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Abstract: We consider the problem of designing a feedback con-
trol law in order to reject the unknown bounded disturbance and
achieve tracking of reference inputs in control systems described
by a class of nonlinear time-delay differential-algebraic equations.
Based on the input-output feedback linearization technique and Lya-
punov method for nonlinear state feedback synthesis, a robust glob-
ally asymptotical output tracking controller design methodology for
nonlinear time-delay control systems with delays on the states and
the input is developed. The underlying theoretical approaches are
the differential geometry approach and the composite Lyapunov ap-
proach. For the view of practical application, the proposed control
methodology has been successfully applied to the famous nonlinear
automobile idle-speed control system problem.

Keywords: disturbance rejection, automobile idle-speed con-
trol system, differential geometry approach, composite Lyapunov
approach.

1. Introduction

Recently, robust stabilization of systems with time delays has been treated as a
challenging and interesting problem. As we know, in general, existence of time
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delays degrades control performance and sometimes makes the closed-loop sta-
bilization difficult, especially for nonlinear systems. Appropriate mathematical
descriptions incorporating time delays are the differential-difference equations,
i.e., differential equations with deviating arguments. Several related reports
have shown that differential-difference equations have been widely applied in
theory of automatic control, the theory of self-oscillating systems, the study of
problems connected with combustion in rocket motion, the problem of long-
range planning in economics, a series of biological problems and in many other
areas of science and technology (Driver, 1977; Górecki et al., 1989). In the past,
there has been a number of interesting developments in stability criteria and
controller designs for time-delay control systems, but were mostly restricted to
linear cases; see, e.g., Gosiewski and Olbrot (1980), Kwon and Pearson (1980),
Lewis and Anderson (1980), Mori et al. (1981), Mori et al. (1982), Thowsen
(1982), Mori (1985), Wang et al. (1991), Wang (1992), Yanushevsky (1992),
Trinh and Aldeen (1996) and Phoojaruenchanachai et al. (1998). In general,
the global stability test of control systems with time delays is not as easy, even
in the linear case, as without time delays. It involves some disgusting tasks
as solving nonlinear matrix equations (Kwon and Pearson, 1980). It is clear
that the investigation of nonlinear time-delay systems is worthwhile. In this pa-
per, the globally asymptotical tracking problem of a general class of nonlinear
time-delay control systems is investigated.

A typical approach for the analysis of nonlinear time-delay system is the
local linearization approach. First an approximated linearization model on the
operating point is obtained and then a linear control is constructed for the
linearization model. In particular, some stability criteria and stabilization ap-
proaches have been developed for this linear time-delay differential equations
(Brierley et al., 1982; Mori, 1985; Cheres et al., 1989; Mahmoud and Muthairi,
1994; and Cao and Sun, 1998). It is known that each local approximated model
is valid only for a certain range of operating points and so these results can only
guarantee local stability of the original nonlinear time-delay system.

In the past few years differential geometry approach (Banks, 1988; Nijmeijer
and Van Der Schaft, 1990; Isidori, 1989) has proved to be an effective means
of analysis and design of nonlinear control systems as it was in the past for
the Laplace transform, complex variable theory and linear algebra in relation
to linear control systems.

The problem of designing a feedback controller, which results in a system
that rejects the unknown bounded disturbance and asymptotically tracks a de-
sired reference output is a significant subject for the design of an efficient con-
trol system. In this paper, we present a systematic analysis and a simple design
scheme that guarantees the uniform ultimate bounded stability of a feedback-
controlled time-delay system and achieves globally asymptotical output tracking
and disturbance-rejection performance for a class of nonlinear time-delay con-
trol systems. Finally, the developed control methodology is successfully applied
to an automobile idle-speed control system. Throughout the paper, notation ‖·‖
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denotes the usual Euclidean norm or the corresponding induced matrix norm.

2. Problem formulation and main result

In this paper, we consider the following single-input single-output (SISO) non-
linear time-delay control system with unknown bounded disturbance:

ẋ(t) = f(x(t)) + g(x(t))u(t) + fd(x(t− θ)) + gd(x(t))u(t − θ) +
∑

n

:= f(x(t)) + g(x(t))u(t) +
∑

(x(t), x(t − θ), u(t− θ)) +
∑

n (1a)
∑

(x(t), x(t − θ), u(t− θ)) := fd(x(t − θ)) + gd(x(t))u(t− θ) (1b)

y(t) = h(x(t)) (1c)

where x(t) := [x1(t) x2(t) · · · xn(t)]
T ∈ ℜn are the state variables, u ∈ ℜ1

is the input, y ∈ ℜ1 is the output,
∑

n is the unknown bounded disturbance
(noise) and fd := [fd1 fd2 · · · fdn] ∈ ℜn, gd := [gd1 gd2 · · · gdn] ∈ ℜn are the

time-delay terms. f(x(t)) := [f1 f2 . . . fn]T and g(x(t)) := [g1 g2 · · · gn]T are
smooth vector fields on ℜn, and h(x(t)) := h(x1(t), x2(t), .., xn(t)) ∈ ℜ1 is a
smooth function. The nominal system is then defined as follows:

ẋ(t) = f(x(t)) + g(x(t))u(t− θ) (2a)

y(t) = h(x(t)). (2b)

The nominal system possesses relative degree r (Henson and Seborg, 1991), i.e.,
there exists a positive integer 1 6 r <∞ such that

LgL
k
fh(x(t)) = 0, k < r − 1, (3)

LgL
r−1
f h(x(t)) 6= 0 (4)

for all X ∈ ℜn and t ∈ [0,∞), where the operator L is the Lie derivative (Isidori,
1989). The desired output trajectory yd(t) and the unknown disturbance

∑

n

are bounded and
∥

∥

∥

[

yd(t)y
(1)
d (t) · · · y(r)

d (t)
]∥

∥

∥
6 Bd (5a)

∥

∥

∑

n

∥

∥ 6 Bn (5b)

where Bd and Bn are some positive constants.

Definition 1 Consider the following dynamical system

ż(t) = f(t, z(t)), z ∈ ℜp, z(t0) := z0

where z ∈ ℜp is the state and f(·) is a smooth function. We use z(t; t0, z0) to
denote the solution of system with z(t0; t0, z0) = z0. A closed set S is called
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a global final attractor for the trajectories z(·) : [t,∞) → ℜp, z(t0) = z0, of the
system, if for any initial state z0, there exists a finite constant T (z0, S) ∈ [0,∞)
such that

z(t; t0, z0) ∈ S, ∀t > t0 + T (z0, S).

It has been shown (Isidori, 1989) that the mapping

φ : ℜn → ℜn (6)

is described as

φi(x(t)) := Li−1
f h(x(t)), i = 1, 2, · · · , r (7a)

and

Lgφk(x(t)) = 0, k = r + 1, r + 2, · · · , n . (7b)

For the sake of convenience, define

φi(x(t)) := ξi(t), i = 1, 2, · · · , r (8)

φk(x(t)) := ηk(t), k = r + 1, r + 2, · · · , n (9)

is a diffeomorphism onto image.
Define the trajectory error to be

ei(t) := ξi(t) − y
(i−1)
d (t), i = 1, 2, · · · , r (10)

e := [e1(t) e2(t) · · · er(t)]
T ∈ ℜr (11)

and

ei(t) := εi−1ei(t), i = 1, 2, · · · , r (12)

e := [e1(t) e2(t) · · · er(t)]
T ∈ ℜr (13)

where ε ≥ 1 is some adjustable constant, the uncertainties

∆Ã :=





















∂h

∂x

∑

(x(t), x(t − θ), u(t− θ))

ε
∂

∂x
L1

fh
∑

(x(t), x(t − θ), u(t− θ)

...

εr−1 ∂

∂x
Lr−1

f h
∑

(x(t), x(t − θ), u(t− θ))





















(14a)

∆ψ :=





















∂φr+1

∂x

∑

(x(t), x(t − θ), u(t− θ))

∂φr+2

∂x

∑

(x(t), x(t − θ), u(t− θ))

...
∂φn

∂x

∑

(x(t), x(t − θ), u(t− θ))





















(14b)
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Φξ :=





















∂h

∂x

ε
∂

∂x
L1

fh

...

εr−1 ∂

∂x
Lr−1

f h





















(14c)

Φη :=





















∂φr+1

∂x
∂φr+2

∂x
...

∂φn

∂x





















(14d)

and

ξ(t) := [ξ1(t) ξ2(t) · · · ξr(t)]T ∈ ℜr (15)

η(t) := [ηr+1(t) ηr+2(t) · · · ηn(t)]T ∈ ℜn−r (16)

q(ξ(t), η(t)) := [Lfφr+1(t) Lfφr+1(t) · · · Lfφn(t)]
T
. (17)

Define a phase-variable canonical matrix Ac to be

Ac :=















0 1 0 · · · 0
0 0 1 0 · · · 0

...
...

0 0 0 · · · 1
−α1 −α2 −α3 · · · −αr















(18)

where α1, α2, · · · , αr are any chosen parameters such that Ac is a Hurwitz ma-
trix and let P be a symmetric positive definite matrix satisfying the Lyapunov
equation

A−1
c P + PAc = −I . (19)

Assumption 1 For all t > 0, η ∈ ℜn−r and ξ ∈ ℜr, there exists a positive
constant L such that the following inequality holds:

‖q(ξ, η) − q(0, η)‖ 6 L ‖ξ‖ . (20)

Assumption 2 For the delayed term, there exist positive constants γ1, γ2, γ
∗

1 ,
γ∗2 , γ∗3 , γ11, γ12, l1, l2, l

∗

1, l
∗

2, l
∗

3, l11, l12 and l3 such that
∥

∥

∥
2P∆Ã

∥

∥

∥
6 γ1 ‖ξ(t)‖ + γ2 ‖η(t)‖ + γ11 ‖ξ(t− θ)‖ + γ22 ‖η(t− θ)‖ (21a)

‖Φξ‖ 6 γ∗1 ‖ξ(t)‖ + γ∗2 ‖η(t)‖ + γ∗3 (21b)
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and

‖∆ψ‖ 6 l1 ‖ξ(t)‖ + l2 ‖η(t)‖ + l3 + l11 ‖ξ(t− θ)‖ + l22 ‖η(t− θ)‖ (22a)

‖Φη‖ 6 l∗1 ‖ξ(t)‖ + l∗2 ‖η(t)‖ + l∗3 . (22b)

Now we present our main result.

Theorem 1 Suppose that there exists a continuously differentiable function V0 :
ℜn−r → ℜ+ such that the following three inequalities hold for all η ∈ ℜn−r:

(a) k1 ‖η‖2
6 V0(η) 6 k2 ‖η‖2

, k1, k2 > 0 (23a)

(b) (∇ηV0)
T q(0, η) 6 −k3 ‖η‖2

, k3 > 0 (23b)

(c) ‖∇ηV0‖ 6 k4 ‖η‖ , k4 > 0, (23c)

then there exist constants ε, µ, td1, td2 such that the output tracking error of
system (1) satisfying Assumption (1)-(2), and subject to the tracking controller
u defined by

u =
[

LgL
r−1
f h(x(t))

]

−1 {

−Lr
fh(x) + y

(r)
d − ε−rα1

[

L0
fh(x) − yd

]

−ε1−rα2

[

L1
fh(x) − y

(1)
d

]

− · · · − ε−1αr

[

Lr−1
f h(x) − y

(r−1)
d

]}

(24)

is finally attracted in every closed sphere Br :=

{[

e

η

]

: ‖e‖2
+ ‖η‖2

6r2, r > r

}

,

where

r =

√

N1

N2
(25a)

N1 := (εγ1Bd + εγ11Bd + 2 ‖P‖Bnγ
∗

1Bdε+ 2 ‖P‖Bnγ
∗

3ε)
2

+

[

µk4l3 + µk4LBd + µk4l1Bd + µk4l11Bd + k4Bnl
∗

1Bd + k4Bnl
∗

3√
µk3

]2

> 0 (25b)

N21 :=
1

2
− εγ1 − td1 − ε2γ2

11 − ε2γ2
22 − 2 ‖P‖Bnγ

∗

1ε > 0, td1 > 0 (25c)

N22 :=
3

4
µk3 − µk4l2 − µtd2 − k4Bnl

∗

2

− (µk4L+ εγ2 + µk4l1 + 2 ‖P‖Bnγ
∗

2 + k4Bnl
∗

1)
2 − 1

2
> 0, td2 > 0 (25d)

N23 := td1 −
1

4
− (µk4l11)

2
> 0 (25e)

N24 := µtd2 −
1

4
− (µk4l22)

2
> 0 (25f)

N2 = min {N21, N22, N23, N24 > 0} (25g)

whose radius r can be selected appropriately small by a suitable choice of relative
parameters, i.e., the sphere Br is a global final attractor for the output tracking
error of system (1).
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Proof. Applying the co-ordinate transformation (7) yields

ξ̇1(t) =
∂φ1

∂x

dx

dt
=
∂h(x(t))

∂x

[

f(x(t)) + g(x(t)) · u(t− θ) +
∑

+
∑

n

]

= L1
fh(x(t)) + LgL

0
fh(x(t))u(t) +

∂h(x)

∂x

∑

+
∂h(x)

∂x

∑

n

= ξ2(t) +
∂h(x)

∂x

∑

+
∂h(x)

∂x

∑

n (26)

ξ̇2(t) =
∂φ2

∂x

dx

dt
=
∂L1

fh(x(t))

∂x

[

f(x(t)) + g(x(t)) · u(t) +
∑

+
∑

n

]

= L2
fh(x(t)) + LgL

1
fh(x(t))u(t) +

∂L1
fh(x(t))

∂x

∑

+
∂L1

fh(x(t))

∂x

∑

n

= ξ3(t) +
∂L1

fh(x(t))

∂x

∑

+
∂L1

fh(x(t))

∂x

∑

n (27)

...

ξ̇r−1(t) =
∂φr−1

∂x

dx

dt

=
∂Lr−2

f h(x(t))

∂x

[

f(x(t)) + g(x(t)) · u(t− θ) +
∑

+
∑

n

]

= Lr−1
f h(x(t)) + LgL

r−2
f h(x(t))u(t) +

∂Lr−2
f h(x(t))

∂x

∑

+
∂Lr−2

f h(x(t))

∂x

∑

n

= ξr(t) +
∂Lr−2

f h(x(t))

∂x

∑

+
∂Lr−2

f h(x(t))

∂x

∑

n (28)

ξ̇r(t) =
∂φr

∂x

dx

dt
=
∂Lr−1

f h(x(t))

∂x

[

f(x(t)) + g(x(t)) · u(t) +
∑

+
∑

n

]

= Lr
fh(x(t)) + LgL

r−1
f h(x(t))u(t) +

∂Lr−1
f h(x(t))

∂x

∑

+
∂Lr−1

f h(x(t))

∂x

∑

n (29)

η̇k(t) =
∂φk(x)

∂x

dx

dt
=
∂φk(x)

∂x

[

f(x(t)) + g(x(t)) · u(t) +
∑

+
∑

n

]

=
∂φk(x)

∂x
f +

∂φk(x)

∂x
gu(t) +

∂φk(x)

∂x

∑

+
∂φk(x)

∂x

∑

n

=
∂φk(x)

∂x
f +

∂φk(x)

∂x

∑

+
∂φk(x)

∂x

∑

n

= Lfφk(x) +
∂φk(x)

∂x

∑

+
∂φk(x)

∂x

∑

n

= qk +
∂φk(x)

∂x

∑

+
∂φk(x)

∂x

∑

n,

k = r + 1, r + 2, · · · , n . (30)
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Define

c(ξ(t), η(t)) := Lr
fh(x(t)) (31)

d(ξ(t), η(t)) := LgL
r−1
f h(x(t)) (32)

qk(ξ(t), η(t)) = Lfφk(x), k = r + 1, r + 2, · · · , n . (33)

Thus, the dynamic equations of system (1) in the new co-ordinates are as follows:

ξ̇i(t) = ξi+1(t) +
∂

∂x
Li−1

f h(x(t))
∑

+
∂

∂x
Li−1

f h(x(t))
∑

n,

i = 1, 2, · · · , r − 1 (34)

ξ̇r(t) = c(ξ(t), η(t)) + d(ξ(t), η(t))u(t) +
∂

∂x
Lr−1

f h(x(t))
∑

+
∂

∂x
Lr−1

f h(x(t))
∑

n (35)

η̇k(t) = qk(ξ(t), η(t)) +
∂

∂x
φk

∑

+
∂

∂x
φk

∑

n, k = r + 1, · · · , n . (36)

y(t) = ξ1(t) (37)

Define

v := y
(r)
d − ε−rα1

[

L0
fh(x) − yd

]

− ε1−rα2

[

L1
fh(x) − y

(1)
d

]

− · · · − ε−1αr

[

Lr−1
f h(x) − y

(r−1)
d

]

. (38)

According to equations (6), (10), (31) and (32), the tracking controller can be
rewritten as

u = d−1 [−c+ v] . (39)

From equations (35) and (39), the dynamic equations of system (1) can be
derived as follows:















ξ̇1(t)

ξ̇2(t)
...

ξ̇r−1(t)

ξ̇r(t)















=















0 1 0 · · · 0
0 0 1 0 · · · 0

...
...

0 0 0 · · · 1
0 0 0 · · · 0





























ξ1(t)
ξ2(t)

...
ξr−1(t)
ξr(t)















+















0
0
...
0
1















v

+



























∂

∂x
h
∑

...

...
∂

∂x
Lr−2

f h
∑

∂

∂x
Lr−1

f h
∑



























+



























∂

∂x
h

...

...
∂

∂x
Lr−2

f h

∂

∂x
Lr−1

f h



























∑

n (40)
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













η̇r+1(t)
η̇r+2(t)

...
η̇n−1(t)
η̇n(t)















=















qr+1(t)
qr+2(t)

...
qn−1(t)
qn(t)















+



























∂

∂x
φr+1

∑

...

...
∂

∂x
φn−1

∑

∂

∂x
φn

∑



























+



























∂

∂x
φr+1

...

...
∂

∂x
φn−1

∂

∂x
φn



























∑

n (41)

y =
[

1 0 · · · 0 0
]

1×r















ξ1(t)
ξ2(t)

...
ξr−1(t)
ξr(t)















r×1

= ξ1(t) . (42)

Combining equations (10), (12), (19) and (38), it can be easily verified that
equations (2)-(42) can be transformed into the following form with uncertainties:

η̇(t) = q(ξ(t), η(t))+∆Ψ+Φη

∑

n =q1(t, η(t), e(t))+∆Ψ+Φη

∑

n (43a)

ε
·

e(t) = Ace+ ε∆Ã (43b)

y(t) = ξ1(t) . (44)

Let

V1 (e) = εeTPe+ td1

t
∫

t−θ

eT (τ)e(τ)dτ (45a)

V2 (e) = V0(η) + td2

t
∫

t−θ

ηT (τ)η(τ)dτ (45b)

where td1, td2 are positive constants and P is the positive definite solution of
the following Riccati equation:

AT
c P + PAc = −I . (46)

With these Lyapunov functions V1(e) and V2(η) at hand, we consider V (e, η)
defined by a weighted sum of V1(e) and V2(η),

V (e, η) := V1(e) + µV0(η), (47)

as a composite Lyapunov function of the system (43) (Khorasani and Koko-
tovic, 1986; Marino and Kokotovic, 1988), where µ is a strictly positive constant
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to be adjusted. In view of (24)-(25), (45) and (46), the derivative of V (e, η) along
the trajectories of (43) is given by

V̇ = V̇1 + µV̇2 = ε
(

·

eT Pe+ eTP
·

e
)

+ td1e
T e− td1e

T (t− θ)e(t− θ)

+ µ
[

V̇0 + td2η
T η − td2η

T (t− θ)η(t − θ)
]

= e−T (AT
c P+PAc)e+ε∆Ã

TPe+εeTP∆Ã+td1 ‖e‖2−td1 ‖e(t−θ)‖
+ ε (Φξ

∑

n)
T
Pe+ εeTP (Φξ

∑

n)

+ µ

{

∂V0

∂η

[

q(ξ, η) + ∆Ψ + Φη

∑

n

]

+ td2 ‖η‖2 − td2 ‖η(t− θ)‖2

}

= (−1 + td1) ‖e‖2
+ 2εeTP∆Ã− td1 ‖e(t− θ)‖2

+ 2ε eTP (Φξ

∑

n)

+ µ







∂V0

∂η
[q(ξ, η)−q(0, η)]+ ∂V0

∂η
q(0, η)+

∂V0

∂η
∆Ψ+

∂V0

∂η
(Φη

∑

n)

+td2 ‖η‖2 − td2 ‖η(t− θ)‖2







6 (−1 − td1) ‖e‖2
+ ε ‖e‖ (γ1 ‖ξ‖ + γ2 ‖η‖ + γ11 ‖ξ(t− θ)‖

+ γ2 ‖η(t− θ)‖) − td1 ‖e(t− θ)‖2
+ 2ε ‖e‖ ‖P‖ ‖Φξ‖ ‖

∑

n‖

+ µ







Lk4 ‖η‖ ‖ξ‖ − k3 ‖η‖2
+ k4 ‖η‖

(

l1 ‖ξ‖ + l2 ‖η‖ + l3
+l11 ‖ξ(t− θ)‖ + l22 ‖η(t− θ)‖

)

+td2 ‖η‖2 − td2 ‖η(t− θ)‖2 + k4 ‖η‖ ‖Φη‖ ‖
∑

n‖







6 (−1 + td1 + εγ1 + 2 ‖P‖Bnγ
∗

1ε) ‖e‖2
+ ‖e‖

(

εγ1Bd + εγ11Bd

+ 2 ‖P‖Bnγ
∗

1 )Bdε+ 2 ‖P‖Bnγ
∗

3ε)
)

+ ‖η‖2 (

µk4l2 − µk3 + µtd2 + k4Bnl
∗

2

)

+ ‖e‖ ‖η‖ (µk4L+ εγ2 + µk4l1 + 2 ‖P‖Bnγ
∗

2 + k4Bnl
∗

1)

+ ‖η‖ (µk4l3+µk4LBd+µk4l1Bd+µk4l11Bd+k4Bnl
∗

1Bd+k4Bnl
∗

3)

− td1 ‖e(t− θ)‖2 − µ td2 ‖η(t− θ)‖2
+ εγ11 ‖e‖ ‖e(t− θ)‖

+ εγ22 ‖e‖ ‖η(t− θ)‖ + µk4l22 ‖η‖ ‖η(t− θ)‖ + µk4l11 ‖η‖ ‖e(t− θ)‖

6 (−1 + td1 + εγ1 + 2 ‖P‖Bnγ
∗

1ε) ‖e‖2 +
1

4
‖e‖2

+ (εγ1Bd + εγ11Bd + 2 ‖P‖Bnγ
∗

1Bdε+ 2 ‖P‖Bnγ
∗

3ε)
2

+ ‖η‖2
(µk4l2 − µk3 + µtd2 + k4Bnl

∗

2)

+ ‖η‖2
(µk4L+ εγ2 + µk4l1 + 2 ‖P‖Bnγ

∗

2 + k4Bnl
∗

1)
2

+
1

4
‖e‖2

+
1

4
‖η‖2

µk3

+

{

µk4l3+µk4LBd+µk4l1Bd+µk4l11Bd+k4Bnl
∗

1Bd+k4Bnl
∗

3√
µk3

}2
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− td1 ‖e(t− θ)‖2 − µtd2 ‖η(t− θ)‖2
+

1

4
‖e(t− θ)‖2

+ ‖e‖2
(εγ11)

2

− td1 ‖e(t− θ)‖2 − µtd2 ‖η(t− θ)‖2
+

1

4
‖e(t− θ)‖2

+ ‖e‖2
(εγ11)

2

+
1

4
‖η(t− θ)‖2

+ ‖e‖2
(εγ22)

2
+

1

4
‖η‖2

+ ‖η(t− θ)‖2 (µk4l22)
2 +

1

4
‖η‖2 + ‖e(t− θ)‖2 (µk4l11)

2
.

Therefore, we get

V̇ 6 −
(1

2
− εγ1 − td1 − ε2γ2

11 − ε2γ2
22 − 2 ‖P‖Bnγ

∗

1ε
)

‖e‖2

−
[3

4
µk3 − µk4l2 − µtd2 − k4Bnl

∗

2 −
(

µk4L+ εγ2 + µk4l1

+ 2 ‖P‖Bnγ
∗

2 + k4Bnl
∗

1

)2 − 1

2

]

‖η‖2

−
[

td1 −
1

4
−

(

µk4l11
)2

]

‖e(t− θ)‖2

−
[

µtd2 −
1

4
− (µk4l22)

2
]

‖η(t− θ)‖2

+







(εγ1Bd + εγ11Bd + 2 ‖P‖Bnγ
∗

1Bdε+ 2 ‖P‖Bnγ
∗

3ε)
2

+

[

µk4l3 + µk4LBd + µk4l1Bd + µk4l11Bd + k4Bnl
∗

1Bd + k4Bnl
∗

3√
µk3

]2







6 −N2

(

‖e‖2
+ ‖η‖2

+ ‖η(t− θ)‖2 )

+N1 := −N2

(

‖y1‖2
+ ‖y1(t− θ)‖2 )

+N1

where ‖y1‖2
:= ‖e‖2

+ ‖η‖2
.

Define

r :=

√

N1

N2
.

For ‖y‖ > r, we have V̇ < 0. Hence any sphere defined by

Br :=

{[

e

η

]

: ‖e‖2
+ ‖η‖2

6 r2, r > r

}

is a global final attractor for the tracking error system of the nonlinear control
systems (1).

According to the previous theorem and discussions, an efficient algorithm for
deriving the tracking and disturbance rejecting control is proposed as follows:

(Step 1): Calculate the relative degree r of the given control system.

(Step 2): Choose the diffeomorphism φ such that the Assumptions 1 and 2 are
satisfied.

(Step 3): Adjust some parameters α1, α2, · · · , αr such that the matrix Ac is
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Hurwitz and calculate the positive definite matrices P of the Lyapunov equations
(19) by some software package, such as Matlab.

(Step 4): Based on the famous Lyapunov approach, design a Lyapunov function
to solve the conditions (23a)-(23c).

(Step 5): Appropriately tune the parameters ε, µ, td1, td2 such that (25a)-(25g)
are satisfied and go to the next step. Otherwise, go to Step 3 and repeat the
overall designing procedures.

(Step 6): According to the equation (24), the desired controller u can be con-
structed such that the tracking and disturbance rejecting performances are guar-
anteed. That is, the system dynamics enters a neighborhood of zero state and
remains within it thereafter.

3. Practical application–nonlinear automobile idle-speed

control system with time-delay

Consider the following automobile engine for the idle-speed control system
(ISCS) with the disturbance torque shown in Fig. 1. The input of the ISCS
is the throttle position α(t) that controls the rate of airflow into the manifold.

Figure 1. An automobile engine representation for the idle-speed control system.

The relative variables are described as follows:

Td : disturbance torque due to application of auto accessories = constant

qi(t) : amount of airflow across throttle into manifold

qo(t) : amount of air leaving intake manifold through intake valves

qm(t) : average air mass in manifold

τD(t) : time delay in engine

J : inertia of engine
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ω(t) : engine speed

T (t) : engine torque

B : viscous-friction coefficient of engine.

Some assumptions and dynamic relations between engine parameters are
stated as follows:

(A1)
dqi(t)

dt
= K1α(t)

(A2)
dqo(t)

dt
= K2qm(t) +K3ω(t)

(A3) T (t) = K4qm(t− τD)

(A4)
dqm(t)

dt
=
dqi(t)

dt
− dqo(t)

dt

(A5) T (t) = J
dω(t)

dt
+Bω(t) + Td

where K1, K2, K3 and K4 are constants. It is an easy routine to arrive at the
following dynamic equation:

[

ẋ1

ẋ2

]

[

−B
J
x1

−K3x1 −K2x2

]

+

[

K4

J
x2(t− τD)

0

]

+

[

−Td

J
0

]

+

[

0
K1

]

u

y(t) = x2(t) := h(x(t))

where ω(t) := x1(t), qm(t) := x2(t) and u(t) := α(t). The objective of this
problem is to reject the unknown bounded disturbance and make the rate of
airflow across throttle into manifold equal to the rate of air leaving intake man-
ifold through intake valves. For the sake of simplicity, the following dynamic
equation is adopted for simulation:

[

ẋ1(t)
ẋ2(t)

]

=

[

−x1 − 1
−x1 − x2

]

+

[

x2(t)(t− 0.1)
0

]

+

[

0
1

]

u (48a)

y(t) = h(x(t)) := x2(t) . (48b)

For the automobile idle-speed control system with the disturbance torque
shown in Fig. 1, our goal is to find a tracking controller u that will reject
the unknown bounded disturbance and steer the output tracking error e =
y − yd = x2 − 0 of the closed-loop system, starting from any initial value,
to be asymptotically attracted in a sphere Br whose radius can be selected
appropriately small. Let us arbitrarily choose α1 = 1 such that Ac = −1 is a
Hurwitz matrix and P = 0.5. The original system (48) is a system of relative
degree one. From (24), we obtain the desired tracking controller

u = x1 + x2 − ε−1x2 . (49)

It can be verified that with the choice of ε = 1, µ = 1 and V0(η) = η2
2 , the

relative conditions of Theorem 1 are satisfied with Bd = 0, L = 0, k1 = k2 = 1,
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k3 = k4 = 2, γ1 = γ2 = 0, γ11 = γ22 = 0, l1 = l2 = l3 = 0, l11 = 0.01,
l22 = 0, γ∗1 = γ∗2 = 0, γ∗3 = 1, l∗1 = l∗2 = 0, l∗3 = 1, td1 = 0.35, td2 = 1,
N21 = 0.15, N22 = 0.5, N23 = 0.1, N24 = 1.75 and N2 = 0.0875. Hence the
tracking controller (49) will steer the output tracking error e = y− yd = x2 − 0
of the closed-loop system, starting from any initial value, to be asymptotically
attracted in a sphere Br in view of Theorem 1. Some output trajectories of the
uncontrolled and feedback-controlled system are depicted in Fig. 2 and Fig. 3,
respectively.

Figure 2. Output trajectory of the uncontrolled time-delay system.

Figure 3. Output trajectory of the feedback-controlled time-delay system.
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4. Conclusion

A nonlinear state feedback control law is designed which ensures globally that
the tracking error in the closed-loop system lies within any adjustable bound
if the reference inputs are bounded. The discussion and practical application
of input-output feedback linearization of nonlinear time-delay control systems
by parameterized co-ordinate transformation have been presented. A practical
example of an automobile idle-speed control system with time delay demon-
strated the applicability of the proposed differential geometry approach and
the composite Lyapunov approach. Simulation result exploited the fact that
the proposed methodology is successfully applied to input-output linearization
problem and achieves an interesting disturbance-rejection performance of the
controlled system for globally asymptotical output tracking.
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