
Control and Cybernetics

vol. 35 (2006) No. 3

Canonical greedy algorithms and dynamic programming

by

Art Lew

Department of Information and Computer Sciences
University of Hawaii at Manoa, USA

e-mail: artlew@hawaii.edu

Abstract: There has been little work on how to construct greedy
algorithms to solve new optimization problems efficiently. Instead,
greedy algorithms have generally been designed on an ad hoc ba-
sis. On the other hand, dynamic programming has a long history of
being a useful tool for solving optimization problems, but is often
inefficient. We show how dynamic programming can be used to de-
rive efficient greedy algorithms that are optimal for a wide variety of
problems. This approach also provides a way to obtain less efficient
but optimal solutions to problems where derived greedy algorithms
are nonoptimal.

Keywords: greedy algorithm, dynamic programming, Dijkstra.

1. Introduction

It is common, in computer science textbooks (see e.g. Cormen et al., 2001;
Horowitz, Sahni and Rajasekaran, 1996), to treat dynamic programming (DP)
and greedy algorithms as separate and independent methodologies for solving
optimization problems. In operations research textbooks (Hillier and Lieber-
man, 2001; Winston, 2004), greedy algorithms are typically mentioned only
casually, by identifying the use of greedy strategies in passing as they are en-
countered in the description of specific algorithms. In this paper, we discuss
greedy algorithms as a general methodology, but in the context of DP, provid-
ing first a constructive means of deriving greedy algorithms to more efficiently
solve certain optimization problems, and then a framework in which greedy
algorithms can be further analyzed.

Informally, a “greedy” optimization algorithm solves a global minimization
or maximization problem by making a sequence of locally optimal decisions. A
decision is “local” or “myopic” if it is based on partial information that does
not include global knowledge about future consequences of current decisions
(Heyman and Sobel, 1984); thus, the current decision, once made, might turn
out to be nonoptimal. We say that a greedy optimization algorithm is optimal
if it always results in finding the global optimum solution, in which case we say

622 A. LEW

that each of the sequential decisions made by algorithm is also optimal. In this
paper, a solution must be exact rather than approximate. While the intent of
greediness is computational efficiency, to lower the time or space requirements of
the solution process, efficiency is not part of our definition of greedy algorithms.
However, efficiency is generally a by-product. This view of greedy algorithms
has been formalized in various ways, generally by defining a restrictive context,
such as the class of combinatorial optimization problems, which is the context
that we also choose herein. We note that this restriction to combinatorial or
discrete problems excludes gradient-based algorithms for solving continuous op-
timization problems. Gradient search algorithms, such as “steepest” ascent or
descent, are of course examples where a greedy decision might lead to a local
rather than global optimum. We will also restrict our attention to the context
of DP problems, which excludes, for example, the basic simplex algorithm of
linear programming where the choice of “pivot” is in some sense made greedily.
Given a DP solution of an optimization problem, we address the question of
how it can be solved using greedy principles, hopefully more efficiently.

In Section 2, we provide a brief introduction to DP as a method for solving
optimization problems that can be formulated as sequential decision processes.
In Section 3, we discuss relationships between greedy algorithms and DP. We
show that a greedy policy, based perhaps upon heuristic principles, can used
to speed up DP solutions. The problem of how to derive a greedy policy in
the first place has seldom been addressed. In Section 4, we formally derive a
greedy algorithm from a DP solution to a discrete optimization problem. We
call greedy algorithms that can be so derived “canonical” ones. We will show
that the class of canonical greedy algorithms is large, including, as prominent
examples,

the minimum spanning tree algorithms of Kruskal or Prim, where the
greedy policy is to choose the eligible arc with smallest weight;

the prefix coding tree algorithm of Huffman, where the greedy policy
is to choose the pair of items having smallest weight;

the shortest path algorithm of Dijkstra, where the greedy policy is
to choose the vertex closest to the source;

linear sequencing algorithms, where the greedy policy is, for exam-
ple, to choose to place the item (to be linear searched) that has
the maximum probability, or to choose to schedule the job that
has shortest processing time;

the deadline scheduling algorithm, where the greedy policy is to
choose to schedule the feasible job meeting its deadline that is
most profitable.

In Section 5, we show that DP can also be used to derive some noncanonical
greedy algorithms that are optimal as well as some canonical greedy algorithms
that are not optimal. In addition to providing a constructive means of obtaining
certain greedy algorithms, DP also provides a theoretical framework in which
to prove their optimality.

Canonical greedy algorithms and dynamic programming 623

2. Preliminaries

In this section, we introduce DP in terms that will be useful in our later dis-
cussion of greedy algorithms in which a sequence of decisions is made. We
specifically distinguish between deciding firstly on the best order in which the
decisions are to be made, and secondly on the best choice that is made for each
decision. These problems are complicated by the fact that decisions are in gen-
eral interrelated, imposing constraints upon each other. Moreover, a key to the
use of DP is separability of values (costs or profits) that are associated with
individual decisions.

For an optimization problem of the form optd∈∆{H(d)}, d is called the de-
cision, which is chosen from a set of eligible decisions ∆, function H is called
the optimand, and H∗ = H(d∗) is called the optimum, where d∗ is that value of
d ∈ ∆ for which H(d) has the optimal (minimum or maximum) value. We also
say that d∗ optimizes H, and write d∗ = argoptd{H(d)}. Many optimization
problems consist of finding a set of decisions, {d1, d2, . . . , dn}, that taken to-
gether yield the optimum H∗ of an objective function h[d1, d2, . . . , dn]. Solution
of such problems by enumeration, i.e., by evaluating h[d1, d2, . . . , dn] concur-
rently, for all possible combinations of values of its decision arguments, is called
the “brute force” approach; this approach is manifestly inefficient. Rather than
making decisions concurrently, we assume the decisions may be made in some
specified sequence, say, (d1, d2, . . . , dn), i.e., such that

H∗ = opt(d1,d2,...,dn)∈∆{h[d1, d2, . . . , dn]}

= optd1∈D1
{optd2∈D2

{. . . {optdn∈Dn
{h[d1, d2, . . . , dn]}}}}, (1)

in what are known as sequential decision processes, where the ordered set (d1, d2,
. . . , dn) belongs to some decision space ∆ = D1 × D2 × . . . × Dn, for di ∈ Di.
Examples of decision spaces include: ∆ = Bn, the special case of Boolean
decisions, where each decision set Di equals B = {0, 1}; and ∆ = Π(D), a
permutation of a set of eligible decisions D. The latter illustrates the common
situation where decisions di are interrelated, e.g., where they satisfy constraints
such as di 6= dj or di + dj 6 M . In general, each decision set Di depends on
the decisions {d1, d2, . . . , di−1} that are earlier in the specified sequence, i.e.,
di ∈ Di(d1, d2, . . . , di−1). Thus, to show this dependence explicitly, we rewrite
the foregoing equation in the form

H∗ = opt(d1,d2,...,dn)∈∆{h[d1, d2, . . . , dn]}

= optd1∈D1
{optd2∈D2(d1){. . . {optdn∈Dn(d1,d2,...,dn−1){h[d1, d2, . . . , dn]}}}}.

(2)

This nested set of optimization operations is to be performed from inside-out
(right-to-left), the innermost optimization yielding the optimal choice for dn

as a function of the possible choices for d1, . . . , dn−1, denoted d∗n(d1, . . . , dn−1),

624 A. LEW

and the outermost optimization optd1∈D1
{h[d1, d

∗
2, . . . , d

∗
n]} yielding the opti-

mal choice for d1, denoted d∗1. Note that while the initial or “first” decision
d1 in the specified sequence is the outermost, the optimizations are performed
inside-out, each depending upon outer decisions. Furthermore, while the opti-
mal solution may be the same for any sequencing of decisions, e.g.,

optd1∈D1
{optd2∈D2(d1){. . . {optdn∈Dn(d1,d2,...,dn−1){h[d1, d2, . . . , dn]}}}}

= optdn∈Dn
{optdn−1∈Dn−1(dn){. . . {optd1∈D1(d2,...,dn){h[d1, d2, . . . , dn]}}}},

(3)

the decision sets Di may differ since they depend on different outer decisions.
Thus, efficiency may depend upon the order in which decisions are made.

Referring to the foregoing equation, for a given sequencing of decisions, if the
outermost decision is “tentatively” made initially, whether or not it is optimal
depends upon the ultimate choices d∗i that are made for subsequent decisions
di; i.e.,

H∗ = optd1∈D1
{optd2∈D2(d1){. . . {optdn∈Dn(d1,d2,...,dn−1){h[d1, d2, . . . , dn]}}}}

= optd1∈D1
{h[d1, d

∗
2(d1), . . . , d

∗
n(d1)]}, (4)

where each of the choices d∗i (d1) for i = 2, . . . , n is constrained by – i.e., is a
function of – the choice for d1. Note that determining the optimal choice d∗1 =
arg optd1∈D1

{h[d1, d
∗
2(d1), . . . , d

∗
n(d1)]} requires evaluating h for all possible

choices of d1 unless there is some reason that certain choices can be excluded from
consideration based upon a priori (given or derivable) knowledge that they cannot
be optimal. One such class of algorithms would choose d1 ∈ D1 independently
of (but still constrain) the choices for d2, . . . , dn, i.e., by finding the solution of
a problem of the form optd1∈D1

{H′[d1]} for a function H′ of d1 that is myopic
in the sense that it does not depend on other choices di. Such an algorithm
is optimal if the locally optimal solution of optd1

{H′[d1]} yields the globally
optimal solution H∗.

Suppose that the objective function h is (strongly) separable in the sense
that

h[d1, d2, . . . , dn] = C1(d1) ◦ C2(d2) ◦ . . . ◦ Cn(dn), (5)

where the decision-cost functions Ci represent the costs (or profits) associated
with the individual decisions di, and where ◦ is a binary operation, usually
addition or multiplication, with optd{a ◦ C(d)} = a ◦ optd{C(d)} for any a
that does not depend upon d. In the context of sequential decision processes,
the cost Cn of making decision dn may be a function not only of the decision
itself, but also of the state (d1, d2, . . . , dn−1) in which the decision is made. To
emphasize this, we will rewrite the above as

h[d1, d2, . . . , dn] = C1(d1|∅) ◦ C2(d2|d1) ◦ . . . ◦ Cn(dn|d1, . . . , dn−1). (6)

Canonical greedy algorithms and dynamic programming 625

We now define h as (weakly) separable if

h[d1, d2, . . . , dn] = C1(d1) ◦ C2(d1, d2) ◦ . . . ◦ Cn(d1, d2, . . . , dn), (7)

(strong separability is, of course, a special case). If h is (weakly) separable, we
then have

optd1∈D1
{optd2∈D2(d1){. . . {optdn∈Dn(d1,d2,...,dn−1){h[d1, d2, . . . , dn]}}}}

= optd1∈D1
{optd2∈D2(d1){. . . {optdn∈Dn(d1,d2,...,dn−1){C1(d1|∅) ◦ C2(d2|d1)

◦ . . . ◦ Cn(dn|d1, . . . , dn−1)}}}}

= optd1∈D1
{C1(d1|∅) ◦ optd2∈D2(d1){C2(d2|d1)

◦ . . .optdn∈Dn(d1,d2,...,dn−1){Cn(dn|d1, . . . , dn−1)}}}. (8)

Let the function f [i|d1, . . . , di−1] be defined as the optimal solution of the se-
quential decision process where the decisions d1, . . . , di−1 have been made and
the decisions di, . . . , dn remain to be made; i.e.,

f [i|d1, . . . , di−1]

= optdi
{optdi+1

{. . . {optdn
{Ci(di|d1, . . . , di−1) ◦ Ci+1(di+1|d1, . . . , di)

◦ . . . ◦ Cn(dn|d1, . . . , dn−1)}}}}. (9)

Explicit mentions of the decision sets Di are omitted here for convenience. We
have then

f [1|∅] = optd1
{optd2

{. . . {optdn
{C1(d1|∅) ◦ C2(d2|d1)

◦ . . . ◦ Cn(dn|d1, . . . , dn−1)}}}}

= optd1
{C1(d1|∅) ◦ optd2

{C2(d2|d1)

◦ . . .optdn−1
{Cn−1(dn−1|d1, . . . , dn−2) ◦ optdn

{Cn(dn|d1, . . . , dn−1)}}}}

= optd1
{C1(d1|∅) ◦ f [2|d1]}. (10)

Generalizing, we conclude that

f [i|d1, . . . , di−1] = optdi∈Di(d1,d2,...,di−1){Ci(di|d1, . . . , di−1)◦f [i+1|d1, . . . , di]}.

(11)

This equation is a recursive functional equation; we call it a functional equation
since the unknown in the equation is a function f , and it is recursive since f
is defined in terms of f (but having different arguments). It is also called the
dynamic programming functional equation(DPFE) for the given optimization
problem. (In this paper, we assume that we are given DPFEs that are properly
formulated, i.e., that their solutions exist; we address only issues of how to
obtain these solutions.)

626 A. LEW

Dynamic programming (Bellman, 1957) is a method that in general solves
optimization problems involving sequential decision processes by determining,
for each decision, subproblems that can be solved in like fashion, such that
an optimal solution of the original problem consists of optimal subsolutions of
the subproblems. This defining characteristic of DP is known as the “principle
of optimality” or “optimal substructure” property in operations research and
computer science literature (Cormen at al., 2001; Hillier and Lieberman, 2001;
Horowitz, Sahni, and Rajasekaran, 1996; Winston, 2004). In this paper, we are
concerned with the computational solution of problems, for which the principle
of optimality is given to hold. For DP to be computationally efficient (relative
to enumeration), there should be common subproblems such that subproblems
of one are subproblems of another, and in this event a solution need only be
found once and reused as often as necessary. (However, we do not incorporate
this requirement as part of our definition of DP.) Then, the problem of solving
for f [i|d1, . . . , di−1] depends upon the subproblem of solving for f [i+1|d1, ..., di].
If we define the state s = (d1, ..., di−1) as the sequence of the first i decisions,
where i = |s| + 1 = |{d1, . . . , di−1}| + 1, we may rewrite the DPFE in the form

f [s] = optdi∈D(s){C(di|s) ◦ f [s′]}, for s ∈ Σ, (12)

where s′ = (d1, . . . , di), and Σ is a set of possible states, ∅ being the initial state.
Since the DPFE is recursive, its solution requires base cases (or “termination” or
“boundary” conditions), such as f [s] = 0 when s is a state in which no decision
is eligible, i.e., when D(s) = ∅, or f [s′] = ±∞ when s′ results from an ineligible
decision or s /∈ Σ. It should be noted that the sequence of decisions need not be
limited to a fixed n, but may be of indefinite length, terminating when a base
case is reached.

Application: Linear Search (Lew, 1985)

To illustrate the key concepts associated with DP that will prove useful in our
later discussions, we examine a concrete example, the optimal “linear search”
problem. This is the problem of permuting the elements of an array A of size
N , whose element x has probability px, so as to optimize the linear search
process by minimizing the “cost” of a permutation, defined as the expected
number of comparisons required. For example, let A = {a, b, c} and pa = .2,
pb = .5, and pc = .3. There are six permutations, namely, abc, acb, bac, bca,
cab, cba; the cost of the fourth permutation bca is 1.7, which can be calculated
in several ways, such as [Method S]: 1 · pb + 2 · pc + 3 · pa and [Method W]:
(pa +pb +pc)+(pa +pc)+(pa). The optimization problem can be regarded as a
sequential decision process where three decisions must be made as to where the
elements of A are to be placed in the final permuted array A′. The decisions
are: which element is to be placed at the beginning of A′, which element is to
be placed in the middle of A′, and which element is to be placed at the end of
A′. The order in which these decisions are made does not necessarily matter,

Canonical greedy algorithms and dynamic programming 627

at least insofar as obtaining the correct answer is concerned; e.g., to obtain the
permutation bca, our first decision may be to place element c in the middle of
A′.

Of course, some orderings of decisions may lead to greater efficiency than
others. Moreover, the order in which decisions are made affects later choices; if
c is chosen in the middle, it cannot be chosen again. That is, the decision set
for any choice depends upon (is constrained by) earlier choices. In addition, the
cost of each decision should be separable from other decisions.

To obtain this separability, we must usually take into account the order, in
which decisions are made. For Method S, the cost of placing element x in the
i-th location of A′ equals i · px regardless of when the decision is made. On
the other hand, for Method W, the cost of a decision depends upon when the
decision is made, more specifically upon its decision set. If the decisions are
made in order from the beginning to the end of A′, then the cost of deciding
which member di of the respective decision set Di to choose next equals Σx∈Di

px,
the sum of the probabilities of the elements in Di = A − {d1, . . . , di−1}. For
example, let di denote the decision of which element of A to place in position
i of A′, and let Di denote the corresponding decision set, where di ∈ Di. If
the decisions are made in the order i = 1, 2, 3, then D1 = A, D2 = A − d1,
D3 = A−d1−d2. For Method S, if the objective function is written in the form
h(d1, d2, d3) = 1 · pd1

+ 2 · pd2
+ 3 · pd3

, then

f [∅] = mind1∈A{mind2∈A−d1
{mind3∈A−d1−d2

{1 · pd1
+ 2 · pd2

+ 3 · pd3
}}}

= mind1∈A{1 · pd1
+ mind2∈A−d1

{2 · pd2
+ mind3∈A−d1−d2

{3 · pd3
}}}.
(13)

For Method W, if the objective function is written in the form h(d1, d2, d3) =
Σx∈A px + Σx∈A−d1

px + Σx∈A−d1−d2
px, then

f [∅] = mind1∈A{mind2∈A−d1
{mind3∈A−d1−d2

{Σx∈A px + Σx∈A−d1
px

+ Σx∈A−d1−d2
px}}}

= mind1∈A{Σx∈A px + mind2∈A−d1
{Σx∈A−d1

px

+ mind3∈A−d1−d2
{Σx∈A−d1−d2

px}}}. (14)

However, if the decisions are made in reverse order i = 3, 2, 1, then D3 = A,
D2 = A − d3, D1 = A − d2 − d3, and the above must be revised accordingly. It
should also be noted that if h(d1, d2, d3) = 0 + 0 + (1 · pd1

+ 2 · pd2
+ 3 · pd3

),
where all of the cost is associated with the final decision d3, then

f [∅] = mind1∈A{0+mind2∈A−d1
{0+mind3∈A−d1−d2

{1·pd1
+2·pd2

+3·pd3
}}},

(15)

which is equivalent to enumeration. We conclude from this example that care
must be taken in defining decisions and their interrelationships, and how to

628 A. LEW

attribute separable costs to these decisions. Examples 3.1 and 4.1 below further
develop these points.

3. Greedy policies

Consider a sequential decision process where each decision d is associated with
an optimization problem of the form optd∈D{H[d]}.

As before, d∗ = arg optd∈D{H(d)} and H∗ = H(d∗). In some situations,
it is possible to find the result H[d∗] of the optimization operation without
evaluating H[d] for each d in D, provided there is some way to exclude certain
values of d as a possible optimizing value d∗. For example, suppose there exists
a linear ordering Π of D such that the optimal policy is the “leading” member
of Π(D), γ[D] = arg optd∈D(Π(D)). If γ[D] = d∗, the problem optd∈D{H[d]}
can be replaced by the problem optd∈D(Π(D)). This is only useful if the latter
problem can be solved more efficiently than the former, which is generally the
case if the ordering Π(D) can be found using only partial or local information.
The decisions themselves are considered irrevocable: once a decision d∗ is made,
it cannot be changed. An optimization algorithm based on such a “locally
definable” ordering will be called a greedy one. The term greedy can be applied
both to the ordering and to the decisions, even if the decisions themselves are
Boolean. This is often the case for “priority” algorithms (Borodin, Nielsen,
Rackoff, 2002), for which typically an optimal ordering must first be determined.

Consider now optimization problems that can be solved using DP. Assume
we are given a (properly formulated) DPFE of the form

f [s] = optd∈D(s){c(d|s) + f [δ(s, d)]}, for s ∈ Σ, (16)

where D(s) is the set of possible eligible decisions when in state s ∈ Σ, c(d|s) is
the cost of making a decision d when in state s, and s′ = δ(s, d) is the next-state
resulting from a decision d in state s. The optimal decision d∗ is a function of s
and D(s), d∗[s, D(S)] = arg optd∈D(s){c(d|s)+f [δ(s, d)]}. A greedy algorithm
would allow us to choose to make a greedy decision γ[s, D(s)] to determine
f [s] without the use of the DPFE. If γ[s, D(s)] = d∗[s, D(S)], we say that the
greedy policy is optimal. Note that the use of the DPFE requires the evaluation
of {c(d|s) + f [δ(s, d)]} for all possible successor next-states s′ = δ(s, d) of s.
Using the greedy policy instead, f [s] need only be evaluated for that successor
s′ resulting from making decision γ[s, D(s)] when in state s, i.e.,

f [s] = {c(γ[s, D(s)]|s) + f [δ(s, γ[s, D(s)])]}. (17)

This reduction of the state space, or the number of states for which an optimiza-
tion operation is required, is what makes such greedy algorithms more efficient.
It is assumed of course that γ[s, D(s)] can be evaluated relatively efficiently. In
simple cases, D(s) = s, Π(s) is a permutation ordering of s based upon some

Canonical greedy algorithms and dynamic programming 629

“priority” rule, and γ(s, D(s)) is the first member of Π(s),

γ[s, D(s)] = arg optd∈D(s)(Π(D(s))). (18)

Example 3.1 (Linear Search) Consider the problem of permuting the elements
of an array A of size N, whose element x has probability px, so as to optimize
the linear search process. This problem of deciding the ordering of the elements
from first to last can be solved by DP (compare Method W of Section 2) using
the DPFE

f [S] = minx∈S{c(x|S) + f [S − {x}]}, for s ∈ 2A, (19)

where c(x|S) =
∑

y∈S py, and 2A denotes the power set of A. Our goal is
to solve for f [A] given the base case f [∅] = 0. Note that the cost function
c(x|S) depends only on S, not on the decision x. If we order S by descending
probability, it can be shown that the first element x∗ in this ordering (that has
maximum probability) minimizes the set {c(x|S)+f [S−{x}]}. Use of this greedy
policy makes performing the minimization operation of the DPFE unnecessary;
instead, we need only to find the maximum of a set of probabilities {px}. In the
foregoing terms, D = S and x∗ = g(s, D(s)) = arg maxy{py|y ∈ S} is that
member of S having maximum probability.

In addition to linear search, other prominent examples of greedy algorithms
that are optimal are discussed in Section 4. An example illustrating the nonop-
timality of a greedy policy is that of constructing an optimal binary search tree
(BST) by placing the element that has maximum probability at the root of
the tree, in a fashion analogous to the one given above for linear search. This
greedy policy clearly is not optimal since it may result in a highly unbalanced
tree. However, the optimization problem can be solved by DP using a DPFE of
the form

f [S] = optd∈D(S){c(d|S) + f [S′] + f [S′′]}, (20)

where there are two next-states, S′ and S′′ (Cormen et al., 2001; Horowitz,
Sahni, Rajasekaran, 1996). A DPFE is said to be r-th order (or “nonserial” if
r > 1) if there may be r next states. A second-order DPFE is also used below
to solve a scheduling (activity-selection) problem.

Regrettably, there are relatively few optimization problems for which a
greedy algorithm is known to be an optimal one, i.e., for which a greedy pol-
icy g(s, D(s)) also optimizes f [S]. Ideally, this property should be proven to
hold before using a prospective greedy algorithm. In the absence of such a
proof (whether because of analytical difficulties or because nonoptimality ac-
tually holds), greedy algorithms, also called “heuristic” algorithms instead, are
sometimes still used if they are significantly more efficient. Nonoptimal greedy
algorithms for solving the traveling salesperson problem (TSP) are examples.

630 A. LEW

One class of optimization problems for which a greedy policy is provably
optimal is associated with matroids (Papadimitriou, Steiglitz, 1982). However,
not all greedy algorithms can be so modeled, such as Huffman’s algorithm for
finding an optimal code. Some other theoretical results appear in Bird, de Moor
(1993), Borodin, Nielsen, Rackoff (2002), Curtis (2003), Davis, Impagliazzo
(2004), Helman, Moret, Shapiro (1993). This paper views the subject from a
very pragmatic point of view. Given a concrete DPFE that solves a specific
optimization problem, we seek alternative ways to numerically solve the DPFE.
In the next section, we formulate a large class of greedy algorithms as special
cases of DP algorithms. This DP formulation is general enough to include all
of the aforementioned prominent examples, including Huffman coding.

4. Canonical formulation

In this section, we show how to derive a greedy algorithm from a DP solution
to an optimization problem. Given that f [s] = optd∈D(s){c(d|s) + f [δ(s, d)]},
with d∗[s] = arg optd∈D(s){c(d|s) + f [δ(s, d)]}, let

γ[s, D(s)] = argoptd∈D(s){c(d|s)}. (21)

For the given DPFE, we define the associated canonical greedy algorithm as
that which adopts the greedy policy of choosing γ[s, D(s)] to determine f [s],
i.e., so that f [s] = {c(γ[s, D(s)]|s) + f [δ(s, γ[s, D(s)])]}. (A greedy algorithm
not based on optd∈D(s){c(d|s)} would be noncanonical.) If γ[s, D(s)] = d∗[s],
we say the greedy policy is optimal. Note that γ[s, D(s)] optimizes the set of
“local” costs {c(d|s)} for d ∈ D(s), where D(s) is the set of eligible decisions
when in state s. Borrowing Borodin’s terminology (Borodin, Nielsen, Rackoff,
2002), we say that a canonical greedy policy is an adaptive-priority one if c(d|s)
depends upon both s and d; if c(d|S) is independent of s, but not of d, we say
the canonical greedy policy is a fixed -priority one. If c(d|s) is independent of d,
then there is no canonical greedy policy. There are of course other classification
schemes. For example, following Curtis (2003), a canonical greedy algorithm
corresponds to one in which the global optimality criterion has an equivalent
local optimality criterion.

Example 4.1 (Linear Search) For the foregoing linear search example, the
canonical algorithm would choose (as the first item) x∗ to minimize {

∑
y∈S py};

however, this sum is independent of x, i.e., the costs are identical for any state
S, hence no useful greedy policy results. However, suppose we solve the same
linear search problem by DP (see Method S of Section 2) using the alternative
DPFE

f [S] = minx∈S{c(x|S) + f [S − {x}]}, for s ∈ 2A, (22)

where c(x|S) = |S|·px. Our goal is to solve for f [A] given the base case f [∅] = 0.
The canonical greedy algorithm would choose (as the last item!) x∗ to minimize

Canonical greedy algorithms and dynamic programming 631

the set {|S| · px} for x ∈ S, which (since min{k · px} = k · min{px}) requires
finding the minimum of the set of probabilities {px} as before. In the foregoing
terms, D = S and x∗ = g(s, D(s)) = arg miny{py|y ∈ S}. For this DPFE,
the corresponding canonical greedy algorithm is optimal, unlike the case for the
DPFE of Example 3.1.

It should be noted that if we choose the first item rather than the last,
the same DPFE but with c(x|S) = (N + 1 − |S|) · px can be used to obtain
the optimal solution, but the corresponding canonical greedy algorithm (that
chooses the minimum probability item) is not optimal although a noncanonical
greedy algorithm (that chooses the maximum probability item) is optimal. This
linear search example suggests that canonical greedy algorithms that are optimal
might not be very common. On the contrary, many prominent greedy algorithms
can be formulated as canonical greedy algorithm, but the formulation process
itself may require some effort.

Application: Minimum Spanning Tree (Cormen et al., 2001)

Consider the problem of finding the minimum-weight spanning tree (MST) of
a graph with N vertices and having weighted arcs. This problem can be solved
by DP using the DPFE

f [S] = minx/∈S{w(x) + f [S + {x}]}, (23)

where S is a set of arcs in the “tree-so-far”, and where adding arc x with weight
w(x) to the tree does not create a cycle. Our goal is to solve for f [∅] given
the base cases f [S] = 0 for |S| = N − 1. The canonical greedy algorithm that
chooses the eligible x∗ with minimum weight is optimal.

Example 4.2 (Kruskal) Kruskal’s algorithm is based on the greedy choice of
x /∈ S that minimizes {w(x)}, subject to the “eligibility” constraint that the
addition of x to the tree does not create a cycle.

Example 4.3 (Prim) Prim’s algorithm is based on the greedy choice of x /∈ S
that minimizes {w(x)}, subject to the “eligibility” constraint that the addition
of x to the tree does not create a cycle, but where x is further constrained to
arcs incident with a vertex in the tree-so-far.

Prim’s algorithm is the one usually presented in operations research text,
although not always by name; Prim is credited in most computer science texts.
The resulting MST may not have certain other desirable properties, such as a
limit on the degree of each vertex. If vertices represent servers in a computer
network, for example, there may be a practical limit on how many vertices
may be connected to any single vertex. Kruskal’s and Prim’s greedy algorithms
cannot be used to find the MST satisfying this degree constraint. On the other
hand, the (nongreedy) DP formulation still applies; however, it may no longer
be efficient even though additional eligibility constraints on p may reduce the
sizes of the state and decision spaces.

632 A. LEW

Application: Huffman Coding (Cormen et al., 2001)

Consider the problem of finding the optimal binary “prefix” code tree for a set
D of N > 2 (say) alphabetical data items with given probability weights. This
problem can be solved by DP using the DPFE

f [S] = mina,b∈S{w(a) + w(b) + f [S − {a, b} + {w(a) + w(b)}]}. (24)

Our goal is to solve for f [D] given the base cases f [S] = 0 for |S| = 1.

Example 4.4 (Huffman) Huffman’s algorithm, based on the greedy choice of
the two members a and b of S that have the smallest weights, so as to minimize
{w(a)+w(b)}, is the corresponding canonical greedy algorithm, which is optimal.

The resulting Huffman code may not be ordered, in that for a < b the binary
code associated with item a may not be less than the binary code associated
with item b; hence, we cannot alphabetically sort a Huffman-coded data set in
a natural fashion, so as for example to efficiently search it. However, an optimal
alphabetically ordered binary code can be found nongreedily using the above
DPFE by regarding S as an ordered set and constraining the choice of a and b
to be adjacent members of S; the greedy policy of choosing that pair of adjacent
members with least sum is not optimal.

We note that the optimal binary prefix code tree has N leaves (corresponding
to the N data items) and necessarily N−1 internal vertices, hence 2N−1 vertices
in all. Each of the N −1 decisions of a pair (a, b) specifies the two successors for
one of the internal vertices; the final decision specifies the successors of the root.
An alternative formulation makes 2N − 2 decisions, each specifying the single
predecessor (or parent) of one of the vertices (excluding the root, which has no
predecessor). The canonical greedy algorithm corresponding to the DPFE for
this latter formulation is not optimal, but the equivalent optimal tree results if
the vertices are processed greedily in increasing order of their weights.

Application: Shortest Path (Cormen et al., 2001)

Consider the problem of finding the shortest path in a network (connected di-
rected graph) having N vertices, where the graph may be cyclic but must have
positive arc distances d(p, q). Suppose we do so by finding the shortest paths
from a designated “source” vertex s to each of the other vertices p. For a graph
with positive arc distances, these shortest paths will all appear in a single span-
ning tree rooted at s. The problem of finding this shortest-path spanning tree
can be solved by DP using the DPFE

f [S] = minp∈S,q/∈S{(L(p) + d(p, q)) + f [S ∪ {(q, (L(p) + d(p, q)))}]}, (25)

where S = {(p, L(p))} is the tree-so-far, consisting of a set of vertices and their
labels; and the label L(p) is the length of the shortest path to p. (For simplicity,

Canonical greedy algorithms and dynamic programming 633

we write p ∈ S if (p, L(p)) ∈ S.) Our goal is to solve for f [{(s, 0)}] given the base
cases f [S] = 0 for |S| = N . When the algorithm terminates with all vertices in
the tree, the label of each vertex p is the length of the shortest path from s to
p, and f [{(s, 0)}] is the sum of these labels.

Example 4.5 (Dijkstra) Dijkstra’s algorithm, based on the greedy choice of the
pair p ∈ S and q /∈ S that minimizes {(L(p) + d(p, q))}, where q is the vertex
closest to s not yet in the tree-so-far, is the corresponding canonical greedy
algorithm, which is optimal.

Dijkstra’s algorithm also has a “successive approximations” or “relaxation”
step, so that whenever the sum L(p) + d(p, q) is found to be less than L(q),
vertex q is relabeled such that L(q) = L(p) + d(p, q). However, this successive
approximations step is not incorporated in the foregoing DPFE; vertices not in
the tree-so-far are not labeled at all until they are added to the tree. The foregoing
DPFE does not explicitly incorporate either the greedy policy or the successive
approximations part of Dijkstra’s algorithm. They may be incorporated in the
algorithmic solution of the DPFE. The greedy policy allows us to conclude that
the arc (p, q) that minimizes {(L(p)+d(p, q))} also minimizes {(L(p)+d(p, q))+
f [S ∪ {(q, (L(p) + d(p, q)))}]}. Further details are given in the Appendix.

Some variations, such as degree constraints (as for the minimum spanning
tree example) or negative arc distances, make the optimization problem unsolv-
able by Dijkstra’s greedy algorithm while it is still solvable by DP. We discuss
this further in Section 5.

In addition, it should be noted that Dijkstra’s algorithm has also been for-
mulated in Dreyfuss, Law (1977), Sniedovich (2006), in a different fashion using
a successive approximations approach characterized by a DPFE of the form

F [j] = min{F [j], F [k] + d(k, j)}, j /∈ T, (26)

or equivalently, if successive states are staged, so that

Fi[j] = min{Fi−1[j], Fi−1[k] + d(k, j)}, j /∈ T. (27)

Here, T denotes the vertices in the tree-so-far, initially empty. (Note that the
latter minimization is over a set of two values, not over a set of values of k.) In
this formulation, the DPFE is used to relabel vertices not in T , and greediness
is used independently from the DPFE itself to choose k = arg minj /∈T {F [j]}
that is then added to T . This successive approximations approach is in contrast
to our prior formulation, where once f [S] is evaluated its value remains fixed.

Application: Scheduling (Cormen et al., 2001)

We now consider some scheduling problems. Let P = {1, 2, ..., N} be a set of
processes to be executed at most one at a time on a single processor, where
process i has associated with it a set of parameters {ai, ∆i, si, ti, di, wi}, some

634 A. LEW

given and others dependent on the schedule to be determined. A schedule is the
ordered set of processes S(⊆ P) that are actually executed. For each process i,
the arrival or release time ai is the time it becomes available for execution, the
duration or processing time ∆i is the time required for it to actually execute,
the start time si is the time it actually begins execution, the termination or
finish time ti is the time it ends execution, the deadline di is the time by
which the process is required to end execution (in order to earn a profit or
to avoid a penalty), and the weight wi is the “profit” earned if the process is
actually executed or equivalently the “penalty” cost incurred if the process is not
executed or is late. The lateness of a process i is max(ti − di, 0). If there is no
deadline, di may be set to ∞. The duration of process i is given by ∆i = ti−si.
The turnaround time of process i is the time that elapses between when a
process is available for execution and when it terminates execution, ti − ai,
which also equals the time the process waits for execution plus its duration.
The maximum turnaround time is the schedule length. A typical scheduling
problem is to determine S so as to minimize or maximize some measure of its
goodness based on parameters such as weights (of processes in S), lateness,
turnaround times, etc.

Example 4.6 (Deadline Scheduling) Assume all processes in P arrive ini-
tially, and all have durations equal to one time unit. The unit-time “deadline-
scheduling” problem is that of finding a schedule yielding a maximum total profit
(or minimum total penalty); assuming each process can start initially, at time
0 (i.e., ai = 0). For unit-time processes, ti = j if process i is the j-th process
to terminate. A schedule S with size |S| is feasible if each process k in S can
terminate before its deadline dk > tk; if S is ordered by increasing deadline,
then dj > j for 1 6 j 6 |S|. The optimization problem can be solved using the
DPFE

f [S] = maxk/∈S{c(k|S) + f [S + k]}, (28)

where c(k|S) = wk if S+k is “feasible”, else c(k|S) = 0. Our goal is to solve for
f [∅] given the base case f [P] = 0. The canonical greedy algorithm, which selects
the process k with maximum weight or profit wk such that S + k is feasible, is
optimal.

Example 4.7 (Shortest-Processing-Time) Assume all processes in P arrive ini-
tially, and assume no deadlines. Consider the scheduling problem of finding a
schedule with minimum total turnaround time; this problem can be solved using
the DPFE

f [S, j] = mink∈S{c(k, j) + f [S − k, j + ∆k]}, (29)

where c(k, j) = j + ∆k. Our goal is to solve for f [P, 0] given the base cases
f [∅, j] = 0 for any j. Note that min{j + ∆k} = j + min{∆k}. Therefore, the
canonical greedy algorithm, which selects that eligible process k whose processing

Canonical greedy algorithms and dynamic programming 635

time or duration ∆k is minimal, is optimal. Remark: This greedy policy, called
“shortest-processing-time” (SPT) or “shortest job-first” (SJF), is analogous to
the linear search greedy policy. Thus, this scheduling problem can also be solved
using a DPFE of the form given for Example 4.1.

In addition, a class of scheduling problems, associated with CPM or PERT
networks (Cormen et al., 2001; Hillier, Lieberman, 2001), may be formulated
as (critical) longest path problems in an acyclic graph having no negative arcs,
and hence may be solved using a variation of Dijkstra’s algorithm, as described
below.

5. Noncanonical algorithms

In the preceding section, we showed numerous examples where the canonical
greedy algorithm associated with a DP formulation is optimal, including the
“prominent” examples mentioned earlier. On the other hand, an example of
a canonical greedy algorithm that is nonoptimal is obvious. The traditional
DPFE for finding the shortest path in a directed acyclic graph (DAG) is

f [p] = minq{d(p, q) + f [q]}, (30)

but the canonical greedy algorithm based on choosing q∗ based on the smallest
member of the set {d(p, q)} is nonoptimal. However, if the graph is topologically
ordered, this same DP formulation results in an efficient noncanonical greedy
algorithm since the computations can be “staged”. This algorithm, which is
optimal, adopts a fixed-priority policy in which the topological ordering (instead
of variable vertex labels, as in Dijkstra’s algorithm) determines the order in
which decisions about which vertex to process next are made. (This approach
also applies to the aforementioned CPM/PERT networks.)

For a cyclic graph having a negative arc label, Dijkstra’s greedy algorithm
is no longer optimal. In fact, the associated DPFE is also nonoptimal because
a shortest-path spanning tree no longer exists. However, DP can be used to
find the shortest path in a cyclic graph with negative arcs (which may not exist
if there are negative cycles) using “successive approximations”, employing the
Bellman/Ford algorithm (Dreyfuss, Law, 1977), for example. Moreover, DP can
be used to find the shortest simple path in a cyclic graph with negative arcs
(even negative cycles) using a variation of this “successive approximations” ap-
proach that uses explicit stages (called the “fixed-time” approach in Lew, 1985),
or alternatively using a different DPFE similar to that used for the traveling
salesperson problem (TSP) where previously visited in addition to the currently
visited vertices must be incorporated in the definition of states. The solution for
this alternative formulation, as well as for the TSP problem itself, is inefficient,
and the associated canonical greedy algorithm is also nonoptimal.

One advantage of the canonical formulation is that it provides a general way
to construct a greedy algorithm in terms that are easily accessible to DP prac-
titioners based upon the DPFEs they develop. (This is in contrast to matroid

636 A. LEW

or relational algebraic models, for example.) The greedy algorithms described
in the prior section were all constructed and proven optimal by their original
proponents without any explicit connection to DP. We have shown that these
greedy algorithms can be viewed as special cases of DP whose DPFEs are not
formulated from greedy principles. While we lack a general procedure to de-
termine whether or not a canonical greedy algorithm is optimal, no general
procedure exists for noncanonical greedy algorithms either.

Application: Knapsack Problem (Cormen et al., 2001)

The knapsack problem is that of deciding how to fill a knapsack of capacity
M with objects from a set P having ni objects of type i, each having size or
weight Wi and value or cost Ci, so as to maximize the total cost of the objects
included, subject to the constraint their total weight “fits”, i.e., does not exceed
the capacity M ; ni may be fractional or integral. The fractional knapsack
problem, for ni = 1 object of each of N types, can be solved by a DPFE of the
form

f [S, m] = maxi∈S{c(i, m) + f [S − i, m − w(i, m)]}, (31)

where if m > Wi then c(i, m) = Ci and w(i, m) = Wi, but if m < Wi then
c(i, m) = Ci · m/Wi and w(i, m) = Wi · m/Wi. Our goal is to solve for
f [{1, 2, . . . , N}] given the base cases f [S, m] = 0 for S = ∅ or m < 0. The
canonical greedy algorithm that chooses the object with maximal cost is nonop-
timal, but there is an alternate optimal greedy algorithm.

Example 5.1 (Fractional Knapsack Problem) The optimal solution for the con-
tinuous or fractional knapsack problem can be found using a greedy algorithm.
Specifically, a greedy policy that is optimal selects the object with the greatest
cost-to-weight ratio; the knapsack is then filled with as much of this object as
will fit, even fractionally, after which the object with the next greatest cost-to-
weight ratio may be selected for inclusion provided it or any fraction of it also
fits in the knapsack.

The optimal solution for the discrete or integer knapsack problem cannot be
found in this sequential fashion since all possible subsets of objects that fit must
be considered in order to reduce any remaining capacity. In other words, the
greatest cost-to-weight ratio greedy policy will not result in an optimal integer
solution. However, the optimal solution can be found nongreedily using a DPFE
of the form

f [i, m] = max06ni6Ni
{c(i, m) + f [i + 1, m− ni · Wi]}, (32)

with c(i, m) = ni ·Ci, where the nonnegative integer ni may be bounded by Ni.
Our goal is to solve for f [1, M] given the base cases f [i, m] = 0 for i > N or
m < 0. The 0-1 knapsack problem, which is the special case where each object

Canonical greedy algorithms and dynamic programming 637

is either included or not, can be solved by this DPFE, where Ni = 1, which
reduces to a DPFE of the form

f [i, m] = max{f [i + 1, m], Ci + f [i + 1, m − Wi]}. (33)

For this DPFE, decisions are Boolean, whether to include an object or not, so
there is no associated canonical greedy algorithm.

Application: Scheduling

Assume processes P = {1, 2, ..., N} with parameters {ai, ∆i, si, ti, di, wi}, as
above.

Example 5.2 (Interval Scheduling/Activity Selection) (Cormen et al., 2001).
Assume processes must start upon arrival, or not at all, and assume no dead-
lines. The “interval scheduling” or “activity-selection” problem is that of finding
a schedule S(⊆ P) of maximum total weight (or number of processes in the case
of unit weights), where process i cannot execute before start time si nor after
termination time ti; this problem can be solved using the second-order DPFE

f [p, q] = maxk{f [p, sk] + c(k|p, q) + f [tk, q]}, (34)

where c(k|p, q) = wk if p 6 sk, tk 6 q, else c(k|p, q) = 0. Our goal is to solve
for f [0,maxti] given the base cases f [p, q] = 0 for p > q. Each decision k (of a
process to be included in S) is constrained by the eligibility requirement that the
process must start after time p and terminate before time q. A (noncanonical)
greedy policy that is optimal selects that eligible process k∗ whose termination
time tk∗ is minimal.

It has also been shown that if processes are considered for inclusion or ex-
clusion in S in increasing order of termination time, the optimal solution can
be found using a very different DPFE of the form

f [k] = max{wk + f [π(k)], f [k − 1]}, (35)

where π(k) = max(j|tj 6 sk). Our goal is to solve for f [N] given the base case
f [0] = 0. For this DPFE (as for the 0-1 knapsack problem), each decision is
Boolean, whether or not to include process k ∈ P in S. While the decisions are
Boolean, they are made in a greedy order.

Assume now that there may be precedence constraints that require one
process i to finish before another process j is “eligible” to start. This can
be modeled by a directed graph whose vertices represent processes and where
an arc from i to j represents the foregoing precedence constraint. Alternatively,
arcs may represent processes (including dummy ones of zero duration), and the
foregoing precedence constraint may be represented by introducing vertices to
represent the “event” that all predecessor processes have finished hence all suc-
cessor processes are eligible to start. This is the assumption associated with

638 A. LEW

CPM/PERT networks that was mentioned above and can be solved as a longest
path problem. We note that CPM/PERT assumes that there are no constraints
on how many processes may be scheduled simultaneously. If there is such a
constraint, a DP solution is still possible.

Example 5.3 (Mininum Schedule Length) Suppose that at most m processes can
execute simultaneously. Assuming all processes in P have unit-time durations
for simplicity, a minimum length schedule (also known as the “makespan”) can
be found using a DPFE of the form

f [S] = max{S′⊆S||S′|6m and each s in S′ is eligible}{1 + f [S − S′]}. (36)

Our goal is to solve for f [P] given the base case f [∅] = 0. The cost of a decision
does not depend explicitly on the decision, as in Example 3.1, therefore there is
no associated canonical greedy algorithm.

6. Conclusion

In summary, we have identified three classes of DP problems.

• Class A: Problems having a DP formulation whose canonical greedy algo-
rithm is optimal. This class includes the linear search problem Examples
3.1 and 4.1 and the other examples in Section 4 (Examples 4.2-4.7).

• Class B: Problems having a DP formulation whose canonical greedy al-
gorithm is nonoptimal, but for which an alternate noncanonical greedy
algorithm is optimal. This class includes Examples 5.1 and 5.2.

• Class C: Problems having a DP formulation whose canonical greedy algo-
rithm is nonoptimal, and which have no known optimal greedy algorithm.
This class includes the binary search tree, shortest path in cyclic graph
with negative arcs, traveling sales, integer knapsack, and Example 5.3
problems.

Example 5.2 illustrates a DP formulation in which a greedy policy is used
to choose the order in which decisions are to be made, rather than what each
decision should be. Example 5.1 illustrates a DP formulation in which one
greedy policy is used to choose the order in which decisions are to be made, and
a second greedy policy is used to choose what each decision should be.

Optimization problems having no DP formulation cannot have an optimal
greedy formulation either, since we could always adopt the trivial one in which
the set of all eligible decisions is constrained to those that are greedy, relying
on the optimality of the greedy policy to justify the constraint. Hence, such
problems are not relevant for our purposes. Remark : Lew (1985) contains the
DPFEs for Example 5.3, as well as Examples 3.1, 4.1, and 4.4, but does not
mention relationships between greedy algorithms and DP.

As shown in Section 4, a large class of greedy algorithms can be formulated
as special cases of DP algorithms. Thus, DP provides a constructive way to

Canonical greedy algorithms and dynamic programming 639

derive greedy algorithms in practice. To be practical, an approach must be
accessible to practitioners. An approach based on conventional DPFEs meets
this requirement, unlike the algebraic approaches of, say, Bird, de Moor (1993),
Curtis (2003), at least at the present time. After all, DPFEs are currently
being developed in practice on a continuing basis. Furthermore, DP is broadly
applicable and permits certain variations of the optimization problems to be
solved as well. In Section 5, we showed (for Class B problems) that the canonical
greedy algorithm associated with a DPFE need not be optimal, and also showed
an optimal greedy algorithm that was not canonically formulated from a DPFE.
As illustrated by the two linear search examples, one DPFE may lead to an
optimal canonical greedy algorithm, while an alternative DPFE may not. Since
deriving a DPFE for an optimization problem is in general still an “art”, there
being no mechanical process for doing so for arbitrarily given problems, deriving
optimal greedy algorithms is likely to remain an art as well. Nevertheless, for a
new application, developing a DP formulation initially is a reasonable strategy
that may help achieve the ultimate objective of developing an efficient solution.

In conclusion, we have discussed greedy algorithms as a general methodology,
but in the context of DP, providing first a constructive means of deriving greedy
algorithms to more efficiently solve certain optimization problems, and then a
framework in which greedy algorithms can be further analyzed. Much work in
these directions remains to be done. We expect that extensions of the ideas re-
ported here will lead to progress on several related theoretical questions, such as
general characterizations of optimization problems in the foregoing three classes.
One open problem is the development of a method for determining whether any
given canonically derived greedy algorithm is optimal. For very special cases, it
is possible to use DP to derive a provably optimal greedy algorithm (Sniedovich,
2006); we are investigating ways to generalize this approach to both canonical
and noncanonical greedy algorithms, so that, at the least, the Class A algorithms
of Section 4 can be proven optimal using DP without appealing to arguments
of their originators. Class C problems include intractable (NP-hard) ones, for
which there is no “efficient” solution. This does not mean, however, that an
optimal greedy algorithm that reduces complexity, say from factorial time to
exponential time, does not exist. This may be useful for relatively small prob-
lems, but for large problems the use of approximation techniques may be the
only alternative.

Acknowledgements

The author thanks Moshe Sniedovich and Allan Borodin for constructive com-
ments on an earlier draft of this paper.

640 A. LEW

References

Bellman, R. (1957) Dynamic Programming. Princeton University Press, Prin-
ceton.

Bird, R. and de Moor, O. (1993) From dynamic programming to greedy
algorithms. Formal Program Development, LNCS 755, 43-61.

Borodin, A., Nielsen, M.N. and Rackoff, C. (2002) (Incremental) prior-
ity algorithms. 13th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, 752-761.

Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C. (2001) In-
troduction to Algorithms, 2nd Ed. McGraw-Hill, New York.

Curtis, S. (2003) The classification of greedy algorithms. Science of Com-
puter Programming 49, 125-157.

Davis S. and Impagliazzo, R. (2004) Models of greedy algorithms for graph
problems. 15th Annual ACM-SIAM Symposium on Discrete Algorithms,
381-390.

Dreyfuss S.E. and Law, A.M. (1977) The Art and Theory of Dynamic Pro-
gramming. Academic Press, New York.

Helman, P., Moret, B.M.E. and Shapiro, H. (1993) An exact characteri-
zation of greedy structures. SIAM J. on Discrete Mathematics 6, 274-283.

Heyman, S.P. and Sobel, M.J. (1984) Stochastic Models in Operations Re-
search, Volume II. Academic Press, New York.

Hillier F.S. and Lieberman, G.J. (2001) Introduction to Operations Re-
search, 7th Ed. McGraw-Hill, New York.

Horowitz, E., Sahni, S. and Rajasekaran, S. (1996) Computer Algo-
rithms/C++. Computer Science Press, New York.

Lew, A. (1985) Computer Science: A Mathematical Introduction. Prentice-
Hall International, London.

Papadimitriou, C.H. and Steiglitz, K. (1982) Combinatorial Optimization:
Algorithms and Complexity. Prentice-Hall, Englewood Cliffs.

Sniedovich, M. (2006) Dijkstra’s algorithm revisited: the dynamic program-
ming connexion. J. Control and Cybernetics, (this issue).

Winston, W.L. (2004) Operations Research: Applications and Algorithms,
4th Ed. Brooks/Cole, Belmont.

APPENDIX

To illustrate the concept of canonical greedy algorithms, we reconsider Dijkstra’s
algorithm (Example 4.5) for solving the problem of finding shortest paths in
a network having no negative arc distances. This problem can be solved by
constructing, choosing one arc at a time, the shortest-path spanning tree, which
gives the shortest path from a designated source vertex s to every other vertex
p. The optimal tree can be found by dynamic programming using the DPFE

f [S] = minp∈S,q/∈S{(L(p) + d(p, q)) + f [S ∪ {(q, (L(p) + d(p, q)))}]},

Canonical greedy algorithms and dynamic programming 641

where the state S is the ”tree-so-far” consisting of the set of chosen arcs. We
will denote S = {(p, L(p))} by their incident vertices p with associated shortest-
path-so-far labels L(p), where L(p) is the length of the shortest path (so far)
to p; the arcs in S, although not explicitly shown, are implicitly part of the
state. For simplicity, we write p ∈ S if (p, L(p)) ∈ S. A decision pair or arc
(p, q) is not eligible if its addition to the tree-so-far S would create a cycle or
if arc distance d(p, q) is infinite. Dijkstra’s greedy policy permits us to replace
the minimization of {(L(p) + d(p, q)) + f [S ∪ {(q, (L(p) + d(p, q)))}]} by the
minimization of {(L(p) + d(p, q))}.

In addition, Dijkstra’s algorithm incorporates a ”successive approximations”
or ”relaxation” step so that whenever the sum L(p) + d(p, q) is found to be less
than L(q), vertex q is relabeled, yielding L(q) = L(p) + d(p, q). This requires
saving “temporary” values for L(q), rather than recalculating them. Since we
only wish to illustrate how greediness is handled, this relaxation step is not
included in our formulation.

As a numerical example, we use the network with vertices {s, x, y, t} whose
adjacency matrix of arc distances is

∞ 3 5 ∞
∞ ∞ 1 8
∞ 2 ∞ 5
∞ ∞ ∞ ∞

The initial vertex labels are (s, 0), (x,∞), (y,∞), and (t,∞). We interpret ∞
here to mean that the labels of the nonsource vertices x, y, and t are undefined,
rather than set to some “infinite” value, since their values are never used until
after the vertices are placed in the tree-so-far. Starting in the initial ”goal”
state S0 = {(s, 0)}, the DPFE is

f [{(s, 0)}] = minp∈{(s,0)},q/∈{(s,0)}{(L(p) + d(p, q))

+f [{s, 0)} ∪ {(q, (L(p) + d(p, q)))}]}

= minp∈{(s,0)},q∈{(x,∞),(y,∞),(t,∞}{(L(p) + d(p, q))

+f [{(s, 0)} ∪ {(q, (L(p) + d(p, q)))}]}

= min{(L(s) + d(s, x)) + f [{(s, 0)} ∪ {(x, (L(s) + d(s, x)))}],

(L(s) + d(s, y)) + f [{(s, 0)} ∪ {(y, (L(s) + d(s, y)))}]}

= min{(0 + 3) + f [{(s, 0)} ∪ {(x, 3)}],

(0 + 5) + f [{(s, 0)} ∪ {(y, 5)}}.

According to Dijkstra’s greedy policy, since min(0 + 3, 0 + 5) = 3, the choice
p = s & q = x is the optimal decision, which leads to the next state S1 =
{(s, 0), (x, 3)}. At this point, vertex x is placed in the tree-so-far and labeled
with the computed value 3. (The arc (s, x) with arc-distance 3 in the tree-so-far

642 A. LEW

is not explicitly shown.) We continue by evaluating

f [{(s, 0), (x, 3)}] = minp∈{(s,0),(x,3)},q/∈{(s,0),(x,3)}{(L(p) + d(p, q))

+f [{(s, 0), (x, 3)} ∪ {(q, (L(p) + d(p, q)))}]}

= minp∈{(s,0),(x,3)},q∈{(y,∞),(t,∞)}{(L(p) + d(p, q))

+f [{(s, 0), (x, 3)} ∪ {(q, (L(p) + d(p, q)))}]}

= min{(L(s) + d(s, y)) + f [{(s, 0), (x, 3)} ∪ {(y, (L(s) + d(s, y)))}],

(L(x) + d(x, y)) + f [{(s, 0), (x, 3)} ∪ {(y, (L(x) + d(x, y)))}],

(L(x) + d(x, t)) + f [{(s, 0), (x, 3)} ∪ {(t, (L(x) + d(x, t)))}]}

= min{(0 + 5) + f [{(s, 0), (x, 3)} ∪ {(y, 5)}],

(3 + 1) + f [{(s, 0), (x, 3)} ∪ {(y, 4)}],

(3 + 8) + f [{(s, 0), (x, 3)} ∪ {(t, 11)}]}.

According to Dijkstra’s greedy policy, since min(0 + 5, 3 + 1, 3 + 8 = 4, the
choice p = x & q = y is the optimal decision, which leads to the next state
S2 = {(s, 0), (x, 3), (y, 4)}. At this point, vertex y is placed in the tree-so-far
and labeled with the computed value 4. (Vertex y is never labeled with the
”temporary” value 5, as would be the case if relaxation were used. The arcs
(s, x) with arc-distance 3 and (x, y) with arc-distance 1 in the tree-so-far are
not explicitly shown.) Hence, we continue by evaluating

f [{(s, 0), (x, 3), (y, 4)}]

= minp∈{(s,0),(x,3),(y,4)},q/∈{(s,0),(x,3),(y,4)}

{(L(p) + d(p, q)) + f [{(s, 0), (x, 3), (y, 4)} ∪ {(q, (L(p) + d(p, q)))}]}

= minp∈{(s,0),(x,3),(y,4)},q∈{(t,∞)}

{(L(p) + d(p, q)) + f [{(s, 0), (x, 3), (y, 4)} ∪ {(q, (L(p) + d(p, q)))}]}

= min{(L(x) + d(x, t)) + f [{(s, 0), (x, 3), (y, 4)} ∪ {(t, (L(x) + d(x, t)))}],

(L(y) + d(y, t)) + f [{(s, 0), (x, 3), (y, 4)} ∪ {(t, (L(y) + d(y, t)))}]}

= min{(3 + 8) + f [{(s, 0), (x, 3), (y, 4)} ∪ {(t, 11)}],

(4 + 5) + f [{(s, 0), (x, 3), (y, 4)} ∪ {(t, 9)}]}.

According to Dijkstra’s greedy policy, since min(3 + 8, 4 + 5) = 9, the choice
p = y & q = t is the optimal decision, which leads to the next state S3 =
{(s, 0), (x, 3), (y, 4), (t, 9)}. At this point, vertex t is placed in the tree-so-far and
labeled with the computed value 9. (Vertex t is never labeled with the ”tempo-
rary” value 11, as would be the case if relaxation were used.) The algorithm then
uses the base case or termination condition f [{(s, 0), (x, 3), (y, 4), (t, 9)}] = 0,
where in the final state S3 the label of each vertex q equals the length of the
shortest path from s to q. (The arcs (s, x) with arc-distance 3, (x, y) with arc-
distance 1, and (y, t) with arc-distance 5 in the final tree-so-far are not explicitly
shown.) Note finally that f [{(s, 0)}] = 0 + 3 + 4 + 9 = 16.

Canonical greedy algorithms and dynamic programming 643

In conclusion, we observe that the DPFE itself does not explicitly incorporate
either the greedy policy or the relaxation part of Dijkstra’s algorithm. They may
be incorporated in the algorithmic solution of the DPFE. The greedy policy
allows us to conclude that the arc (p, q) that minimizes {(L(p) + d(p, q))} also
minimizes {(L(p) + d(p, q)) + f [S ∪ {(q, (L(p) + d(p, q)))}]}. The relaxation
part would reduce the number of arcs (p, q) that must be considered in the
minimization of {(L(p) + d(p, q))} .

