)), z(Pzu(ζ)), p(Pyw(ζ)), p(Pyu(ζ))} (66)

z(Pyw(ζ)) ⊂ p(G(ζ)) (67)

z(Pzu(ζ)) ⊂ z(G(ζ)). (68)

(ii) Assume a P (ζ) = F−1
c (G)(ζ). Then

p(P (ζ)) ⊂ {p(Gzu(ζ)), p(Gzy(ζ)), p(Gwu(ζ)), z(Gwy(ζ))} (69)

z(P (ζ)) ⊂ {z(Gzu(ζ)), p(Gzy(ζ)), p(Gwu(ζ)), p(Gwy(ζ))} (70)

z(Gwy(ζ)) ⊂ p(P (ζ)) (71)

z(Pzu(ζ)) ⊂ z(P (ζ)). (72)

(iii) Assume an H(ζ) = Fdc(P )(ζ). Then

p(H(ζ)) ⊂ {p(Pzw(ζ)), z(Pzu(ζ)), p(Pyw(ζ)), p(Pyu(ζ))} (73)

z(H(ζ)) ⊂ {p(Pzw(ζ)), p(Pzu(ζ)), z(Pyw(ζ)), p(Pyu(ζ))} (74)

z(Pzu(ζ)) ⊂ p(H(ζ)) (75)

z(Pyw(ζ)) ⊂ z(H(ζ)). (76)
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(iv) Assume a P (ζ) = F−1
dc (H)(ζ). Then

p(P (ζ)) ⊂ {z(Hzu(ζ)), p(Huw(ζ)), p(Hyz(ζ)), p(Hyw(ζ))} (77)

z(P (ζ)) ⊂ {p(Huz(ζ)), p(Huw(ζ)), p(Hyz(ζ)), z(Hyw(ζ))} (78)

z(Huz(ζ)) ⊂ p(P (ζ)) (79)

z(Hyw(ζ)) ⊂ z(P (ζ)). (80)

Proof. Let G(ζ) = Fc(P )(ζ). (65), (66) and (67) follow directly from Lemma
1, (56) and (61). Considering a McMillan form for Pzw(ζ), we have Pzw(ζ) =
U−1

zw (ζ) ·Nzw(ζ) ·D−1
zw (ζ) ·V −1

zw (ζ), where Uzw(ζ) and Vzw(ζ) are properly dimen-
sioned unimodular polynomial matrices while Nzw(ζ) and Dzw(ζ) are suitable
diagonal polynomial matrices. The first factor of (61) can thus be represented
as

[

Im Pzw

0r×m Ir

]

=

=

[

U−1
zw 0m×r

0r×m VzwDzw

] [

Im Nzw

0r×m Ir

] [

Uzw 0m×r

0r×m D−1
zwV −1

zw

]

. (81)

Consequently, we obtain the following convenient equality
[

Im Nzw

0r×m Ir

] [

UzwPzu 0m×r

−D−1
zwV −1

zw P−1
yw Pyu D−1

zwV −1
zw P−1

yw

]

= (82)

=

[

Uzw 0m×r

0r×m D−1
zwV −1

zw

]

G (83)

where the left factor of (82) is a unimodular polynomial matrix and the left
factor of (83) is a matrix of full normal rank. Lemma 1 now implies

z(Pzu) ⊂
{

z

([

Uzw 0m×r

0r×m D−1
zwV −1

zw

])

, z(G)

}

. (84)

Since Uzw and V −1
zw are unimodular polynomial matrices, we have

z

([

Uzw 0m×r

0r×m D−1
zwV −1

zw

])

= ∅. (85)

This clearly forces z(Pzu(ζ)) ⊂ z(G(ζ)) as claimed.
The proof for P (ζ) = F−1

c (G)(ζ), H(ζ) = Fdc(P )(ζ) and P (ζ) = F−1
dc (H)(ζ)

is similar.

5. J-lossless systems and J-lossless conjugators

The key role in the H∞-control is played by the so-called J-lossless factorisations
of real-rational functions (Devilde and Dym, 1981; Genin et al., 1983; Green,
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1992; Green et al., 1990; Hung and Chu, 1998; Kimura, 1991, 1992a, 1992b,
1995, 1997; Kimura and Okunishi, 1995; Suchomski, 1995; Tsai and Postleth-
waite, 1991; Tsai and Tsai, 1992, 1993, 1995; Tsai et al., 1993). J-lossless
factorisations, being an alternative expression of the well known factorisation
in the literature of H∞-control, which is referred to as J-spectral factorisation
(Francis, 1987; Zhou et al., 1996), allow to facilitate the cascade structure of
synthesis (Kimura et al., 1991; Kimura, 1997).

5.1. J-lossless systems

Given Jmn = Im ⊕ (−In) ∈ R(m+n)×(m+n) acting as an indefinite signature
matrix, let as recall some relevant definitions and lemmas concerning the loss-
lessness properties of real-rational functions (Suchomski, 2004).

Definition 3 (of losslessness)

(i) A function G(ζ) ∈ RH(m+r)×(p+r)
∞ is said to be lossless, if G∼(ζ) · G(ζ) =

Ip+r, ∀ζ.

(ii) A function H(ζ) ∈ RH(m+q)×(m+r)
∞ is said to be dual lossless, if H(ζ) ·

H∼(ζ) = Im+q, ∀ζ.

Definition 4 (of J-unitariness and J-losslessness)

(i) A function G(ζ) ∈ RL(m+r)×(p+r)
∞ is said to be (Jmr, Jpr)-unitary, if G∼(ζ)·

Jmr · G(ζ) = Jpr, ∀ζ.

(ii) A (Jmr, Jpr)-unitary function G(ζ) is said to be (Jmr, Jpr)-lossless, if G⋆(ζ)·
Jmr · G(ζ) ≤ Jpr, ∀ζ ∈ C \ D∆.

(iii) A function H(ζ) ∈ RL(m+q)×(m+r)
∞ is said to be dual (Jmq, Jmr)-unitary,

if H(ζ) · Jmr · H∼(ζ) = Jmq, ∀ζ.

(iv) A dual (Jmq, Jmr)-unitary function H(ζ) is said to be dual (Jmq, Jmr)-
lossless, if H(ζ) · Jmr · H⋆(ζ) ≥ Jmq, ∀ζ ∈ C \ D∆.

If a G(ζ) satisfies G∼(ζ)·G(ζ) = Ip+r, ∀ζ, and the stability is not required, G(ζ)
is said to be unitary. Analogously, an H(ζ) satisfying H(ζ) · H∼(ζ) = Im+q,
∀ζ, is called dual unitary. Note that a Jmr-unitary matrix D ∈ R(m+r)×(m+r)

is also dual Jmr-unitary and D−1 = JmrM
T Jmr.

Assume that (A, B, C, D) with a regular A ∈ Rn×n is a minimal realisation of
a stable G(ζ) ∈ RH(m+r)×(p+r)

∞ . Let X = XT ∈ Rn×n denote the observability
Gramian associated with the pair (A, C). Hence, X > 0 satisfies the Lyapunov
equation AT X + XA+ ∆AT XA+ CT C = 0n×n. It is seen that G∼(ζ) ·G(ζ) =
G−(ζ) + G+(ζ) + (DT − ∆BT IACT )D, where the strictly proper component
G−(ζ) = (BT IAX+(DT −∆BT IACT )C)(ζIn−A)−1B is stable, and the strictly
proper component G+(ζ) = −BT IA(ζIn + IAAT )−1(XB + IACT D) is anti-
stable. Claiming that XB + IACT D = 0n×(p+r), we have BT IAX + (DT −
∆BT IACT )C = 0(p+r)×n and consequently G∼(ζ) · G(ζ) = DT D + ∆BT XB.
Letting DT D + ∆BT XB = Ip+r and recalling the maximum modulus theorem
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(Conway, 1978; Dullerud and Paganini, 2000; Green and Limebeer, 1995), we
observe that G⋆(ζ) · G(ζ) ≤ Ir+p, ∀ζ ∈ C \ D∆. On account of the above, we
can state the following lemma.

Lemma 7 (on necessary and sufficient condition for losslessness)
(i) A function G(ζ) ∈ RH(m+r)×(p+r)

∞ of a minimal realisation (A, B, C, D)
with a regular A ∈ R

n×n is lossless if and only if there exists a matrix
X = XT ∈ Rn×n, X > 0, satisfying:

AT X + XA + ∆AT XA + CT C = 0n×n (86)

XB + ∆AT XB + CT D = 0n×(p+r) (87)

DT D + ∆BT XB = Ip+r. (88)

(ii) A function H(ζ) ∈ RH(m+q)×(m+r)
∞ of a minimal realisation (A, B, C, D)

with a regular A ∈ R
n×n is dual lossless if and only if there exists a matrix

Y = Y T ∈ Rn×n, Y > 0, satisfying:

AY + Y AT + ∆AY AT + BBT = 0n×n (89)

Y CT + ∆AY CT + BDT = 0n×(m+q) (90)

DDT + ∆CY CT = Im+q. (91)

J-unitary and J-lossless functions may be unstable but they should have
no poles on the ∂D∆. A D-matrix of any J-unitary and any J-lossless G(ζ) ∈
RL(m+r)×(p+r)

∞ should have a full column rank, while a D-matrix of any dual
J-unitary and dual J-lossless H(ζ) ∈ RL(m+q)×(m+r)

∞ should be of a full row
rank.

Remark 5 Let a lossless function P (ζ) stand for a scattering matrix of a
generalised plant described by (53). Hence, P∼(ζ) · P (ζ) = Ir+p, ∀ζ. Assume
that there exists a chain-scattering matrix G(ζ) = Fc(P (ζ)). It is seen that a
suitable isometry condition takes the form of the equality G∼(ζ) · Jmr · G(ζ) =
Jpr, ∀ζ.

A function G(ζ) is (Jmr, Jpr)-unitary (lossless) if and only if it is a chain-
scattering representation G(ζ) = Fc(P (ζ)) of a unitary (lossless) function P (ζ)
(a simple proof for p = m can be found in Genin et al., 1983). Due to Defini-
tion 4, we have G∼

zy(ζ) ·Gzy(ζ)−G∼
wy(ζ) ·Gwy(ζ) = −Ir, ∀ζ, which implies that

Gwy(ζ)−1 exists. Hence, from (55) and (56) it follows that P (ζ) = F−1
c (G)(ζ) =

N(ζ) · D−1(ζ), where

N(ζ) =

[

Gzu(ζ) Gzy(ζ)
0r×p Ir

]

, D(ζ) =

[

Gwu(ζ) Gwy(ζ)
Ip 0p×r

]

. (92)

For this reason Jpr − G∼(ζ) · Jmr · G(ζ) = D∼(ζ) · D(ζ) − N∼(ζ) · N(ζ). It is
clear that P (ζ) is unitary if and only if D∼(ζ) ·D(ζ) = N∼(ζ) ·N(ζ) and P (ζ) is
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lossless if and only if it is unitary and D⋆(ζ)·D(ζ)−N⋆(ζ)·N(ζ) ≥ 0, ∀ζ ∈ C\D∆.
The same conclusions can be drawn for the suitable dual properties. An H(ζ) is
dual (Jmq, Jmr)-unitary (lossless) if and only if H(ζ) = Fdc(P )(ζ), where P (ζ)
is a dual unitary (lossless) function. It is worth noting that J-losslessness can be
regarded as an extension of the losslessness property of linear operators acting
in Hilbert spaces for a more general case of Krein spaces endowed with indefinite
metrics generated by suitable signature matrices (Bognar, 1974; Hassibi et al.,
1999; Kailath et al., 2000).

On account of the above we can formulate the following necessary and suf-
ficient conditions for J-unitariness and J-losslessness of real-rational functions
represented by their state-space realisations.

Lemma 8 (on necessary and sufficient condition for J-unitariness and J-lossless-
ness)
(I ) Consider a function G(ζ) ∈ RL(m+r)×(p+r)

∞ of a realisation (A, B, C, D)
with a regular A ∈ Rn×n.

(i) Let (A, B, C, D) be a minimal realisation. Then G(ζ) is (Jmr, Jpr)-
unitary if and only if there exists a matrix X = XT ∈ Rn×n satisfy-
ing:

AT X + XA + ∆AT XA + CT JmrC = 0n×n (93)

XB + ∆AT XB + CT JmrD = 0n×(p+r) (94)

DT JmrD + ∆BT XB = Jpr. (95)

(ii) Conditions (93)–(95) imply (Jmr, Jpr)-unitariness of G(ζ). Condi-
tions (93)–(95) and X ≥ 0 imply (Jmr, Jpr)-losslessness of G(ζ).

(II ) Consider a function H(ζ) ∈ RL(m+q)×(m+r)
∞ of a realisation (A, B, C, D)

with a regular A ∈ Rn×n.

(i) Let (A, B, C, D) be a minimal realisation. Then H(ζ) is dual
(Jmq, Jmr)-unitary if and only if there exists a matrix Y = Y T ∈
Rn×n satisfying:

AY + Y AT + ∆AY AT − BJmrB
T = 0n×n (96)

Y CT + ∆AY CT − BJmrD
T = 0n×(m+q) (97)

DJmrD
T − ∆CY CT = Jmq. (98)

(ii) Conditions (96)–(98) imply dual (Jmq, Jmr)-unitariness of H(ζ). Con-
ditions (96)–(98) and Y ≥ 0 imply dual (Jmq, Jmr)-losslessness of
H(ζ).

It is worth noting that parts (ii) of the above lemma do not need minimality.
(A, C) detectable implies X ≥ 0 and (A, C) observable implies X > 0. Analo-
gously, (A, B) reachable implies Y ≥ 0 and (A, B) controllable implies Y > 0
(see also Genin et al., 1983; Tsai and Postlethwaite, 1991).
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Some important properties of J-lossless functions are listed in next two lem-
mas with Lemma 9 following immediately from Lemma 8.

Lemma 9 (on realisations of J-lossless functions)
(i) Any (Jmr, Jpr)-lossless function G(ζ) ∈ RL(m+r)×(p+r)

∞ has full column nor-
mal rank and can be represented by the following observable realisation

G(ζ) =

[

A −X−1IACT

C Jmr

]

D, A ∈ R
n×n (99)

where Rn×n ∋ X > 0 satisfies the Lyapunov equation AT X + XA +
∆AT XA + CT JmrC = 0n×n, while D ∈ R(m+r)×(p+r) is a full column
rank solution of DT (Jmr + ∆CIT

AX−1IACT )D = Jpr. Having m = p
implies non-singularity of D ∈ R(p+r)×(p+r).

(ii) Any dual (Jmq, Jmr)-lossless function H(ζ) ∈ RL(m+q)×(m+r)
∞ has full row

normal rank and can be represented by the following controllable realisation

H(ζ) = D

[

A B
BT IAY −1 Jmr

]

, A ∈ R
n×n (100)

where Rn×n ∋ Y > 0 satisfies the Lyapunov equation AY + Y AT +
∆AY AT − BJmrB

T = 0n×n, while D ∈ R(m+q)×(m+r) is a full row rank
solution of D(Jmr − ∆BT IAY −1IT

AB)DT = Jmr. Having r = q implies
non-singularity of D ∈ R(m+q)×(m+q).

Lemma 10 (on zeros and poles of J-lossless functions, Suchomski, 2003c, 2004)
If ζ0 is a zero of a (dual) J-lossless function, then ζ∼0 is a pole of this function.

Considering the above requirements addressed to D-matrices of J-lossless
systems we can observe an important difference between the continuous-time
and the δ-domain formulations. The latter is more complicated mainly because
of the fact that in this case D is not a simple constant (dual) J-unitary matrix
(Kimura, 1992a, 1997) but appears as a matrix which depends on the corre-
sponding δ-domain (dual) Lyapunov equation.

5.2. Conjugation

Let G(ζ) ∈ R(m+r)×(p+r)
P . Each function Gr(ζ) ∈ R(p+r)×(p+r)

P such that all
poles of G(ζ) · Gr(ζ) are equal to the conjugates of the corresponding poles of
G(ζ) is said to be a right conjugator of G(ζ). Clearly, Gr(ζ) is not unique.
Let (A, B, C, D) with a regular A ∈ Rn×n denote a minimal realisation of G(ζ)
and (Ar , Br, Cr, Dr) with Ar ∈ Rnr×nr be a realisation of a right conjugator of
G(ζ). Taking nr = n and Ar = A∼ yields a model of G(ζ) · Gr(ζ) for which
a suitable sufficient condition for the uncontrollability of all modes associated
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with eigenvalues of A can easily be formulated. Thus, considering an appropriate
similarity relation gives

PrBr − BDr = 0n×(p+r) (101)

(APr + BCr)(In + ∆AT ) + PrA
T = 0n×n (102)

where G(ζ) is represented by the pair (A, B) and Pr ∈ Rn×n is a parameter.
Each function Gr(ζ) represented by a realisation (A∼, Br, Cr, Dr) such that for
a given Pr equalities (101) and (102) are satisfied will be call a right conjugator
of (A, B) with a regular A. It follows that G(ζ) · Gr(ζ) with a right conjugator
Gr(ζ) can be represented as

G(ζ) · Gr(ζ) =

[

A∼ Br

DCr + CPr DDr

]

. (103)

Similar arguments apply to the case of a left conjugator Gl(ζ) defined for a pair
(A, C) with a regular A ∈ Rn×n and C ∈ R(m+q)×n. Gl(ζ) is represented by a
realisation (Al, Bl, Cl, Dl) with Al ∈ Rnl×nl . Taking nl = n and Al = A∼ yields

ClPl + DlC = 0(m+q)×n (104)

(In + ∆AT )(PlA − BlC) + AT Pl = 0n×n (105)

with a parameter Pl ∈ Rn×n. Hence, Gl(ζ) · G(ζ) with a left conjugator Gl(ζ)
can be represented as

Gl(ζ) · G(ζ) =

[

A∼ BlD − PlB
Cl DlD

]

. (106)

The above preliminary settlements can serve as a convenient basis for more
detailed definitions of conjugators satisfying some additional requirements. Na-
mely, in the sequel, we always require that each conjugator is invertible, i.e. the
non-singularity of its Dr matrix is expected.

Consider a controllable pair (A, B). From (101) it follows that B = PrBrD
−1
r .

Assuming xT Pr = 01×n to hold for a non-zero x 6= 0n ∈ Rn we should accept
that xT B = 01×(p+r). On the other hand, from (102) we have (In + ∆A)Pr =
PrIA − ∆BCr. Consequently, xT (In + ∆A)Pr = 01×n and xT (In + ∆A)B =
01×(p+r). Proceeding by induction on k, we obtain xT (In + ∆A)kB = 01×(p+r),
∀k ≥ 0, which however contradicts the assumed controllability of (A, B). Con-
sequently, zeroing of x implies non-singularity of Pr. The same reasoning ap-
plies to the case of an observable pair (A, C), where we have Pl(In + ∆A) =
IAPl + ∆BlC. This gives the following lemma:

Lemma 11 (on conjugator parameterisations)
(i) If (A∼, Br, Cr, Dr) with a non-singular Dr ∈ R(p+r)×(p+r) is a right conju-

gator for a controllable pair (A, B), then a suitable parameter matrix Pr

satisfying (101) and (102) is non-singular.
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(ii) If (A∼, Bl, Cl, Dl) with a non-singular Dl ∈ R(m+q)×(m+q) is a left conju-
gator for an observable pair (A, C), then a suitable parameter matrix Pl

satisfying (104) and (105) is non-singular.

Since A∼ −BrD
−1
r Cr = P−1

r APr, it follows that suitable zeros of each right
conjugator Gr(ζ) coincide with the corresponding poles of G(ζ). The analogous
observation applies to left conjugators for which we have A∼ − BlD

−1
l Cl =

PlAP−1
l . In general, the specified realisations (A∼, Br, Cr, Dr) and (A∼, Bl, Cl,

Dl) are thus non-minimal.

5.3. Stabilising J-lossless conjugators

A special class of conjugations plays an important role in H∞ system (control)
theory, which is called a J-lossless conjugation, a conjugation by a J-lossless
functions (Hung and Chu, 1998; Kimura 1989, 1991, 1992a, b, 1997; Kong-
prawechnon and Kimura, 1996; Liu and Mita, 1989). If a J-lossless conjugation
is performed in such a way that only the unstable eigenvalues of the given ma-
trix A are replaced by their conjugates we will call it a stabilising J-lossless
conjugation. Connections between the continuous-time J-lossless conjugators
and the well-known Nevanlinna-Pick rational interpolation problem were dis-
cussed in Kimura (1989, 1995, 1997) Kongprawechnon and Kimura, 1996). In
this sub-section, we introduce a notion of the discrete-time δ-domain J-lossless
conjugations, which gives a powerful tool for computing J-lossless factorisations.

The following theorem gives useful necessary and sufficient conditions for the
existence of stabilising J-lossless conjugators. A properly defined anti-stabilising
case can be treated analogously by employing anti-stable invariant subspaces of
suitable matrix pencils or generalised Hamiltonian matrices.

Theorem 1 (on necessary and sufficient conditions for the existence of stabil-
ising J-lossless conjugators)
(i) Let (A, B) denote a controllable pair with a regular A ∈ Rn×n and B ∈

Rn×(p+r). A stabilising right Jpr-lossless conjugator associated with (A, B)
exists if and only if (Ux, Wx) ∈ dom (δRic) and Xr = δRic(Ux, Wx) ≥ 0,
where:

Px = A, Qx = B, Rx = 0n×n

Sx = 0n×(p+r), Tx = Jpr.
(107)

If such a solution Xr exists, then

Gr(ζ) =

[

Âr BDr

Fr Dr

]

(108)

=

[

A∼ XrBDr

−JprB
T IA Dr

]

(109)

where a stable Âr ∈ Rn×n is given by

Âr = A + BFr (110)
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and
Fr = −JprB

T IAXr (111)

= −DrJprD
T
r BT Xr(In + ∆A) (112)

= −JprB
T (In + ∆XrBJprB

T )−1Xr(In + ∆A) (113)

while a non-singular Dr ∈ R(p+r)×(p+r) satisfies

DT
r (Jpr + ∆BT XrB)Dr = Jpr. (114)

(ii) Let (A, C) denote an observable pair with a regular A ∈ Rn×n and C ∈
R(m+q)×n. A stabilising left dual Jmq-lossless conjugator associated with
(A, C) exists if and only if (Uy, Wy)∈dom (δRic) and Yl =δRic(Uy, Wy) ≥
0, where:

Py = AT , Qy = CT , Ry = 0n×n

Sy = 0n×(m+q), Ty = −Jmq.
(115)

If such a solution Yl exists, then

Gl(ζ) =

[

Âl Hl

DlC Dl

]

(116)

=

[

A∼ IACT Jmq

DlCYl Dl

]

(117)

where a stable Âl ∈ Rn×n is given by

Âl = A + HlC (118)

and
Hl = YlIACT Jmq (119)

= (In + ∆A)YlC
T DT

l JmqDl (120)

= (In + ∆A)Yl(In − ∆CT JmqCYl)
−1CT Jmq (121)

while a non-singular Dl ∈ R(m+q)×(m+q) satisfies

Dl(Jmq − ∆CYlC
T )DT

l = Jmq. (122)

Proof. (⇒) Let (Ar, Br, Cr, Dr) denote a realisation of a stabilising right Jpr-
lossless conjugator associated with a pair (A, B), where Ar ∈ Rn+×n+ , nr = n+

and λ(Ar) ⊂ D∆, while n+ is the number of unstable eigenvalues of A. Having
assumed that we are faced with a non-trivial case of n+ > 0 let us consider the
following similarity relation with the suitable (n + n+) × (n + n+) partitioning

[

A BCr

0n+×n Ar

] [

M− M+

N− N+

]

=

[

M− M+

N− N+

] [

A− 0n×n+

0n+×n A+

]

(123)
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where A− ∈ Rn×n, A+ ∈ Rn+×n+ , λ(A−) ⊂ D∆ contains all stable and all
δ-conjugated unstable eigenvalues of A, while λ(A+) ⊂ C \ D̄∆ contains all
unstable eigenvalues of A. All modes of G(ζ) ·Gr(ζ) associated with λ(A+) are
uncontrollable, hence

[

BDr

Br

]

=

[

M− M+

N− N+

] [

B−

0n+×(p+r)

]

(124)

where B− ∈ Rn×(p+r). To show that M− ∈ Rn×n is non-singular we will
proceed by contradiction. Taking xT M− = 01×n with a non-zero x ∈ Rn and
recalling that Dr is non-singular we should accept that xT B = 01×(p+r). Since
AM− + BCrN− = M−A−, we have xT AM− = 01×n. Therefore KerMT

− ⊂
KerBT and AT x ∈ KerBT . A simple induction on k yields xT AkB = 01×(p+r),
∀k ≥ 0, which contradicts the assumed controllability of (A, B). Consequently,
from (123) and (124) it follows that

Br = SBDr (125)

A− = M−1
− (A + BCrS)M− (126)

where S = N−M−1
− ∈ Rn+×n. Moreover, ArS = SÂr, where Rn×n ∋ Âr =

A + BCrS = M−A−M−1
− is stable. From the assumed Jpr-losslessness of the

conjugator, by (94) of Lemma 8, we obtain Cr = −JprB
T ST X(In+

+ ∆Ar),
where Rn+×n+ ∋ X ≥ 0. Employing (93) of the same lemma gives the required
δARE of the form

A
T
Xr + XrA + ∆A

T
XrA

−(In + ∆A
T )XrBJprB

T (In + ∆XrBJprB
T )−1

Xr(In + ∆A) = 0n×n
(127)

where Rn×n ∋ Xr = ST XS ≥ 0. Since

(In + ∆XrBJprB
T )−1Xr(In + ∆A) = IAXr (128)

it follows that Âr = A + BFr where Fr = −JprB
T IAXr. Finally, (95) of

Lemma 8 gives the condition (114) concerning Dr. The next Lemma 12 shows
that obtaining Xr = δRic(Ux, Wx) ≥ 0 guarantees that such a non-singular
Dr always exists. A ’generic’ reduced-order model of the considered stabilising
right Jpr-lossless conjugator can thus be expressed as

Gr(ζ) =





Ar SBDr

−JprB
T ST X(In+

+ ∆Ar) Dr



 . (129)

Two non-minimal realisations of the conjugator are given below. From (128) we
have ST X(In+

+ ∆Ar)S = IAXr. Hence, ST X(In+
+ ∆Ar)(ζIn+

− Ar)
−1S =

IAXr(ζIn − Âr)
−1. It follows that a ’practical’ (i.e. stable and tractable from

the implementation viewpoint - no a priori knowledge about n+ is required)
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realisation of the conjugator can be described by (108). On the other hand,
when looking for the ’direct’ (unstable) realisation (109) we observe that due to
(127) and (128) one obtains

AT Xr + XrÂr + ∆AT XrÂr = 0n×n. (130)

Consequently, XrÂr = A∼Xr, which shows that both the distinguished repre-
sentations of the conjugator are equivalent.

(⇐) Let Xr ∈ Rn×n denote a stabilising solution of (127). It is a simple matter
to check that Gr(ζ) of (109) satisfies all requirements for Jpr-losslessness given
in Lemma 8. Therefore, it remains to prove that the order of Gr(ζ) is equal to
the number of unstable eigenvalues of A. Let λ ∈ λ(A) be a stable eigenvalue
of A and x ∈ Rn denote an associated right eigenvector. From (130) it follows
that xT Xr(Âr −λ∼In) = 01×n. Since Âr is stable, x ∈ KerXr. Now, according
to (111), we have Ax = Ârx. Therefore, taking into account that λ ∈ λ(Âr),
we conclude that x can be regarded as a right eigenvector of Âr corresponding
to λ. Hence, from (108) it follows that λ acts as an unobservable mode of the
first realisation of the conjugator. On the other hand, x can be recognised as
a left eigenvector of A∼ associated with λ∼ ∈ λ(A∼). Finally, from (109) we
can conclude that λ∼ is an uncontrollable mode of the second realisation of the
considered stabilising right Jpr-lossless conjugator. This finishes the main part
of the proof. The case of a stabilising left dual Jmq-lossless conjugator is treated
analogously.

The above formulation is matched to the methodology based on extended
matrix pencils. Considering employing of the suitable reduced-order pencils,
which is admissible since Tx and Ty are non-singular, we should use the triples
(Px = A, Qx = 0n×n, Rx = BJprB

T ) or (Py = AT , Qy = 0n×n, Ry = −CT JmqC),
respectively.

The following lemma shows that having Xr ≥ 0 and Yl ≥ 0 we assure
the existence of a non-singular Dr ∈ R

(p+r)×(p+r) and a non-singular Dl ∈
R(m+q)×(m+q) described by Theorem 1.

Lemma 12 (on sufficient conditions for the existence of block triangular non-
singular D-matrices of stabilising J-lossless conjugators) Let Xr ≥ 0 and Yl ≥ 0
be as it is stated in Theorem 1. There exist block triangular and non-singular
matrices Dr ∈ R

(p+r)×(p+r) and Dl ∈ R
(m+q)×(m+q) that satisfy (114) and

(122), respectively.

Proof. Consider, for example, the case concerning left conjugation. From (40) it
follows that Yl = (In + ∆A)(In − ∆YlC

T JmqC)−1Yl(In + ∆AT ). Since Yl ≥ 0,
for a regular A we have (In − ∆YlC

T JmqC)−1Yl ≥ 0. We claim that (In −
∆YlC

T JmqC)−1, being a symmetric matrix, is also positive definite. Conversely,
suppose that λ < 0 is an eigenvalue of (In − ∆YlC

T JmqC)−1 and x ∈ Rn
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denotes a corresponding left eigenvector. Hence, xT (In −∆YlC
T JmqC)−1Ylx =

λxT Ylx < 0, contrary to the previous statement. Indeed, equality xT Ylx =
0 can not be true, since otherwise Ylx = 0n forces a contradiction with the
assumption λ < 0. Therefore, ∆CT

mCmYl < In + ∆CT
q CqYl, where Cm ∈ Rm×n

and Cq ∈ Rq×n are the submatrices of C = [ CT
m CT

q ]T ∈ R(m+q)×n. Assume
that Dl has the (m+q)×(m+q) block upper triangular structure (for the block
upper triangular structure we proceed analogously)

Dl =

[

Dl11 Dl12

0q×m Dl22

]

. (131)

Yl ≥ 0 implies that Rq×q ∋ Dl22 > 0 satisfying Dl22(Iq + ∆CqYlC
T
q )DT

l22 =
Iq always exists and can be obtained via the standard Cholesky factorisation.
Next, by employing the matrix inversion lemma (Meyer, 2000) we can show
that Dl11 ∈ R

m×m satisfies Dl11(Im−∆CmYl(In +∆CT
q CqYl)

−1CT
m)DT

l11 = Im.
Submatrix Dl11 > 0 exists, provided that ∆CmYl(In + ∆CT

q CqYl)
−1CT

m < Im,
which is, however, a direct consequence of the previous arguments. Having
obtained Dl11, we compute Dl12 = −∆Dl11CmYlC

T
q DT

l22Dl22.

We see at once that the corresponding continuous-time formulations for J-
lossless conjugations are essentially simpler. Namely, for this case the only
requirements being addressed at Dr and Dl concern their J-unitariness: Dr

should be a constant Jpr-unitary matrix and Dl should be a constant dual Jmq-
unitary matrix (Kimura, 1997). Since these matrices are independent of the
corresponding solutions of relevant continuous-time Riccati equations, it follows
immediately that suitable Dr and Dl can always be found. On the other hand,
from Lemma 12 we see that the existence of Xr ≥ 0 and Yl ≥ 0 assures that
Dr satisfying (114) and Dl satisfying (122) can also always be obtained.

Given a particular solution Dr0 ∈ R(p+r)×(p+r) to (114), we can define a set
of relevant solutions by taking Dr = Dr0J̄pr, where J̄pr ∈ R

(p+r)×(p+r) denotes
a Jpr-unitary parameter matrix. Similarly, for (122) there is Dl = ĴmqDl0,
where Dl0 ∈ R(m+q)×(m+q) is a particular solution to (122) and a (dual) Jmq-
unitary matrix Ĵmq ∈ R

(m+q)×(m+q) stands for a parameter. Therefore we can
speak of two multivalued mappings: Dr : Rn×n ×Rn×(p+r)

⊸ R(p+r)×(p+r) and
Dl : Rn×n × R(m+q)×n

⊸ R(m+q)×(m+q), respectively.

Remark 6 Considering a stabilising right Jpr-lossless conjugator Gr(ζ) of (108)
we obtain

G(ζ) · Gr(ζ) =

[

Âr BDr

C + DFr DDr

]

(132)

where all modes associated with G(ζ) are uncontrollable. We will show that
each zero of the conjugated system G(ζ) ·Gr(ζ) is a zero of G(ζ). Letting ϑ ∈ R

be a zero of G(ζ) ·Gr(ζ), we have a vector [ xT
1 xT

2 ]T 6= 0n+(p+r) ∈ Rn+(p+r)
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such that
[

A + BFr − ϑIn BDr

C + DFr DDr

] [

x1

x2

]

= 0n+(m+r). (133)

Hence, for x̃2 = Drx2 + Frx1 ∈ R
p+r there holds

[

A − ϑIn B
C D

] [

x1

x̃2

]

= 0n+(m+r). (134)

Since Dr is non-singular, (134) shows that ϑ is a zero of G(ζ).
Let ζ0 be a pole of G(ζ) to be conjugated by a stabilising right Jpr-lossless

conjugator Gr(ζ). Then, due to Lemma 10, Gr(ζ) must have ζ∼0 as its pole.
Analogously to the above we can examine the case concerning a stabilising

left dual Jmq-lossless conjugator of (116). This gives

Gl(ζ) · G(ζ) =

[

Âl B + HlD
DlC DlD

]

(135)

where all modes associated with G(ζ) are unobservable.
It follows that both stabilising conjugators Gr(ζ) ∈ RH(p+r)×(p+r)

∞ and
Gl(ζ) ∈ RH(m+q)×(m+q)

∞ being invertible do not create any new zero.

Lemma 13 (on invariant zeros of stabilising J-lossless conjugators) We have

z(Âr, BDr, Fr, Dr) = z(Âl, Hl, DlC, Dl) = λ(A). (136)

Remark 7 For the existence of Xr and Yl of Theorem 1 it is required that
matrix A of the corresponding pairs (A, B) and (A, C) has no eigenvalues on the
∂D∆. Let λ ∈ λ(A) and x 6= 0n ∈ Rn denote an associated eigenvector. Assume,
contrary to the assertion, that λ ∈ ∂D∆. Since λ(Âr) ⊂ D∆, it follows that
λ∼ /∈ λ(Âr). From (130) we have x ∈ KerXr and consequently Ârx = Ax = λx,
which contradicts the stability of Âr (see Remark 3 ).

Since KerXr is A-invariant, we conclude that if λ(A) ⊂ C \ D̄∆ (i.e. if
A has only strictly unstable eigenvalues) then the corresponding solution Xr is
non-singular, Xr > 0. Let λ(A) ⊂ C\ D̄∆. If there exists a stabilising right Jpr-
lossless conjugator associated with a controllable pair (A, B), then the suitable
solution Xr satisfies

XrA + IAAT Xr − XrBJprB
T IAXr = 0n×n (137)

(see Lemma 3 ). Taking Yr = X−1
r , we conclude that the considered stabilising

conjugator exists if and only if the following dual Lyapunov equation

AYr + YrA
T + ∆AYrA

T − BJprB
T = 0n×n (138)

has a solution Yr > 0. Analogous arguments apply to the case of stabilising left
dual Jmq-lossless conjugators with a Yl > 0.
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Consider similar pairs (A, B) and (T−1AT, T−1B) with a non-singular
T ∈ Rn×n. Let Xr and Âr describe a stabilising right Jpr-lossless conjugator
associated with (A, B). It follows that T T XrT and T−1ÂrT are the suitable
matrices associated with (T−1AT, T−1B). The same conclusion can be drawn
for the case of stabilising left dual Jmq-lossless conjugators.

Finally, we can relax the controllability and the observability assumptions
of Theorem 1 by considering any stabilisable pair (A, B) and any detectable
pair (A, C), respectively, together with standard similarity transformations to
suitable canonical state-space representations (Zhou et al., 1996).

5.4. Numerical conditioning of stabilising J-lossless conjugators

Let (U, W ) be as described in Theorem 1. Setting n̄ = p + r or n̄ = m + q in
accordance with the relevant type of conjugator, we have properly dimensioned
matrices: P ∈ R

n×n, Q ∈ R
n×n̄, R = 0n×n, S = 0n×n̄ and T ∈ R

n̄×n̄. For a
non-zero solution Rn×n ∋ X = δRic(U, W ) we define the following indices (see
Lemma 3.I ):

κ(U, W |X) =

∥

∥

[

FP FQ

]∥

∥

2

‖X‖F

(139)

κ̄(U, W |X) =

∥

∥

[

F̂P ∆FQ

]∥

∥

2
∥

∥

[

FP FQ

]∥

∥

2

(140)

where

FP = ‖P‖F H−1
c HP (141)

F̂P = ‖In + ∆P‖F H−1
c HP (142)

FQ = ‖Q‖F H−1
c HQ (143)

HP = −In ⊗ (In + ∆GT
c )X − ((In + ∆GT

c )X ⊗ In)Tn,n (144)

HQ = −FT
c ⊗ (In + ∆GT

c )X − ((In + ∆GT
c )X ⊗ FT

c )Tn,n̄ (145)

Fc = −J̄−1QT X(In + ∆P ) (146)

Gc = P + QFc (147)

Hc = GT
c ⊗ In + In ⊗ GT

c + ∆GT
c ⊗ GT

c (148)

J̄ = T + ∆QT XQ (149)

while

Tn,m =
n

∑

i=1

m
∑

j=1

en,ie
T
m,j ⊗ em,je

T
n,i (150)

denotes a vec-permutation matrix for ek,l as the lth unit vector in Rk, while ⊗
is the Kronecker matrix product, and ‖ · ‖2 is the spectral matrix norm. Hence
we have (Fc, Gc) = (Fr , Âr) or (Fc, Gc) = (HT

l , ÂT
l ), respectively.
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Consider two other indices suitably matched to the sensitivity analysis of
the gain matrices (111) and (119) of stabilising J-lossless conjugators:

κg(U, W |X) =

∥

∥

[

MP MQ

]∥

∥

2

‖X(In + ∆P )−1QT ‖F

(151)

κ̄g(U, W |X) =

∥

∥

[

M̂P ∆MQ

]∥

∥

2
∥

∥

[

MP MQ

]∥

∥

2

(152)

where

MP = ‖P‖F (LPQH−1
c HP + ∆LP ) (153)

M̂P = ‖In + ∆P‖F (LPQH−1
c HP + ∆LP ) (154)

MQ = ‖Q‖F (LPQH−1
c HQ + LQ) (155)

LP = TQT (In + ∆PT )−1 ⊗ X(In + ∆P )−1 (156)

LQ = −T ⊗ X(In + ∆P )−1 (157)

LPQ = −TQT (In + ∆PT )−1 ⊗ In. (158)

Moreover, we will use the following three indices defined for D ∈ Rn̄×n̄:

κD(Q, X, T |D) =

∥

∥

[

GQ GX

]∥

∥

2
∥

∥E+
Dvec(D)

∥

∥

(159)

κD(U, W |D, X) =

∥

∥

[

NP NQ

]∥

∥

2
∥

∥E+
Dvec(D)

∥

∥

(160)

κ̄D(U, W |D, X) =

∥

∥

[

N̂P ∆NQ

]∥

∥

2
∥

∥

[

NP NQ

]∥

∥

2

(161)

where

GQ = ‖Q‖F UDKQ (162)

GX =
∥

∥E+vec(X)
∥

∥ UDKXE (163)

KQ = −DT ⊗ DT QT X − (DT QT X ⊗ DT )Tn,n̄ (164)

KX = −DT QT ⊗ DT QT (165)

UD = (HDED)+ (166)

HD = In̄ ⊗ DT J̄ + (DT J̄ ⊗ In̄)Tn̄,n̄ (167)

NP = UDKXFP (168)

N̂P = UDKXF̂P (169)

NQ = UDKXFQ + GQ (170)

and E ∈ Rn2
×n(n+1)/2 of full column rank is a pattern matrix introduced in order

to preserve the required symmetry of perturbed solutions to the relevant δAREs,
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while ED ∈ Rn̄2
×n̄(n̄+1)/2 of full column rank is a pattern matrix depending on

the assumed particular structure of Dr and Dl.
Having obtained Xr = δRic(Ux, Wx) and Yl = δRic(Uy, Wy) we can evalu-

ate the properly defined relative condition numbers κXr
(A, B) and κYl

(A, C),
which describe the sensitivity of these (non-zero) solutions to perturbation in
the distinguished input data matrices (see Section 3.4). At this moment we can
also evaluate two analogously defined relative condition numbers κFr

(A, B) and
κHl

(A, C) as convenient measures of the sensitivity of the conjugators gains Fr

and Hl, respectively.
Next, we should compute Dr(B, Xr) and Dl(C, Yl) satisfying (114) and

(122), respectively. On account of Suchomski (2003b), we can easily obtain
two suitable relative condition numbers κDr

(B, Xr) and κDl
(C, Yl) characteris-

ing the sensitivity of these matrices with respects to perturbations in (B, Xr)
and (C, Yl), respectively. Finally, let κDr

(A, B) and κDl
(A, C) denote suit-

ably defined relative condition numbers of Dr(A, B) = Dr(B, Xr(A, B)) and
Dl(A, C) = Dl(C, Yl(A, C)), respectively. These indices refer directly to the
relevant input data matrices.

Lemma 14 (on conditioning of stabilising J-lossless conjugators) Let (A, B) ∈
Rn×n × Rn×(p+r) and (A, C) ∈ Rn×n × R(m+q)×n. For a sufficiently small
sampling period ∆ it holds:

(i) a stabilising J-lossless conjugator associated with (A, B) or (A, C) is par-
tially conditioned by:

κXr
(A, B) = κ(Ux, Wx |Xr) (171)

κXrq(Aq, Bq)

κXr
(A, B)

=
1

∆
· κ̄(Ux, Wx |Xr) (172)

κYl
(A, C) = κ(Uy, Wy |Yl) (173)

κYlq(Aq, Cq)

κYl
(A, C)

=
1

∆
· κ̄(Uy, Wy |Yl); (174)

(ii) a stabilising J-lossless conjugator associated with (A, B) or (A, C) is par-
tially conditioned by:

κFr
(A, B) = κg(Ux, Wx |Xr) (175)

κFrq(Aq, Bq)

κFr
(A, B)

=
1

∆
· κ̄g(Ux, Wx |Xr) (176)

κDr
(B, Xr) = κDrq

(Bq, Xrq) = ∆ · κD(B, Xr, Jpr |Dr) (177)

κDr
(A, B) = ∆ · κD(Ux, Wx |Dr, Xr) (178)

κDrq(Aq , Bq)

κDr
(A, B)

=
1

∆
· κ̄D(Ux, Wx |Dr, Xr) (179)
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κHl
(A, C) = κg(Uy, Wy |Yl) (180)

κHlq(Aq, Cq)

κHl
(A, C)

=
1

∆
· κ̄g(Uy, Wy |Yl) (181)

κDl
(C, Yl) = κDlq

(Cq , Ylq) = ∆ · κD(CT , Yl,−Jmq |Dl) (182)

κDl
(A, C) = ∆ · κD(Uy, Wy |Dl, Yl) (183)

κDlq(Aq, Cq)

κDl
(A, C)

=
1

∆
· κ̄D(Uy, Wy |Dl, Yl). (184)

Remark 8 Matrix Hc is non-singular if and only if λi + λj + ∆λiλj 6= 0,
∀λi, λj ∈ λ(Gc). Since X = δRic(U, W ) is assumed to be a stabilising solution
to the relevant δARE of (20), we have λ(Gc) ⊂ D∆, and hence Hc is non-
singular. Due to the fact that Dr and Dl are both non-unique the corresponding
matrices HD of (167) are singular.

Surveys of the Kronecker product, the vec operators, and vec-permutation
matrices can be found in Henderson and Searle (1981), Higham (1996).

Conclusion 2 It is seen that using models defined in the δ-domain improves
the conditioning of the problem of computing the gains of the stabilising J-
lossless conjugators.

From (177) and (182) it follows that treating perturbations in X and Y as
autonomous sources of the corresponding perturbations in Dr and Dl we observe
that the assumed measures of sensitivity of these matrices, for both δ- and q-
domain models, vanish to zero as ∆ → 0, which can be referred to a ’continuous-
time nature’ of solutions to (114) and (122) as suitable constant Jpr-unitary and
dual Jmq-unitary matrices, respectively. The situation changes significantly
while we consider the overall influence of two elements of the corresponding
pair (A, B) and (A, C), respectively. Now, solutions we have for the δ-domain
models are better conditioned than their q-domain counterparts.

Proceeding analogously, we can evaluate the suitable measures of sensitivity
of solutions corresponding to the reduced-order pencil methodology (see lemma
3.II ) applied to the relevant δAREs. We thus have

κR(U, W |X) =

∥

∥

[

FP FR

]∥

∥

2

‖X‖F

(185)

κ̄R(U, W |X) =

∥

∥

[

F̂P ∆FR

]∥

∥

2
∥

∥

[

FP FR

]∥

∥

2

(186)

where

FR =
∥

∥E+vec(R)
∥

∥ H−1
c HRE (187)

HR = FT
c ⊗ FT

c (188)

Fc = −(In + ∆XR)−1X(In + ∆P ) (189)

Gc = P + RFc. (190)
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It is seen that all corresponding measures of conditioning are exactly the same
for both approaches provided that the ’structure’ of Rx = BJprB

T and Ry =
−CT JmqC is carefully taken into account. For example, taking κR(Ux, Wx |Xr)
instead of κXr

(A, B) = κ(Ux, Wx |Xr) usually yields overestimated measures of
sensitivity of Xr(A, B).

6. Numerical example

Conditioning of synthesis of stabilising right Jpr-lossless conjugators associated
with a given generalised plant will be examined. Let us start with the following
nth-order continuous-time system (Linnemann and Kawelke, 1999)

G(α,β)
n (s) =

[

A
(α,β)
n bn

cT
n 0

]

=

















−α β 0 1
−1/β −α β 0

−1/β −α
.

.

.

.

.

.

.

.

.

.

.

. β
.

.

.

0 −1/β −α 0
1 0 · · · · · · 0 0

















. (191)

The transfer function G
(α,β)
n (s) is independent of β. However, the sensitivity

of |G(α,β)
n (jω)| does strongly depend on β. This observation makes G

(α,β)
n (s)

a good candidate for being ’a prototype’ function for our sensitivity studies.
The parameter α mainly influences the stability of the system and the ’rate of
change’ in |G(α,β)

n (jω)|.
The considered generalised plant (process) is given in Fig. 2, where it is

assumed that G1(s) = G
(α1,β1)
n (s) and G2(s) = G

(α2,β2)
n (s).

Figure 2. Generalised plant.
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It results in the following continuous-time scattering matrix

P (s) =









A
(α1,β1)
n 0n×n 0n bn

0n×n A
(α2,β2)
n bn 0n

cT
n 01×n 0 0

cT
n cT

n 1 0









(192)

and the corresponding chain-scattering representation

G(s) =









A
(α1,β1)
n 0n×n bn 0n

−bncT
n A

(α2,β2)
n − bncT

n 0n bn

cT
n 01×n 0 0

−cT
n −cT

n 0 1









. (193)

Let G1(s) = G
(0.1, 2)
7 (s) and G2(s) = G

(−0.5, 6)
7 (s). Pole-zero maps of the

corresponding P (s) and G(s) are presented in Figs. 3a and 3b, respectively.

Figure 3. Pole-zero maps for systems described by: a) scattering matrix,
b) chain-scattering matrix.

Conditioning of the relevant discrete-time Riccati equations and the tasks of
computing the conjugator gains being parameterised by matrices A and B of the
suitable chain-scattering models is illustrated in Figs. 4a and 4b. Plots given in
Figs. 4c and 4d refer to conditioning of computing the considered matrices Dr.
As it can be observed, problems we are dealing with are relatively ill conditioned.

Let εx = ‖x − x̃‖/‖x‖ denote the relative error of a particular solution to
the δARE of (20) parametrised as it is shown in (107) and the relative error
of a particular solution to the simplified ARE of (114), both obtained for a
perturbed model of the plant: x is the exact solution while x̃ represents a per-
turbed solution corresponding to the suitable pair (A, B) expressed in the single
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Figure 4. Conditioning of synthesis of stabilising right Jpr-lossless conjugators:
a) conditioning of X , b) conditioning of Fr, c,d) conditioning of Dr.

precision of the IEEE floating point arithmetic (Higham, 1996; Overton, 2001;
Williamson, 1991). Moreover, we assume that Dr ∈ R

2×2 of the common sym-
metric structure (Dr = DT

r ) is treated as a ’generic’ solution to (114). Results
of computations performed for x ≡ X , x ≡ Fr and x ≡ Dr are presented in
Figs. 5a, 5b and 5c, respectively. The frequency-domain error eG = ‖Gr−G̃r‖∞
is illustrated in Fig. 6, where G̃r denotes the resulting perturbed stabilising right
Jpr-lossless conjugator.

On account of the above results it can thus be concluded that the δ-domain
approach turns out to be clearly superior to the conventional shift formulation
when the numerical conditioning of the relevant equations is the subject of inter-
est. In particular, starting from a simple observation that for a given sampling
period ∆ the gain matrices of both considered discrete-times conjugators are
equal (i.e. Fr = Frq), we can claim that if ∆ is sufficiently small, obtaining of
these gains is numerically more tractable if we use the δ-domain models.
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Figure 5. Relative errors of solutions: a) X , b) Fr , c) Dr.

Figure 6. Frequency-domain errors.

It can easily be seen that a set of solutions to (114) can be represented
as {DrJ̄(ν), ν ∈ R}, where J̄(ν) ∈ R2×2 denotes the following one parameter
J11-unitary matrix

J̄(ν) =

[ √
1 + ν2 ν

−ν −
√

1 + ν2

]

, ν ∈ R. (194)
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Taking ∆ = 0.05 [s] yields

Dr =

[

1.00003495 −0.02302945
−0.02302945 −0.88193572

]

. (195)

The relevant upper triangular solution described in Lemma 12 can thus be
represented as

[

1.00097763 0.04915952
0 0.88163499

]

= DrJ̄(0.02612130). (196)

The suitable pattern matrices ED matched to the celebrated symmetric solution
and the upper triangular solution are









1 0 0
0 1 0
0 1 0
0 0 1









and









1 0 0
0 0 0
0 1 0
0 0 1









, respectively.

Finally, plots given in Fig. 7 show how the assumed structure of Dr affects the
conditioning of equation (114). It is seen that the upper triangular solutions
are a bit worse conditioned. This confirms a frequently observed phenomenon
that solutions having more complicated (restricted) structures are usually more
sensitive to input data perturbation.

Figure 7. Influence of structure of Dr on partial conditioning of synthesis of
stabilising right Jpr-lossless conjugators.

7. Conclusions

The J-losslessness property of real-rational functions and especially the J-loss-
less factorisations of such functions play the key role in robust control design
methodologies based on the H∞ paradigms. Moreover, the suitable J-lossless
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factorisations are closely related to the convenient cascade structure of closed-
loop control systems, which are exploited in the common framework of the chain-
scattering representation of the plant. Motivated by this, after having presented
some background definitions, lemmas and properties concerning mainly the pole-
zero properties of chain-scattering models as well as the δ-domain Riccati equa-
tions, we considered the problem of synthesis of stabilising J-lossless conjugators
in the numerically stable manner by employing some δ-domain mechanisms.

The material presented in this paper establishes a suitable basis for the
further work concerning the general problem of numerically reliable synthesis of
the discrete-time H∞ optimal control. In the forthcoming second part of our
work, some fundamental structural properties of the δ-operator H∞ sub-optimal
controllers based on J-lossless approaches will be studied and convenient new
conditions for the existence of strictly proper solutions will be given. It will also
be confirmed that rationally designed algorithms embedded in H∞ and based on
the δ-domain models are better conditioned as compared to their counterparts
employing the conventional shift operator q.
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