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Abstract: This paper presents a dynamic programming inspired
metaheuristic called Corridor Method. It can be classified as a
method-based iterated local search in that it deploys method-based
neighborhoods. By this we mean that the search for a new candi-
date solution is carried out by a fully-fledged optimization method
and generates a global optimal solution over the neighborhood. The
neighborhoods are thus constructed to be suitable domains for the
fully-fledged optimization method used. Typically, these neighbor-
hoods are obtained by the imposition of exogenous constraints on
the decision space of the target problem and therefore must be com-
patible with the optimization method used to search these neighbor-
hoods. This is in sharp contrast to traditional metaheuristics where
neighborhoods are move-based, that is, they are generated by sub-
jecting the candidate solution to small changes called moves. While
conceptually this method-based paradigm applies to any optimiza-
tion method, in practice it is best suited to support optimization
methods such as dynamic programming, where it is easy to con-
trol the size of a problem, hence the complexity of algorithms, by
means of exogenous constraints. The essential features of the Cor-
ridor Method are illustrated by a number of examples, including
the traveling salesman problem, where exponentially large neigh-
borhoods are searched by a linear time/space dynamic programming
algorithm.
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1. Introduction

Traditional metaheuristics such as tabu search, simulated annealing, genetic al-
gorithm and iterated local search, were designed as practical tools for dealing
with situations where the Curse of Dimensionality makes it difficult, perhaps
impossible, to apply conventional optimization methods such as linear program-
ming (LP), dynamic programming (DP) and branch and bound (BB) (Voß,
2001). In this sense they can be regarded as alternatives to optimization meth-
ods and are therefore particularly useful in applications where the latter are
subjected to the Curse of Dimensionality.

In this paper we describe a metaheuristic of a different type. Conceptually,
this metaheuristic is not designed to replace existing optimization methods, but
rather to support them in a heuristic manner so that they can deal with the
Curse of Dimensionality. To explain this idea and the reasoning behind it, let
us consider the following abstract, very general, optimization problem:

Problem P (X) : z∗ := opt
x∈X

f(x) (1)

where X is some set and f is a real valued function on X . We shall refer to
this problem as the target problem. We intentionally regard the decision space
X as a parameter of the problem, indicating that we plan to solve the problem
for sets other than X .

The following situation is quite typical: we have at our disposal optimization
methods capable of solving Problem P(X) in cases where the decision space X is
not too large. However, as X increases in size the computational effort required
by these methods is rapidly increasing, so much so that practically they can-
not handle problems of sizes encountered in large-scale real-world applications.
This is not necessarily a manifestation of an inherent deficiency of conventional
optimization methods. Rather, it is a reflection of the fact that many practical
problems are hard to solve (Garey and Johnson, 1979).

Richard Bellman - the Father of dynamic programming (DP) - coined the
phrase Curse of Dimensionality precisely for the description of this common
phenomenon (Bellman, 1957). The classical example is DP’s treatment of the
standard traveling salesman problem (TSP): the size of the DP model for the
TSP grows exponentially with the size of the problem, where size is measured
by the number of cities to be visited (Balas and Simonetti, 2001).

Neighborhood search methods deal with the above difficulty by considering
a sequence of problems {Problem P (Y (j)) : j = 1, . . . , k} where Y (j) is a rel-
atively small subset of X , in fact small enough so that Problem P (Y (j)) can
be easily solved by available optimization methods and/or ad hoc procedures.
This process generates a sequence of solutions (y(1), . . . , y(k)) such that y(j) is
an optimal solution to Problem P (Y (j)). The best element of this sequence,
namely y(m) such that f(y(m)) = opt{f(y) : j = 1, . . . , k}, is designated as the

pseudo-optimal solution for Problem P (X). If X ⊂ Y :=
⋃k

j=1 Y (j) then clearly
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y(m) is an optimal solution of Problem P (X).
But typically, even if Y is large in absolute terms, it is a relatively small

subset of X , hence there is no guarantee that y(m) is a global optimal solution
of Problem P (X). For this reason neighborhood search methods are regarded
as heuristics. In particular, they deploy heuristics to determine how the sets
{Y (j)} — called neighborhoods - should be generated.

There are three fundamental interrelated issues here, namely

– The basic structure of the neighborhoods.

– The size of the neighborhoods.

– The relationship between successive neighborhoods.

Our discussion will focus almost exclusively on the first two issues, namely
the basic structure and size of the neighborhoods.

Traditionally, the structure of neighborhoods was determined by very sim-
ple topological concepts relating a given feasible solution x ∈ X to very similar
feasible solutions via simple local changes or moves. This gave rise to relatively
small homogeneous neighborhoods. More recently, much more elaborate types
of moves have been used in the construction of very large and diverse neigh-
borhoods (Ahuja et al., 2002). We shall refer to neighborhoods of this type,
whether large or small, as move-based neighborhoods.

In contrast, the metaheuristic described in this paper, called Corridor Method,
deploys neighborhoods that are method-based. By this we mean that the basic
structure of a neighborhood is determined by the needs and requirements of the
optimization method used to search the neighborhood. So if, for example, the
solution method we use is DP, then the structure of the neighborhoods will be
suitable for a DP treatment.

With this in mind assume that there is an optimization method, call it M ,
that is capable of solving Problem P (X) in cases where X is not too large. If
X is too large, we shall use method M to solve Problem P (Y ), where Y is a
small subset of X . The size and structure of Y is determined by the capabilities
and limitations of method M . And since typically Y is much smaller than X ,
to provide a reasonably good solution for Problem P (X) it would be necessary
to solve Problem P (Y ) for several, perhaps many, subsets {Y (j)} of X .

The rationale for this scheme is simple: if an optimal solution to Problem P (X)
is an element of a subset Y of X , then any optimal solution to Problem P (Y )
is also optimal for Problem P (X). Of course, the difficulty is that a priori it is
not easy to identify such a subset of X .

As implied by the title of this paper, the development of the Corridor Method
was inspired by DP, or more precisely by attempts to devise ways to deal with
the Curse of Dimensionality in the context of large scale DP applications. Con-
ceptually, the idea is to construct a corridor around the state trajectory gen-
erated by an incumbent feasible solution to the target problem and use DP to
optimize the objective function over this corridor. The optimal solution gener-
ated this way over the current corridor is the new incumbent solution for the
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target problem. This process is repeated until a fixed point is reached: the new
incumbent is identical to the current incumbent. At this point the procedure
either terminates or a new incumbent solution is generated (somehow) and used
as a seed for a new run of the iterative search process.

The origin of the Corridor Method dates back to the early 1970s when at-
tempts were made to cope with the Curse of Dimensionality in the context
of DP applications to reservoir control problems (see the survey by Yakowitz,
1982). Indeed, a very simple version of the method, called Discrete Differential
Dynamic Programming (DDDP) had been used extensively to support DP in
the solution of large reservoir operation problems (Heidari et al., 1971; Chow et
al., 1975; Yakowitz, 1982).

As indicated in this discussion, the same idea can be used in conjunction
with other fully-fledged optimization methods, such as LP and BB, except that
the corridor is constructed around the incumbent solution itself rather than
around the state trajectory it generates. The key here is to generate the corri-
dors by the imposition of exogenous constraints on the decision space X of the
target problem. Needless to say, these constraints should be compatible with
the method used to optimize the objective function over the corridors.

The main objective of this paper is to describe the essential ingredients of
this metaheuristic and discuss its relationship to other local search methods.
For this purpose it is instructive to take a quick look at the well-established
classical iterated local search method. This will set the framework for a formal
description of move-based neighborhoods, method-based neighborhoods and the
Corridor Method.

The rest of the paper is organized as follows. After presenting some back-
ground from the area of metaheuristics (Sections 2-4 including a distinction
between move-based and method-based neighborhoods) we define the Corridor
Method more formally (Section 5). Section 6 presents some examples to un-
derline our ideas, while Section 7 indicates the applicability of the method to
a wide range of combinatorial optimization problems. The paper closes with a
short discussion and some conclusions

2. Iterated local search method

Assume that in the framework of Problem P (X) there is a map N from X to
the power set of X such that for each set N (x) is a non-empty strict subset of
X . We call N the neighborhood function and N (x) the neighborhood of x. Also
assume that there is a map Π from X to itself such that Π(x) 6= x, ∀x ∈ X ,.
We call x′ = Π(x) a perturbation of x.

The iterated local search method works as follows (Voß, 2001; Hoos and
Stützle, 2004):

Start: Set j = 1 and select x(1) ∈ X .
x∗ = arg opt

y∈N (x(j))

f(y)
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Iterate: Repeat until (Termination Condition)

If f(x∗) = f(x(j)) set x(j+1) = Π(x∗) else set x(j+1) = x∗

Set j = j + 1

where Termination Condition is a rule that determines when the iterative pro-
cedure should be terminated. For ease of exposition we assume that x(j) ∈
N (x(j)).

Let x = (x(1), . . . , x(k)) denote the sequence of x values generated by this
procedure and consider a pair of two consecutive elements of this sequence,
say (x(j), x(j+1)). There are two possibilities with regard to the relationship be-
tween these two solutions: if x(j) is an optimal solution for Problem P (N (x(j)))
then x(j+1) is a perturbation of x(j) , otherwise it is an optimal solution to
Problem P (N (x(j))). Whenever Π is called upon to resolve a fixed-point situ-
ation, a new seed x(j+1) = Π(x(j)) is generated for the local search process.

Three heuristics are embedded then within the iterated local search method:

N : for generating the neighborhoods for the local search method.

Π : for generating new seeds to get out of fixed points.

Termination Condition : for terminating the process.

Our discussion will focus on N .

3. Move-based neighborhoods

Traditionally, the neighborhoods associated with the iterated local search method,
indeed also with most other metaheuristics, were based on the elementary move
concept. Roughly speaking, an elementary move is a very small change in the
structure of a given feasible solution x ∈ X . The most popular elementary moves
are k-opt, swap, insertion, and bit-flip (Voß, 2001). We distinguish between two
types of move-based neighborhoods, namely single-move based neighborhoods
and multiple-move based neighborhoods.

Suppose that we have a given set of elementary moves. Let Move(x) denote
the single-move based neighborhood of x pertaining to this set. That is, let
Move(x) denote the subset of X consisting of feasible solutions that can be
obtained from x by a single elementary move. More formally,

Move(x) := {y ∈ X : (x, y) ∈ eMoves} x ∈ X (2)

where eMoves is the relation on X representing the elementary moves under
consideration. By definition, eMoves is a subset of X × X such that (x, y) ∈
eMoves if and only if y can be obtained from x by a single elementary move.

The basic characteristics of neighborhoods of this type is that they are rel-
atively small compared to X and quite homogeneous. That is, Move(x) is a
relatively small subset of X , the neighborhood of x, consisting of solutions that
are fairly similar to x.
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Let Moves(x) denote the multiple-move based neighborhood of x associated
with the given set of elementary moves. Informally speaking, this set consists
of all elements of X that can be obtained from x by successive applications
of elementary moves, subject to some regularity conditions. It is necessary to
impose these regularity conditions because otherwise we could have Moves(x) =
X, ∀x ∈ X , which in view of our attempt to make the neighborhoods much
smaller than X , is highly undesirable. Furthermore, these regularity conditions
may have to be cleverly formulated so that even though Moves(x) is very large
compared to Move(x), Problem P (Moves(x)) can be easily solved.

For the purposes of our discussion it suffices to indicate that Moves(x) is
constructed so that (a) it is a relatively small subset of X , (b) it contains, and is
much larger than, Move(x), and (c) it is much more diversified than Move(x).

It should be pointed out that the origin of the concept of elementary move is
very strongly associated with permutation problems, namely problems where X
is a permutations set. Indeed, the three most popular elementary moves (k-opt,
swap, insertion) are all very much permutation oriented. The traveling sales-
man problem (TSP) is the prime example of such problems. While it is true
that the class of permutation oriented optimization problems plays an extremely
important role in combinatorial optimization, there are many other important
classes, e.g. knapsack problems, resource allocation problems, inventory prob-
lems, production problems and so on. The question therefore arises: how do
you construct large, diverse neighborhoods for such problems, where there are
no obvious elementary moves?

To be effective, the structure of neighborhoods must be in tune with the
structure of the objective function f of Problem P (X). Since the main purpose
of the local search is to improve the value of the objective function, neighbor-
hoods should be constructed with this purpose in mind. But by their very
nature elementary moves are completely oblivious to this consideration. There-
fore, intelligent local searches whose neighborhoods are based on elementary
moves must use some other tools to cope with this issue.

In summary, the traditional, most popular paradigm for the construction of
neighborhoods for local searches is very much move-based and is strongly tied
to permutation problems. And it should not come as a surprise that DP can be
used within the framework of iterative local search processes whose neighbor-
hoods are moved-based (Potts and van de Velde, 1995).

4. Method-based neighborhoods

As attempts are being made to increase the size of neighborhoods deployed by
metaheuristics in general and the iterated local search method in particular, it
becomes necessary to conduct the local search by means of fully-fledged opti-
mization methods. This seems to be a natural development in the history and
evolution of metaheuristics.
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In this conceptual framework method-based neighborhoods constitute a new
breed of neighborhoods whose basic structure is determined by the (fully-fledged)
optimization method used to search the neighborhoods. Indeed, the basic idea
behind method-based neighborhoods is extremely simple, intuitive and power-
ful: if we are to obtain an exact global optimal solution to Problem P (Y ) for a
large neighborhood Y , then we have to use a fully-fledged optimization method
for this purpose. This being the case, the essential structure of Y must be deter-
mined, indeed dictated, by the capabilities and limitations of the optimization
method used.

The fundamental question is therefore as follows: suppose that we plan to
use method M to solve Problem P (Y ), where Y is a subset of X . How should
we construct Y so that (a) Y is much smaller than X but still quite large in
absolute terms, and (b) Problem P (Y ) can be easily solved by method M?
Needless to say, this question is raised in the framework of situations where the
essential structure of X is compatible with method M , but X is too large.

One obvious answer to this fundamental question is as follows: Y can be
constructed by constraintification, namely by the imposition of exogenous con-
straints on Problem P (X). By necessity, these constraints must be in tune not
only with the structure of Problem P (X) but also with the capabilities and
limitations of method M . In particular, the exogenous constraints should be
formulated so as to provide explicit control not only on the size of Y but also on
the complexity of the algorithm deployed by method M to solve Problem P (Y ).
In fact, strictly speaking, the size of Y as such is not an issue here, what is im-
portant is that method M is capable of solving Problem P (Y ) efficiently. In
this sense the size of Y is merely a proxy for the complexity of the algorithm
used by method M to solve Problem P (Y ).

The following example illustrates some of the conceptual and technical issues
associated with the construction of method-based neighborhoods.

Example 4.1

Consider the standard TSP and let x′ = (x′
1, . . . , x

′
n) be a feasible tour, where

x′
0 = x′

n+1 = 0 denotes the home city. What would be a suitable neighborhood
around this tour?

The first thing to observe is that in the context of our discussion this ques-
tion is meaningless because there is no reference to any particular optimization
method to be used to search the neighborhoods. So suppose that we rephrase
the question thus: What would be a suitable neighborhood around x′ given that
M = DP?

To answer this question we have to identify the reasons why the DP formu-
lation of the TSP is subjected to the Curse of Dimensionality. So recall that
this formulation is as follow:
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TSP DP:

z∗ := min
x1,...,xn

n
∑

j=1

d(cj , xj) + d(cn+1, 0) , J := {0, 1, . . . , n} (3)

subject to

c1 = 0 ; v1 = {1, . . . , n} (4)

cj+1 = xj , j = 1, . . . , n (5)

vj+1 = vj\{xj} , j = 1, . . . , n (6)

xj ∈ vj , j = 1, . . . , n (7)

where 0 represents the home city and d(i, j) denotes the distance between city
i and city j.

The DP functional equation for this model is as follows:

f(v, c) = min
i∈v

{d(c, i) + f(v\{i}, i))} , v ⊂ J, c ∈ J\v (8)

with f(φ, c) := d(c, 0), c ∈ J , where φ denotes the empty set. Here, f(v, c)
denotes the length of the optimal subtour over the remaining cities given that
we are at city c, still have to visit the cities in set v and return to the home city.
By definition, z∗ = f(J, 0).

The state variable in this model is then of the form s = (v, c) where v denotes
the set of cities that have not yet been visited and c denotes the current city.
Let S denote the set of all such states. Since the problem is of size n (there are
n cities to visit, excluding the home city), if each city is directly connected to
all other cities, we would have |S| = n2n−1. The culprit here is then set v: it
can take 2n−1 distinct values for any given value of city c. Thus, to control the
size of the neighborhoods we need to control the number of values that v can
take. It follows then that the neighborhood function N should be constructed
so that it is easy to control the number of feasible values that v can take for
any given feasible value of c.

This can be done in many different ways, the most straightforward being
the imposition of simple exogenous constraints on v and c requiring that the
(ordinal) position of the cities in v must not be too far from the position of
city c on the incumbent tour x. To explain how this scheme works consider
the tour x = (1, 6, 4, 8, 3, 7, 2, 5, 10, 9) in the context of a TSP of size n = 10.
On completion of the sub-tour (1, 6, 4, 8, 3, 7, 2) we shall observe the state s =
({5, 9, 10}, 2), that is, we shall be in city c = 2 and will still have to visit the
cities in v = {5, 9, 10}. The reason why we have to record v is the restriction
that each city other than the origin should be visited exactly once. Thus, to
satisfy this condition we must know what cities have not been visited yet and
the next destination must be one of these cities. If v is empty, we must go to
city 0 to complete the tour.
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Now, suppose that given an incumbent tour x = (x1, . . . , xn) and a pos-
itive integer m > 0 much smaller than n we impose the following exogenous
precedence constraint on the problem:

Exogenous Precedence Constraint:

C 1: Given an incumbent tour x = (x1, . . . , xn), for each j = 1, . . . , n, city xj

can be visited only after all the cities {x1, . . . , xj−m−1}, where m is a given
integer smaller than n.

For example, if m = 2 then in the context of the tour x = (1, 6, 4, 8, 3, 7, 2, 5,
10, 9) when we are in city c = 2 we are only interested in instances of v that
are subsets of {3, 5, 7, 10} and there are only 24 = 16 such subsets. Note that
if the current city is c = x7 = 2, then in accordance with C 1 we must have
already visited all the cities in {x1, . . . , x4} = {1, 4, 6, 8} but definitely have not
yet visited city x10 = 9.

Thus, subject to C 1 the cardinality of the state space of the DP model will
not exceed n22m. Therefore, if m is small, say equal to 3 or 4, the DP algorithm
will be able to easily handle very large values of n. Of course, this also means
that it might be necessary to apply the DP algorithm to many neighborhoods
in order to obtain a good solution for the target problem. This should not come
as a surprise, after all the TSP is an NP-hard problem (Garey and Johnson,
1979)

As we show below, the size of the neighborhoods induced by this simple
exogenous precedence constraint is exponential with n. More specifically, for
m > 2 we have |N (x)| > an, where a > 1. The complexity of the DP algorithm
is O(n22m) per neighborhood, namely it is linear with the size (n) of the target
problem.

In summary then, using a very simple constraintification scheme, the search
over an extremely large decision space (|X | = n!) is carried out over exponen-
tially large neighborhoods (|N (x)| > an, a > 1) using a linear time/memory
DP algorithm (per neighborhood).

The next example illustrates again the point that sometimes it is more con-
venient to construct neighborhoods not around x itself but around a related
object. In the case of DP this object is typically the state trajectory.

Example 4.2

Consider the standard 0-1 knapsack problem. Here a solution x is a binary
vector in {0, 1}n where n denotes the number of items available. For instance,
suppose that n = 5,

X = {x ∈ {0, 1}5 : 11x1 + 12x2 + 13x3 + 14x4 + 15x15 ≤ 40} (9)

and consider the initial guess x(1) = (1, 1, 1, 0, 0) . How do we construct a
neighborhood around this feasible solution?
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As was indicated above, strictly speaking this question is not well defined
because any meaningful answer must take into consideration the method we
plan to use to solve the knapsack problem over some subset Y of X . So let
us rephrase the question: How do we construct a neighborhood around this
solution for M = DP?

For the purposes of this discussion it suffices to indicate that within the DP
framework it will be convenient to use neighborhoods around the state trajectory
rather than around the decision variable x, observing that the state variables in
this case are as follows:

sj = b −
j−1
∑

i=1

wixi , j = 1, . . . , n + 1 (10)

where in the context of (9) we have b = 40 and w = (11, 12, 13, 14, 15).
Note that the state trajectory generated by the solution x′ = (1, 1, 1, 0, 0) is

equal to t = (40, 29, 17, 4, 4, 4).
The most simplistic neighborhood in this case seems to be a corridor of

variable width around the state trajectory, say C = C1 ×C2 × · · · ,×C6 , where
Ci = {σi, . . . , σi} ,

σj = max(0, s
(1)
j − δ) ; σj = min(b, s

(1)
j + δ) , j = 2, . . . , 6 (11)

with C 1 = b and δ > 0.
For example, for δ = 10 the corridor around t = (40, 29, 17, 4, 4, 4) will be

C ={40} × {19, . . . , 39} × {7, . . . , 27} × {0, . . . , 14} × {0, . . . , 14}
× {0, . . . , 14}. (12)

The parameter δ can be used to control the size of the neighborhoods, observing
that the above scheme can be refined by allowing the width of the corridor to
vary with the stage variable j.

Note that once a corridor is determined, the set of feasible decisions pertain-
ing to a given state is modified accordingly: a decision that generates a state
outside the corridor is regarded as infeasible. Thus, since in our example sj+1 =
sj − wjxj , we require xj to satisfy the constraint σj+1 ≤ sj − wjxj ≤ σj+1.

The complexity analysis is as follows. In the worst case |X | ≈ 2n, whereas
the complexity of the DP algorithm is O(nb) for Problem P (X). For the neigh-
borhoods we have |N (s)| ≈ (1+2δ)n so we should expect N (s) to be larger than
X . This is so because the construction of the neighborhoods outlined above al-
lows the inclusion of many state trajectories that are not feasible with respect
to the target problem and which will not be considered by the DP algorithm.
In any case, the complexity of the DP algorithm, measured by the size of the
state space of a neighborhood, is O(n(1 + 2δ)).

This example is a simple instance of a multi-dimensional grid model. It
consists of two basic constructs, namely stages and states. The stage variable,
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j = 1, 2, . . . , n, is a decision making counter and the state variable sj describes
the state of the system at stage j. For simplicity we assume that all the states are
m-vectors whose components are non-negative integers. Let Sj denote the set
of feasible values of sj and let T denote the set of all feasible state trajectories,
namely let I := {0, 1, ...} and let T be the subset of (Im)n whose elements s ∈ T
satisfy the condition sj ∈ Sj for j = 1, . . . , n. Let s

(i)
j denote the i-th component

of sj so that sj = (s
(1)
j , . . . , s

(m)
j ). For simplicity we assume that

Sj =
{

sj ∈ Im : s
(i)
j ≤ s

(i)
j ≤ s

(i)
j

}

(13)

where s
(i)
j ≤ s

(i)
j are given parameters. By construction then,

|T | =

n
∏

j=1

|Sj | =

n
∏

j=1

m
∏

i=1

(1 + s
(i)
j − s

(i)
j ). (14)

A corridor around s ∈ T is a subset of T whose elements are within a
prescribed distance from sj at each stage j. That is,

C(s, ∆) =
{

σ ∈ T : |σ(i)
j − s

(i)
j | ≤ ∆

(i)
j , 1 ≤ j ≤ n; 1 ≤ i ≤ m

}

(15)

where the width of the corridor, ∆, is a control parameter.
By construction then,

|C(s, ∆)| =
n

∏

j=1

m
∏

i=1

θ
(i)
j ≥ µn , µ := min

{

m
∏

i=1

θ
(i)
j : 1 ≤ j ≤ n

}

(16)

where

θ
(i)
j = 1 + min{u(i)

j , s
(i)
j + ∆

(i)
j } − max{l(i)j , s

(i)
j − ∆

(i)
j }. (17)

Observe that if θ
(i)
j ≥ 2 for all i and j then |C(s, ∆)| > 2n.

In short, the multi-dimensional grid model provides a straightforward frame-
work for creating exponentially large neighborhoods.

As indicated above, it should be noted that the term size used in our dis-
cussion in relation to X and N (x) should be interpreted with imagination. It
definitely does not always refer to the cardinality of these sets. By the same
token, the search over N (x) does not have to be explicit in nature, so it is
not always the case that the neighborhoods have to be explicitly defined nor
explicitly enumerated.

Perhaps the best example for such a case is M=Simplex Method of linear
programming. If we define “size” to be the number of variables in the LP
model, then a simple constraintification (setting variables to zero and excluding
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them from the model) could be used to reduce the size of X to any desirable
level. Indeed, such neighborhoods are routinely deployed by the famous column
generation method of linear programming (Winston, 1994).

An interesting issue regarding method-based neighborhoods is that Problem
P (X) may sometimes have two or more distinct formulations pertaining to the
same optimization method M . In such cases the choice of exogenous constraints
to be deployed for the construction of neighborhoods may depend not only on
the solution method used but also on the formulation selected. The following
example illustrates this point.

Example 4.3

Consider again the standard TSP, assume that M =Linear Mixed Integer
Programming and that the exogenous precedence constraint C 1 discussed in
Example 4.1 is used to construct neighborhoods. Now, the TSP has many dis-
tinct mixed integer linear programming formulations and the question therefore
arises which one, if any, can handle this type of constraint. We shall consider
two well-known types of formulations and examine how they cope with this
constraint.

The first type — Dantzig/Fulkerson/Johnson (DFJ) (1954) — is based on
explicit subtour elimination constraints and reads as follows:

TSP DFJ:

z∗ := min
x∈{0,1}n×n

n
∑

i=1

n
∑

j=1

ci,jxi,j (18)

subject to

n
∑

j=1

xi,j = 1 , i = 1, . . . , n , ;
n

∑

i=1

xi,j = 1 , j = 1, . . . , n (19)

SEC(x, s) , ∀s ∈ J (20)

where J denotes the set of all proper non-empty subsets of {1, . . . , n} and
SEC(x, s) is a typical subtour elimination constraint.

The trouble maker in this formulation is set J in (20): its cardinality is
2n − 2. The following is a common instance of (20):

∑

i,j∈s

xi,j ≤ |s| − 1 , ∀s ⊂ {1, . . . , n}, 2 ≤ |s| ≤ n − 1. (21)

How do we formulate in this framework the exogenous precedence constraint
C 1 and how do we use this constraint to control the size of J in (20)? Note
that there is no apparent direct way of handling C 1 without the introduction
of additional variables.
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With this in mind consider the Miller/Tucker/Zemlin (MTZ) (1960) formu-
lation which is based on explicit sequencing variables :

TSP MTZ:

z∗ := min
u∈ℜn,x∈{0,1}n×n

n
∑

i=1

n
∑

j=1

ci,jxi,j (22)

n
∑

j=1

xi,j = 1 , i = 1, . . . , n , ;
n

∑

i=1

xi,j = 1 , j = 1, . . . , n (23)

SV C(x, u) , ∀s ∈ J (24)

where SV C(x, u) represents a set of no more than n2 sequencing constraints.
The following is a common instance of (24):

u1 = 1
1 ≤ uj ≤ n − 1 , j = 2, . . . , n
uj ≥ ui + 1 − (n − 1)(1 − xi,j) , ∀i, j ≥ 2, i 6= j.

(25)

For obvious reasons we shall refer to the xi,j variables as assignment variables
and to the uj variables as sequencing variables. The former are binary, the latter
are continuous.

This particular model consists then of n continuous variables, n2 binary
variables and roughly 2n + (n − 1)2 constraints.

Note that with the aid of the sequencing variables (u ′
1, . . . , u

′
n) it is straight-

forward to incorporate into this model the exogenous precedence constraint C 1.
For instance, this constraint can be formulated as follows:

ui ≥ uj ∀i, j such that |u ′
i − u ′

j | > m (26)

where (u ′
1, . . . , u

′
n) denotes the feasible instantiation of the sequencing variables

associated with a feasible solution to the target problem, observing that in the
context of (25) city 1 is the home city.

The impact of the exogenous constraint will thus be to significantly reduce
the number of assignment variables in accordance with (25), observing that
uj > ui implies that xi,j = 0. Indeed, (26) instantiates (to zero) more than
(n − m)2/2 of the n2 assignment variables xi,j . Thus, for say n = 100 and
m = 2, this constraint will instantiate (to zero) more than 4802 out of the
10, 000 assignment variables (xi,j). As in the case of the DP formulation, the
number of feasible tours contained in the corridors induced by the exogenous
constraint is exponential with n.

In short, in addition to tightening the constraints on the sequencing vari-
ables (u ′

1, . . . , u
′
n) via (26), the imposition of the exogenous constraints under

consideration also significantly decreases the size of the model by instantiating
a large portion of the assignment binary variables.
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The conclusion is therefore that sequencing-variables-based formulations of
the TSP seem to provide a more direct way to handle the specific exogenous
constraint than the subtour-elimination-constraints-based formulations.

The foregoing analysis is also valid for other versions of the MTZ model. De-
tails regarding such formulations and the impact they have on the performance
of linear integer programming based algorithms for the TSP and precedence
constrained TSP can be found in Sherali and Driscoll (2002).

Extensive experience has been accumulated over the years regarding the type
of constraints that existing optimization problems can cope with and the impact
of such constraints on the performance of algorithms based on these methods.
This experience can facilitate the identification of suitable constraints for the
construction of neighborhoods for the Corridor Method. The key point to re-
member is that these constraints depend on both the structure of Problem P (X)
and the optimization method used to solve this problem, M .

With this in mind let us now have a look at the Corridor Method and its
DP roots.

5. The Corridor Method

As was indicated already, the origin of the Corridor Method can be traced back
to the 1970s and to the employment of DDDP to solve large-scale reservoir
control problems (Heidari et al., 1971; Chow et al., 1975). Since this predated
the birth of the field of metaheuristics it is not surprising that the basic idea
behind this method has not been developed any further from a metaheuristic
perspective. The objective of this section is then two-fold: first to give this basic
idea a DP-free formulation and second to cast it as a formal metaheuristic.

Conceptually, there are two ways to describe the Corridor Method with this
purpose in mind. The first simply draws attention to the fact that the deploy-
ment of sequences of admissible elementary moves is just one way of generating
large neighborhoods that are easily searchable by existing optimization meth-
ods. The point is that there might be other ways to accomplish this goal. Thus,
the Corridor Method can be described as an iterated local search method where
N (x) is a relatively large set (compared to single-move based neighborhoods)
whose structure and size are compatible with the optimization method operating
on it, M .

Another way to describe the Corridor Method is to reiterate what we pointed
out at the outset, namely: typically Problem P (X) can be easily solved by
some fully-fledged optimization methods if X is not too large. So, suppose that
method M can solve Problem P (Y ) not for the given decision set (Y = X),
which is too large, but for decision spaces that are much smaller than X itself,
yet still very large in absolute terms. Of course, if subject to the prevailing CPU
time/memory resources, the method M is capable of solving Problem P (X),
then it is not necessary to go through the iterative local search method. In this
case M can be applied directly to Problem P (X).
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The implication is that the Corridor Method is designed for situations where
method M cannot be applied directly to Problem P (X) because X is too large,
but it can be applied to Problem P (Y ) if set Y is much smaller than X . The
obvious price we pay for deploying this approach is that in general there is
no guarantee that the iterative procedure yields a global optimal solution to
Problem P (X). This is precisely why the method is regarded as a heuristic.

This preliminary examination suggests that a suitable environment for using
the Corridor Method should have the following basic characteristics:

– The optimization problem under consideration is ’large’.

– An optimization method is available for efficiently solving smaller in-
stances of the problem.

– It is easy to generate (an initial) feasible solution for the target problem.

– There is an efficient method for generating suitable large neighborhoods
around feasible solutions to the problem on which the optimization method
can be used.

The first three characteristics are universal in nature and require no further
discussion. The fourth is clearly a problem/method oriented feature and must
be dealt with on a case-by-case basis. It should be stressed that, as in the case of
other metaheuristics, even if these four fundamental conditions hold, in general
there is no guarantee that the Corridor Method will generate good solutions.

The following is then a schema of the Corridor Method :

Given: Problem P (X) and method M .
Prepare: NM , Termination ConditionM , ΠM .

Start: Set j = 1 and select x(1) ∈ X .
Iterate: Repeat until (Termination ConditionM )

x∗ = arg optM
y∈N (x(j))

f(y)

If f(x∗) = f(x(j)) set x(j+1) = Π(x(j)) else set x(j+1) = x∗.
Set j = j + 1.

Here we use NM , rather than N , Termination ConditionM rather than Termi-
nation Condition, ΠM rather than Π, and optM rather than opt as a reminder
that these objects are very much dependent on method M .

We mention in passing that although officially the incumbent solution x
is not required to be a member of its neighborhood, N (x), in practice this
condition is often satisfied in a natural way so no special measures have to
be taken to enforce it. The examples discussed above exhibit this feature. The
point is that if N is constructed such that x ∈ N (x), ∀x ∈ X , then any sequence
generated by the Corridor Method for a given seed is monotonic in the desirable
way (increasing if opt = max and decreasing if opt = min). This implies, among
other things, that if an optimal solution exits, then any such sequence must
converge.
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In summary, the Corridor Method is an iterated local search method char-
acterized by the property that the neighborhoods that it deploys are large and
their construction is governed by the desire to make these neighborhoods easily
searchable by a given optimization method (M). In this sense, the Corridor
Method can be viewed as a method-based rather than move-based iterated local
search.

It should be stressed, though, that in principle there is no inherent conflict
between the terms move-based and method-based in that elementary moves can
be method oriented. In particular, as we have already mentioned above, the
construction of multiple-move based neighborhoods involves the imposition of
some regularity conditions on the moves (Voß, 2001; Ahuja et al., 2002). These
regularity conditions can depend on method M .

6. Illustrative examples

The objective of the illustrative examples featured in this section is three-fold:
first, to illustrate how the Corridor Method co-operates with method M . Sec-
ond, to demonstrate typical runs of the iterative local search procedure that
attempts to improve candidate solutions. Third, to illustrate what kind of seed-
ing mechanisms can be used to initiate new runs.

All the examples are of TSPs of size n = 12. The distances were generated
randomly using a uniform distribution on a 20× 20 grid. Small random pertur-
bations were used to make the distances asymmetric. City 1 is designated as
the home city. A naive DP algorithm plays the role of method M . The Nearest
Neighbor heuristic (Winston, 1994) is used to generate the first incumbent tour
in the implementation of the Corridor Method. Two exogenous constraints are
used (jointly) to generate the corridor around the incumbent tour x ∈ X : the
one used in Example 4.1, namely C 1, and the following:

C 2: For each j = 1, . . . , n, from city xj we can go only to cities in {xi : |i−j| ≤
m, 1 ≤ i ≤ n, i 6= j}.

where m is the parameter used in C 1. These two constraints match each
other nicely in that their joint application yields a natural corridor around an
incumbent solution.

Example 6.1

This example consists of the TSP whose distance matrix is given in Table 1.
The results generated by the Corridor Method with m = 4 are summarized in
Table 2, where TD(t(j)) denotes the total distance associated with tour t(j). In
this particular case the fixed-point t = t(5) = t(4) is the global optimal solution.



The corridor method 567

Table 1. Distance matrix for Example 4.3

i\j 1 2 3 4 5 6 7 8 9 10 11 12

1 — 8 21 5 24 20 10 13 21 28 9 22

2 7 — 16 10 18 18 15 8 14 24 6 23

3 19 16 — 23 6 7 23 9 8 13 16 20

4 7 13 25 — 27 24 9 15 24 30 15 22

5 23 19 5 27 — 5 24 11 12 9 20 17

6 22 17 7 23 6 — 20 10 13 9 20 15

7 12 15 22 9 22 21 — 15 26 25 18 14

8 12 11 8 15 10 10 14 — 12 17 11 17

9 19 13 8 23 12 13 26 12 — 19 12 27

10 26 26 12 28 8 8 23 18 21 — 26 16

11 9 5 18 15 21 18 19 11 12 27 — 26

12 20 23 21 22 18 15 15 16 25 15 27 —

Table 2. One run of the iterative local search procedure, m = 4

1 2 3 4 5 6 7 8 9 10 11 12 1 TD(t(j))

t(0) 1 4 7 12 6 5 3 9 8 2 11 10 1 144

t(1) 1 4 7 12 6 5 3 9 10 8 11 2 1 122

t(2) 1 4 7 12 6 10 5 3 8 9 11 2 1 108

t(3) 1 4 7 12 10 6 5 3 9 8 11 2 1 105

t(4) 1 4 7 12 10 6 5 3 9 8 11 2 1 105

Table 3 provides the results for m = 3. Note that as in the case of m = 4,
here the fixed point is a global optimal solution.

Table 4 provides a summary of the results generated for this problem when
m = 2. Note that in this case the fixed-point t = t(1) = t(2) is not a global
optimal solution.

Observe that the choice of the home city could be of significance here because
the home city can reach only m cities whereas any city in position j on the
current tour such that n−m > j > m, can reach 2m cities. For example, Table 5
presents the modified distance matrix induced by the tour t(0) generated by the
Nearest Neighbor heuristic, with m = 3. The home, c = 1, can reach only 3
cities by a direct link.

In this sense the home city and its immediate neighbors on any incumbent
tour are disadvantaged relative to cities further away from the home city on
that tour. One of the implications of this simple observation is that the choice
of the home city can be deployed as a seeding mechanism to enable the search
to get out of fixed points. The following example illustrates this point.
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Table 3. One run of the iterative local search procedure, m = 3

1 2 3 4 5 6 7 8 9 10 11 12 1 TD(t(j))

t(0) 1 4 7 12 6 5 3 9 8 2 11 10 1 144

t(1) 1 4 7 12 6 5 3 9 8 10 11 2 1 129

t(2) 1 4 7 12 6 5 3 10 8 9 11 2 1 121

t(3) 1 4 7 12 6 10 5 3 9 8 11 2 1 108

t(4) 1 4 7 12 10 6 5 3 9 8 11 2 1 105

t(5) 1 4 7 12 10 6 5 3 9 8 11 2 1 105

Table 4. One run of the iterative local search procedure, m = 2

1 2 3 4 5 6 7 8 9 10 11 12 1 TD(t(j))

t(0) 1 4 7 12 6 5 3 9 8 2 11 10 1 144

t(1) 1 4 7 12 6 5 3 9 8 11 2 10 1 140

t(2) 1 4 7 12 6 5 3 9 8 11 2 10 1 140

Table 5. Distance matrix induced by t(0), m = 3.

i\j 1 2 3 4 5 6 7 8 9 10 11 12

1 — — — 5 — — 10 — — — — 22

2 7 — 16 — — — — 8 14 24 6 —

3 — 16 — — 6 7 — 9 8 — — 20

4 7 — — — — 24 9 — — — — 22

5 — — 5 — — 5 24 11 12 — — 17

6 — — 7 23 6 — 20 — 13 — — 15

7 12 — — 9 22 21 — — — — — 14

8 — 11 8 — 10 — — — 12 17 11 —

9 — 13 8 — 12 13 — 12 — — 12 —

10 26 26 — — — — — 18 — — 26 —

11 9 5 — — — — — 11 12 27 — —

12 20 — 21 22 18 15 15 — — — — —

Example 6.2

Consider the TSP defined by the distance matrix given in Table 6. The
first run of the iterated local search using m = 3 yields the results depicted in
Table 7. So now we need a new seed. To enable the last m = 3 cities on the
tour interact with the first three cities on the tour, let the new seed be the one
obtained from the last tour t(3) by moving the first three cities on the tour,
namely (1, 12, 9) to the end of the tour. Then the next run of the iterated local
search yields the results presented in Table 8. The new fixed point t = t(1) = t(2)

is a global optimal solution. Another, more straightforward way to handle this
phenomenon is to use modular arithmetic to define the exogenous constraint
C 1, taking into consideration the cyclic nature of feasible tours.
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Table 6. Distance matrix of Example 6.2

i\j 1 2 3 4 5 6 7 8 9 10 11 12

1 — 18 28 22 23 18 23 18 7 28 15 6

2 16 — 15 15 8 27 7 13 12 13 27 17

3 27 15 — 6 17 31 10 11 23 11 29 24

4 23 13 5 — 16 25 11 5 18 13 22 19

5 24 8 16 17 — 33 7 15 17 10 32 23

6 19 28 31 25 33 — 32 22 20 36 5 12

7 3 8 10 11 6 31 — 13 18 4 30 24

8 19 11 11 6 18 22 12 — 15 17 18 14

9 6 12 23 18 17 21 19 14 — 21 21 10

10 29 11 11 12 9 35 4 15 21 — 32 28

11 15 27 28 23 32 4 30 18 20 34 — 11

12 6 17 25 20 25 14 23 15 10 26 10 —

Table 7. First run of the iterated local search, m = 3

1 2 3 4 5 6 7 8 9 10 11 12 1 TD(t(j))

t(0) 1 12 9 2 7 10 5 8 4 3 11 6 1 126

t(1) 1 12 9 2 5 7 10 4 3 8 11 6 1 116

t(2) 1 12 9 2 5 7 10 3 4 8 11 6 1 110

t(3) 1 12 9 2 5 7 10 3 4 8 11 6 1 110

Table 8. Second run of the iterated local search, m = 3

1 2 3 4 5 6 7 8 9 10 11 12 1 TD(t(j))

t(0) 2 5 7 10 3 4 8 11 6 1 12 9 2 110

t(1) 2 5 7 10 3 4 8 11 6 12 1 9 2 100

t(2) 2 5 7 10 3 4 8 11 6 12 1 9 2 100

Example 6.3

If the distance matrix is approximately symmetric, it often happens that a
non-optimal fix point can be improved by reversing the tour it represents. This
observation suggests a simple seeding mechanism. In fact, since computing the
length of a reversed tour is easy, it is good policy to do this even before a fixed
point is reached. If the reversed tour is shorter, it can be used as a new seed
even before a fixed point is reached. As an example of this feature, consider the
distance matrix depicted in Table 9.

Like the distance matrices of the previous examples, it is approximately
symmetric. The first run of the iterated local search with m = 3 yields the
results summarized in Table 10.

We now need a new seed. So suppose we reverse the last tour and change the
home city from 1 to the (m+1)th on that tour. This yields the incumbent tour
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(8, 12, 2, 5, 4, 10, 11, 6, 1, 3, 7, 9, 8), whose length is 111. Note that by changing
the home city this way, the “old” home city can now directly interact with cities
that were out of reach before. The results generated by the iterated local search
using this tour as a seed are summarized in Table 11. The fixed point generated
by this run is the global optimal solution. We remark in passing that since in all
the examples the neighborhood around a candidate tour contains this tour, the
sequence of distances {TD(t(j))} generated by any run of the iterated search is
strictly decreasing, until a fixed point is reached.

Table 9. Distance matrix of Example 6.3

i\j 1 2 3 4 5 6 7 8 9 10 11 12

1 — 19 21 15 20 7 23 12 24 5 5 11

2 20 — 24 15 5 28 22 14 22 16 21 10

3 20 26 — 32 27 24 10 15 11 21 16 18

4 14 17 32 — 15 19 32 20 31 11 19 17

5 18 5 29 13 — 27 24 14 25 17 23 12

6 10 27 23 19 27 — 30 19 28 11 10 20

7 23 22 8 32 25 30 — 14 4 23 22 16

8 12 12 12 19 16 20 14 — 12 11 13 5

9 23 21 10 32 25 31 3 11 — 23 23 17

10 4 18 18 12 14 13 24 10 22 — 8 8

11 7 21 18 18 24 9 20 13 22 8 — 14

12 13 10 18 17 10 21 16 5 16 9 12 —

Table 10. First run of the iterated local search, m = 3

1 2 3 4 5 6 7 8 9 10 11 12 1 TD(t(j))

t(0) 1 10 11 6 4 5 2 12 8 3 7 9 1 125

t(1) 1 6 11 10 4 5 2 12 8 9 7 3 1 115

t(2) 1 6 11 10 4 5 2 12 8 9 7 3 1 115

Table 11. Second run of the iterated local search, m = 3

1 2 3 4 5 6 7 8 9 10 11 12 1 TD(t(j))

t(0) 8 12 2 5 4 10 11 6 1 3 7 9 8 111

t(1) 8 12 2 5 4 10 1 6 11 3 7 9 8 108

t(2) 8 12 2 5 4 10 1 6 11 3 7 9 8 108

7. Application areas

By its very nature the Corridor Method is designed to provide heuristic support
to conventional optimization methods in the context of problems where they face
the Curse of Dimensionality. Consequently, application areas of this method
are strongly linked to application areas of conventional optimization methods.
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In this discussion we examine this issue from two related yet distinct point
of views, namely scope and competitiveness. The first examines the Corridor
Method from the view point of method M . The second assesses to what extent
algorithms based on this method are competitive relative to other methods.

7.1. Scope

The scope of the Corridor Method is extremely wide because in principle prac-
tically any optimization method can be incorporated within its basic paradigm.
Indeed, the basic recipe is straightforward: if Problem P (X) is too large for
method M , break X into smaller subsets Y (j) and use method M to solve these
smaller problems. Practically speaking then, the scope of operation of the Cor-
ridor Method is determined by properly matching optimization methods (M)
with problem types (Problem P (X)) via suitable neighborhoods (N (x)). The
construction of neighborhoods is typically guided by the identification of exoge-
nous constraints that can be used effectively to control (reduce) the size of the
target problem.

One problem domain that seems to be particularly suitable for the Corridor
Method is Combinatorial Optimization. Although the Curse of Dimensional-
ity thrives in this domain, constraintification-based neighborhoods can often be
easily constructed. Furthermore, it is often not difficult to construct these neigh-
borhoods so that they are compatible with existing combinatorial optimization
methods such as integer programming (IP), DP and branch and bound (BB).

For the purposes of this discussion it suffices to consider the following three
very large classes of combinatorial optimization problems. The neighborhoods
are constructed here to suit the case where M = DP .

Nonlinear, integer, multi-resource allocation problems:

Problem P1(X) : z∗ := max
x

n
∑

j=1

bj(xj) , X ⊂ In, I := {0, 1, . . .}
n

∑

j=1

ri,j(xj) ≤ Ri i = 1, . . . , m

lj ≤ xj ≤ uj j = 1, . . . , n.

(27)

where bj and ri,j are real valued functions.

This is a simple generalization of the knapsack problem featured in Ex-
ample 4.2. The specific instance where bj and ri,j are linear yields the very
important class of multi-constraints knapsack problems. In the worst case, X

can be a very large set:|X | ≈
∏n

j=1
(1 + uj − lj) .

Neighborhoods for the Corridor Method can be constructed as corridors
around the state trajectory generated by x, observing that here the state vari-
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ables are multi-dimensional, that is sj = (s
(1)
j , . . . , s

(m)
j ) where

s
(i)
j := Ri −

j−1
∑

p=1

ri,p(xp) , i = 1, . . . , m . (28)

The size of the neighborhoods can be controlled, parametrically, by the width
of the corridor, as outlined in (11) and (15). For example, consider

N (s) =
{

y ∈ (Im)n : |y(i)
j − s

(i)
j | ≤ ∆

(i)
j , j = 1, . . . , n ; i = 1, . . . , m

}

(29)

where are non-negative control parameters. These corridors can be arbitrarily
small, depending on the choice of the control parameters, observing that for

relatively small {∆(i)
j } we have

|N (s)| =

n
∏

j=1

m
∏

i=1

(1 + 2∆
(i)
j ). (30)

Hence, these neighborhoods are exponentially large (with respect to n) if they
are all strictly positive. The DP model will have n stages and at each stage j

there will be at most
∏m

i=1(1 + 2∆
(i)
j ) feasible states. Thus, the complexity of

the DP algorithm is linear with n per neighborhood.

The following is a summary of the (worst case) complexity analysis for this
class of problems:

Theorem 7.1 For Problem P1(X) we have,

Target Problem Neighborhoods DP Model

|X |≈
n

∏

j=1

(1+uj−lj) N (x)≈
n

∏

j=1

m
∏

i=1

(1+∆
(i)
j )

n
∑

j=1

|Sj |=
n

∑

j=1

m
∏

i=1

(1+2∆
(i)
j )

Note that Sj denotes the state space associated with stage j and that we measure

the complexity of the DP model by
∑n

j=1
|Sj |.

Multi-component production problems:

Problem P2(X) : z∗ := max
x,y

n
∑

j=1

gj(sj , xj , yj), X ⊂
(

I m+1
)n

, I := {0, 1, 2, . . .}

(31)
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subject to

s1 = (b(1), . . . , b(m)) (32)

s
(i)
j+1 = s

(i)
j + x

(i)
j − yjp

(i) , i = 1, . . . , m; j = 1, . . . , n (33)
m

∑

i=1

t(i)x
(i)
j ≤ Tj , j = 1, . . . , n (34)

yj ≤ min

{

sj(i) + x
(i)
j

p(i)
: i = 1, . . . , m

}

, j = 1, . . . , n (35)

l
(i)
j ≤ x

(i)
j ≤ u

(i)
j , i = 1, . . . , m; j = 1, . . . , n (36)

s
(i)
j ≤ s

(i)
j ≤ s

(i)
j , i = 1, . . . , m; j = 1, . . . , n (37)

xj ∈ Im, yj ∈ I , j = 1, . . . , n (38)

where:
xj = (x

(1)
j , . . . , x

(m)
n ),

x
(i)
j = # of components of type i to be produced in period j (decision

variable),

yj = # of items to be assembled and sold in period j (decision variable),

s
(i)
j = # of components of type i in stock at the beginning of period j,

p(i) = # of components of type i required for the production of one item,

t(i) = time (hours) required for the production of one component of type i,

b(i) = # of components of type i in stock at the beginning of period 1,

Tj = total production time (hours) available in period j,

gj(sj , xj , yj) = net benefit during period j.

The problem can be interpreted as follows: it is required to determine how
many items {xj} should be produced in each period over the next n periods so
as to maximize the total net benefit over this time horizon. Each item consists
of p(i) components of type i. It takes t(i) hours to produce one component
of type i and a total of Tj hours of production time is available in period j.
The net benefit gj(sj , xj , yj) during period j depends on the number of items
{yj} assembled and sold in period j, the number of components of each type

{x(i)
j } produced in period j, and the inventory level s

(i)
j of component i at the

beginning of period j.
We can build corridors around the state trajectories associated with the state

variables defined by (33). The result is a neighborhood scheme similar to the
one defined by (15).

The decision space is much more complicated here so it is convenient to con-
duct a very rough (worst case) complexity analysis, assuming for example, that
at least two decisions are feasible at each stage and that the control parameters
are not degenerate. The results can be summarized as follows:
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Theorem 7.2 For Problem P2(X) we have,

Target Problem Neighborhoods DP Model

|X | ≥ 2n |N (x)| ≥ 2n

n
∑

j=1

|Sj | ≤ nδ3

where δ = max

{

m
∏

i=1

(1 + 2∆
(j)
i ) : 1 ≤ j ≤ n

}

.

Additive semi-separable permutation problems:

Problem 3P (X) : z∗ := min
x1,...,xn

n
∑

j=1

dj(vj , xj , xj+1) , X ⊂ Jn, J = {1, . . . , n}.

(39)
subject to

{x1, . . . , xn} = {1, . . . , n} (40)

x1 = xn+1 = 0 (41)

vj+1 = vj

⋃

{xj} , j = 0, . . . , n. (42)

This is a simple generalization of the conventional TSP in that it is the sum
of terms of the form dj(vj , xj , xj+1) rather than of the form dj(xj , xj+1) as in
the case of the TSP. The decision space defined by (39)-(43) is identical to the
decision space of the standard TSP.

Observation: Let N (x) denote the neighborhood defined by the exogenous
constraint C 1 described in Example 4.1. Then, for m > 2 the neighborhood
N (x) grows exponentially with n. More specifically, for a large n we have

|N (x)| ≥
√

2
n
. (Note: for simplicity assume that n is even).

Proof. Assume that m > 2 and let x be a feasible tour. Divide x into sections
each containing 2 adjacent elements of x, say (x(j), x(j+1)), 1 ≤ j < n. By
interchanging the elements of each section, we double the number of subtours
in each section, so the total number of tours generated this way is equal to
K = 2n/2 =

√
2

n
. Since m > 2, all these tours are feasible with respect to the

exogenous precedence constraint, hence |N (x)| ≥
√

2
n
.

Regarding the complexity of the DP model, as we have already noted in Ex-
ample 4.1, the cardinality of the state space, S, is not larger than n22m. The
following is then a summary of the complexity analysis in this case:

Theorem 7.3 For Problem P3(X) with m > 2 we have

Target Problem Neighborhoods DP Model

|X | = n! |N (x)| ≥
√

2
n |S| ≤ n22m
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The reference to DP in these cases should not be interpreted as suggesting
that DP is the only, or most suitable, candidate for the role of M in the context
of these classes of problems. Rather, it should be regarded as a reflection of
the fact that in these cases DP is a natural candidate because it is very easy
to determine the complexity (size) of the DP model in terms of the parameter
used to control the size of the neighborhoods. This means that it is easy to
determine — a priori — the complexity of the algorithm used to conduct the
local search in each neighborhood (Sniedovich, 1992).

Furthermore, as was indicated at the outset, a very simple version of the
Corridor Method, called Discrete Differential DP had been used extensively in
the water resources area to support DP in the solution of reservoir operation
problems.

However, the competitiveness issue still deserves attention: how good are
the solutions generated by the Corridor Method in relation to the solutions
generated by other methods? We now briefly address this important question
while leaving extensive numerical experiments to future research.

7.2. Competitiveness

The quality of the solutions generated by the Corridor Method can be measured
in absolute terms “how far are they from the respective optimal solutions?”
and/or in relative terms ”how do they perform in comparison with solutions
generated by other methods?” Both are important.

For obvious reasons it is impossible to provide a general-purpose theoretically-
based recipe for the evaluation of the performance of the Corridor Method. This
must be done experimentally.

As indicated above, there is a significant experience with the performance
of a simplified version of the method in the water resources area (Heidari et al.,
1971; Chow et al., 1975) where it is was deployed to assist DP cope with the
Curse of Dimensionality in the context of reservoir control problems (Yakowitz,
1982).

By the same token, there are many practical instances of the TSP precedence
constraints similar to C 1and C 2, which are satisfied with respect to a nominal
tour and m is much smaller than n. In such cases linear time DP algorithms can
be devised to generate optimal solutions to the TSP (Balas, 1999; Balas and
Simonetti, 2001). This suggests the deployment of the Corridor Method with a
smaller value of m – to speed up the algorithm – at the expense of not being
able to guarantee the optimality of the solutions generated this way.

8. Discussion

Since its birth in the 1950s DP has been a prime target for the Curse of Di-
mensionality. It is not surprising therefore that over the years ways have been
found to speed up the performance of DP algorithms and to use DP to generate
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”good” rather than optimal solutions. Indeed, the later predates the birth of
classical metaheuristics.

In any case, it is common practice to deploy DP in conjunction with other
methods such as BB (Morin and Marsten, 1976; Ibaraki, 1987; Carraway and
Morin, 1988) and Composite Concave programming (Sniedovich, 1992) to deal
with the computational aspects of DP.

In our discussion we have shown that the basic idea behind the heuristic
method DDDP that was originally developed to support DP can be generalized
and framed as a modern metaheuristic — more specifically as an iterated local
search method — characterized by the large, method-based neighborhoods that
it deploys. It should be stressed that DDDP is just one of many other similar
schemes — often called iterative DP — where DP is deployed iteratively to im-
prove an incumbent solution (Kossmann and Stocker, 2004; Luus, 2000; Leung
et al., 2004)

As was illustrated in Example 4.3, DP-based neighborhoods may also be
suitable for deployment by other optimization methods. This is not surpris-
ing given, for example, the polyhedral characterization of discrete DP models
(Martin et al., 1990) and the close relationship between DP and BB (Ibaraki,
1987). Hence, both conceptually and technically the Corridor Method paradigm
is readily applicable in the context of a vast class of combinatorial optimization
problems and can support a number of major implicit enumeration methods.

This applies to metaheuristics as well: the Corridor Method can be used as a
tool for improving the solution generated by other metaheuristics, which can be
fed as a seed to the Corridor Method. By the same token, the Corridor Method
can be used to generate seeds for other metaheuristics.

It should be noted that as is the case of most other metaheuristics, a number
of important implementation issues must be dealt with on a case by case basis.
In particular,

– What rules should be used to generate new seeds?

– What should be the width of the corridor?

– How “good” is a solution generated by the method?

And of course there is always the issue of competitiveness, especially in
relation to other metaheuristics.

9. Conclusions

We have shown that the Corridor Method provides an intuitive and constructive
framework for the formulation of metaheuristics based on local search over large
neighborhoods via the imposition of exogenous constraints on the decision space
of the target problem. This framework can be applied in a systematic and unified
manner to extend the scope of operation of existing optimization methods. It
also sheds new light on the interplay between neighborhood definitions and local
search based metaheuristics.
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Although the method has a very strong DP flavor, we have shown that it can
be applied to other major optimization methods such as LP, BB and even other
metaheuristics. It would therefore be interesting to investigate how effectively
it will perform in such environments.

The main objective of the discussion was to formalize the method as a meta-
heuristic and to relate it to other metaheuristics. This done, the natural next
step would then be to test the method against other metaheuristics
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