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Abstract: The paper is devoted to deriving a novel estimation
algorithm for linear dynamic system with unknown inputs when ob-
servations contain outliers. The algorithm is derived for arbitrary
input signals and does not require a priori statistical information
concerning input signals. The filtering problem is considered as a
control problem in which the unknown input is regarded as a con-
trolling signal for system dynamics, which is described by Kalman
equations. In this case, optimal control using Bellman dynamic pro-
gramming can be calculated. The problem is complicated by the
presence of outliers in the observations. To cope with this problem
the Lainiotis’ partitioning theorem has been used. The nonlinear
algorithm of state estimation is obtained. Presented approach can
be used both in control systems and decision procedures in tracking
systems.

Keywords: state estimation, optimal control, Bellman princi-
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1. Introduction

The problem of state estimation of linear dynamic system when the input is un-
known is frequently met in practice. For instance in fault diagnosis or tracking
systems the appearing changes can be modeled as an input of dynamic system.
From the plant point of view the input has usually deterministic character with
known kind of change and known onset moment. Unfortunately observer does
not have this information. Directly incorporating all kinds of possible changes
in estimation model leads to high estimation error and numerically inefficient
estimation algorithm. In recent years a great deal of new state estimation algo-
rithms for dynamic systems with different inputs were proposed. Among them
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there are such algorithms as those which use the input estimation (IE) tech-
nique, the variable dimension (VD) filtering, the multiple hypothesis tracking
(MHT) and the interacting multiple model (IMM) approach (Bar-Shalom, Fort-
mann, 1988; Blackman, Popoli, 1999; Katayma, Sugimoto, 1997; Grishin, 1994;
Janczak, Grishin, 1996; Mazor et al., 1998). All the above methods need a pri-
ori assumed input models and they are accurate for changes included in the
implications of the assumed input models. The method proposed in the paper
is derived for arbitrary input signals and does not require a priori statistical
information concerning input signals. Such a method is superior in robust con-
trol systems (fault-tolerant). This approach allows real-time robust estimation
process, which is independent of the fault model.

In practical realizations of control, measurement and telecommunication sys-
tems the problem of uncertain observations can be met. One of the problems
widely encountered are outliers. The outlier is an abnormal measurement usu-
ally caused by electromagnetic disturbances or another process specific physical
phenomena. Outlier phenomenon can highly deteriorate the accuracy of typical
estimation algorithms and should be especially addressed. Usually it can be
accepted that the outlier probability density function (pdf) has the same form
as the normal measurement, but much larger variance.

The objective of the paper is to present a new state estimation algorithm
based on a dynamic system model that incorporates both random and deter-
ministic character of the changes, including non-linear. Such a model enables to
work out relatively simple recursive adaptive algorithm. Besides, this model and
the estimation algorithm are especially suitable for fault detection and diagnosis
in non-stationary dynamical systems.

2. The system model

Mathematical model of a dynamic system that incorporates both random and
deterministic character of changes can be based on the idea of the dynamical
systems with unknown input signal. The output of such systems can be treated
as the Gauss-Markov process, which is additive with respect to the state or
observation equation. Such models can describe wide range of non-stationary
effects, such as abrupt changes of state vector elements, state vector dimension,
covariance matrices of the system and observation noises, or observation matrix.
For the sequences additive to the state we obtain the state equation in the form
(Bar-Shalom, Fortmann, 1988; Blackman, Popoli, 1999; Grishin, 1994; Janczak,
Grishin, 1996):

xk+1 = Φk+1,kxk + Gk+1,kwk + Bk+1,kuk,ti
(1)

where xk is the system state vector, Φk+1,k, Gk+1,k, Bk+1,k, are known transi-
tion and input matrices, wk is the system zero mean white Gaussian noise with
covariance matrix Qk, uk,ti is an unknown input signal arising at the random
time ti.
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When conditions of observation are nominal the measurement equation can
be written in the form:

yk = Hkxk + vk , (2)

where yk is the observation vector, Hk is the observation matrix, vk is the
observation zero mean white Gaussian noise with covariance matrix Rk .

When measurements contain the outliers the observation equation can be
written as follows:

yk = Hkxk + γkvk , (3)

where γk is the random value (in a general case the Markov chain) which is
equal to 1 when the outliers are absent and γk ≫ 1 when they are present.

The Markov chain approach makes it possible to describe the outliers with
correlation in time. The initial probabilities of the Markov chain and its tran-
sition matrix can be known or not depending on problem formulation. In both
cases the problem can be solved in the same way but with more complicate
calculations.

3. State estimation with unknown input and absence of

outliers

Let us consider first the dynamic system described by the equations (1) and
(2), that is the system when the outliers are absent. Then the optimal system
state vector estimation, assuming that the input signal is known, can be calcu-
lated using the Kalman filter algorithm (Sorenson, 1985) described by equations
(4)÷(8).

Estimation equation:

x̂k/k = x̂k/k−1 + Kk[yk − Hkx̂k/k−1] , (4)

prediction equation:

x̂k/k−1 = Φk,k−1x̂k−1/k−1 + Bk,k−1uk−1 , (5)

gain matrix:

Kk = Pk/k−1H
T
k [HkPk/k−1H

T
k + Rk]−1 , (6)

covariance matrix of prediction error:

Pk/k−1 = Φk/k−1Pk−1/k−1ΦT
k/k−1 + Gk/k−1QkGT

k/k−1 , (7)

covariance matrix of filtering error:

Pk/k = Pk/k−1 − KkHkPk/k−1 . (8)
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Kalman filter is a linear filter optimal in the sense of root square mean
error for linear dynamic systems with Gaussian noises and initial conditions.
However, the equations (4) ÷ (8) of the Kalman filter can not be directly used
because of unknown input uk. But the problem can be reversed as follows.
The prediction equation (5) can be treated as an equation describing dynamical
system, for which an optimal control uk should be calculated. The optimality
criterion should ensure the minimal error of predicted estimates x̂k/k−1. For
technical realization purposes minimizing the value of control uk should also be
taken into consideration. Finally, optimality criterion of the following form can
be chosen:

J =

k∑

i=1

{[yi − Hix̂i/i−1]T Vi[yi − Hix̂i/i−1] + uT
i−1Wi−1ui−1}, (9)

where Vi and Wi are the positive symmetric matrices determining relative
weights of the corresponding errors. Calculating control in such a way enables
obtaining estimates of ûk/k. Optimization process up to the current step i = k
requires minimization of criterion at every step of control:

Jk = min
u0

min
u1

. . . min
uk−1

k∑

i=1

{[yi−Hix̂i/i−1]T Vi[yi−Hix̂i/i−1]+uT
i−1Wi−1ui−1} .

(10)

At the beginning the control at the step k = 1 can be obtained. Optimality
criterion at k = 1 can be written down as:

J1 = min
u0

{[y1 − H1x̂1/0]T V1[y1 − H1x̂1/0] + uT
0 W0u0} . (11)

Taking into consideration that:

x̂1/0 = Φ1,0x̂0/0 + B1,0u0 = Φ1,0x̂0 + B1,0u0 , (12)

and that yk, x̂k/k−1, uk are vectors of dimension s× 1, n× 1, r × 1 respectively
after simple calculations the value of J1 can be presented in the form:

J1 = min
u0

{yT
1 V1y1 − 2yT

1 V1H1Φ1,0x̂0+

+ x̂T
0 ΦT

1,0H
T
1 V1H1Φ1,0x̂0 − 2yT

1 V1H1B1,0u0+

+ 2x̂T
0 ΦT

1,0H
T
1 V1H1B1,0u0 + uT

0 (BT
1,0H

T
1 V1H1B1,0 + W0)u0} .

(13)

Next, the value of control u0 which minimizes J1 should be obtained. Cal-
culating first derivative dJ1

du0

= 0 leads to:

−2yT
1 V1H1B1,0+2x̂T

0 ΦT
1,0H

T
1 V1H1B1,0+2uT

0 (BT
1,0H

T
1 V1H1B1,0+W0) = 0 . (14)
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Finally, with the assumption that V1 and W0 are positive symmetric matri-
ces, the value of control u⋆

0 can be obtained:

u⋆
0 = (BT

1,0H
T
1 V1H1B1,0 + W0)−1BT

1,0H
T
1 V1(y1 − H1Φ1,0x̂0) (15)

and as in these conditions the second derivative at the point u⋆
0 is d2J1

du2

0

/
u⋆

0

> 0,

u⋆
0 minimizes J1, and so it is the optimal value of control. The optimal value of

control (15) can be written in the following clear form:

u⋆
0 = S0(y1 − H1Φ1,0x̂0) , (16)

where

S0 = (BT
1,0H

T
1 V1H1B1,0 + W0)−1BT

1,0H
T
1 V1. (17)

Then the optimality criterion J1 value equals:

J1 = (y1 − H1Φ1,0x̂0)T M1(y1 − H1Φ1,0x̂0) , (18)

where

M1 = V1 − 2V1H1B1,0S0 + ST
0 (BT

1,0H
T
1 V1H1B1,0 + W0). (19)

Next the control at k = 2 can be calculated in the following way. The
predicted estimates and the optimality criterion at k = 2 are:

x̂2/1 = Φ2,1x̂1/1 + B2,1u1 , (20)

J2 = min
u0

min
u1

[{
[y2 − H2x̂2/1]T V2[y2 − H2x̂2/1] + uT

1 W1u1

}
+

+
{

[y1 − H1x̂1/0]T V1[y1 − H1x̂1/0] + uT
0 W0u0

}]
. (21)

Using Bellman optimality principle (Bellman, Dreyfus, 1962; Bertsekas, 1987)
the above problem can be reformulated into the following one:

J2 = min
u1

[{
[y2 − H2x̂2/1]T V2[y2 − H2x̂2/1] + uT

1 W1u1

}
+ J1

]
. (22)

Then, taking into consideration (20) and (18) the equation (22) can be recalcu-
lated into:

J2 = min
u1

{
yT
2 V2y2 − 2yT

2 V2H2Φ2,1x̂1/1+

+ x̂T
1/1ΦT

2,1H
T
2 V2H2Φ2,1x̂1/1 − 2yT

2 V2H2B2,1u1+

+ 2x̂T
1/1ΦT

2,1H
T
2 V2H2B2,1u1+

+ uT
1 (BT

2,1H
T
2 V2H2B2,1 + W1)u1+

+ (y1 − H1Φ1,0x̂0)T M1(y1 − H1Φ1,0x̂0)
}

.

(23)
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Performing the same steps as in (13) ÷ (17) we can show that optimal control
at k = 2 is:

u⋆
1 = S1(y2 − H2Φ2,1x̂1/1) , (24)

where

S1 = (BT
2,1H

T
2 V2H2B2,1 + W1)−1BT

2,1H
T
2 V2. (25)

Applying Bellman optimality principle for the next steps k = 3, 4, . . . , k and
using the same operations as above, the optimal control u⋆

k at the k-th step is
derived:

u⋆
k = Sk[yk+1 − Hk+1Φk+1,kx̂k/k] , (26)

where

Sk = [BT
k+1,kHT

k+1Vk+1Hk+1Bk+1,k + Wk]−1BT
k+1,kHT

k+1Vk+1 . (27)

Incorporating (5), (26), (27) to (4) yields the expression of estimation equa-
tion with unknown input:

x̂k/k = Φk,k−1x̂k−1/k−1+

+ [Bk,k−1 − KkHkBk,k−1]Sk−1[yk − HkΦk,k−1x̂k−1/k−1]+

+ Kk[yk − HkΦk,k−1x̂k−1/k−1] .

(28)

4. Estimation in presence of outliers

Outliers can significantly deteriorate the accuracy of typical estimation algo-
rithms and should be especially addressed. When the results of observations
contain the outliers (3), then for calculating the system estimation it is neces-
sary to use a general approach. It can be based on the Lainiotis’ partitioning
theorem (Lainiotis, Park, 1973). In this case the dynamic system state vector
estimation can be found as a conditional mean of the following form:

x̂k/k = E[xk/Y k
1 ] =

∑

i∈{1,...,2k}

x̂i
k/kP (Γ̄i

k/Y k
1 ) (29)

where Y k
1 = {y1, y2, ..., yk} is the sequence of observations, Γ̄i

k = {γi
1, γ

i
2, ..., γ

i
k}

denotes the sensor state sequence, x̂i
k/k = E[xk/Y k

1 , Γ̄i
k] is the partial state

vector estimate calculated on the basis of (28) depending on observations and
sensor state sequences.

The probability density function of the estimates (29) can not be defined
exactly. That is why for calculating the probability density function of f(xk/Y k

1 )
it is necessary to use the Gaussian approximation approach (Grishin, 1994;
Grishin, Kazarinov, 1985). In such an approach the state vector estimates x̂k/k
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can be expressed as the weighted sum of the partial estimates x̂i
k/k corresponding

to presence and absence of the outliers in the measurements on the current time
step using predicted values,

x̂k/k =
∑

i∈{1,σ}

x̂i
k/kP (γk = i/Y k

1 ) (30)

The P (γk = i/Y k
1 ) is a posterior probability of measurement channel state.

It depends on the outlier stochastic characteristics. If the outliers are statisti-
cally independent the probability p1/k = P (γk = 1/Y k

1 ) of the outlier absence
can be found using the Bayes rule (Katayma, Sugimoto, 1997):

p1/k =
f(yk/γk = 1, Y k−1

1 )P1∑
i∈{1,σ} f(yk/γk = i, Y k−1

1 )Pi

, (31)

where P1 = P (γk = 1) and Pσ = P (γk = σ) are a priori probabilities of mea-
surement channel state, and f(yk/γk = i, Y k−1

1 ) denotes the Gaussian density
function of the predicted estimates (Sorenson, 1985):

f(yk/γk = i, Y k−1
1 )=N

[
Hkx̂k/k−1, HkP i

k/k−1H
T
k + i2Rk

]
, i ∈ {1, σ}, (32)

where P i
k/k−1

is the corresponding covariance matrix.

The state vector estimates (30) can be expressed as:

x̂k/k = p1/kx̂1
k/k + (1 − p1/k)x̂δ

k/k. (33)

Partial state estimates x̂i
k/k are to be calculated according to the estimation

equation (28) for the unknown input case,

x̂i
k/k =Φk,k−1x̂k−1/k−1 + Ki

k[1 − HkBk,k−1Sk−1]zk/k−1+

+ Bk,k−1Sk−1zk/k−1, i ∈ {1, σ}, (34)

where Ki
k are gain matrices of partial state estimators, zk/k−1 is the innovation

process.

zk/k−1 = [yk − HkΦk,k−1x̂k−1/k−1].

Partial gain matrices Ki
k can be calculated as follows:

Ki
k = Pk/k−1H

T
k (HkPk/k−1H

T
k + i2Rk) , i ∈ {1, σ} . (35)

On the basis of (26), (27), (28), (33) and (34) the final state and control
estimation equations can be found:

x̂k/k = Φk,k−1x̂k−1/k−1+

+
[
p1/k(K1

k − Kδ
k) + Kδ

k

]
[1 − HkBk,k−1Sk−1]zk/k−1+ (36)

+ Bk,k−1Sk−1zk/k−1 ,

ûk = Sk[yk+1 − Hk+1Φk+1,kx̂k/k] , (37)
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where

Sk = [BT
k+1,kHT

k+1Vk+1Hk+1Bk+1,k + Wk]−1BT
k+1,kHT

k+1Vk+1 . (38)

The estimation covariance matrix can be derived based on the approach pre-
sented in Lainiotis, Sims (1970) as follows:

Pk/k =p1/k

{
P 1

k/k + [x̂1
k/k − x̂k/k][x̂1

k/k − x̂k/k]T
}

+

+ [1 − p1/k]
{
P δ

k/k + [x̂δ
k/k − x̂k/k][x̂δ

k/k − x̂k/k]T
}

.
(39)

Applying partial estimation covariance matrices of the form:

P i
k/k = Pk/k−1 −

{
Ki

k[1 − HkBk,k−1Sk−1] + Bk,k−1Sk−1

}
HkPk/k−1 ,

i ∈ {1, σ} , (40)

and using (39) and (40), after some calculations the estimation covariance matrix
can be obtained:

Pk/k = Pk/k−1 − p1/kK̃kHkPk/k−1 + p1/k[1 − p1/k]K̃kzk/k−1z
T
k/k−1K̃

T
k −

−
{
Kδ

k[1 − HkBk,k−1Sk−1] + Bk,k−1Sk−1

}
HkPk/k−1 ,

(41)

where K̃k = (K1
k − Kδ

k)[1 − HkBk,k−1Sk−1] .

Thus, equations (36), (41) describe the final formulas for state estimates
and the corresponding covariance matrix for state estimation of linear dynamic
system with unknown input and with presence of outliers in observations. The
input estimates are obtained in the form of equation (37).

5. Simulation results

In this section we present simulation results to illustrate the performance of the
proposed algorithm. In the following experiments we simulated a simple scenario
where the unknown input was modelled by the pulse and sinusoidal signals. For
description of the system and observations the first order model with Qk = 0.01,
Rk = 0.49, γ = 10 has been used. In Figs. 1 and 2 the examples of step and
sinusoidal inputs (30 ≤ k ≤ 60) and their estimates obtained in the absence of
outliers are presented. The basic algorithm (26)÷(28) revealed good estimation
ability for inputs of different dynamics, but it was not robust with respect to
outliers, what can be seen in Fig. 3. Outliers were present at k = 10, 50, 70.
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Figure 1. An example of step input and its estimate

Figure 2. An example of sinusoidal input and its estimate

Figure 3. An example of step input and its estimate in presence of outliers

In the presence of outliers for the step input the robust algorithm (31)÷(41)
was investigated. In Fig. 4 posterior probabilities of the outlier absence calcu-
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lated according to (31) are shown.

Figure 4. Posterior probability of the outlier absence

As can be seen from the schedule, the procedure of outlier detection (31) is
rather reliable. The root mean square error of ûk/k estimates for the proposed
filter is presented in Fig. 5.

Figure 5. The root mean square error of ûk/k

In Fig. 6 the root mean square errors of the state estimates for the proposed
and Kalman filter algorithms are shown.

Figure 6. Comparative performance of the proposed algorithm
and the Kalman filter
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As one can see, the proposed algorithm revealed better performance in the
presence of the input jump signal and outliers in observations in comparison
with the Kalman filter.

6. Conclusions

The paper presents a new method of state estimation of linear dynamic system
with unknown input in the presence of outliers in observations. The problem
has been solved using the discrete time dynamic programming principle and the
Gaussian approximation approach to non-linear filtering. The robust estimation
algorithm, which can estimate the unknown input function and the system state
vector has been developed. The proposed algorithm has a recursive structure
and can be easily implemented with limited computational burden. Such an
algorithm can also be used for fault detection and identification in industrial
control processes, in state estimation of dynamic system and decision proce-
dures in radar tracking systems. The specific feature of the developed method
is a simultaneous estimation of system state vector as well as unknown input
which makes it possible to solve the classification problem in a particular im-
plementation.
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