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Abstract: The paper addresses the problem of real-time emis-
sion control in a given set of air pollution sources. The approach
applied utilizes the optimal control technique for distributed para-
meter systems. A set of pointwise emission sources with a predefined
location and emission characteristics is considered as the controlled
object. The problem is formulated as on-line minimization of an en-
vironmental cost function, by the respective modification of emission
level in the controlled sources, according to the changing meteoro-
logical conditions (e.g. wind direction and velocity). Dispersion of
atmospheric pollution is governed by a multi-layer, dynamic model
of SOx transport, which is the main forecasting tool used in the
optimization algorithm. The objective function includes the envi-
ronmental damage related to air quality as well as the cost of the
controlling action. The environmental cost index depends on the
current level of SOx concentration and on the sensitivity of the area
to this type of air pollution. The adjoint variable, related to the
main transport equation of the forecasting model, is applied to cal-
culate the gradient of the objective function in the main optimiza-
tion procedure. The test computations have been performed for a
set of major power plants in the industrial region of Upper Silesia
(Poland).

Keywords: air pollution, mathematical modeling, emission
control.

1. Air pollution forecasting model

The most common application of environmental models is the forecasting of dis-
persion of pollutants. Some air quality studies are also aimed at optimization,
but numerous applications of optimization methods mainly occur in the design
of monitoring networks. On the other hand, many important decisions in air
pollution and environmental problems, which could be supported by the respec-
tive models, are directly made by decision makers. However, some optimization
methods and recently developed environmental models (e.g. Haurie et al., 2004;



352 P. HOLNICKI

Holnicki, 2004) give the possibility of implementation of complex air pollution
control strategies.

The long-term air pollution forecasting model was applied to evaluate the
possible environmental consequences of alternative strategies of energy sector ex-
pansion in Poland (Ciechanowicz et al., 1996). The problem of the regional-scale
strategy of emission abatement in a set of major power plants was discussed,
e.g. by Chang (2000) or Holnicki and Kałuszko (2004). The solution of the last
task is sought by the optimal selection of the desulphurization technologies for a
given set of emission sources. From the viewpoint of mathematical formulation,
the above tasks are static optimization problems.

This paper presents some possibilities of utilizing pollution transport models
in the real-time control of air quality. The optimal control problem is formulated
as on-line minimization of an environmental cost function, by modification of
emission level in a set of the controlled sources, according to the changing mete-
orological conditions. In the case of linear, single-component transport models
(Trojanowski and Michalewicz, 2000), pollution forecast can be considered as
superposition of individual source contributions. The optimization process is
based on the unit transfer matrices, which are calculated off-line for each emis-
sion source. Such a simplified approach is no longer applicable in case of the
multi-species and nonlinear models, where chemical transformations are consid-
ered. The transport model – fully integrated with the optimization procedure
– must then on-line generate pollution transport forecast. Statement of the
problem and computational algorithm are presented below.

The aim is to formulate and implement the optimal control procedure, and
verify effectiveness and performance of this formulation. The approach is based
on the integration of the dispersion model with a general theory of the optimal
control in distributed parameter systems (Lions, 1971). For this reason, it is
assumed that the pollution transport process can be considered as a system
governed by the set of transport equations. The model generates short-term
forecasts of air pollution related to a specified, complex emission field. The
implementation discussed in the sequel is illustrated by an example of the sulfur-
oriented transport model, but the approach can be applied in a more general
class of the multi-species, forecasting models.

Computation of the transport of sulfur pollution is carried out by Lagrangian
type, three-layer trajectory model, as discussed by Holnicki et al. (2000). The
mass balance of the pollutants is calculated for air parcels following the wind
trajectories. The model takes into account two basic polluting components of
sulfur cycle: primary – SO2 and secondary – SO=

4 . Transport equations include
chemical transformations SO2 =⇒ SO=

4 , dry deposition and the scavenging by
precipitation.

The main output constitute the concentrations of SO2 and SO=
4 , averaged

over the space discretization element and the horizontal layer height. Mathe-
matical representation has a form of two transport equations in each layer of
the model. For presentation simplicity, we consider in the sequel one govern-
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ing equation, expressed in an aggregated form, representing the main polluting
component – (SO2) in one vertical layer:

∂c

∂t
+ �v∇c − KhΔc + γc = Q in Ω × (0, T ) , (1)

along with the boundary conditions

c = cb on S−={∂Ω×〈0, T 〉 | �v · �n < 0} – inflow to the domain, (1a)

Kh
∂c

∂�n
= 0 on S+ ={∂Ω×〈0, T 〉 | �v · �n ≥ 0} – outflow from the domain, (1b)

and the initial condition

c(0) = c0 in Ω . (1c)

Here we use the following notation:
Ω – domain considered, with the boundary ∂Ω = S+ ∪ S−,
(0,T) – time interval of the forecast,
c – pollution concentration,
�v – wind velocity vector,
�n – normal outward vector of the domain Ω,
Kh – horizontal diffusion coefficient,
γ – pollution reduction coefficient, due to deposition and chemical transforma-
tion,
Q – total emission field.

The details concerning computer implementation are discussed by Holnicki
et al. (2000). Here, the pollution reduction coefficient, γ used in (1), represents
in an aggregated form processes of dry and wet deposition as well as the chemical
transformations. The turbulent exchange of pollutants between layers is usually
parameterized by introducing the respective vertical diffusion coefficient.

The emission field on the right hand side of (1) is composed of two parts:
controlled and uncontrolled (background) emission sources. It can be expressed
as follows:

Q(x, y, t) = q(x, y, t) +
N∑

i=1

χi(x, y) · qi(t) , (2)

where
qi(t) – emission intensity of the controlled, i-th source,
χi(x, y) – characteristic function of the i-th source location,
q(x, y, t) – background (uncontrolled) emission field.

Numerical algorithm is based on the discrete in time, linear finite element
spatial approximation, combined with the method of characteristics (Holnicki,
1996; Holnicki et al., 2000). The uniform discretization step, h =Δx =Δy is
applied for space approximation. The mass balance of pollutants is calculated
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for air parcels following the wind field trajectories. The discrete computational
points along the wind trajectory are determined according to the predefined
time discretization interval – τ .

2. The optimal control problem

Basing on the forecasts of the pollution dispersion model, the real-time emis-
sion control problem for the system of sources located in a given area can be
formulated. The general idea of control consists in minimizing a predefined en-
vironmental cost function, according to the changing meteorological conditions,
by modification of the emission intensity (supervised by the regional coordinat-
ing center for redistribution of the energy) within the set of the selected con-
trolled sources. Certain economic and technological constraints are also taken
into account.

To state the optimal control problem, we define the basic conditions. Assume
that in a given domain Ω there are N controlled emission sources described
by certain spatial characteristics (location, stack height, etc.) and emission
intensity. There is also a set of uncontrolled emission sources, which form the
background pollution field.

State equation. We consider the layer-averaged concentration of the pol-
luting factor c(x, y, t) , which satisfies the following transport equation

∂c

∂t
+ �v∇c − KhΔc + γc = q +

N∑
i=1

qi in Ω × (0, T ) , (3)

with the boundary conditions (1b) and the initial condition (1c). Function
q(x, y, t) represents an uncontrolled emission field (background emission). Emis-
sion characteristics of the controlled sources are represented by the product

qi(x, y, t) = χi(x, y) · Fi(ui(t)) for i = 1, . . . , N ,

where χi(x, y) describes the spatial location of the source, while Fi(ui(t))
is the temporal characteristics of emission intensity. Vector function �u =
[u1, . . . , uN ]T denotes here the control and represents the production level (e.g.
energy generated by the power plant). Functions Fi(·) , (i = 1, . . . , N) relate
the energy production level of the respective plant, to the emission intensity,
which forms the right-hand side of the state equation.

Cost functional to be minimized is the weighted sum of two components:
environmental cost function (air quality damage) and the control cost. It is
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defined as follows

J(q) =
α1

2

∫ T

0

∫
Ω

w · [ max( 0, c(�u) − cad)]2 dΩ dt

+
α2

2

∫ T

0

N∑
i=1

βi (ui(t) − u�
i )

2 dt . (4)

Here the coefficients α1, α2, βi , (i = 1, . . . , N) are given (experimentally
determined) constants, where α1 ≥ 0 , α2 ≥ 0 , βi > 0 . The area sensitivity
function satisfies the inequality 0 ≤ w(x, y) ≤ 1 , and cad is a constant, ad-
missible level of concentration. The nominal production level of the controlled
source is denoted by u�

i , (i = 1, . . . , N) .

Constraints imposed on the production level of the controlled emission
sources represent some technological and economic requirements, and are as
follows

ui ≤ ui(t) ≤ ui(t) for i = 1, . . . , N , (5a)
∑
i∈Nj

δij ui(t) ≥ dj for j = 1, . . . , M, Nj ⊂ {1, . . . , N} . (5b)

Inequalities (5a) are lower and upper technological limits on the real production
level of the plant under consideration. Conditions (5b) represent constraints of
the total energy demand, which is imposed on the j-th subset of plants, with
some coefficients δij .

We denote by Uad ⊂ L2(0, T ; RN) the set of admissible controls of the form

Uad = {�u ∈ L2(0, T ; RN) | �u satisfies conditions (5) a.e. in (0,T)} . (6)

It is known (Lions and Magenes, 1968) that the state equation (3) has a unique
solution c = c(�u) , determined for a given control �u ∈ Uad and for fixed,
constant parameters Kh, γ , where Kh > 0 .

Optimal control problem (P). Find the element �u o which minimizes
the cost functional (4) over the set of admissible controls,

J(c(�u o)) = inf
�u∈Uad

J(�u) ,

where co = c(�u o) satisfies the state equation (3).
We assume that there exists a constant σ > 0 such that the following

inequality holds

〈DJ(�u) − DJ(�v), �u − �v 〉 > σ ||�u − �v||2H1(0,T ;RN ) ∀�u,�v ∈ Uad , (7)

where DJ(�u) denotes the gradient of the functional (4). The last inequality is
satisfied, e.g. for Fi(ui) = ui and αi > 0, βi > 0, δ > 0 . According to Lions
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(1971) or Martchuk (1995), condition (7) ensures the uniqueness of the optimal
solution to Problem (P).

The optimality system for Problem (P). It is known (Lions, 1971)
that Problem (P) can be characterized as follows. Find (�uo, co, po) , where
�uo = [uo

1, . . . , u
o
N ] ∈ Uad , such that

∂co

∂t
+ �v∇co − KhΔc + γco = q +

N∑
i=1

χi Fi(uo
i ) in Ω × (0, T ) , (8)

co = co
b on S− (8a)

Kh
∂co

∂�n
= 0 on S+ (8b)

co(0) = co
0 in Ω . (8c)

−∂po

∂t
−�v∇po −KhΔc + γpo = α1 w max[0, co − cad] in Ω× (0, T ) , (9)

po = 0 on S− (9a)

Kh
∂po

∂�n
+ �v · �n po = 0 on S+ (9b)

po(T ) = 0 in Ω . (9c)

N∑
i=1

{α1

∫ T

0

∫
Ω

χi F
′
i (u

o
i ) po (ui − uo

i ) dΩ dt (10)

+ α2

∫ T

0

βi (uo
i − u�

i ) (ui − uo
i ) dt} ≥ 0 ∀ �u = [u1, . . . , uN ] ∈ Uad .

Finite dimensional approximation of the problem (P) can be numerically
solved by any gradient method. It follows from the above optimality conditions
(Lions, 1971) that the gradient of the cost functional (4) depends on the adjoint
variable po and can be expressed as follows

DiJ(�u) = α1

∫ T

0

∫
Ω

χi F
′
i (u

o
i ) po dΩ dt (11)

+ α2

∫ T

0

βi (uo
i − u�

i ) dt (i = 1, . . . , N).

To calculate the gradient components according to (11), the following steps
have to be performed in the consecutive iterations of the optimization procedure:
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• solve the transport equation – problem (8),
• solve the adjoint equation – problem (9) – for the reversed time and the

wind direction,
• substitute the adjoint variable po to (11) and calculate gradient compo-

nents of environmental cost functional (4).
The next section presents the results of test computations performed for the

real-data case study. The computational domain is a selected industrial region
with the set of the major power plants, considered as the controlled emission
sources.

3. The real-data case study
The general approach presented in Section 2 has been implemented and tested
in a real data case. The test calculations have been performed for the set of
the major power plants of the selected industrial region of Poland. To formally
state the optimal control problem, which is to be solved, certain simplifications
have been introduced in the general formulations discussed above.

We assume that the set of admissible controls Uad is given by

Uad = {�u ∈ L2(0, T ; RN) | �u(t) satisfies (5a–b) for a. a. t ∈ (0, T ) }, (12)

where condition (5b) has a form of a total energy demand
∑
i∈N

δi ui(t) ≥ d . (13)

Furthermore, we assume for simplicity that the function, which relates emis-
sion to production level, Fi in (3), is identity

Fi(ui) = ui , i = 1, . . . , N . (14)

The above relation means that we directly consider emission intensity of the
source as the controlling function. The cost functional J(�u) is defined by (4)
for �u ∈ L2(0, T ; RN) . The weight coefficients α1 , α2 > 0 and βi = β = 1
for i = 1, . . . , N , are experimentally established, to obtain the comparable
contribution of two basic components in (4).

The test calculations have been performed for the selected region of Upper
Silesia (Poland) and the set of 27 power plants, considered as the controlled
emission sources. They represent the dominating power stations located within
the region. Fig. 1 presents the domain considered and the location of the con-
trolled emission sources.

The nominal emission intensity of the controlled sources, taken into account
in the optimization procedure, refer to the winter season values. Grid coordi-
nates and the main emission parameters of the controlled sources are shown in
Table 1.
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Table 1. List of the controlled SO2 emission sources

No. Source Source Stack Emission Emission
coordinates height – winter – summer

[m] [kg/h] [kg/h]
1. Bielsko-Biala (14,2) 160 426.91 256.15
2. Bȩdzin A (18,31) 95 94.89 63.25
3. Bȩdzin B (18,31) 135 132.82 31.63
4. Bielsko-Komorowice (15,1) 250 426.91 189.74
5. Chorzów (12,27) 100 363.66 180.25
6. Halemba (8,25) 110 569.24 379.48
7. Jaworzno I (20,23) 152 284.61 158.12
8. Jaworzno IIA (21,24) 100 573.60 379.48
9. Jaworzno IIB (21,24) 120 664.08 426.91
10. Jaworzno III (21,24) 300 6324.60 4743.45
11. Katowice (13,25) 250 1106.81 790.58
12. Łagisza A (18,31) 160 948.69 695.71
13. Łagisza B (18,31) 200 1359.79 1011.94
14. Łaziska I (8,20) 200 1660.21 1185.86
15. Łaziska II (8,20) 160 758.95 505.97
16. Łaziska III (8,20) 100 727.95 505.97
17. Łȩg (46,12) 260 1106.81 790.58
18. Miechowice (14,17) 68 161.28 117.01
19. Rybnik (1,20) 300 4711.83 3510.15
20. Siersza A (30,23) 150 1929.00 1423.04
21. Siersza B (30,23) 260 2055.49 1739.27
22. Skawina (43,11) 120 1992.25 1296.55
23. Szombierki A (9,31) 110 164.44 113.84
24. Szombierki B (9,31) 120 170.76 110.68
25. Tychy (13,19) 120 240.33 177.09
26. Zabrze A (2,29) 60 205.55 158.12
27. Zabrze B (2,29) 120 221.36 145.47
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Figure 1. The computational domain and the emission sources

The computational domain constitutes a rectangle of 110 km×74 km, which
was discretized with the homogeneous grid, for the space discretization step, h =
2 km. This gives the discrete domain of dimensions 55× 37. The area weight
coefficient, w(x, y) , in the objective function (4) was defined in a specific way,
to get a more illustrative form of the optimal solution and to obtain relatively
simple interpretation of the adjoint variable, p o . The surroundings of Kraków
(indicated by the dashed line in Fig. 1) was defined as a region of high sensitivity,
with the respectively higher value of the area weight index. It is defined as
follows:

w(x, y) =

⎧⎨
⎩

1 for (x, y) in Kraków area,

0 for (x, y) outside this area.
(15)

Computational results presented in the sequel relate to the real-time emission
control task for one 12-h time interval and two selected meteorological scenarios.
The meteorological data for two episodes differ with respect to the wind direction
(with other parameters comparable), and are as follows:
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• case A – the North-West moderate wind,
• case B – the West moderate wind.

Numerical implementation of the optimal control problem (P) discussed
in Section 2 is based on the linearization method by Pschenitchny (1983).
The FORTRAN 90 code of the optimization algorithm includes the forecast-
ing model, the adjoint equation simulator and the optimization procedure. The
computational experiments were performed on the UNIX platform server. The
Winter season emission intensities of the controlled sources, as stated in Table 1,
were assumed as the starting point for the optimization procedure. Comput-
ing time required to find the solution, in both scenarios considered, is below 1
minute. Some general results, concerning performance, number of iterations of
the optimization procedure and the reduction factor of the quality function, are
presented in Table 2.

Table 2. General results of 12-h simulation for two control tasks

Case Number of Quality index Quality index Reduction factor
iterations – initial – final

A 4 82.2 70.0 15%
B 3 10.5 7.2 31%

Graphical presentation of the results for scenario A is shown in Figs. 2 –
3. Fig. 2 indicates the differences in the distribution of SO2 concentration for
the reference emission (no control) field and for the optimal control strategy,
generated by the algorithm. The most noticeable differences can be observed in
the surroundings of the protected area, according to definition (15), while the
the reduction of the objective function is about 15%.

The correlation between the adjoint variable distribution and the dominating
controlled sources are seen in Fig. 3(a). This figure also gives an interpretation
of the adjoint variable. The area of high values of the adjoint variable indicates
locations of those sources, which significantly contribute to the overall environ-
mental cost function. These sources have the emissions respectively reduced, as
the result of the optimization algorithm; the related changes in emission inten-
sities are shown in Fig. 3(b). On the other hand, to satisfy the total demand
constraints (5), production level (and emission) in some sources must increase.
These are the sources located outside the area of high influence, which do not
contribute significantly to environmental cost (see Fig. 3a–b). The respective
graphical results for scenario B are shown in Figs. 4–5.
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Figure 2. Map of SO2 concentration [μg/m3]; initial (top) and optimal (bottom)
– scenario A
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Figure 3. Distribution of adjoint variable (top); modification of emissions in
controlled sources (bottom) – scenario A
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Figure 4. Map of SO2 concentration [μg/m3]; initial (top) and optimal (bottom)
– scenario B
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Figure 5. Distribution of adjoint variable (top); modification of emissions in
controlled sources (bottom) – scenario B
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The quantitative results of the optimal control procedure for both meteo-
rological scenarios, related to the final modifications of the emission level in
controlled sources – are shown in Table 3. They are expressed as the factors
of relative change of the initial (or nominal) emission intensity of the selected
sources (factor less than 1.0 means reduction of the emission, factor greater then
1.0 – increase, respectively).

Table 3. Optimal emission control – modifications of the controlled sources

No. Source coordinates height Emission control factor
[ m ] [kg/h] case A case B

1. Bielsko-Biala (14,2) 160 426.91 1.00 1.00
2. Bȩdzin A (18,31) 95 94.89 1.00 1.00
3. Bȩdzin B (18,31) 135 132.82 1.00 1.00
4. Bielsko-Komorowice (15,1) 250 426.91 1.00 1.00
5. Chorzów (12,27) 100 363.66 1.00 1.00
6. Halemba (8,25) 110 569.24 1.00 1.00
7. Jaworzno I (20,23) 152 284.61 1.00 1.00
8. Jaworzno IIA (21,24) 100 573.60 1.00 1.00
9. Jaworzno IIB (21,24) 120 664.08 0.80 1.00
10. Jaworzno III (21,24) 300 6324.60 0.80 1.04
11. Katowice (13,25) 250 1106.81 1.10 1.01
12. Łagisza A (18,31) 160 948.69 1.00 1.01
13. Łagisza B (18,31) 200 1359.79 0.90 1.01
14. Łaziska I (8,20) 200 1660.21 1.10 1.00
15. Łaziska II (8,20) 160 758.95 1.00 1.00
16. Łaziska III (8,20) 100 727.95 1.00 1.00
17. Łȩg (46,12) 260 1106.81 1.10 1.00
18. Miechowice (14,17) 68 161.28 1.00 1.00
19. Rybnik (1,20) 300 4711.83 1.25 1.00
20. Siersza A (30,23) 150 1929.00 0.80 1.02
21. Siersza B (30,23) 260 2055.49 0.80 1.02
22. Skawina (43,11) 120 1992.25 1.10 0.82
23. Szombierki A (9,31) 110 164.44 1.00 1.00
24. Szombierki B (9,31) 120 170.76 1.00 1.00
25. Tychy (13,19) 120 240.33 1.00 1.00
26. Zabrze A (2,29) 60 205.55 1.00 1.00
27. Zabrze B (2,29) 120 221.36 1.00 1.00

The initial value and reduction of environmental cost index significantly
depend on the meteorological situation (see Table 2). Several sources in scenario
A contribute to the quality function and the initial value of this index is high,
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while the reduction, which can be obtained for the optimal solution, is about
15%. The other scenario means the dominating contribution of one source (No
22) only. Thus, the initial value of quality index is much lower, but the relative
reduction of this initial state – respectively higher, because only the abatement
of emission level in this dominating source is selected in the optimal solution.

4. Conclusions

The paper concentrates on two basic tasks: i) formulation of the optimal control
problem, which represents the real-time emission control of air pollution sources,
and ii) testing the efficiency and accuracy of an implementation of the compu-
tational algorithm designed for solving the problem. As stated in Section 2, the
emission field of the controlled sources and air pollution dispersion processes are
considered as a distributed parameter system, which is governed by the respec-
tive set of transport equations. Consequently, the optimal control technique
for distributed parameter systems (Lions, 1971) is utilized in definition of the
real-time emission control problem.

The key module of the system is the numerical model of air pollution trans-
port, and the quality of the respective finite-dimensional approximation scheme
applied for solving the state and adjoint equations constitutes the basic problem.
Both equations must be solved, at least once, in every iteration of any gradient
optimization algorithm. Numerical solution of this type evolutionary equations
is especially sensitive to the properties of the numerical scheme applied. It is
known that the crucial role in the final accuracy of the method is played by
monotonicity and positivity of approximation method, as discussed by Holnicki
(1995, 1996). These properties are particularly important in an optimization
process, since the solution of the state equation is entered as an input of the ad-
joint equation. For this reason, an effective, shape preserving scheme, based on
a combination of the method of characteristics and the piecewise-quintic spatial
interpolation (Holnicki, 1996), is used for simulation of air pollution transport.

The above numerical algorithm was used in analysis of the state and ad-
joint equations. Since in the application considered in the paper, the emission
field is composed of the pointwise sources – the case is especially sensitive to
shape-preserving properties of the numerical approximation scheme. The test
computations, performed for two selected episodes, confirm good accuracy of
the solution to transport equation as well as satisfactory integration of the
method with the optimization algorithm. The obtained results also show that
the method is computationally effective (the optimum reached in a few iterations
– see Table 2) and the resulting accuracy of the optimal solution is sufficient,
having in perspective future applications.

The utilization of the techniques discussed in the paper concentrates on the
problem of the real-time emission control. Presented results show that some
elements of this approach can also be applied in long-term analysis of regional
scale environmental tasks, e.g. in sustainable development problems, as dis-
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cussed by Chang (2000) or Haurie et al. (2004). The remark refers to the
adjoint variable, which indicates the most influencing area, from the environ-
mental perspective. Thus, in long-term analysis, distribution of this variable
can also be an important factor in supporting decisions concerning the planned
energy sector investments and their location within the region.
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