
Control and Cybernetics

vol. 35 (2006) No. 3

Approximating the solution of a dynamic, stochastic

multiple knapsack problem

by

Joseph C. Hartman1 and Thomas C. Perry2

1Industrial and Systems Engineering, Lehigh University
Bethlehem, Pennsylvania, USA

2Agere Systems
Allentown, Pennsylvania, USA

Abstract: We model an environment where orders arrive proba-
bilistically over time, with their revenues and capacity requirements
becoming known upon arrival. The decision is whether to accept an
order, receiving a reward and reserving capacity, or reject an order,
freeing capacity for possible future arrivals. We model the dynamic,
stochastic multiple knapsack problem (DSMKP) with stochastic dy-
namic programming (SDP). Multiple knapsacks are used as orders
may stay in the system for multiple periods. As the state space
grows exponentially in the number of knapsacks and the number of
possible orders per period, we utilize linear programming and duality
to quickly approximate the end-of-horizon values for the SDP. This
helps mitigate end-of-study effects when solving the SDP directly,
allowing for the solution of larger problems and leading to increased
quality in solutions.

Keywords: stochastic dynamic programming, approximate dy-
namic programming, linear programming, duality.

1. Introduction

The use of approximation techniques in solving large scale dynamic programs
has become increasingly prolific to combat the curse of dimensionality (Bellman,
1957) in that the number of states to be evaluated over time grows exponentially
in the number of state space parameters. Bellman (1957) noted a variety of
techniques, including the use of Lagrangian relaxation and state aggregation, in
order to promote the use of dynamic programming to solve a variety of problems.
Today, the number of techniques used to solve these large-scale problems are
numerous and as de Farias and Van Roy (2003) note, that as with working with
dynamic programs in general, there has been much “art” in their development.

Research has been extensive into the use of interpolation, including polyno-
mial (Philbrick and Kitanidis, 2001), spline (Johnson et al., 1993), and neural

536 J. HARTMAN, T.C. PERRY

network (Bertsekas and Tsitsiklis, 1996) methods. A sparse representation of
the state space is utilized in order to estimate the value, or cost-to-go, function
and the solution to this easier problem is then mapped to the true problem with
interpolation methods.

Powell has been very successful in solving large-scale dynamic allocation (of-
ten fleet management) problems with the use of approximate dynamic program-
ming (Powell, Carvalho, 1998; Shapiro, Powell, Simao, 2002; Godfrey, Powell,
2002; Topaloglu, Powell, 2006). His research group utilizes a number of meth-
ods, including simulation and duality from the solution of network flows, in
order to generate estimates of value functions. An interesting aspect of his work
is that given the shape of the value function (i.e. concave) and point estimates of
the slope, then the value function itself can be updated with each new estimate
(Godfrey and Powell, 2002). Our approach is motivated by these methods.

There are numerous other examples of specialized approximation algorithms.
For example, Bertsimas and Demir (2002), use successive solutions of linear pro-
gramming relaxations to approximate the solution of large-scale integer multiple
knapsack problems. A more general approach comes from de Farias and Van
Roy (2003) on approximating the linear programming formulation of a dynamic
program, which leads to an exponential number of variables and constraints.

In recent research, we have modeled a dynamic, stochastic multiple knapsack
problem (DSMKP) with dynamic programming to solve a capacity reservation
problem applied in a manufacturing setting (Perry and Hartman, 2004). Specif-
ically, we model the system according to the amount of utilized capacity in each
period over some study horizon. Orders arrive periodically (according to a sto-
chastic process) and, if accepted, utilize resources over a given period of time. A
reward is received for accepting an order. As there is limited capacity (known)
in the system that cannot be exceeded, the decision-maker must trade-off ac-
cepting an order (and reserving capacity) for an immediate reward vs. holding
capacity for future order arrivals.

The problem is difficult to solve as the number of decisions grows exponen-
tially in the number of arrivals. The state space grows in the number of periods
of capacity that can be reserved and the discretization of the capacity. The
stochastic dynamic program (SDP) can only be solved over a limited number of
periods due to these issues. (In our experience, it takes nearly six hours to solve
a four period problem assuming minimal data for an industrial application: four
quarters of capacity can be reserved, tracked according to four percent incre-
ments. This assumes that we are solving the model from a given initial state
and evaluating all reachable states over the decision horizon.)

As we can only solve the SDP over a few periods, approximate dynamic pro-
gramming techniques can be used to extend the effective horizon of the prob-
lem being studied, thus mitigating end-of-horizon effects. A typical dynamic
programming implementation assumes state values at the end of the horizon
(boundary conditions) are zero and the recursion is solved backwards to the ini-
tial state for an optimal solution. This is fine for a finite horizon problem, but

Approximating the solution of a dynamic, stochastic multiple knapsack problem 537

can lead to incorrect time zero decisions if the horizon is too short when approx-
imating an infinite horizon problem. In our approach, we solve an approximate
dynamic program over a number of periods and utilize the approximate state
space values as the boundary condition values in the full SDP recursion. This
is critical as an assumption of zero for each state value provides no differentia-
tion between states while the approximation method populates the states with
non-zero values. This can then lead to optimal time zero decisions with shorter
horizon (SDP) problems or allow for the solution of longer horizon problems
more readily.

In this paper, we utilize a linear programming formulation of the problem
and illustrate how the dual variables associated with capacity constraints can
be used to approximate the end-of-study state values, as opposed to solving a
linear program for each reachable state. This information drastically reduces
the number of linear programs that must be solved when approximating the
reachable state values, as we only need to solve a limited number of linear
programs. While our results are only empirical, we believe them to be promising.

The paper proceeds as follows: In the next section, we introduce the stochas-
tic dynamic programming formulation and discuss its state space growth over
the study horizon. In Section 3, we introduce the linear programming approx-
imation and discuss how it can be utilized to estimate the cost-to-go function.
In Section 5, we illustrate its use on a large-scale decision problem. We then
conclude and offer suggestions for future research.

2. Stochastic dynamic programming formulation

We formulate our problem with stochastic dynamic programming. At the begin-
ning of each period, the state of the system is defined by the amount of utilized
capacity which, in turn, defines the amount of available capacity for future or-
ders. Orders with known revenues and capacity requirements arrive according
to a stochastic process. These can be rejected or accepted given the capacity
constraints. (Capacity is assumed to be known and to be a hard constraint.)
The process repeats at each period, with new (future) capacity being made
available and orders in the previous period exiting the system. We formally
define the dynamic program as follows:

Define Bt as the capacity of the system in time period t and let bt denote
the amount of capacity utilized in period t due to accepted orders from previous
periods. Thus, the state of the system at time t is defined as:

St = [bt, bt+1, . . . , bt+K−1] , t = 1, 2, . . . , T, (1)

such that K periods of capacity are tracked over time. For notational purposes,
we refer to St(j) as the j-th component of St, which equals the amount of
utilized capacity in period t+ j − 1. Note that the capacity constraints require
that:

bt ≤ Bt, t = 1, 2, . . . , T. (2)

538 J. HARTMAN, T.C. PERRY

A set of orders ψ ∈ Ψt arrives in period t with probability pt(ψ). It is
assumed that the set Ψt consists of finitely many elements and that the random
variables generating the orders are stochastically independent such that the
process governing ψt+1 is stochastically independent of the process governing
ψt.

An order in ψt can be accepted or rejected, subject to capacity constraints.
Let δt denote the set of accepted orders such that δt ⊆ ψt. Acceptance of an
order q ∈ δt generates undiscounted revenue r(t, q) with total revenues received
in a given period t defined as:

R(t, δ) =
∑

q∈δt

r(t, q). (3)

Further, define cq(j) as the capacity requirements for order q in period t+ j−1.
Thus, the total capacity required for decision δt is:

Cδt
(j) =

∑

q∈δt

cq(j), j = 1, 2, . . . ,K. (4)

State transitions are defined by the utilization of capacity at the start of
the period plus any accepted order requirements. Three changes occur in this
transition: (1) the capacity vector St translates in time so that the capacity
utilized bt leaves the system; (2) the amount of capacity reserved increases for
any orders accepted; and (3) a new period of capacity Bt+K becomes available.
Using our state space and capacity notation, the transitions are:

St+1(j) = St(j + 1) + Cδt
(j), j = 1, 2, . . . ,K − 1, (5)

St+1(K) = Cδt
(K). (6)

We define this more compactly with our transition function τ(t, S, δ).
As feasible decisions must abide by the capacity constraints (bt ≤ Bt, ∀t),

this is accomplished by requiring:

δt ∈ ∆(t, S, ψ) = {δ ⊆ ψ : τ (t, S, δ) ≤ [Bt, Bt+2, . . . , Bt+K−1]} , t = 1, 2, . . . , T. (7)

Define Vt(S) as the optimal expected value of total discounted revenue ac-
cumulated from period t to the end of the planning horizon T given that state
S is observed at the beginning of time period t. The dynamic programming
recursion for DSMKP is as follows:

Vt(S) =
∑

ψ∈Ψt

pt(ψ)

{

max
δ∈∆(t,S,ψ)

(R(t, δ) + αVt+1(τ (t, S, δ)))

}

, t = 1, 2, . . . , T. (8)

Expected revenues are discounted each period with the one-period factor α. As
this is a finite horizon problem, we require the following end condition:

VT+1(S) = 0, ∀S. (9)

Approximating the solution of a dynamic, stochastic multiple knapsack problem 539

To give an idea of the size of the problem, assume we define capacity accord-
ing to β discrete units in a given period. If we have a capacity window of K
periods – the number of knapsacks in our problem and the number of periods
which we track capacity – then there are βK possible states in a given period.
For simplicity, assume that ψ and Ψ are constant in size over the horizon. For
a given arrival set ψ, there are 2|ψ| possible accept/reject decisions to evaluate.
Over T periods, this totals T |Ψ| 2|ψ|βK calculations to solve the SDP in the
worst case. Note that |Ψ| is exponential in the number of possible order arrivals
in the set. For a moderately sized problem with β = 20,K = 8, and a maximum
of five arrivals per period, this totals about 26 × 1012 calculations per period.
The explosion in states and calculations, and our desire to produce a solution
that can be implemented on a spreadsheet (using VBA and EXCEL), such that
it could be used as a management tool, motivated the use of approximation
techniques.

We have analyzed a number of different scenarios with differing numbers
of orders, probabilities of arrivals, capacity requirements, and revenues. The
value function, Vt, takes on a predictable shape in these instances as the state
value, expectedly, is non-increasing in the amount of capacity utilized or non-
decreasing in the amount of available capacity. That is, as the system fills
to capacity with orders, the value of the system (through the horizon time)
declines. This follows intuition as the value of an order is realized when it is
accepted. However, a full system cannot accept any further orders, so its value
declines as its available capacity declines. It should be clear that if one were to
choose between a full and empty system, the empty system would have more
potential value.

Figure 1. SDP functional equation values for various states of DSMKP.

540 J. HARTMAN, T.C. PERRY

Fig. 1 plots the values of V1(S) for a number of states S. The function is
decreasing for given ranges of states, but is not monotonic due to the ordering
of the states. As different components of the vector increase in capacity uti-
lized, the value changes accordingly. If we were to order the states on a single
graph (which is not possible due to the extremely large number), it would re-
semble Fig. 2. This is a predictable shape for diminishing value with decreasing
available capacity. Knowing this shape can be quite useful when building an
approximation strategy.

Empty…………………..Full

System Capacity

S
ta

te
 V

al
u
e

Figure 2. Decreasing SDP value function when states are ordered by available
system capacity.

3. Linear programming approximation

By examining scenarios of possible arrivals for possible system states, the SDP
is essentially determining optimal strategies after uncertainty is resolved over
time. An approximation to this approach is to use linear programming with
expected arrivals over time. That is, decisions are made on orders which are
expected to arrive according to some probability. This static approach provides
an approximation to the SDP.

Define xitj as a binary variable to either accept or reject an order i which
arrives at time t and, if accepted, stays in the system for j periods. The expected
reward is ritj and the expected capacity used over time is citj . Note that the
expected revenues and capacities are calculated using the same probabilities,
revenues, and capacities from the SDP. With the capacity set at Bt in period
t we denote B̃t as available capacity because the system may not be empty at
the time of solution (thus defining the state of the system). The linear program
(which relaxes the binary restriction), is:

max

N
∑

i=1

T
∑

t=1

T−t
∑

j=1

ritjxitj (10)

Approximating the solution of a dynamic, stochastic multiple knapsack problem 541

s.t.

N
∑

i=1

t
∑

k=1

T−k+1
∑

j=t−k+1

cikjxikj ≤ B̃t ∀t = 1, 2, . . . , T (11)

0 ≤ xitj ≤ 1 ∀i, t, j. (12)

The value ritj is expected (and discounted) and thus incorporates the prob-
ability of order i arriving in period t and its return. All accepted orders reserve
expected capacity citj in j periods. (The expected capacity, as with the ex-
pected reward, also incorporates the probability of order i arriving.) The total
capacity reserved must not exceed the system capacity Bt in any period t, with
B̃t representing remaining capacity after initial conditions are considered. Solv-
ing the LP over a given number of periods provides an estimate of the value
function for the SDP with the given initial state.

4. Implementing the approximation

There are many approaches that can be taken when building the approximate
value function. We previously experimented with simulation, but our proce-
dures took hours as a simulation was required for each possible state in our
approximation scheme (which we describe shortly). We also experimented with
solving a linear program for each possible state, but due to the enormous num-
ber of possible states, this again was extremely slow. Here, we illustrate a more
efficient procedure with the use of duality.

4.1. Building the approximate value function through duality

When we solve a linear program for a given state, each constraint represents
the maximum capacity available in each period over time. If the capacity is
fully utilized for a given period in the solution, a dual variable or shadow price
is assigned to that capacity in that time period, representing the value of an
additional unit of capacity at that time. According to the law of diminishing
returns, this value also provides a lower bound on the last unit of capacity that
was utilized.

While dual variables or shadow prices are relevant for only small changes
in the right hand side of the capacity constraint, we make the assumption that
the value can be interpreted over a greater span of capacity. This assumption
leads us to an efficient scheme in which to approximate the value function.
The idea is as follows: Solve the linear program for a given state and note
its objective function value and the dual variable for each capacity constraint.
The approximate value function for the initial state is merely the objective
function value to the linear programming solution. The dual variables can now
be used to estimate the value function for different states. For example, if
we increase the amount of available capacity in period one, the value function

542 J. HARTMAN, T.C. PERRY

can be approximated by adding one unit of available capacity (one reduced
unit of utilized capacity) times the appropriate dual variable to the objective
function. This concept can be repeated for all possible states from the initial
state to a system state of “empty.” Furthermore, if we first solve the linear
program for a system state of empty, that provides an upper bound such that
the approximate value function is equal to the minimum of the empty system
state value and that produced from the dual information. We formalize this
procedure as follows, under the assumption that we can solve multiple linear
programs and thus update our approximate value function accordingly:

0. Solve the linear program assuming an “empty” initial state.
Define the objective function as ZUB and VT (S)i = 0 ∀S, i.

1. For i = 1, 2, . . . Iterations Do:

2. Generate an initial state S0
T and solve the linear program with

expected arrival information. Note the objective function value Z
and shadow prices p1, p2, . . . , pK for each constraint corresponding
to the initial state. Set ST = S0

T .

3. Define VT (S)i = Z.

4. Do While ST (j) > 0, ∀j:

5. For j = K,K − 1, . . . , 1 Do: ST (j) = max(ST (j) − 1, 0)

6. VT (S)i = max(Z +
∑K

k=1 pk
ST (k)0−ST (k)

β
, VT (S)i−1)

7. VT (S)i = min(VT (S)i, ZUB).

This approach follows our logic presented earlier in that we iterate through
the states to an empty system, adding value with use of the dual variable. Note
that we cannot exceed the maximum system state, defined by ZUB. We also
retain the maximum of any estimate for the same state in a previous iteration
to maintain monotonicity.

Thus, for each linear programming solution, a new value function is gener-
ated in O(βK) time, where K is the number of knapsacks (reservation periods)
and β is the number of units of capacity tracked in a given period (discretiza-
tion).

Fig. 3 graphically illustrates our approach after iterations 1, 4, and 8. Each
figure illustrates the value function approximated from a linear programming
solution from a given initial state. The dual variables are then used to derive
the values of the remaining, less utilized states. The approximate value func-
tion takes on our desired shape of decreasing value with increasing capacity
utilization.

Fig. 4 illustrates the value function approximated with simulation and de-
terministic dynamic programming (generate arrivals and solve the associated
deterministic dynamic program repeatedly) versus just 11 iterations of the lin-
ear programming and duality method. While the scales are different (the scale
on the right hand side is for the linear program), the shape of the curve clearly

Approximating the solution of a dynamic, stochastic multiple knapsack problem 543

1
SV

T

SState

4
SV

T

SState

8
SV

T

SState

Figure 3. Iterative updates (steps 1, 4, and 8) of approximate value function
using linear program solutions (objective function value and dual variables).

follows what we want. Needless to say, the linear programming approximation
was generated in minutes while the simulation approximation took hours.

State S

S
im

u
la

ti
o

n
 V

1
(S

)i

L
P

 V
1
(S

)i

Figure 4. Approximate value functions generated with simulation (circle points)
and linear programming with duality (square points).

544 J. HARTMAN, T.C. PERRY

Note that we are not overly concerned whether the linear program over
(or under) estimates the value function. Rather, we are more interested in
appropriately differentiating the value of states so that the dynamic program
more accurately chooses between options (future possible states). Thus, we are
more interested in estimating the relative difference between states, not their
absolute values. Empirically, the linear programs and estimates derived with
dual variables, accomplish this goal.

4.2. Integrating the approximate value function into SDP

Once we have an estimate of the value function, it must be integrated into our
SDP. Figs. 5(a) and (b) illustrate our approximation approach.

(a)

(b)

Figure 5. Approximation scheme (a) solved over periods T through T ′ in order
to (b) provide non-zero state values at time T for the SDP.

Fig. 5(a) illustrates the overall scheme in that a valid network of states can
be built over T periods. This network, beginning with a single node at time one
which represents the initial state, only generates states that can be reached from
the initial node. Whereas the boundary conditions at time T for a typical SDP
implementation would assume state values of zero, we solve the approximation
from periods T through T ′ and, as noted in (b), populate the SDP valid states
in period T with these values. Fig. 5(b) illustrates one segment of a network

Approximating the solution of a dynamic, stochastic multiple knapsack problem 545

describing the SDP, with a node representing a state and arcs representing
possible arrivals and decisions. With N possible order arrivals, there are 2N

possible arrival combinations, leading to a maximum of 2N decisions for a given
arrival combination.

Thus, we can solve linear programs and generate the value function. Once
complete, this data is fed to the valid network which is solved backwards using
the SDP recursion. It is hoped that substituting the approximate values provides
a better differentiation of states than the assumed boundary condition of zero
for each state. We empirically test this in the following section.

5. Large scale implementation

We chose a large scale application, with up to nine possible arrivals in a period
(29 possible combinations), to illustrate the approximation method. The data
was generated to mimic a typical manufacturing environment in that low margin,
high volume jobs had a relatively higher probability than high margin, low
volume jobs. The arrivals and their expected rewards, arrival probabilities, and
capacity requirements are defined in Table 1.

Thus, the set Ψ consists of the 29 possible combinations and an arrival real-
ization ψ comes from this set. As the arrivals are independent, the probability
of ψ arriving, pt(ψ), is calculated by multiplying the arrival probabilities (from
Table 1) of each individual order in the set by the probability of the remaining
orders not arriving (one minus the value given in Table 1).

Table 1. Expected information for nine classes of arrivals over time.

Arrival
Volume Margin Probability

Margin Reward
Required

Life
Class Class of Arrival Capacity

1 Low Low 5% 30% $857 10% 4
2 Medium Low 10% 30% $1714 20% 4
3 High Low 75% 30% $2571 30% 4
4 Low Medium 20% 50% $2000 10% 4
5 Medium Medium 50% 50% $4000 20% 4
6 High Medium 35% 50% $6000 30% 4
7 Low High 25% 70% $4666 10% 4
8 Medium High 7% 70% $9333 20% 4
9 High High 2% 70% $14,000 30% 4

We discretized capacity according to 26 buckets (0 to 25) in a period, or 4
percent increments. We further assumed that capacity could be reserved four
periods out into the future (i.e. four knapsacks in our approach). This might
correspond to quarters with capacity reservations available for one year. A
2.50% quarterly interest rate was used for discounting.

546 J. HARTMAN, T.C. PERRY

Utilizing Visual Basic for Applications (VBA) and Microsoft Excel on an
IBM-compatible personal computer with a Pentium 3, 1GHz processor and
768MB RAM, we were able to solve five periods of the SDP for each prob-
lem instance (specific run times are in Table 4), although a number of instances
took excessive time (over 15 hours) to solve.

We generated nine arrivals at the first period from the expected set of ar-
rivals and solved the problem with the SDP (values of zero assigned to states
in the final time period) and the SDP with the linear programming approxima-
tion scheme described in this paper. The nine arrivals at time one are given in
Table 2. (These were generated from our expected data set in Table 1 under
the assumption that the rewards, capacity, and lifetimes were uniformly dis-
tributed.) Table 2 also defines the nine instances examined in this study, each
with a different initial state of utilized capacity. For example, an initial state of
[5, 5, 5, 5] means that 5/25, or one-fifth of capacity is already reserved in each
of the next four periods.

Table 2. Initial states of nine instances studied with nine actual (generated)
arrivals at time one for accept/reject consideration.

Instance Initial State Arrival Reward Capacity Life
1 [0, 0, 0, 0] 1 $2748 32% 4
2 [5, 5, 5, 5] 2 $4000 23% 3
3 [11, 11, 11, 11] 3 $4666 11% 3
4 [17, 17, 17, 17] 4 $5988 30% 4
5 [23, 23, 23, 23] 5 $957 14% 2
6 [23, 17, 11, 5] 6 $931 13% 1
7 [5, 11, 17, 23] 7 $1111 13% 1
8 [0, 1, 2, 3] 8 $961 8% 2
9 [3, 2, 1, 0] 9 $994 10% 2

For the approximation, we solved 11 linear programs over a 19-period horizon
and utilized the objective function values and dual variables to generate the
approximate value function. It took approximately 2 seconds to solve each
linear program and acquire the dual variables (using Solver in Excel). The
procedure to generate the approximate state values took 113.14 seconds. Thus,
the entire approximation procedure took about 135 seconds.

Table 3 summarizes the first decisions for each of the solution approaches
over two, three, four, and five periods. The table has nine digits with a one
representing accepting that arrival and a zero representing a reject, such that
“011001111” means that arrivals 1, 4, and 5 should be rejected but the remaining
(2,3,6,7,8,9) should be accepted. (These nine arrivals correspond to those in
Table 2.) The base 10 equivalents of these binary decisions are also given in the
table in order to make comparisons more easily.

Approximating the solution of a dynamic, stochastic multiple knapsack problem 547

Table 3. Optimal first decision for nine arrivals and given initial state with and
without approximation.

SDP SDP with Approximation

Instance Pds: 2 3 4 5 2 3 4 5

1 111100000 011101100 001101111 011001111 011101100 001101111 011001111 011001111

480 236 111 207 236 111 207 207

2 011100001 001101100 011001101 011001101 001101100 001001111 011001101 011001101

225 108 205 205 108 79 205 205

3 001100001 001001101 001001101 001001101 001001100 001001101 001001101 001001101

97 77 77 77 76 77 77 77

4 000100000 001000100 001000100 001000100 001000100 001000100 001000100 001000100

32 68 68 68 68 68 68 68

5 000000000 000000000 000000000 000000000 000000000 000000000 000000000 000000000

0 0 0 0 0 0 0 0

6 000100000 000100000 000100000 001000100 001000100 001000100 001000100 001000100

32 68 68 68 68 68 68 68

7 000001111 000001111 000001111 000001111 000001111 000001111 000001111 000001111

15 15 15 15 15 15 15 15

8 011100101 001101101 011001111 011001111 001101100 001011111 011001111 011001111

229 109 207 207 108 95 207 207

9 011100011 001101100 011001111 011001111 001101100 011001111 011001111 011001111

227 108 207 207 108 207 207 207

Examining Table 3, one sees that five of the nine large-scale problems arrive
at the same initial decision in the same horizon. For example, both solution ap-
proaches arrive at the decision of 205 for instance 2 (an initial state of [5, 5, 5, 5])
when solving the SDP over four periods. (The decisions given in bold in Ta-
ble 3 are believed to be the optimal time zero decisions for each instance.) This
agreement on the solution in the same time frame occurs in instances 2, 3, 5, 7,
and 8.

We see the value of the approximation for the other four instances, 1, 4, 6,
and 9, as the approximate procedure arrives at the time zero decision one time
period earlier than the SDP. (We can only speculate that this is the optimal
time zero decision for an infinite horizon problem, but it is clear that both
methods agree on the decision and the approximation method discovered it
earlier.) While this is not rousing evidence to support the use of approximation,
it is clear that it helps in terms of requiring fewer periods of analysis.

This becomes more important when one examines the run times in Table 4.
This is the time it takes to build the reachable network and solve the SDP re-
cursion over the reachable states. When one notices that it takes over 21,000
seconds (nearly 6 hours) to solve instances 1 and 9 over four periods and almost
62,000 seconds (over 17 hours) to solve instance 1 over five periods, the benefit
of the approximation becomes more pronounced. An average of over 9000 sec-
onds (2.5 hours) per instance is saved through the approximation procedure as

548 J. HARTMAN, T.C. PERRY

Table 4. SDP solution times (in seconds). This includes building the network
of reachable states and solving the recursion.

Instance State\Periods : 2 3 4 5
1 [0, 0, 0, 0] 82 6807 26,140 61,920
2 [5, 5, 5, 5] 39 2048 5600 26,900
3 [11, 11, 11, 11] 15 566 1052 7767
4 [17, 17, 17, 17] 21 154 317 1069
5 [23, 23, 23, 23] 8 16 15 42
6 [23, 17, 11, 5] 9 170 1058 12,447
7 [5, 11, 17, 23] 9 125 100 179
8 [0, 1, 2, 3] 68 4132 11,978 39,060
9 [3, 2, 1, 0] 61 4885 21,506 58,020

Average: 35 2100 7530 23,045

solutions are found one period sooner in four instances. This is valuable time
that the decision-maker can spend improving estimates of future arrivals.

There is further evidence which supports the use of the approximation when
examining the solutions. It should be clear that arrival class 7 is quite desirable
as it is defined by a high margin and low volume. Surprisingly, it does not
appear in the SDP solution (without approximation) for the 2-period solution
in capacity cases 1, 2, and 9 and does not appear in all feasible solutions un-
til the 3-period problem is solved. However, these orders are accepted in the
approximation solution for the 2-period solution in all feasible cases.

This analysis also illustrates that there may be value in solving more linear
programs and updating the value function estimates accordingly. Recall that
we only solved 11 linear programs. This decision was made based on graphical
evidence that the value function estimates were not changing drastically in the
last few iterations. However, different linear programming solutions and dual
variables may lead to better differentiation between states and provide more
evidence for use of the approximation.

6. Conclusions and directions for future research

We have presented a method in which we approximate the value function of a
stochastic dynamic programming approach for a dynamic, stochastic multiple
knapsack problem. The model has been used in an order accept/reject setting
for manufacturing applications. Unfortunately, the model grows exponentially
in the number of orders and the discretization of the state space.

Our approximation scheme was based on solving a linear programming ap-
proximation to the DSMKP. For a given initial state of the system, the objective
function value and dual variables associated with the value of additional capac-

Approximating the solution of a dynamic, stochastic multiple knapsack problem 549

ity were used to build an approximate value function quite efficiently. These
values were then used as substitutes for the boundary conditions of zero when
solving the SDP over a given horizon.

The benefits of this approach are that the value function can be constructed
relatively quickly (in just over two minutes in our large-scale application) and
the values provided some measure of valid differentiation between states for the
SDP in the final period. This is clear when examining the different solutions
found when solving a large-scale application over a number of different time
periods. The true benefit of the approximation is that optimal initial solutions
may be found sooner, by solving the SDP over shorter horizons, because the
approximate values help reduce the end-of-study effects induced by assuming
boundary condition values of zero. This is turn helps to reduce the computa-
tional burden of the SDP, as a smaller horizon problem can be solved. This is
critical when one is constrained to solving problems in a timely manner and on
a desktop computer.

Future research may examine how one can more formally determine the ap-
propriate number of linear programs to solve when generating the approximate
value function. We employed a simple graphical method. Furthermore, we may
examine different ways of integrating linear programming solutions with dual
variables. For example, we utilized the dual variables for all states between the
initial state assumed when solving the linear program and the empty system
state. However, we could assume the values are only to be used in a specified
range and thus only update smaller ranges with dual variables. This should
improve the estimate of the value function at the cost of having to solve more
linear programs.

It should also be clear that other functions could be used to approximate
the end-of-horizon values. We employed linear programming, but one could also
directly approximate the value function itself through sampling and interpola-
tion methods. The benefit of this approximation scheme is that any function
can be utilized in the first phase and the importance of the approximation is to
provide a differentiation between states at the horizon.

7. Acknowledgments

We would like to thank two referees whose comments greatly improved the
readability of this manuscript. We would also like to recognize National Science
Foundation funding for this research through grants DMI-9984891 and DMI-
0121395.

References

Bellman, R.E. (1957) Dynamic Programming. Princeton University Press,
Princeton, NJ.

550 J. HARTMAN, T.C. PERRY

Bertsekas, D.P. and Tsitsiklis, J. (1996) Neuro-Dynamic Programming.
Athena Scientific.

Bertsimas, D. and Demir, R. (2002) An approximate dynamic program-
ming approach to multidimensional knapsack problems. Management Sci-

ence 48(4), 550-565.
de Farias, D.P. and Van Roy, B. (2003) The linear programming approach

to approximate dynamic programming. Operations Research 51, 850-865.
Godfrey, G. and Powell, W.B. (2002) An adaptive, distribution-free al-

gorithm for the newsvendor problem with censored demands, with ap-
plication to inventory and distribution problems. Management Science

47(8), 1101-1112.
Johnson, S.A., Shoemaker, C.A., Stedinger, J.R., Li, Y. and Tejada-

Guibert, J.A. (1993)Numerical solutions of continuous-state dynamic
progams using linear and spline interpolation. Operations Research 41,
484-500.

Perry, T.C. and Hartman, J.C. (2004) Allocating manufacturing capacity
by solving a dynamic, stochastic, multiple knapsack problem. Technical
Report T004-009, Industrial and Systems Engineering, Lehigh University,
Bethlehem, PA.

Philbrick, R. and Kitanidis, P.K. (2001) Improved dynamic programming
methods for optimal control of lumped parameter stochastic systems. Op-

erations Research 49, 398-412.
Powell, W.B. and Carvalho, T. (1998) Dynamic control of logistics queue-

ing networks for large scale fle et management. Transportation Science

32(2), 90-109.
Shapiro, J., Powell, W.B. and Simao, H.P. (2002) An adaptive, dynamic

programming algorithm for the heterogeneous resource allocation problem.
Transportation Science 36(2), 231-249.

Topaloglu, H. and Powell, W.B. (2006) Dynamic programming approxi-
mations for stochastic, time-staged integer multicommodity flow problems.
INFORMS Journal on Computing.

