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Abstract: We consider a discounted Markov Decision Process
(MDP) supplemented with the requirement that another discounted
loss must not exceed a specified value, almost surely. We show that
the problem can be reformulated as a standard MDP and solved
using the Dynamic Programming approach. An example on a con-
trolled queue is presented. In the last section, we briefly reinforce the
connection of the Dynamic Programming approach to another close
problem statement and present the corresponding example. Several
other types of constraints are discussed, as well.
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1. Introduction

Constrained problems appear naturally when one considers more than one ob-
jective. Examples can be found in Altman (1999), Chen (2004), Chen and
Blankenship (2004), Piunovskiy (1997), Piunovskiy and Mao (2000), Sniedovich
(1980), Yakowitz (1982), and in other monographs and articles. One can for-
mulate many versions of constrained optimal control problems. Let h be a
trajectory of the system and R(h) and S(h) be the cost functions, and let π
denote a control strategy. (The rigorous mathematical constructions are given
in Section 2.)

Version 1: Eπ[R(h)] → infπ , Eπ[S(h)] ≤ d.

Version 2: Eπ[R(h)] → infπ , S(h) ≤ d P π-a.s.

Version 3: Eπ[R(h)] → infπ , P π[S(h) ≤ d] ≥ α (α ∈ [0, 1]).

Version 4: Eπ[R(h)] → infπ , V arπ [S(h)] ≤ d.
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The main objective can also be of a different form (e.g. P π[R(h) ≤ c] → supπ);
there can be several constraints (e.g. Eπ[S1(h)] ≤ d1; P π[S2(h) ≤ d2] ≥ α),
and so on. Of course, the cost function S itself can be vector-valued.

Version 1 was studied in Altman (1999), Chen and Blankenship (2004),
Piunovskiy (1997), Piunovskiy and Mao (2000), Feinberg and Shwartz (1999),
Tanaka (1991), and in many other papers (see the survey in Piunovskiy, 1998).
The main instrument here was the Convex Analytic Approach leading to Linear
Programs. In Chen and Blankenship (2004), Piunovskiy and Mao (2000), and
partially in Feinberg and Shwartz (1999), Dynamic Programming is used to
tackle the Version 1 type problems. At the same time, this method is also
numerically convenient; moreover, it allows to build ALL (Markov) optimal
control strategies.

Versions 2-4 received less attention. Type 2 is only mentioned in Chen
and Blankenship (2004), Piunovskiy and Mao (2000). This is possibly because
Version 2 frequently has no feasible strategies at all. In contrast to Version 1, the
Convex Analytic Approach is problematic here, but the Dynamic Programming
Approach is natural and straightforward. Clearly, many resource allocation
problems can be reformulated as Version 2 problems. (For instance, the example
solved in Section 4 belongs to this class.) In such a situation it is possible to
satisfy constraints almost surely, because the value of resource allocated at each
step is non-random under the known current state of the process.

Version 3 (entirely probabilistic criteria: P π[R(h) ≤ c] → supπ) was studi-
ed in Chen (2004), see also Yakowitz (1982). Version 4 was investigated in
Sniedovich (1980). These papers are mainly based on the dynamic programming
method.

In the present article (Sections 2 and 3), we focus on Version 2. The main
idea is similar to the penalty functions method; as a result, we obtain an equiva-
lent unconstrained optimization problem and apply the Dynamic Programming
method to it (Statement 3.1). The model under consideration is Markovian,
with the total cost optimality criterion. Section 4 is devoted to an example of a
controlled queue. In Section 5, we briefly discuss other versions of constrained
problems. In contrast to Chen and Blankenship (2004), we study the general
Borel model. Several statements deal with the so called ’myopic’ strategies
which are of interest on their own.

Dynamic Programming is widely used for solving real life problems. As for
stochastic constrained versions, one can find examples from Queuing Theory,
Reservoir Management, Radar Systems, Resource Allocation and Reliability
Theory in Chen (2004), Chen and Blankenship (2004), Piunovskiy and Mao
(2000), Sniedovich (1980), Yakowitz (1982).

2. Model description and auxiliary results

Consider the controlled model Z = {X, A, p} where X is the Borel state space;
A is the action space (metric compact); pt(dy|x, a) is the continuous transition
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probability, that is

∫

X

c(y)pt(dy|x, a) is a continuous function for each continuous

bounded function c(·). As usual a control strategy π is a sequence of measurable
stochastic kernels πt(da|ht−1) on A where ht−1 = (x0, a1, x1, . . . , at−1, xt−1). A
strategy is called Markov if it is of the form πt(da|ht−1) = πm

t (da|xt−1) and
is called stationary if πt(da|ht−1) = πs(da|xt−1). A strategy is called pure if
each stochastic kernel πt is concentrated at the point ϕ(ht−1). Similarly, a
measurable function ϕ(xt−1) (ϕt(xt−1)) defines the pure stationary (Markov)
strategy.

It is well known (Piunovskiy, 1997; Bertsekas and Shreve, 1978) that for a
fixed initial probability distribution P0(dx) ∈ P (X), each strategy defines the
unique probability measure P π on the trajectories space H∞ = X × (A×X)∞,
whose generic element will be denoted as h. Here and further, P (Y ) is the
space of all probability measures on a Borel space Y , equipped with the weak
topology. The integral with respect to the measure P π is denoted by Eπ.

The traditional optimal control problem consists of the minimization of the
following functional

R(π) = Eπ[R(h)] = Eπ

[

∞
∑

t=1

βt−1
0 rt(xt−1, at)

]

−→ inf
π∈Π

, (1)

where rt(·) is a one-step cost function and β0 > 0 is a discount factor; Π is the
set of all strategies. If there are no costs in (1) beyond time T then one puts
β0 = 1 (the case of a finite horizon). If the cost function r and the transition
probability p do not depend on time, then we deal with the homogeneous model.

Let us assume that rt(x, a) is a lower-semicontinuous lower-bounded function
and the transition probability pt(dy|x, a) is continuous. Suppose that a lower-
semicontinuous lower-bounded function st(x, a) is given as well as the discount
factor β1 > 0 and a real number d. A strategy π is called feasible if the following
inequality is satisfied

S(h) =

∞
∑

t=1

βt−1
1 st(xt−1, at) ≤ d (2)

P π-almost surely. In what follows, the expressions (1) and (2) are assumed to
be well defined. To be more specific, we study either the model with a finite
horizon, or the case of a discounted model β1 ∈ (0, 1). One must build an
optimal feasible strategy; in other words, one must solve problem (1) under
constraints (2).

Remark 2.1 (a) We intend to investigate Version 2 for the scalar function S,
but the case S ∈ IRN can be treated basically in the same way.

(b) One step loss st(x, a) can be interpreted as the value of some resource;
the total discounted resource should not exceed d.
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If the stationary strategy π∗(da|xt−1) is optimal in the homogeneous one-
step model (T = 1) then it is called myopic. Sometimes a myopic strategy is
optimal in the homogeneous model, independently on the length of the planning
horizon.

Lemma 2.1 Consider a homogeneous unconstrained model. If a myopic strategy
π∗ is optimal for any horizon T then it is optimal in the discounted version of
the model, under any β0 ∈ (0, 1).

Proof. The proof is really simple, but the author could not find an appropriate
reference. Clearly, under any fixed β0 ∈ (0, 1), R(π) = ET [R(π, T )], where

R(π, T ) = Eπ

[

T
∑

t=1

r(xt−1, at)

]

,

ET is the expectation with respect to T , and T is the random variable with
distribution

P{T = i} = (1 − β0)β
i−1
0 , i = 1, 2, . . .

Now ∀π, ∀T , R(π, T ) ≥ R(π∗, T ); hence R(π) ≥ R(π∗).

One is tempted to think that the converse is also true, but that is not the
case.

Counter example. (See Fig. 1.) Let X = {1, 2, 3}, A = {1, 2}, p(1|1, 1) = 1,
p(2|1, 2) = 1, p(3|2, a) = 1, p(3|3, a) = 1, r(1, 1) = −2, r(1, 2) = −3, r(2, a) = 0,
r(3, a) = −3.

Figure 1. Counter-example.

Then the strategy ϕ(x) ≡ 2 is myopic and it is optimal in the discounted
model, under any value of β0 ∈ (0, 1): the Bellman function

v(x)
△
= inf

π∈Π
Eπ[R(h)|x0 = x]
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equals

v(1) = −3 −
3β2

0

1 − β0
; v(2) = −

3β0

1 − β0
; v(3) = −

3

1 − β0
.

At the same time, obviously, in the two-step model, with T = 2 and β0 = 1, the
Markov pure strategy ϕ1(x) = 1, ϕ2(x) = 2 is optimal, and the myopic strategy
is not optimal.

3. Dynamic programming approach

It will be convenient to assume that st(·) ≥ 0, d ≥ 0, rt(·) ≥ 0. Obviously, in
the cases of a finite horizon and of a discounted model with βn ∈ (0, 1), n = 0, 1,
this assumption is just a technicality.

The main concept we deploy here is similar to the penalty function method.
A new model is built in which the losses generated by non-feasible strategies
are equal to +∞. If a strategy is feasible then the value of the main functional
(1) does not change.

The state in the new model is the pair (xt, Wt), where Wt is the accumulated
loss generated by the function s:

W0 = 0; Wt = Wt−1 + βt−1
1 · st(xt−1, at) = Wt(Wt−1, xt−1, at). (3)

It remains only to adjust the loss function r:

r̃t(x, W, a) =

{

βt−1
0 rt(x, a), if W ≤ d,

+∞ otherwise.

There is a one-to-one correspondence between the strategies in the initial
model and in the new one; if π ↔ π̃ then

R̃(π̃) =

{

R(π) if (2) holds,
+∞ otherwise.

Therefore, it is sufficient to solve problem

R̃(π̃) = Eπ̃

[

∞
∑

t=1

r̃t(xt−1, Wt−1, at)

]

−→ inf
π̃

. (4)

Assume that the function st(·) is finite and continuous. Then the mapping
Wt in (3) is continuous. Under all previously made assumptions, the new (tilde)
model is ’semicontinuous’ and the following statement holds (Bertsekas and
Shreve, 1978).

Statement 3.1 (a) Problem (4) is solvable: there exists an optimal pure Markov
strategy ϕ∗

t (xt−1, Wt−1). (Note that in terms of the initial problem (1),(2), this
strategy is not Markov.)
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(b) Bellman equation for (4) is as follows

vt(x, W ) = inf
a∈A

{

r̃t+1(x, W, a) +

∫

X

pt+1(dy|x, a)vt+1(y, W + βt
1st+1(x, a)

}

,

t ≥ 0. (5)

(c) The Bellman function coincides with the minimal non-negative solution
to (5) that can be obtained by the successive approximations

v0
t ≡ 0,

vk+1
t (x, W ) = inf

a∈A
{r̃t+1(x, W, a) +

∫

X

pt+1(dy|x, a)vk
t+1(y, W

+βt
1st+1(x, a)}, t ≥ 0, k = 0, 1, 2, . . .

(d) Function vt(x, W ) is non-negative and lower-semicontinuous.

Note that the Bellman function can be degenerate, that is vt(x, 0) = ∞, in
which case there would be no feasible strategies for x0 = x in the original model.

Recall that a Markov (pure) strategy at+1 = ϕt+1(xt, Wt) is optimal in
problem (4) iff for each t ≥ 0 it provides the infimum in (5) for Pϕ-almost
all values (xt, Wt). Therefore, the Dynamic Programming Approach makes it
possible to build ALL optimal Markov strategies.

If we deal with the model with the finite horizon T then the sequence vk

converges in a finite number of steps: vT+1 = v∞.
Let us consider the homogeneous case when all the cost functions and the

transitional probabilities do not depend on t. We introduce the new variable

d̂t
△
=

d − Wt

βt
1

.

It equals the accumulated loss generated by s, which is feasible on the remaining
interval {t + 1, t + 2, . . .}. The stage loss function, r, can be rewritten in the
form

r̂(x, d̂, a) =

{

r(x, a), if d̂ ≥ 0;
+∞ otherwise.

We deal with the standard discounted model

R̂(π̂) = Eπ̂

[

∞
∑

t=1

βt−1
0 r̂(xt−1, d̂t−1, at)

]

−→ inf
π̂

, (6)

assuming that β0 ∈ (0, 1), where the dynamics of the component d̂ is defined by
the following equation

d̂t =
1

β1

[

d − Wt−1 − βt−1
1 s(xt−1, at)

βt−1
1

]

=
d̂t−1 − s(xt−1, at)

β1

△
= D(d̂t−1, xt−1, at).
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The initial values come from the original problem: d̂0 = d. The ’hat’ strategies
π̂ are defined in the standard way; in fact, one can replace them with π̃. Note
that β1 > 0 can be arbitrary.

The Bellman equation for problem (6) is of the form

v̂(x, d̂) = inf
a∈A

{

r̂(x, d̂, a) + β0

∫

X

p(dy|x, a)v̂(y, D(d̂, x, a))

}

, (7)

and we are interested in its minimal non-negative solution. Note that equation
(7) is in agreement with the Bellman equation obtained in Chen and Blankenship
(2004), where the model with finite state and action spaces was considered.

Equation (7) can also be solved by the successive approximations method.
It is simpler than equation (5) since the time-dependence is absent.

In practice, it is sometimes possible to build the domain G where v̂(P, d̂) = ∞
(there are no feasible strategies). One can show that G is an open set. Let

G = {(x, d̂) ∈ X × IR : v̂(x, d̂) < +∞} = {X × IR} \ G.

Then, for every pair (x, d̂) ∈ G, there exists a ∈ A such that (y, D(d̂, x, a)) ∈
G almost surely wrt p(·|x, a). If function r(·) is bounded, then equation (7)
has a unique lower-semicontinuous uniformly bounded solution on G. (The
Bellman operator on the right-hand side of the equation is a contraction mapping
in the space of lower-semicontinuous bounded functions on G.) It should be
emphasized that this solution, extended by infinity on G, provides the minimal
nonnegative solution of equation (5), using

vt(x, W ) = βt
0v̂

(

x,
d − W

βt
1

)

.

Equation (7) cannot have any other bounded solutions on G. In contrast, if v is
a solution of (5) then v+c is also the solution of equation (5) for any constant c.

Remark 3.1 Exactly the same reasoning holds in the case of finite horizon
problem (βi ≡ 1):

Eπ

[

T
∑

t=1

rt(xt−1, at)

]

−→ inf
π

,

T
∑

t=1

st(xt−1, at) ≤ d.

We deal with Bellman equation

v̂t(x, d̂) = inf
a∈A

{

r̂t+1(x, d̂, a) +

∫

X

pt+1(dy|x, a)v̂t+1(y, d̂ − st+1(x, a))

}

;

v̂T (x, d̂) = 0

corresponding to problem

Eπ̂

[

T
∑

t=1

r̂(xt−1, d̂t−1, at)

]

−→ inf
π̂

. (8)
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4. Examples

Figure 2. Transition probabilities.

Let us consider the one-channel Markov queueing system with losses. (See
Fig. 2.) Set X = {0, 1} where xt = 0 (xt = 1) means that the system is free
(busy) at time t; A = {0, 1} where at = 0 (at = 1) means that the system effects
less intensive (more intensive) servicing at the interval (t − 1, t]. The initial
probability P0(1) that the system is busy, is known. The transition probability
at stage t is expressed by the formula

pt(y|x, a) =















p, if x = 0, y = 1;
1 − p, if x = 0, y = 0;
qa, if x = 1, y = 0;
1 − qa, if x = 1, y = 1.

Here, p is the probability of a customer arriving in the interval (t− 1, t]; q0 (q1)
is the probability that the service will be completed in the interval (t− 1, t] for
the less (more) intensive regime; 0 < q0 < q1 < 1. The more intensive regime is
connected with additional cost e. Lastly, c > 0 is the penalty caused by the loss
of an order which is paid off only if a customer came into the busy system and
was rejected. We have to minimise these discounted expected penalties under
the a.s.-constraint on the service consumption. Therefore, we put

r(x, a) = xpc; s(x, a) = e · I{a = 1},

where I{·} is the characteristic function.
First, let us consider the case where β1 = 1 and β0 ∈ (0, 1):

Eπ

[

∞
∑

t=1

βt−1
0 r(xt−1, at)

]

−→ inf
π

∞
∑

t=1

s(xt−1, at) ≤ d P π − a.s.























(9)
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Statement 4.1 [proof in the appendix] Solution to problem (9) is given by the
myopic control strategy of the form

at = ϕ∗(xt−1, d̂t−1) = xt−1 · I{d̂t−1 ≥ e}. (10)

Here, as usual,

d̂t = d − Wt; Wt =

t
∑

i=0

s(xi−1, ai).

Note that ϕ∗ is the myopic strategy in the ’hat’ model (see (6) and (8) ).

Remark 4.1 Analysing the discounted Dynamic Programming equation, it can
be shown that no other control strategy provides a solution to (9).

Now, consider the more general situation:

R(π) = Eπ

[

∞
∑

t=1

βt−1
0 r(xt−1, at)

]

−→ inf
π

;

∞
∑

t=1

βt−1
1 s(xt−1, at) ≤ d P π − a.s.,























(11)

where β1 > 0 can be arbitrary.

Statement 4.2 [proof in the appendix] If β0 ≤ 1
2 then (for any β1 > 0) myopic

control strategy (10) solves problem (11).

Note that here d̂t = d−Wt

βt

1
, Wt =

∑t
i=1 βi−1

1 s(xi−1, ai).

Remark 4.2 In case d > 0, but not large enough to make the constraint re-
dundant, inequalities (16) and (17) are strict, meaning that no other control
strategy is optimal in problem (11).

5. Other constrained problems and example

If one considers Version 1:

R(π) = Eπ

[

∞
∑

t=1

βt−1
0 rt(xt−1, at)

]

−→ inf
π

;

S(π) = Eπ

[

∞
∑

t=1

βt−1
1 st(xt−1, at)

]

≤ d,

the theory becomes more complicated (Altman, 1999; Piunovskiy, 1997; Fein-
berg and Shwartz, 1999; Feinberg and Shwartz, 1995). The main theoretical
tool in this case is ’Convex Analytic Approach’ and/or Linear Programming.
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The Dynamic Programming Approach was used only in Chen and Blankenship
(2004), Piunovskiy and Mao (2000). Similarly to Section 3, where we passed

to pairs (x, W ) or (x, d̂), one should extend the notion of the state. In Chen
and Blankenship (2004) the authors suggest a similar extension and introduce
new actions of the form (a, γ(·)), where γ(y) is the new allowed value of the
threshold at the next step, if y is the next state of the process. In Piunovskiy
and Mao (2000) the new state is the pair (P, d̂), where P is the probability
distribution on X ; and the action is the transition probability from X to A.
From the computational point of view, both approaches are almost equivalent;
perhaps the method suggested in Chen and Blankenship (2004) is a little more
economical. An example similar to those presented in Section 4 was studied
in Piunovskiy and Mao (2000). In the current section, we give the solution to
a slightly different modification, consistent with the examples from Section 4.
Namely, we consider the same queuing system with the same loss functions and
with β0 = β1 = β.

As was shown in Piunovskiy and Mao (2000), the sufficient statistics (i.e. the
arguments of the Bellman function) are the current probability of the system

being busy, P (1), and the vector of expected feasible losses d̂. The initial values

P0(1) and d̂0 = d are given. The action is the (conditional) probability of
applying a = 1 in state 1, denoted as ã(1|1) ∈ [0, 1]. The Bellman equation for
the newly constructed model, similar to (7) or, more specifically, to (15), is as
follows:

v̂(P (1), d̂) = inf
0≤ã(1|1)≤min{ d̂

P (1)e
; 1}

{

P (1)pc

+βv̂

(

p − P (1)[p − 1 + q0 + ã(1|1)(q1 − q0)],
d̂ − P (1)ã(1|1)e

β

)}

.

(12)

All the details can be found in Piunovskiy and Mao (2000).

If d < 0 there are no feasible strategies and v̂(P (1), d̂) = +∞, if d̂ < 0.

If d ≥ eβp+(1−β)eP0(1)
(1−β)(1−β+βq1+βp) then the constraint is inessential and ϕ∗(1) ≡ 1.

In the region where this inequality holds for (P (1), d̂), we have v̂(P (1), d̂) =
pc(P (1)(1−β)+βp)

(1−β)(1−β+βq1+βp) .

Suppose

0 ≤ d ≤
eβp + (1 − β)eP0(1)

(1 − β)(1 − β + βq1 + βp)
.

In the region where this inequality holds for (P (1), d̂), the solution to the Bell-
man equation (12) has the form

v̂(P (1), d̂) =
pc[βp + P (1)(1 − β) − β(1 − β)(q1 − q0)d̂/e]

(1 − β)(1 − β + βq0 + βp)
.
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In this region, one can choose

ã(1|1) ∈

[

max

{

0;
d̂(1 − β + βq1 + βp)

P (1)e(1 − β + βq0 + βp)
+

β(p − 1 + q0)

1 − β + βq0 + βp

−
βp

P (1)(1 − β)(1 − β + βq0 + βp)

}

, min

{

d̂

P (1)e
; 1

}]

arbitrarily. All these actions provide the minimum in the Bellman equation (12).
This means that there exist many optimal control strategies in the constrained
optimal control problem for the queuing system under consideration. (Compare
with Remarks 4.1 and 4.2.)

Dynamic Programming approach to Versions 3 and 4 is more complicated
(Chen, 2004; Chen and Blankenship, 2004). For example in Chen and Blanken-
ship (2004), Version 3 is handled with the aid of an extended state of the form

(x, d̂, α̂), where d̂ is the value of the threshold, α̂ is the value of probability; the
new action is the pair (a, γ(·)), where γ(y), like previously, is the new allowed
value of the threshold.

Note that all constraints in versions 1-3 can be expressed in terms of ex-
pectations: P π[S(h) ≤ d] = Eπ[I{S(h) − d}]; Version 2 coincides with Version
3 at α = 1. In contrast, the variance that is present in Version 4, contains
the square of expectation. Such problems were studied in Sniedovich (1980),
Krawczyk (1990). For example, in Sniedovich (1980) the following method is
suggested for calculation of the Lagrange function

L(λ) = inf
π∈Π

{Eπ[R(h)] + λ V arπ[S(h)]} :

L(λ) = min
u∈IR1

inf
π∈Π

{Eπ[R(h) + λ(S(h) − u)2]}.

If functions R(·) and S(·) are additive, like (1) and (2), the infimum with respect
to π can be again found using Dynamic Programming.

6. Conclusion

The Dynamic Programming Approach remains effective in nonstandard (con-
strained) optimization problems. Moreover, in contrast to the Convex Analytic
Approach, it is possible to construct ALL optimal Markov strategies. However,
this may require modifications in the standard model such as extension of the
state variable, introduction of suitable penalties and so on.

In the last sections, we investigated a simple controlled queue and found
that the myopic control strategy is the only optimal one for the Version 2. In
contrast, typically Version 1 has many optimal solutions. It seems, that this is
the case in many other problem instances.
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Appendix

Proof of Statement 4.1. First, consider the undiscounted finite-horizon model:

Eπ

[

T
∑

t=1

r(xt−1, at)

]

−→ inf
π

, (13)

T
∑

t=1

s(xt−1, at) ≤ d, P π − a.s. (14)

and prove that the myopic strategy is optimal. (We also denote it with ϕ∗.) To
put it differently, we should apply action at = 1 always, if xt−1 = 1 and if we
do not violate constraint (14).

Strategy ϕ∗ is obviously optimal, if T = 1, so that it is indeed myopic.
Suppose it is optimal for some T ≥ 1 and consider the case T + 1. We must
analyse only the situation x0 = 1; starting from t = 2, the myopic strategy is
optimal by induction. The value of d ≥ e is fixed.

(i) Suppose τ
△
= min{t :

∑t
i=1 s(xt−1, at) + e > d} < T + 1 and τ1

△
=

min{t > τ : xt = 1} < T + 1. This condition is denoted by C. Under C, it
does not matter whether we apply a1 = 0 or a1 = 1. Indeed, let a1 = 0, and
the control strategy is myopic thereafter. Then there are four different types of
trajectories:

Type 1: x0 = 1
q0

−→ x1 = 0 −→ . . . −→ xτ1 = 1
q1

−→ xτ1+1 = 0 −→ . . .

Type 2: x0 = 1
q0

−→ x1 = 0 −→ . . . −→ xτ1 = 1
1−q1

−→ xτ1+1 = 1 −→ . . .

Type 3: x0 = 1
1−q0

−→ x1 = 1 −→ . . . −→ xτ1 = 1
q1

−→ xτ1+1 = 0 −→ . . .

Type 4: x0 = 1
1−q0

−→ x1 = 1 −→ . . . −→ xτ1 = 1
1−q1

−→ xτ1+1 = 0 −→ . . .

In the case a1 = 1, the marks q0(q1) should be changed to q1(q0). It is essen-
tial that all unmarked arrows have the same probabilities, independently of a1.
Hence, all trajectories of type 1 and 4 have the same probabilities in both cases
a1 = 0 and a1 = 1. As for type 2 and 3, there exists the trivial 1-1 correspon-
dence between trajectories-2 and trajectories-3 which obviously preserves the
total amount of ’ones’. The probabilities of the image (under a1 = 1) and the
preimage (under a1 = 0) coincide. Therefore,

E0,ϕ∗

[

T+1
∑

t=1

r(xt−1, at)|C

]

= E1,ϕ∗

[

T+1
∑

t=1

r(xt−1, at)|C

]

.
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Here and below, [0, ϕ∗] is the natural composition of a1 = 0 and the myopic
strategy ϕ∗ at t = 2, 3, . . . .

(ii) Suppose Condition C is violated. Now we have only two types of trajec-
tories:

x0 = 1 −→ x1 = 0 −→ . . .

x0 = 1 −→ x1 = 1 −→ . . .

The first arrow in the first trajectory has probability q0(q1) in case a1 = 0
(a1 = 1). The first arrow in the second trajectory has probability 1− q0 (1− q1)
in case a1 = 0 (a1 = 1). All the remaining arrows have the same probabilities,
independently of a1. Since the main loss (13) is larger for the second type, and
q0 < q1, we conclude that

E0,ϕ∗

[

T+1
∑

t=1

r(xt−1, at)|C̄

]

> E1,ϕ∗

[

T+1
∑

t=1

r(xt−1, at)|C̄

]

,

and the myopic strategy is optimal in case T + 1 for problem (13),(14). Note
that no other strategy is optimal, if T > 1; in case T = 1, all strategies are
optimal (if d ≥ e).

In accordance with Remark 3.1 in Section 3, the myopic control strategy
(10) is optimal in problem (8). According to Lemma 2.1, it is also optimal in
problem

Eπ̂

[

∞
∑

t=1

βt−1
0 r̂(xt−1, d̂t−1, at)

]

−→ min
π̂

which is equivalent to problem (9).

Proof of Statement 4.2. Clearly, if d = 0, then the only feasible strategy is
given by at ≡ 0, for which R = P0(0)W (0) + P0(1)W (1), where W (·) satisfies
equations

W (0) = β0[pW (1) + (1 − p)W (0)];
W (1) = pc + β0[q

0W (0) + (1 − q0)W (1)].

}
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The actual Bellman function, under arbitrary fixed d ≥ 0, satisfies the Bellman
equation (see (7))

v̂(0, d̂) = min

{

β0

[

pv̂

(

1,
d̂

β1

)

+ (1 − p)v̂

(

0,
d̂

β1

)]

;

β0

[

pv̂

(

1,
d̂ − e

β1

)

+ (1 − p)v̂

(

0,
d̂ − e

β1

)]}

v̂(1, d̂) = min

{

pc + β0

[

q0v̂

(

0,
d̂

β1

)

+ (1 − q0)v̂

(

1,
d̂

β1

)]

;

pc + β0

[

q1v̂

(

0,
d̂ − e

β1

)

+ (1 − q1)v̂

(

1,
d̂ − e

β1

)]}

.

(15)

It is bounded above by W (·):

v̂(0, d̂) ≤ W (0) =
p2β0c

(1 − β0)(1 − β0 + β0q0 + β0p)
;

v̂(1, d̂) ≤ W (1) =
pc(1 − β0 + β0p)

(1 − β0)(1 − β0 + β0q0 + β0p)
.

(16)

Here D(d̂, x, a) = D(d̂, a) =

{

d̂/β1, if a = 0;

(d̂ − e)/β1, if a = 1.

Note that the first minimum in (15) is provided by the first expression cor-

responding to a = 0 because functions v̂(0, d̂) and v̂(1, d̂) are non-increasing in

d̂. (This can be easily proved using the successive approximations discussed

in Section 3.) Of course, we consider only the case d̂ ≥ 0, since otherwise

v̂(x, d̂) = +∞.

A sufficiently large value of d makes the constraint superfluous and leads to
the lower bound

v̂(0, d̂) ≥
p2β0c

(1 − β0)(1 − β0 + β0q1 + β0p)
;

v̂(1, d̂) ≥
pc(1 − β0 + β0p)

(1 − β0)(1 − β0 + β0q1 + β0p)
.

(17)
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Now it follows from (16) and (17) that, for any value d̂ ≥ e,

q0v̂

(

0,
d̂

β1

)

+ (1 − q0)v̂

(

1,
d̂

β1

)

− q1v̂

(

0,
d̂ − e

β1

)

+ (1 − q1)v̂

(

1,
d̂ − e

β1

)

≥
q0p2β0c

(1 − β0)(1 − β0 + β0q1 + β0p)
+

(1 − q0)pc(1 − β0 + βp)

(1 − β0)(1 − β0 + β0q1 + β0p)

−
q1p2β0c

(1 − β0)(1 − β0 + β0q0 + β0p)
−

(1 − q1)pc(1 − β0 + βp)

(1 − β0)(1 − β0 + β0q0 + β0p)

=
pc(q1 − q0)[(1 − 2β0)(1 − β0 + β0p) + β0(1 − β0)(q

0 + q1)]

(1 − β0)(1 − β0 + β0q1 + β0p)(1 − β0 + β0q0 + β0p)
≥ 0,

and the myopic strategy satisfies Bellman equation.
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