
Control and Cybernetics

vol. 35 (2006) No. 4

Hybrid robust stabilization in the Martinet case

by

Christophe Prieur1 and Emmanuel Trélat2
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Abstract: In a previous work, Prieur, Trélat (2006), we derived
a result of semi-global minimal time robust stabilization for analytic
control systems with controls entering linearly, by means of a hybrid
state feedback law, under the main assumption of the absence of
minimal time singular trajectories. In this paper, we investigate the
Martinet case, which is a model case in IR3, where singular mini-
mizers appear, and show that such a stabilization result still holds.
Namely, we prove that the solutions of the closed-loop system con-
verge to the origin in quasi minimal time (for a given bound on the
controller) with a robustness property with respect to small mea-
surement noise, external disturbances and actuator errors.
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1. Introduction

Consider the so-called Martinet system in IR3

ẋ = u1f1(x) + u2f2(x), (1)

where, denoting x = (x1, x2, x3),

f1 =
∂

∂x1
+

x2
2

2

∂

∂x3
, f2 =

∂

∂x2
, (2)

and the control function u = (u1, u2) satisfies the constraint

u2
1 + u2

2 6 1. (3)
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System (1), together with the constraint (3), is said to be globally asymptotically
stabilizable at the origin, if there exists a control law x 7→ u(x), satisfying the
constraint (3), such that every solution of (1), associated to this control law,
tends to 0 as t tends to +∞ (and if a stability property holds, see Definition 5
below for a precise statement).

According to Brockett’s condition (see Brockett, 1983, Theorem 1, (iii)),
there does not exist any continuous stabilizing feedback law x 7→ u(x) for (1).
The robust asymptotic stabilization problem is an active research topic. Many
notions of controllers exist to handle this problem, such as discontinuous sam-
pling feedbacks (Clarke et al., 2000; Sontag, 1999), time varying control laws
(Closkey, Murray, 1997; Coron, 1992; Morin, Samson, 2003), patchy feedbacks
(Ancona, Bressan, 2002), SRS feedbacks (Rifford, 2004), enjoying different ro-
bustness properties depending on the errors under consideration. We consider
here feedback laws having both discrete and continuous components, which gen-
erate closed-loop systems with hybrid terms (see Bensoussan, Menaldi, 1997;
Prieur, Trélat, 2005c; Tavernini, 1987). Such feedbacks appeared first in Prieur
(2001), to stabilize nonlinear systems having a priori no discrete state. Many
results on the stabilization problem of nonlinear systems by means of hybrid
controllers have been recently established (see, for instance, Branicky, 1998;
Goebel, Teel, 2006; Goebel et all., 2004; Liberzon, 2003; Lygeros et all., 2003;
Ye, Michel, Hou, 1998). The aim is to define a switching strategy between sev-
eral smooth control laws defined on a partition of the state space. The notion
of solution, connected with the robustness problem, is by now well defined in
the hybrid context (see, for instance, Goebel, Teel, 2006; Prieur, Astolfi, 2003;
Prieur, Trélat, 2006).

In Prieur, Trélat (2006), we proved the following general result. Let m and
n be two positive integers. Consider on IRn the control system

ẋ(t) =

m
∑

i=1

ui(t)fi(x(t)), (4)

where f1, . . . , fm are analytic vector fields in IRn, and where the control function
u(·) = (u1(·), . . . , um(·)) satisfies the constraint

m
∑

i=1

ui(t)
2

6 1. (5)

Let x̄ ∈ IRn. System (4), together with the constraint (5), is said to be globally
asymptotically stabilizable at the point x̄, if, for each point x ∈ IRn, there exists
a control law satisfying the constraint (5) such that the solution of (4) associated
to this control law and starting from x tends to x̄ as t tends to +∞. Consider the
minimal time problem for system (4) with the constraint (5), of steering a point
x ∈ IRn to the point x̄. Note that this problem is solvable when the Lie Algebra
Rank Condition holds for the m-tuple of vector fields (f1, . . . , fm). In general, it
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is impossible to compute explicitly the minimal time feedback controllers for this
problem. Moreover, Brockett’s condition implies that such control laws are not
smooth whenever m < n and the vector fields f1, . . . , fm are independent. This
leads to investigation of the regularity of optimal feedback laws. In an analytic
setting, the problem of determining the analytic regularity of the value function
for a given optimal control problem, has been investigated in Sussmann (1979),
in particular. It is related to the existence of singular minimizing trajectories
(see Agrachev, 1998; Agrachev, Gauthier, 2001; Trélat, 2000). More precisely, if
there does not exist any nontrivial singular minimizing trajectory starting from
x̄, then the minimal time function to x̄ is subanalytic outside x̄ (see Hardt, 1975;
Hironaka, 1973, for a definition of subanalyticity). In particular, this function is
analytic outside a stratified submanifold S of IRn, of codimension greater than
or equal to 1 (see Tamm, 1981). As a consequence, outside this submanifold, it
is possible to provide an analytic minimal time feedback controller for system
(4) with the constraint (5). Note that the analytic context is used so as to ensure
stratification properties, which do not hold a priori if the system is smooth only.
These properties are related to the notion of o-minimal category (see van den
Dries, Miller, 1996). Then, in a second step, in order to achieve a minimal
time robust stabilization procedure, using a hybrid feedback law, a suitable
switching strategy (more precisely, a hysteresis) is defined between this minimal
time feedback controller and other controllers defined on a neighborhood of S.
The main result of Prieur, Trélat (2006) then asserts that, in these conditions,
the point x̄ is semi-globally robustly asymptotically stabilizable, with a minimal
time property.

The strategy is to combine a minimal time controller that is smooth on a part
of the state space, and other controllers defined on the complement of this part,
so as to provide a quasi minimal time hybrid controller by defining a switching
strategy between all control laws. The resulting hybrid law enjoys a quasi
minimal time property, and robustness with respect to (small) measurement
noise, actuator errors and external disturbances.

In the present paper, we investigate the Martinet system (1), (3), for which
there exist singular minimizing trajectories, and thus Prieur, Trélat (2006) can
not be applied. However, the previous procedure can be used, for two main
reasons. First, the minimal time function can be proved to belong to the log-exp
class (see van den Dries, 1994), which is a o-minimal extension of the subanalytic
class, and thus, its singular set S is a stratified submanifold of codimension
greater than or equal to one. This stratification property allows to define a
switching strategy near the manifold S. Second, the set of extremities of singular
trajectories is small in S, and invariance properties for the optimal flow thus
still hold in IR3 \ S. This fact is, however, far from being general.

The paper is organized as follows. In Section 2, we first recall some facts
about the minimal time problem for system (1) with (3), and recall the def-
inition of a singular trajectory. Then, we recall a notion of solution adapted
to hybrid feedback laws, and the concept of stabilization via a minimal time
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hybrid feedback law. The main result, Theorem 1, states that the origin is a
semi-globally minimal time robustly stabilizable equilibrium for the system (1),
(3). The remainder of the paper is devoted to the proof of this result. In Section
3, we gather some known results for the minimal time problem in the Martinet
case, and in particular, explain that the minimal time function belongs to the
log-exp class. A definition of a log-exp function is also provided, as well as some
crucial properties of o-minimal classes. In Section 4, we define the components
of the hysteresis. The first component consists of the minimal time feedback
controller, defined on the whole IR3, except on a stratified submanifold. We
then make precise the second component of this hysteresis, using Lie brackets
of the vector fields f1 and f2. Finally, an hybrid feedback law is defined, using
a hysteresis to connect both components. The main result is proved in Section
4.4. Section 5 is devoted to a conclusion and further comments.

2. Definitions and main result

2.1. The minimal time problem

Consider the minimal time problem for system (1) with the constraint (3). Since
the Lie Algebra Rank Condition holds for the pair (f1, f2), any two points of
IR3 can be joined by a minimal time trajectory of (1), (3). Denote by T (x) the
minimal time needed to steer system (1) with the constraint (3) from a point
x ∈ IR3 to the origin 0 of IR3.

Note that, obviously, the control function associated to a minimal time tra-
jectory of (1), (3), actually satisfies u2

1 + u2
2 = 1.

For T > 0, let UT denote the (open) subset of u(·) in L∞([0, T ], IR2) such
that the solution of (1), starting from 0 and associated to a control u(·) ∈ UT ,
is well defined on [0, T ]. The mapping

ET : UT −→ IR3

u(·) 7−→ x(T ),

which to a control u(·) associates the end-point x(T ) of the corresponding so-
lution x(·) of (1) starting at 0, is called end-point mapping at time T ; it is a
smooth mapping.

Definition 1 A trajectory x(·) of (1), with x(0) = 0, is said singular on [0, T ] if
its associated control u(·) is a singular point of the end-point mapping ET (i.e.,
if the Fréchet derivative of ET at u(·) is not onto). In that case, the control u(·)
is said to be singular.

2.2. Class of controllers and notion of hybrid solution

In this section, we recall the general setting for hybrid systems.
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Let f : IR3 × IR2 → IR3 be defined by f(x, u) = u1f1(x) + u2f2(x). System
(4) writes

ẋ(t) = f(x(t), u(t)). (6)

The controllers under consideration in this paper depend on the continuous
state x ∈ IR3 and also on a discrete variable sd ∈ N , where N is a nonempty
countable set. According to the concept of a hybrid system of Goebel, Teel,
(2006), we introduce the following definition (see also Prieur, Trélat, 2006).

Definition 2 A hybrid feedback is a 4-tuple (C, D, k, kd), where
• C and D are subsets of IR3 ×N ;
• k : IR3 ×N → IR2 is a function;
• kd : IR3 ×N → N is a function.

The sets C and D are, respectively, called the controlled continuous evolution
set and the controlled discrete evolution set.

We next recall the notion of robustness to small noise (see Sontag, 1999).
Consider two functions e and d satisfying the following regularity assumptions:

e(·, ·), d(·, ·) ∈ L∞
loc(IR

3 × [0, +∞); IR3),

e(·, t), d(·, t) ∈ C0(IR3, IR3), ∀t ∈ [0, +∞).
(7)

We introduce these functions as a measurement noise e and an external dis-
turbance d. Below, we define the perturbed hybrid system H(e,d). The notion
of solution of such hybrid perturbed systems has been well studied in the lit-
erature (see, e.g., Bensoussan, Menaldi, 1997; Branicky, 1998; Litsyn, Nepom-
nyashchikh, Ponosov, 2000; Prieur, 2005; Prieur, Astolfi, 2003; Tavernini, 1987).
Here, we consider the notion of solution given in Goebel, Teel (2006), Goebel
et al. (2004).

Definition 3 Let S =
⋃J−1

j=0 [tj , tj+1]×{j}, where J ∈ IN∪{+∞} and (x0, s0) ∈

IR3 × N . The domain S is said to be a hybrid time domain. A map (x, sd) :
S → IR3 ×N is said to be a solution of H(e,d) with the initial condition (x0, s0)
if

• the map x is continuous on S;
• for every j, 0 6 j 6 J −1, the map x : t ∈ (tj , tj+1) 7→ x(t, j) is absolutely

continuous;
• for every j, 0 6 j 6 J − 1 and almost every t > 0, (t, j) ∈ S, we have

(x(t, j) + e(x(t, j), t), sd(t, j)) ∈ C, (8)

and

ẋ(t, j) = f(x(t), k(x(t, j) + e(x(t, j), t), sd(t, j))) + d(x(t, j), t), (9)

ṡd(t, j) = 0; (10)

(where the dot stands for the derivative with respect to the time variable t)
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• for every (t, j) ∈ S, (t, j + 1) ∈ S, we have

(x(t, j) + e(x(t, j), t), sd(t, j)) ∈ D, (11)

and

x(t, j + 1) = x(t, j), (12)

sd(t, j + 1) = kd(x(t, j) + e(x(t, j), t), sd(t, j)); (13)

• (x(0, 0), sd(0, 0)) = (x0, s0).

In this context, we next recall the concept of stabilization of (6) by a min-
imal time hybrid feedback law sharing a robustness property with respect to
measurement noise and external disturbances (see Prieur, Trélat, 2005a). The
usual Euclidean norm in IR3 is denoted by | · |, and the open ball centered at 0
with radius R is denoted B(0, R). Recall that a function of class K∞ is a func-
tion δ: [0, +∞) → [0, +∞) which is continuous, increasing, satisfying δ(0) = 0
and limR→+∞ δ(R) = +∞.

Definition 4 Let ρ : IR3 → IR be a continuous function satisfying

ρ(x) > 0, ∀x 6= 0. (14)

We say that the completeness assumption for ρ holds if, for all (e, d) satisfying
the regularity assumptions (7), and such that,

sup[0,+∞)|e(x, ·)| 6 ρ(x), esssup[0,+∞)|d(x, ·)| 6 ρ(x), ∀x ∈ IR3, (15)

for every (x0, s0) ∈ IR3×N , there exists a maximal solution on [0, +∞) of H(e,d)

starting from (x0, s0).

Definition 5 We say that the uniform finite time convergence property holds
if there exists a continuous function ρ : IR3 → IR satisfying (14), such that the
completeness assumption for ρ holds, and if there exists a function δ : [0, +∞) →
[0, +∞) of class K∞ such that, for every R > 0, there exists τ = τ(R) > 0, for
all functions e, d satisfying the regularity assumptions (7) and inequalities (15)
for this function ρ, for every x0 ∈ B(0, R), and every s0 ∈ N , the maximal
solution (x, sd) of H(e,d) starting from (x0, s0) satisfies

|x(t, j)| 6 δ(R), ∀t > 0, (t, j) ∈ S, (16)

and

x(t, j) = 0, ∀t > τ, (t, j) ∈ S. (17)

Definition 6 The point 0 is said to be a semi-globally minimal time robustly
stabilizable equilibrium for system (6) if, for every ε > 0 and every compact
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subset K ⊂ IR3, there exists a hybrid feedback law (C, D, k, kd) satisfying the
constraint

‖k(x, sd)‖ 6 1, (18)

where ‖ · ‖ stands for the Euclidean norm in IR2, such that:
• the uniform finite time convergence property holds;
• there exists a continuous function ρε,K : IR3 → IR satisfying (14) for

ρ = ρε,K , such that, for every (x0, s0) ∈ K×N , all functions e, d satisfying
the regularity assumptions (7) and inequalities (15) for ρ = ρε,K , the
maximal solution of H(e,d) starting from (x0, s0) reaches 0 within time
T (x0)+ε, where T (x0) denotes the minimal time to steer system (6) from
x0 to 0, under the constraint ‖u‖ 6 1.

2.3. Main result

Theorem 1 The origin is a semi-globally minimal time robustly stabilizable
equilibrium for system (1) with the constraint (3).

The strategy is the following. The minimal time function T (x) to steer
system (1) from x to 0, under the constraint (3), belongs to the log-exp class,
and thus, is stratifiable (see next section). Hence, the corresponding minimal
time feedback controller is continuous (even analytic) on IR3 \ S, where S is
the set of points of IR3 at which T is not analytic. Since T is log-exp, S is
a stratified submanifold of IR3, of codimension greater than or equal to one.
In a neighborhood of S, it is therefore necessary to use other controllers, and
to define an adequate switching strategy. Notice that this neighborhood can
be chosen arbitrarily thin, and thus, the time ε needed for its traversing is
arbitrarily small. Therefore, starting from an initial point x0, the time needed
to join 0, using this hybrid strategy, is equal to T (x0) + ε.

3. The minimal time problem in the Martinet case

In this section, we briefly recall some known results for the minimal time problem
in the Martinet case, gathered from Agrachev et al., 1997; Bonnard, Chyba,
2003; Bonnard, Launay, Trélat, 2001; Bonnard, Trélat, 2001; Trélat, 2000.

3.1. Parametrization of extremals

It follows from the Pontryagin Maximum Principle (see Pontryagin et al., 1962)
that every minimal time trajectory of (1), (3), starting from 0, is the projection
of an extremal, that is, a 4-tuple (x(·), p(·), p0, u(·)) solution of the Hamiltonian
system

ẋ =
∂H

∂p
(x, p, p0, u), ṗ = −

∂H

∂x
(x, p, p0, u),

∂H

∂u
(x, p, p0, u) = 0,
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where H(x, p, p0, u) = 〈p, u1f1(x) + u2f2(x)〉 + p0(u2
1 + u2

2) is the Hamiltonian
function, p(·) is an absolutely continuous function called adjoint vector, and p0

is a nonpositive constant. If p0 6= 0, the extremal is said to be normal, and we
normalize to p0 = − 1

2 . Otherwise it is said abnormal. Note that every abnormal
extremal projects onto a singular trajectory (and conversely).

In the Martinet case, the abnormal extremals (that is, p0 = 0) correspond
to u1 = ±1, u2 = 0. Their projections are singular trajectories, solutions of the
vector field ∂

∂x1

, contained in the plane x2 = 0. There exists a unique singular
direction passing through 0, given by x1(t) = ±t, x2(t) = x3(t) = 0. These
singular trajectories are indeed minimal time (see Agrachev et al., 1997).

Normal extremals are computed with p0 = −1/2. They are parametrized in
Agrachev et al. (1997) using elliptic functions (see also Bonnard, Chyba, 2003,
for details).

3.2. The log-exp class

For the sake of completeness, we recall the definition of a subanalytic function
(see Hardt, 1975; Hironaka, 1973), then the one of a log-exp function (see van
den Dries, Macintyre, Marker, 1994), and some properties that are used in a
crucial way in the present paper.

Let M be a real analytic finite dimensional manifold. A subset A of M is said
to be semi-analytic if and only if, for every x ∈ M , there exists a neighborhood
U of x in M and 2pq analytic functions gij , hij (1 6 i 6 p and 1 6 j 6 q), such
that

A ∩ U =

p
⋃

i=1

{y ∈ U | gij(y) = 0 and hij(y) > 0, j = 1 . . . q}.

Let SEM(M) denote the set of semi-analytic subsets of M . The image of a semi-
analytic subset by a proper analytic mapping is not in general semi-analytic,
and thus this class has to be enlarged.

A subset A of M is said to be subanalytic if and only if, for every x ∈ M ,
there exists a neighborhood U of x in M and 2p couples (Φδ

i , A
δ
i ) (1 6 i 6 p

and δ = 1, 2), where Aδ
i ∈ SEM(M δ

i ), and where the mappings Φδ
i : M δ

i → M
are proper analytic, for real analytic manifolds M δ

i , such that

A ∩ U =

p
⋃

i=1

(Φ1
i (A

1
i )\Φ

2
i (A

2
i )).

Let SUB(M) denote the set of subanalytic subsets of M .
The subanalytic class is closed by union, intersection, complementary, in-

verse image by an analytic mapping, image by a proper analytic mapping. In
brief, the subanalytic class is o-minimal (see van den Dries, Miller, 1996). More-
over, subanalytic sets are stratifiable in the following sense. A stratum of a dif-
ferentiable manifold M is a locally closed sub-manifold of M . A locally finite
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partition S of M is a stratification of M if any S ∈ S is a stratum such that

∀T ∈ S T ∩ ∂S 6= ∅ ⇒ T ⊂ ∂S and dim T < dim S.

Finally, a mapping between two analytic manifolds M and N is said to be
subanalytic if its graph is a subanalytic subset of M × N .

The log-exp class, defined in van den Dries, Macintyre, Marker (1994), is
an extension of the subanalytic class with functions log and exp, sharing the
same properties with the one of subanalytic sets (namely, it is an o-minimal
class). More precisely, a log-exp function is defined by a finite composition of
subanalytic functions, of exponentials and logarithms; if g1, . . . , gm, are log-exp
functions in IRn, and if F is a log-exp function in IRm, then the composition
F ◦ (g1, . . . , gm) is a log-exp function in IRn. A log-exp set is defined by a finite
number of equalities and inequalities using log-exp functions.

Let M be an analytic manifold, and F be a log-exp function on M . The
analytic singular support of F is defined as the complement of the set of points
x in M such that the restriction of F to some neighborhood of x is analytic.
The following property is of great interest in the present paper.

Proposition 1 (van den Dries, Macintyre, Marker, 1994; Tamm, 1981) The
analytic singular support of F is log-exp (and thus, in particular, is stratifiable).
If F is, moreover, locally bounded on M , then it is also of codimension greater
than or equal to one.

3.3. Regularity of the minimal time function in the Martinet case

The following crucial result has been proved in Bonnard, Launay, Trélat (2001)
(see also Agrachev et al., 1997; Bonnard, Trélat, 2001; Trélat, 2000a, and the
textbook Bonnard, Chyba, 2003, which contains a survey on the Martinet case).

Proposition 2 The minimal time function T to 0 of system (1), (3), belongs
to the log-exp class.

It has been proved in Agrachev et al. (1997) that T is not subanalytic, by
analyzing the extremal flow given by the Pontryagin Maximum Principle, and
using a parameterization with elliptic functions. Note that this loss of suban-
alyticity is due to the presence of the singular minimizing direction (0x1). A
careful analysis then allows to show that the minimal time function is expressed
as an analytic function of some specific monomials, themselves being particular
log-exp functions (see Bonnard, Launay, Trélat, 2001, for a general result, and
an algorithm of computation in the log-exp class).

4. Components of the hysteresis, and hybrid strategy

It follows from Proposition 2 that the minimal function T (·) is log-exp, and
hence, from Proposition 1, its singular set S = Sing T (·) (i.e., the analytic sin-
gular support of T (·)) is a stratified submanifold of IR3, of codimension greater
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than or equal to one. The objective is to construct neighborhoods of S in IR3

whose complements share invariance properties for the optimal flow.

4.1. The optimal controller

In this section, we define the optimal controller, and give some properties of the
Carathéodory solutions of (1) with this feedback law.

Outside the set S, the function T is smooth. It follows from the Pontryagin
maximum principle and the Hamilton-Jacobi theory (see Pontryagin et al., 1962)
that the minimal time control functions, steering a point x = (x1, x2, x3) ∈
IR3 \ S to the origin, are given by the closed-loop formula

u1(x) = −
1

2
〈∇T (x), f1(x)〉 = −

1

2

(

∂T

∂x1
+

x2
2

2

∂T

∂x3

)

,

u2(x) = −
1

2
〈∇T (x), f2(x)〉 = −

1

2

∂T

∂x2
.

(19)

The set S actually consists of the union of the axis (0x1) (i.e., the singular
direction) and of the cut locus. Recall that, by definition, a point x ∈ IR3 is
not a cut point with respect to 0 if there exists a minimizing trajectory joining
0 to x, which is the strict restriction of a minimizing trajectory starting from
0. The cut locus of 0, denoted by L(0), is defined as the set of all cut points
with respect to 0. Note that a general result of Jacquet (2001) implies that
the minimal time function is analytic at the point x, provided that x is not
joined from 0 by a singular minimizing trajectory, and that there exists only
one minimizing trajectory steering 0 to x.

Moreover, it follows from the computations of Agrachev et al. (1997) that
the plane x2 = 0 is contained in S (see also Bonnard, Trélat, 2001), and that
the axis (0x1) is contained in the adherence of the cut locus L(0).

Outside S, the smoothness of this optimal controller ensures a robustness
property of the stability. A switching strategy is then necessary between this
optimal controller, denoted uopt, and other controllers defined in a neighborhood
of S (see Section 4.2). The switching strategy is achieved by adding a dynamical
discrete variable sd and using a hybrid feedback law (see Section 4.3).

Lemma 1 For every neighborhood Ω of S in IR3, there exists a neighborhood Ω′

of S, satisfying

Ω′ ( clos(Ω′) ( Ω, (20)

such that every trajectory of the closed-loop system (4) with the optimal con-
troller, joining a point x ∈ IR3 \ Ω to 0, is contained in IR3 \ Ω′.

The proof of this lemma follows Prieur, Trélat (2006, Lemma 4.2). However,
in this latter reference, one has S = L(0). Here, S is the union of L(0) and of
the axis (0x1).
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Proof. It suffices to prove that, for every compact subset K of IR3, for every
neighborhood Ω of S \ {0} in IR3, there exists a neighborhood Ω′ of S \ {0}
in IR3, satisfying (20), such that every trajectory of the closed-loop system (4)
with the optimal controller, joining a point x ∈ (IR3 \ Ω) ∩ K to 0, is contained
in IR3 \ Ω′.

Let x ∈ (IR3 \ Ω) ∩ K. By definition of the cut locus L(0), every optimal
trajectory joining x to 0 does not intersect L(0). Moreover, it does not intersect
the axis (0x1) too; indeed, it follows from Agrachev et al. (1997) that the unique
optimal trajectory joining 0 to a point (a, 0, 0) of the axis (0x1) is necessarily
associated to the control u1 = 1, u2 = 0 if a > 0 (resp., u1 = −1, u2 = 0 if
a < 0), thus, is singular, and contained in the axis (0x1). Finally, every optimal
trajectory joining x to 0 does not intersect S, and thus has a positive distance
to the stratified manifold S.

Since there does not exist any nontrivial singular minimizing trajectory start-
ing from 0 and joining a point of (IR3 \ Ω) ∩ K, it follows that the optimal flow
joining points of the compact set (IR3\Ω)∩K to 0 is parameterized by a compact
set (for the details of this general reasoning, we refer the reader to Agrachev,
1998; Trélat, 2000a,b, see also Prieur, Trélat, 2006, where it is used in a crucial
way). Hence, there exists a positive real number δ > 0 so that every optimal
trajectory joining a point x ∈ (IR3 \ Ω) ∩ K to 0 has a distance to the set S
which is greater than or equal to δ. The existence of Ω′ follows.

Now, as this optimal controller has been defined, we investigate the ro-
bustness properties of system (1) in closed-loop with this controller. Given
e, d : IR3 × [0, +∞) → IR3, the perturbed closed-loop system under considera-
tion in this section has the form

ẋ(t) = f(x(t), uopt(x(t) + e(x(t), t))) + d(x(t), t). (21)

Below, a robust version of Lemma 1 is stated for every noise vanishing along
the discontinuous set of the optimal controller.

Lemma 2 There exist a continuous function ρopt : IR → IR satisfying

ρopt(ξ) > 0, ∀ξ 6= 0, (22)

and a continuous function δopt : [0, +∞) → [0, +∞) of class K∞ such that the
following three properties hold:

• Robust Stability
For every neighborhood Ω of S, there exists a neighborhood Ω′ ⊂ Ω of
S, such that, for all e, d : IR3 × [0, +∞) → IR3 satisfying the regularity
assumptions (7) and, for every x ∈ IR3,

sup[0,+∞)|e(x, ·)| 6 ρopt(d(x,S)), esssup[0,+∞)|d(x, ·)| 6 ρopt(d(x,S)),

(23)
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and for every x0 ∈ IR3 \ Ω, there exists a unique Carathéodory solution
x(·) of (21) starting from x0, maximally defined on [0, +∞), and satisfying
x(t) ∈ IR3 \ Ω′, for every t > 0.

• Finite time convergence
For every R > 0, there exists τopt = τopt(R) > 0 such that, for all e, d :
IR3 × [0, +∞) → IR3 satisfying the regularity assumptions (7) and (23),
for every x0 ∈ IR3 with |x0| 6 R, and every maximal solution x(·) of (21)
starting from x0, one has

|x(t)| 6 δopt(R), ∀t > 0, (24)

x(t) = 0, ∀t > τopt, (25)

and

‖uopt(x(t))‖ 6 1, ∀t > 0. (26)

• Optimality
For every neighborhood Ω of S, every ε > 0, and every compact subset
K of IR3, there exists a continuous function ρε,K : IR3 → IR satisfying
(22) such that, for all e, d : IR3 × [0, +∞) → IR3 satisfying the regularity
assumptions (7) and

sup[0,+∞)|e(x, ·)| 6 min(ρopt(d(x,S)), ρε,K (x)),

esssup[0,+∞)|d(x, ·)| 6 min(ρopt(d(x,S), ρε,K (x)), ∀x ∈ IR3,
(27)

and for every x0 ∈ K ∩ (IR3 \ Ω), the solution of (21), starting from x0,
reaches 0 within time T (x0) + ε.

Proof. Since Carathéodory conditions hold for system (21), the existence of a
unique forward Carathéodory solution of (21), for every initial condition, is en-
sured. Note that, since the controller uopt is the minimal time control steering
x to the origin under the constraint (3), the inequality (26) holds. Since the
optimal controller uopt defined by (19) is continuous on IR3\S, Lemma 1 implies
the existence of ρopt : [0, +∞) → [0, +∞). The last part of the result follows
from (19) and from the continuity of solutions with respect to disturbances.

4.2. The second component of the hysteresis

In this section, we define the second component of the hysteresis, which consists
of a set of controllers, defined in a neighborhood of S.

Since S is a stratified submanifold of IR3 of codimension greater than or equal
to one (see Proposition 1), there exists a partition (Mi)i∈IN of S, where Mi is a
stratum, i.e. a locally closed submanifold of IR3. Recall that, if Mi ∩ ∂Mj 6= ∅,
then Mi ⊂ Mj and dim(Mi) < dim(Mj).
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Lemma 3 For every ε > 0, there exists a neighborhood Ω of S such that, for
every stratum Mi of S, there exist a nonempty subset Ni of IN, a locally finite
family (Ωi,p)p∈Ni

of open subsets of Ω, a sequence of smooth controllers ui,p

defined in a neighborhood of Ωi,p, satisfying ‖ui,p‖ 6 1, and there exists a con-
tinuous function ρi,p : IR3 → [0, +∞) satisfying ρi,p(x) > 0 whenever x 6= 0,
such that every solution of

ẋ(t) = f(x(t), ui,p(x(t) + e(x(t), t))) + d(x(t), t), (28)

where e, d : IR3 × [0, +∞) → IR3 are two functions satisfying the regularity
assumptions (7) and

sup[0,+∞)|e(x, ·)| 6 ρi,p(x), esssup[0,+∞)|d(x, ·)| 6 ρi,p(x), (29)

starting from Ωi,p and maximally defined on [0, T ), leaves Ω within time ε;
moreover, there exists a function δi,p of class K∞ such that, for every R > 0,
every such solution starting from Ωi,p ∩ B(0, R) satisfies

|x(t)| 6 δi,p(R), ∀t ∈ [0, T ). (30)

This lemma is proved in Prieur, Trélat (2006). It can be applied here, due
to the crucial fact that S is a stratified submanifold of IR3. For the sake of
completeness, we however give a proof below.

Proof. First of all, recall that, under the Lie Algebra Rank Condition, the topol-
ogy defined by the sub-Riemannian distance dSR coincides with the Euclidean
topology of IR3, and that, since IR3 is complete, any two points of IR3 can be
joined by a minimizing path.

Let ε > 0 be fixed. Since S is a stratified submanifold of IR3, there exists a
neighborhood Ω of S satisfying the following property: for every y ∈ S, there
exists z ∈ IR3 \ clos(Ω) such that dSR(y, z) < ε.

Consider a stratum Mi of S. For every y ∈ Mi, let z ∈ IR3 \ clos(Ω) such
that dSR(y, z) < ε. The Lie Algebra Rank Condition implies that there exists
an open-loop control t 7→ uy(t), defined on [0, T ) for a T > ε, satisfying the
constraint ‖uy‖ 6 1, such that the associated trajectory xy(·) (which can be
assumed to be one-to-one), a solution of the Martinet system, starting from y,
reaches z (and thus, leaves clos(Ω)) within time ε. Using a density argument, the
control uy can be, moreover, chosen as a smooth function. Since the trajectory is
one-to-one, the open-loop control t 7→ uy(t) can be considered as a feedback t 7→
uy(xy(t)) along xy(·). Consider a smooth extension of uy on IR3, still denoted
uy, satisfying the constraint ‖uy(x)‖ 6 1, for every x ∈ IR3. By continuity,
there exists a neighborhood Ωy of y, and positive real numbers δy and ρy, such
that every solution of

ẋ(t) = f(x(t), uy(x(t) + e(x(t), t))) + d(x(t), t), (31)
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where e, d : IR3 × [0, +∞) → IR3 are two functions satisfying the regularity
assumptions (7) and

sup[0,+∞)|e(x, ·)| 6 ρy, esssup[0,+∞)|d(x, ·)| 6 ρy ,

starting from Ωy and maximally defined on [0, T ), leaves Ω within time ε; more-
over,

|x(t)| 6 δy, ∀t ∈ [0, T ).

Repeat this construction for each y ∈ Mi.
Now, on the one hand, let (yp)p∈Ni

be a sequence of points of Mi such that
the family (Ωyp

)p∈Ni
is a locally finite covering of Mi, where Ni is a subset of

IN. Define Ωi,p = Ωyp
and ui,p = uyp

.

On the other hand, the existence of a continuous function ρi,p : IR3 →
[0, +∞), satisfying ρi,p(x) > 0 whenever x 6= 0, follows for the continuity of
solutions with respect to disturbances. The existence of a function δi,p of class
K∞ such that (30) holds, is obvious.

Repeat this construction for every stratum Mi of S. Then, the statement of
the lemma follows.

4.3. Definition of the hybrid feedback law

The following construction of the hybrid feedback law, using an hysteresis, is
already known. The definitions and properties recalled in this section readily
follow those of Prieur, Trélat (2006), and are given hereafter for the sake of
completeness.

Let F = {1, . . . , 7}, and N be a countable set. In the sequel, Greek letters
refer to elements of N . Fix ω, an element of N , considered as the largest
element of N , i.e., ω is greater than any other element of N . We, however, do
not introduce any order in N . This element ω has actually a particular role in
the sequel, since it will refer to the optimal controller in the hybrid feedback
law defined below.

Given a set-valued map F : IR3
⇉ IR3, the solutions x(·) of the differential

inclusion ẋ ∈ F (x) consist of all absolutely continuous functions satisfying ẋ(t) ∈
F (x(t)) almost everywhere.

Definition 7 The family (IR3 \ {0}, ((Ωα,l)l∈F , gα)α∈N ) is said to satisfy the
property (P) if:

1. for every (α, l) ∈ N ×F , Ωα,l is an open subset of IR3;
2. for every α ∈ N , and every m > l ∈ F ,

Ωα,l ( clos(Ωα,l) ( Ωα,m; (32)
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3. for every α in N , gα is a smooth vector field, defined in a neighborhood of
clos(Ωα,7), taking values in IR3;

4. for every (α, l) ∈ N × F , l 6 6, there exists a continuous function ρα,l :
IR3 → [0, +∞) satisfying ρα,l(x) 6= 0 whenever x 6= 0 such that every
maximal solution x(·) of

ẋ ∈ gα(x) + B(0, ρα,l(x)); (33)

defined on [0, T ) and starting from ∂Ωα,l, is such that

x(t) ∈ clos(Ωα,l+1) , ∀t ∈ [0, T );

5. for every l ∈ F , the sets (Ωα,l)α∈N form a locally finite covering of IR3 \
{0}.

We next define a class of hybrid controllers as those considered in Section 2
(see also Prieur, Goebel, Teel, 2005).

Definition 8 Let (IR3 \ {0}, ((Ωα,l)l∈F , gα)α∈N ) satisfy the property (P) as in
Definition 7. Assume that, for every α in N , there exists kα ∈ IR2, satisfying
the constraint (3), such that, for every x in a neighborhood of Ωα,7,

gα(x) = f(x, kα). (34)

Set

D1 = Ωω,2, (35)

Dα,2 = IR3 \ Ωα,6. (36)

Let (C, D, k, kd) be the hybrid feedback defined by

C =
{

(x, α) | x ∈
(

clos(Ωα,4) \ Ωω,1

)}

, (37)

D = {(x, α) | x ∈ D1 ∪ Dα,2}, (38)

k : IR3 ×N → IR2

(x, α) 7→ kα(x) if x ∈ Ωα,7,
0 else,

(39)

and

kd : IR3 ×N ⇉ N
(x, α) 7→ α′ > α, if x ∈ clos(Ωα′,1 ∩ Dα,1) and if x 6∈ Dα,2,

α, if x ∈ clos(Ωα,1 ∩ Dα,2).
(40)

The 4-tuple (C, D, k, kd) is a hybrid feedback law on IR3 as considered in Sec-
tion 2.2. We denote by H(e,d) the system (6) in closed-loop with such a feedback
with the perturbations e and d as measurement noise and external disturbance
respectively.
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To investigate the robustness properties, we introduce the following defini-
tion (see Prieur, Trélat, 2006).

Definition 9 Let χ : IR3 → IR be a continuous map such that χ(x) > 0, for
every x 6= 0.

• We say that χ is an admissible radius for the measurement noise, if, for
every x ∈ IR3 and every α ∈ N , such that x ∈ Ωα,7,

χ(x) <
1

2
min

l∈{1,...,6}
d(IR3 \ Ωα,l+1, Ωα,l). (41)

• We say that χ is an admissible radius for the external disturbances if, for
every x ∈ IR3, we have

χ(x) 6 max
(α,l), x∈Ωα,l

ρα,l(x).

There exists an admissible radius for the measurement noise and for the
external disturbances (note that, from (32), the right-hand side of the inequality
(41) is positive).

Consider an admissible radius χ for the measurement noise and the external
disturbances. Let e and d be a measurement noise and an external disturbance
respectively, such that, for all (x, t) ∈ IR3 × [0, +∞),

e(x, t) 6 χ(x), d(x, t) 6 χ(x). (42)

The properties of the solutions of the closed-loop with the hybrid feedback
law defined in Definition 8 have been stated in Prieur, Trélat (2006) (see also
Prieur, Goebel, Teel, 2005; Prieur, Trélat, 2005a), and we briefly recall them.

1. For all (x0, s0) ∈ IR3 × N , there exists a solution of H(e,d) starting from
(x0, s0). Recall that a Zeno-solution is a complete solution, whose domain
of definition is bounded in the t-direction. A solution (x, sd), defined on
a hybrid domain S, is an instantaneous Zeno-solution, if there exist t > 0
and an infinite number of j ∈ IN such that (t, j) ∈ S.

2. There do not exist instantaneous Zeno-solutions, although a finite number
of switches may occur at the same time.

3. Let (x, sd) be a maximal solution of H(e,d) defined on a hybrid time S.
Suppose that the supremum T of S in the t-direction is finite. Then,
lim supt→T,(t,l)∈S |x(t, l)| = +∞.

4. For every α ∈ A, set

τα = sup
{

T | x is a Carathéodory solution of ẋ ∈ f(x, kα) + B(0, χ(x))

with x(t) ∈ Ωα,7, ∀t ∈ [0, T )
}

. (43)

Note that, at this stage, there may exist α ∈ A such that τα = +∞.
Let (x, sd) be a solution of H(e,d) defined on a hybrid time domain S and

starting in IR3 \ {0}×N . Let T be the supremum in the t-direction of S.
Then, one of the two following cases may occur:
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• either there exists no positive jump time, more precisely there exists
α ∈ N such that,

(a) for almost every t ∈ (0, T ) and for every l such that (t, l) ∈ S,
one has k(sd(t, l)) = kα;

(b) the map x is a Carathéodory solution of ẋ = f(x, kα) + d on
(0, T );

(c) for every t ∈ (0, T ), and every l such that (t, l) ∈ S, one has
x(t, l) + e(x(t, l), t) ∈ clos(Ωα,4) \ Ωω,1;

(d) for all (t, l) ∈ S, t > 0, one has x(t, l) + e(x(t, l), t) 6∈ D, where
D is defined by (38);

(e) the inequality T < τα holds.

• or there exists a unique positive jump time, more precisely there exist
α ∈ N \{ω} and t1 ∈ (0, T ) such that, letting t0 = 0, t2 = T , α0 = α,
and α1 = ω, for every j = 0, 1, the following properties hold:

(f) for almost every t ∈ (tj , tj+1) and for every l such that (t, l) ∈ S,
one has k(sd(t, l)) = kαj

;

(g) the map x is a Carathéodory solution of ẋ = f(x, kαj
) + d on

(tj , tj+1);

(h) for every t ∈ (t0, t1), and every l such that (t, l) ∈ S, one has
x(t, l) + e(x(t, l), t) ∈ clos(Ωα,4) \ Ωω,1;

(i) for every t in (tj , tj+1), and every l such that (t, l) ∈ S, one has
x(t, l) + e(x(t, l), t) 6∈ Dαj ,2, where Dαj ,2 is defined by (36);

(j) the inequality t1 < τα0
holds.

We next define our hybrid feedback law. Let ε > 0 and K be a compact
subset of IR3. Let Ω be the neighborhood of S given by Lemma 3. For this
neighborhood Ω, let Ω′ ⊂ Ω be the neighborhood of S yielded by Lemma 1.

Let N be the countable set defined by

N = {(i, p), i ∈ IN, p ∈ Ni} ∪ {ω},

where ω is an element of IN × IN, distinct from every (i, p), i ∈ IN, p ∈ Ni.
We proceed in two steps.

Step 1: Definition of kα and Ωα,l, where α ∈ N \ {ω} and l ∈ F
Let i ∈ IN. Lemma 3, applied with the stratum Mi, implies the exis-

tence of a family of smooth controllers (ki,p)p∈Ni
satisfying the constraint (5),

and of a family of neighborhoods (Ωi,p,7)p∈Ni
. The existence of the families

(Ωi,p,1)p∈Ni
, . . . , (Ωi,p,6)p∈Ni

, satisfying

Ωi,p,l ( clos(Ωi,p,l) ( Ωi,p,m,

for every m > l ∈ F , follows from a finite induction argument, using Lemma 3.
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Step 2: Definition of kω and Ωω,l, where l ∈ F
Let Ωω,1 be an open set of IR3 containing IR3 \

⋃

α∈N\{ω} Ωα,1 and contained

in IR3 \ S. The point 0 belongs to clos(Ωω,1). Lemma 1, applied with Ω =
IR3 \ clos(Ωω,1), allows to define kω as kopt, and Ω′ as a closed subset of IR3 such
that

Ω′ ( Ω, (44)

and such that Ω′ is a neighborhood of S. Set Ωω,2 = IR3 \ Ω′; it is an open
subset of IR3, contained in IR3 \ S. Moreover, from (44),

Ωω,1 ( clos(Ωω,1) ( Ωω,2.

The existence of the sets Ωω,3, ... Ωω,7 follows from a finite induction argument,
using Lemma 1. Moreover, from Lemma 2, we have the following property: for
every l ∈ {1, . . . , 6}, for every x0 ∈ Ωω,l, the unique Carathéodory solution x(·)
of (21), with x(0) = x0, satisfies x(t) ∈ Ωω,l+1, for every t > 0.

From the two previous steps, we can easily check that all requirements of
Definition 7 are satisfied: The family (IR3 \{0}, ((Ωα,l)l∈F , gα)α∈N ) satisfies the
property (P), where gα is a function defined in a neighborhood of Ωα,7 by

gα(x) = f(x, kα).

The hybrid feedback law (C, D, k, kd) is then defined according to Definition 8.

4.4. Proof of the main result

Now that all ingredients have been introduced, the main result follows.
Let ε > 0, and K be a compact subset of IR3. Consider the hybrid feedback

law (C, D, k, kd), defined previously. Let χ : IR3 → IR>0 be an admissible radius
for the external disturbances and the measurement noise (see Definition 9). So
as to reduce this function, we assume that, for every α ∈ N \ {ω},

χ(x) 6 ρopt(d(x,S)), ∀x ∈ Ωω,7, (45)

χ(x) 6 ρα(x), ∀x ∈ Ωα,7. (46)

Note that, from the choice of the components of the hybrid feedback law, and
from Lemma 3, for every α ∈ N \ {ω}, the constant τα defined by (4) satisfies
τα < ε.

Let us prove that the point 0 is a semi-globally minimal time robustly stable
equilibrium for the system H(e,d) in a closed-loop with the hybrid feedback law
(C, D, k, kd) as stated in Theorem 1.

Step 1: Completeness and global stability
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Let R > 0 and δ : [0, +∞) → [0, +∞) of class K∞ be such that, for every
α ∈ N \ {ω},

δ(x) 6 δopt(R), ∀x ∈ Ωω,7, (47)

δ(x) 6 δα(R), ∀x ∈ Ωα,7. (48)

Let e, d be two functions satisfying the regularity assumptions and (42). Let
(x, sd) be a maximal solution of H(e,d) on a hybrid domain S starting from
(x0, s0), with |x0| < R. From Lemmas 2 and 3, we have, for every (t, l) ∈ S,

|x(t, j)| 6 δ(R). (49)

Therefore, since lim supt→T,(t,l)∈S |x(t, l)| 6= +∞, the supremum T of S in the t-
direction is infinite, and the maximality property follows. The stability property
follows from (49).

Step 2: Uniform finite time convergence property

Let x0 ∈ B(0, R), and s0 ∈ N . Let (x, sd) denote the solution of H(e,d)

starting from (x0, s0).

If x0 = 0, then, using (39) and the fact that χ(0) = 0, the solution remains
at the point 0.

We next assume that x0 6= 0. Let α0 ∈ N such that x(·) is a solution of
ẋ = f(x, kα0

(x)) + d on (0, t1) for a t1 > 0.

If α0 = ω, then the feedback law under consideration coincides with the
optimal controller and there does not exist any switching time t > 0. Then,
from Lemma 2, the solution reaches 0 within time T (x0) + ε.

If α0 6= ω, then, from Lemma 3, the solution leaves Ωα0,7 within time ε and
then enters the set Ωω,7. Therefore, with (4), the solution reaches 0 within time
T (x1) + ε, where x1 denotes the point of the solution x(·) when entering Ωω,7.

Let τ(R) = maxx∈δ(R) T (x) + ε. With (49), we get (17) and the uniform
finite time property. Note that, from Lemma 3, the constraint (18) is satisfied.

Step 3: Quasi-optimality

Let K be a compact subset of IR3, and (x0, s0) ∈ K ×N . Let R > 0 be such
that K ⊂ B(0, R). From the previous arguments, two cases occur:

• the solution starting from (x0, s0) reaches 0 within time T (x0)+ε whenever
α0 = ω;

• the solution starting from (x0, s0) reaches 0 within time T (x1) + ε, when-
ever α0 6= ω, where x1 denotes the point of the solution x(·) when entering
Ωω,7. Up to reducing the neighborhoods Ωα,l, one has |T (x0)−T (x1)| 6 ε.
Indeed, T is uniformly continuous on the compact K.

Hence, the maximal solution starting from (x0, s0) reaches 0 within time T (x0)+
2ε. This is the quasi-optimality property.

Theorem 1 is proved.
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5. Conclusion and further comments

In our main result, we proved that the origin is semi-globally minimal time
robustly stabilizable, for the Martinet system (1), (3). This proves that the main
assumption of Prieur, Trélat (2006), namely, the absence of singular minimizing
trajectories, is not necessary to ensure such a stabilization result. Actually,
the crucial fact used in our proof relies on the stratification properties of the
minimal time function. This holds whenever the minimal time function belongs
to the subanalytic class, or to the log-exp class. More generally, this holds in a
o-minimal class. For general analytic control systems of the form (4), (5), in the
absence of singular minimizing trajectory, the minimal time function to a point
can be proved to be subanalytic outside this point (see Prieur, Trélat, 2006).
In the Martinet case, the minimal time function is not subanalytic, due to the
presence of a singular minimizing trajectory, however, it belongs to the log-exp
class, which is also o-minimal, and hence, is still stratifiable.

This situation extends to the so-called Martinet integrable case (see Bon-
nard, Launay, Trélat, 2001). In a neighborhood of 0, a model of this latter case
is given by the two vector fields

f1 = g1(x2)

(

∂

∂x1
+

x2
2

2

∂

∂x3

)

, f2 = g2(x2)
∂

∂x2
,

where g1 and g2 are germs of analytic functions at 0 such that gi(0) = 1. It
is proved in Bonnard, Launay, Trélat (2001) that the minimal time function
still belongs to the log-exp class in this case. This is, however, no longer true
whenever the functions g1, g2 also depend on x1 and x3. In this case, it is
conjectured in Bonnard, Trélat (2001), Trélat (2000a) that the minimal time
function does not belong to the log-exp class. In this latter case, a larger class
is due for describing the regularity of the minimal time function, but it is not
clear if it is possible to find a suitable o-minimal class. This problem is very
intricate and is actually related to the Hilbert 16th problem (see Trélat, 2000a).
Hence, in the general case where singular minimizing trajectories exist, this
problem of regularity is widely open. Although less general, it is, however,
intimately related to the problem of robust stabilization.
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(3).



Hybrid robust stabilization in the Martinet case 943

Ancona, F. and Bressan, A. (2002) Flow stability of patchy vector fields
and robust feedback stabilization. SIAM J. Cont. Opt. 41 (5), 1455–
1476.

Bensoussan, A. and Menaldi, J.L. (1997) Hybrid control and dynamic pro-
gramming. Dyn. Cont. Discrete Impulsive Syst. 3 (3), 395–442.

Bonnard, B. and Chyba, M. (2003) Singular trajectories and their role in
control theory. Math. & Appl. 40 (Berlin).
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