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Abstract: The paper studies infinite repetition of finite strate-
gic form games. Players use a backward looking learning behavior
and face bounds on their cognitive capacities. We show that for
any given belief-probability over the set of possible outcomes where
players have no experience, games can be payoff classified and there
always exists a stationary state in the space of action profiles. In
particular, if the belief-probability assumes all possible outcomes
without experience to be equally likely, in one class of Prisoners’
Dilemmas where the uniformly weighted average defecting payoff
is higher than the cooperative payoff and the uniformly weighted
average cooperative payoff is lower than the defecting payoff, play
converges in the long run to the static Nash equilibrium while in
the other class of Prisoners’ Dilemmas where the reverse holds, play
converges to cooperation. Results are applied to a large class of 2 x 2
games.

Keywords: cognitive complexity, bounded logistic quantal re-
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1. Introduction

The Prisoners’ Dilemma represents social situations characterized by the exis-
tence of what is commonly known as the free rider problem. Let us consider
two examples from the author’s hometown. The city of Calcutta is renowned in
India for Durga Puja, a religious festival during the month of October. There
is hardly any corner of the city without a pandel (a Bengali term for a tem-
porary tent-like construction) with idols of Durga the mother goddess, and her
entire family. The festival is financed by collecting private donations from house-
holds of respective neighborhoods. Over the years, more and more Calcuttans
have voluntarily contributed successively higher donations. On the other hand,
the city is also renowned (and this time all over the world) for her neglected
streets and localities. Some local private organizations have made efforts to
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collect private donations from member families of respective neighborhoods for
the maintenance of their localities. Such efforts have repeatedly failed in most
of the neighborhoods where such organizational efforts had been undertaken.
Some cases showed complete failure from the very beginning while others even-
tually ceased to exist as the number of private contributors became negligible
over time. When asked individually however, every citizen of Calcutta showed
great concern and enthusiasm regarding the cleanliness of their localities.

These two social situations, the likes of which are surely widespread, can be
represented by a model of infinitely repeated Prisoners’ Dilemma where at each
period players decide whether or not to contribute to a public good. What is
surprising is that while in the former we see that agents cooperate and achieve
the Pareto dominant outcome (and the festival of Durga Puja is celebrated with
great enthusiasm), in the latter the same agents behave as predicted by the
static Nash equilibrium (and Calcutta remains neglected forever). Do we have
a unified theory that is able to explain this difference in social behavior? To have
one we need to be able to distinguish one Prisoners’ Dilemma from another. Is
the Prisoners’ Dilemma representing the former example different from the one
representing the latter?

As we will argue, a large part of the existing literature on repeated games
does not answer this question. Nevertheless, since cooperative behavior is ob-
served quite often, many authors have tried to explain convergence to such
Pareto dominant outcomes in similar settings. The general intuition has been
that when players are rational and sufficiently patient, almost any feasible pay-
off allocation that gives each player at least his minimum security level can be
realized in an equilibrium of any repeated game. In the game theory literature,
these feasibility theorems have been referred to as folk theorems. Naturally,
the predictive power of these results is rather weak. Neyman (1985) shows that
bounded complexity on part of the players justifies cooperation in finitely re-
peated Prisoners’ Dilemma. Recently, the literature has taken a turn towards
modeling ways by which players may actually learn to play games and see if
such learning behaviors indeed lead to some equilibrium or stationary state.

Bendor et al. (1995) show that if both players are aspiration driven and
aspirations are static, players may exhibit long run cooperative behavior under
certain initial conditions. Karandikar et al. (1998) show that with evolving
aspirations, players will cooperate most of the time in a large class of games
which includes the Prisoners’ Dilemma. Kim (1999) studies a satisficing model
of learning where a 2 x 2 game is repeated by case-based players a la Gilboa
and Schmeidler (1995) and shows that infrequent and simultaneous experiments
with cooperative strategies are essential for convergence to cooperative behavior
in the Prisoners’ Dilemma.

However, as mentioned before, most of these models are not sufficient in
answering why the same group of players may in some Prisoners’ Dilemma
converge to cooperative behavior while in some other to the Nash equilibrium.
One may build up a model with two stationary long run outcomes, one where
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players cooperate and the other where players defect and conclude that such a
diversity is a matter of chance and the evolution of play. We do not think this
approach is satisfactory in answering our question. Given a specified behavior
rule, we need a theory that is able to classify Prisoners’ Dilemmas into groups in
terms of observable variables and show that players converge to cooperation with
probability one in all Prisoners’ Dilemmas falling in one such group while they
converge with probability one to the static Nash equilibrium in all Prisoners’
Dilemmas falling in the other.

In order to resolve this apparent puzzle, we study infinite repetition of a class
of games (our initial and fundamental analysis is, however, kept general) which
all have the basic essence of the Prisoners’ Dilemma that ensures existence of the
free rider problem as cited in the examples above. Players are assumed to learn
to play the game over time from past experience. The learning model used by
players is a variant of logistic quantal response learning (LQRL) a la McKelvey
and Palfrey (1995). We assume that players have cognitive bounds in analyzing
histories of past plays in order to decide upon their current choice probabilities.
We call this learning mechanism bounded logistic quantal response learning
(BLQRL). Our model captures the fact that players cannot always look very
long in the past if the past is also very heterogenous and therefore (we call it)
cognitively complex.

Our notion of complexity in decision making differs significantly from that
of implementational complexity and finite automata as in Kalai and Stanford
(1988) or Binmore and Samuelson (1992), among others, which is typically for-
ward looking and can be roughly thought of as equal to the number of states
that a repeated game strategy can induce. The notion of complexity used in
this paper is backward looking and is close to the basic idea of finite memory.
However, we justify it for two reasons. Firstly, players forget distant past. In
addition, the rate at which they forget the past increases with the heterogene-
ity of realized history. This implies that players not only have finite memory
but the length of their memory evolves probabilistically, conditional on future
realization of actions which carve the path of play, thus making the length
of their memory path dependent. Furthermore, players are parameterized by
their degree of rationality in deciding upon the choice probabilities. McKelvey
and Palfrey (1995) show that in any finite game where players use the quantal
response learning, play converges to a Nash equilibrium when this rationality
parameter approaches infinity. Thus, in our model we expect play to converge
to the Nash equilibrium when complexity bounds and the rationality parameter
go to infinity, as essentially then the two models are equivalent. We show that
(i) if players face cognitive bounds, for any finite stage game, the play converges
to stationary probabilities on the space of action profiles for all values of the
rationality parameter; (ii) in addition, for the Prisoners’ Dilemma, when the
rationality parameter approaches infinity, the play converges to the Nash defect
with probability one if the weighted average defecting payoff is higher than the
cooperative one and the weighted average cooperative payoff is lower than the
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defecting one, where the weights are determined by players’ beliefs regarding
outcomes without experience. (The weighted average defecting payoff is simply
the expected value of individual payoff from a given pure strategy of a normal
form game under the assumption that other players in the game play all pure
strategies with equal probabilities). However, if the reverse is true, that is if
the weighted average defecting payoff is lower than that of cooperation and the
weighted average cooperative payoff is higher than that of defection (which is
possible in some class of Prisoners’ Dilemma games), the play converges to co-
operative outcome with probability one. In comparison with the result obtained
in McKelvey and Palfrey (1995) where they show that with infinite memory, as
rationality increases unboundedly, quantal response learning behavior almost
always select a Nash equilibrium, our analysis suggests that the assumption of
infinite memory is crucial in their results as we show that if memory is finite,
then even if rationality is increased unboundedly, players may indeed converge
to other (non-Nash) outcomes, and in particular to the cooperative outcome in
some Prisoners’ Dilemma games. This is the main contribution of this paper
and perhaps throws some light behind why Durga Puja goes on while at the
same time some parts of Calcutta remain untidy. Whether the conditions as-
serted in this paper hold in reality in these two examples is still an empirical
question.

We then apply the general results to study long run behavior in a large
class of 2 x 2 games which includes Pure Coordination, Common Interest, and
Chicken. Our results call for experiments where subjects play 2x2 games studied
in this paper and satisfying restrictions as demanded by the theory provided.
One easy way of capturing and controlling the notion of cognitive bounds in
such an experimental setup could be to impose time restrictions within which
subjects need to decide upon their current actions.

The rest of the paper is organized as follows. In Section 2 we formally state
the model. In Section 3 we analyze exclusively the issues regarding memory
and information sets, establishing some properties of an appropriate stochastic
process which help us prove the two convergence results in Section 4. Section 5
uses these convergence results in selecting out unique long run outcomes in Pris-
oners’ Dilemmas under appropriate payoff restrictions and suggests a possible
resolution to the paradox described above. Section 6 studies other 2 x 2 games
and applies the general results. An informal discussion on beliefs without ex-
perience is provided in Section 7. Finally the paper draws its conclusions in
Section 8.
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2. The general environment

Consider the following 2 x 2 game I":

player 2
C D

player 1 C 8,0 €,
D a, e 0,0

where €, 6, 3 and « are all assumed to be positive. Withoo >a >8>0 >¢ > 0,
I is the celebrated Prisoners’ Dilemma. (The assumption that all entries in the
payoff matrix are positive is discussed in Subsection 2.2). T"is repeated infinitely
between two players, player 1 and player 2. The action sets are 47 = Ay =
{C,D} with A = {C’,D}Q,a € A. Let ui(t) : A — {e,0,8,a} be the period
t payoff function for player i. By T'*(A4,u) we will mean the ¢-th repetition of
[(Au),t=1,2,.... Let H* = A"™! (the (¢t — 1)—fold Cartesian product of A)
be the set of all possible sequences of realized action pairs till the beginning
of period t. Let h' € H* and denote a(t) € A as the action pair realized at
period t. With the first round of play being ¢ = 1, it is clear that H! = 0,
H? = A, H® = A% etc. We may also think of h' as a vector with (¢t — 1)
components, each of which are elements of A. Furthermore, we may also think
of each element a of A as a vector with two components. Interpreting histories
and action profiles as vectors in appropriate spaces will be helpful in what
follows. Typically, a repeated game strategy for player i at date ¢ is a function
fI: H* = A;. This implicitly assumes that players use entire histories in order
to decide upon their current actions and therefore are able to use very long
as well as possibly complicated histories as information sets. We would like
to rule this out. So, suppose instead that players have cognitive bounds and
therefore can only analyze histories of a certain cognitive complexity. For any
1 <7 <71 <t, denote by ht(m,7,) C ht a segment of h* whose first period is
7, and last period is 7,. Under some abuse of notation, let H!(r,7,) be the set
of all possible segments of all possible elements of H*.

2.1. Cognitive complexity

Assume that players are unable to recognize patterns of histories. We agree that
this is a relatively strong assumption and hope to relax it in future research.
An interested reader may see Sonsino (1997) where a model of learning with
the possibility of pattern recognition is studied. The cognitive complexity of
a given history, or segment of history, is determined by its length and by its
variability. The length of a history is straightforward to define, as it is simply
the number of elements appearing in the history. Formally, length is an integer
valued function ¢ : H'(7y,7,) — Z, defined as £(h'(7p,74)) = 7o — 7p + 1.

To obtain a formal definition of variability, we start defining, for a given
segment of history h!(r,7,) the finest partition P(h'(7p,7,)) as the partition
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putting in the same set identical elements. For example, if

h'(1y,7a) = {a,a,ad’;a,a” a,a'}, then
P(h(1,70)) = {{a,a,a,a},{d’,a'},{a"}}
and if
h'(my,7a) = {a,a,a,a,a,a}, then

P(ht (1, 7)) = {{a,a,a,a,a,a}}.

The measure of variability we use is simply the cardinality of this finest partition
minus 1. Formally, variability is an integer valued function v : H (1, 74) — Z4
defined as v(h! (7, 74)) = |P(h* (1, 7a))| — 1. Thus, variability is directly related
to the number of different elements appearing in a given history. From the above
examples,

v({a,a,d’;a,a",a,a’}) = 2and

v({a,a,a,a,a,a}) = 0.

Given any history segment h'(7,,7,), we define the cognitive complexity
(ccomp) of ht(7y,74) as a function

ccomp (h (1, 7a)) = G ((h' (10, 7a)), v(h" (70, 7a))) (1)

with G(-) strictly increasing in ¢(h*(m,,7,)) and v(h'(7p,7,)). In this paper we
adopt the following linear functional form for G(-) :

G (((h' (1, 7)), v(h (1, 7a))) = L(R' (70, 7a)) + v(B' (73, Ta)), (2)

this form not affecting the basic spirit of the results obtained.

The cognitive complexity of a history segment simply equals the length of
the segment plus its degree of heterogeneity. More generally, our definition of
cognitive complexity implies that cognitive complexity of an information set
increases with the cardinality of the data set and the variation or heterogeneity
of its composition. Note, however, that sequences of realized action profiles
with very simple patterns (like Tit-for-Tat for example) may turn out to be
significantly heterogenous.

2.2. Behavior rules for players

Players face cognitive bounds which equal a positive integer ¢ and is the same
across players. They are assumed to look at the most recent history segments.
For any repetition period ¢, let A* C h be a segment of ht satisfying the following
two conditions:

(i) ccomp(ht) < ¢ and (i) h* € arg max {ccomp(h* (7t — 1))} . (3)
ht(my,t—1)
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Thus, ht is the most recent history segment (since the most recent period in this
segment is ¢ — 1) with the highest cognitive complexity that players can analyze
at time ¢ given their cognitive bound (. We assume that players always look at
history segments h*. To avoid abuse of notation, let € denote the relation ‘is
a component of the vector’ and % the negation of €. Let |A;] = N denote the
number of actions available to player ¢ = 1,2 (in the case of Prisoners’ Dilemma,
N = 2 for both players). For any period ¢ and for all ¥ = 1,2, ..., N such that
Ja€ht with a¥Ea, define 7¥(t)as

> wila)

EhtlakE
ﬂft :{a _‘Aa a}_'
Haeht | afEa}

Li=1,2 (4)

and for all k = 1,2, ..., N such that #a€h’ with a¥Ea, define 7 () as

N
wf(t) = w; (k,r)ui(af,af), i,5=1,2, (5)
r=1

where w; (k,r) > 0 is the belief probability held by player i regarding the out-
N
come (af, a}) when she herself plays a¥, with Z w; (k,r) = 1 for all 7. Egs. (4)
r=1
and (5) define what we will refer to as perceived payoffs of each action. In this
paper we will work with the special case where w; (k,r) = w; (k,r’") for every
r,r’ € {1,2,..., N}. This is the case when players believe that all outcomes which
are possible when they use strategies with no experience are equally likely. The
results thus obtained with this simplification can in spirit be generalized. An
extensive discussion on this issue is provided in Section 7.
Eq. (4) says that if there is some element a in the history segment ht such
that player i has taken action a¥, then player i evaluates the perceived payoff of
playing a¥ in the subsequent period as the arithmetic mean of payoffs obtained

in all cases in which he played af in ht. For example, consider I' and let
h' ={(C.D),(C,0),(C,0),(D,C),(D, D)}

Then, 7 (t) = (28 +¢) /3, 7P (t) = (a +0) /2,75 (t) = (284 ¢) /3and 7P (t) =
(a+ 6) /2. On the other hand, if A does not contain any action profile in which
player i takes action a¥, the perceived payoff of action a¥ is simply the arithmetic

mean of all possible payoffs to player i. For example, let
ht ={(C,0),(C,D),(C,0C),(C,0C),(C,D)} .

Then, 7P (t) = (a + 6) /2.
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To distinguish our way of computing perceived payoffs from that in the
existing literature on quantal response learning, let ¢ = 5, ( = 2 and consider
the history

nt ={(C,C),(D,D),(C,D),(D,C)}.
From Eq. (3), h = {(D,C)}. Then, in our formulation,
i (t) = (B+e)/2,70(t) = a, 75 (t) =, and 77 (t) = (o +0)/2
while in the standard formulation, as used in McKelvey and Palfrey,
Ty () = (B+e)/2, 70 (t) = (0+0a)/2,78 (t) = (B+¢)/2 and 77 (1) = (0+0)/2,

since in the history ht, player 1 has played C two times, once receiving 3 (when
player 2 also played C) and the other time receiving & (since there player 2 had
played D) and hence the perceived payoff held by player 1 from the action C
is simply (8 + €)/2. The rest of the perceived payoffs in the standard set up is
computed analogously. Notice that with cognitive bounds, player 2 thinks that
C' is a relatively unfruitful action. This is because he forgets (or, in a time-
constrained experimental setup, does not have enough time to realize) that C
had actually yielded a high payoff equal to 8 when his opponent also played C.
This is not the case with unbounded cognition as then players will be able to
keep account of all past experiences.

After computing 7F(¢) for every k, players assign probabilities with which
each action is chosen for play in period ¢. Let Uf(t) be the choice probability
assigned by player i to action af at period t. Using the Logit framework (this
is in fact a “Luce” model of choice, see Luce, 1959):

k(1)

N
> [ ()]

k'=1

Q
o
—~
~
~
Il
—

(6)

A

with A € [0,00] being a parameter measuring the degree of rationality of the
players. By the use of the term ‘rationality’ we mean closeness of players’
choice probabilities to those of the myopic best response choices. The functional
form of o¥(t) as in Eq. (6) is also used in Chen, Thisse and Friedman (1997).
This formulation is invariant to linear transformations of the perceived payoffs.
However, it is undefined if for a history segment, the sum of payoff experiences
is zero for at least one player. To avoid this problem, we assume that the payoff
matrix of I' has only positive entries. An alternative formulation, adopted by
McKelvey and Palfrey (1995), is

AR (t)
e 1
3 O]
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This formulation has the advantage of taking care of negative payoffs but is not
invariant to linear transformations. In appendix A.3 we show that our results
hold with this alternative formulation as well.

Notice that At is the memory of the players and ¢ (ﬁt> is a stochastic process

determined by the evolution of play. In the next section, we will study the nature
of this stochastic process. As far as the rationality parameter is concerned, it
is straightforward to see that if A = 0, players always play each action with
probability equal to 1/N. However, as A increases, actions with better past
experiences receive higher choice probabilities (A = oo coinciding with myopic
expected payoff maximization). From a statistical point of view, players may
be thought of as committing errors in deciding upon the choice probabilities.
Then, A varies inversely with these errors.

Mention must also be made of the fact that players always have the option
of using some belief updating mechanism (like the moving averages technique)
which may only require them to keep track of few basic statistics. In such
settings, the model studied in this paper can be approximated to cases where
players make errors in such updating with such errors decreasing in ¢ and .
In our case, with A = 0, there is a unique equilibrium at the centroid of the
(N2 —1)-dimensional simplex of probability measures over action profiles for any
value of ¢. On the other extreme, McKelvey and Palfrey (1995) show that with
¢ = o0, as A — o0, every Logit equilibrium approaches the Nash equilibrium
of the static game. The above kind of probability choice function is commonly
known as logistic quantal response function (LQRF') as in McKelvey and Palfrey
(1995). The learning process with which we deal here is therefore a variant of the
logistic quantal response learning (LQRL) of Mookherjee and Sopher (1997) in
the sense that information sets are not any more the entire history that players
confront; rather they are only segments of these histories up to what cognitive
bounds enable players to look at. We therefore call our learning process bounded
logistic quantal response learning (BLQRL). Mookherjee and Sopher bring such
a learning model to experimental test (incidentally, I was one of the subjects of
that experiment held at the Delhi School of Economics) and their data revealed
some support to this process of behavior. Note that in our model, players have
two bounds. The first one is a bound on their cognitive capability by which they
are unable to analyze history segments of complexity higher than this bound.
The second one is a bound on their rationality in computing choice probabilities
while looking at these history segments. Two players may have enough cognitive
capacity to analyze long history segments but one who is endowed with a higher
value of A will play more frequently those actions which yielded higher payoffs
in the past.
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3. Analysis of memory and stochastic information sets

In this section we show that the stochastic process generated by the behavior
rules of players in '™°(A, u) can be represented by a Markov chain for an ap-
propriate state space defined below when the cognitive bound faced by players
is finite.

In order to precisely state this Markov chain, we begin with the following
two lemmas.

LEMMA 3.1 For any repetition period t, for any ht € HY, and for any ¢ < oo,
¢ —1 < ccomp(ht) <.

Proof. The right hand inequality is straightforward. Suppose the left hand in-
equality is violated and that (without loss of generality) ccomp(ht) = ¢ — 2.
Increase £(h') to £(h') + 1 by including the last element of h? that did not en-
ter ht. Call this extension A'. Then, v(h") either equals v(h?) or is equal to
v(h?) 4 1. It suffices to consider the case v(h'') = v(h') + 1. Then,

ccomp(h?) = ccomp(ht) +2 = ¢

and therefore

ht(m,,t—1)

ht ¢ {argmax {ccomp(ht(Tb,t - 1))} | ccomp(h*(1p,t — 1)) < C} ,

a contradiction. [ |

Although players can analyze histories with cognitive complexity equal to
¢, the evolution of play may be such that players are not able to use their full
cognitive capacity at each repetition period because there may exist moments of
play when, if they try to look at one more element of the history they confront,
they get confused (or they run out of time in time-constrained experiments). In
other words, there may be periods where there is no immediate history segment
that matches exactly their cognitive bound and therefore players have no other
choice but to analyze that segment which has the highest cognitive complexity
given their cognitive bound. However, the above lemma also shows that there
will never come a period where they will under utilize their capacity beyond one
unit of their cognition.

x+1
For any given positive integer z, define the set H(z) := {h € |J H" | £(h)+
t=1

v(h) = z}. To understand the set H (z), fix such an integer z (say z = 2).
Consider the sets of histories H', H? and H> and take their union. Then,

@ o "
. fob {0} f)
U Ht = Hl UH2 UH3 — H'  FH2: all elements from A
t=1

{a,a},{d',d'} ,{a,ad'},.....{a",a"} ...

H3: all elements from A2
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From the above collection, now pick all elements such that the cognitive com-
plexity of each element picked is exactly equal to 2. The collection you end up
with is H (2) which in this case will constitute all elements in A2 which have the
same element of A twice, that is {a,a}, {a’,a’},{a”,a”} and so on. The process
is identical for any > 1. Let B({) := |J H(x). Given Lemma (3.1), B(¢)
—1<z<

is the set of all possible sequences of elgementscof A with cognitive complexities
between ¢ — 1 and ¢ and therefore can be thought of as the set of all possible
ht for all periods t. In other words, at any period the information set used by
players must belong to B(().

As A is finite and ¢ < oo, B(¢) is a finite set (since £(h) < ¢ Vh € B(¢)) and
we call B(() the state space.

DEFINITION 3.1 Given any h € B(¢), W e B(¢) is an immediate successor of
h, denoted by (1)(iL, | fz), iff (1) the ﬁ(ﬁ’)—th component of ' is a new far right
addition to h and (i) for each integer 0 < n < é(iz) —1, the n—th last component
of h is the (n+ 1)—th last component of R

Not all pairs of elements of B({) can be immediate successors of each other.
Given any history segment fz, a new realized action profile arrives in the sub-
sequent period, which necessarily becomes the last element of the immediate
next history segment players utilize. However, since this may actually alter
the variability of realized history, in order to satisfy the cognitive bound, some
initial elements of the previous history segment may need to be deleted in the
construction of its immediate successor. For example consider I' and let { = 2.
Then,

B(C)z{ {(C, )} {(D, D)}, {(C, D)}, {(D, )}, {(C, C), (C, O)}, }
{(D, D), (D, D)}, {(C,D),(C,D)} ,{(D,C),(D,C)} '

Notice that with ¢ = 2 and given Lemma 3.1, vectors consisting of two com-
ponents can be present only if they are identical. Let h = {(D,D),(D,D)}
and let the current action profile be (C,C'). Then the immediate successor of
his (C,C). In fact, history segments {(D, D), (D, D)},{(C,C)},{(C, D)} and
{(D,C)} are the only possible immediate successors of h.

Let h be the current state of the stochastic process. In our model, knowledge
of h is all that is needed to determine the probability of the next period history
segment. This observation implies that our process is a Markov chain. We
therefore drop the use of time as a subscript for the period history segments.
The process moves from this current state h to an immediate successor state
' according to the following transition rule. Denote by Pr(a(t) € A | h) the
conditional probability of realizing action profile a = (a1, az) at period ¢ given
information set h. We know that Pr(a(t) € A | h) = o (t).052(t), where o ()
is given by Eq. (6). Pr(a € A | h) then induces a probability distribution for A’
given the complexity bound of the players. We denote this induced probability
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distribution by f g\l)(ﬁ’ | iL) and call it the transitional probability distribution
(the use of A as a subscript for f is to highlight the dependence of f on \).

Thus the Markov chain is denoted by M = <B(C), )(\1)(%’ | iL)> ((B(C), fr)
in short) where B(C) is the state space and fy is the one-step transitional prob-
ability.

Denote by B(C)E}g(ﬁ) the support of fil)(fz' | ).

LemMA 3.2 If i € B(C)}) (h),then ¢(h') < €(h) + 1.

Proof. To see this observe that if Z(ﬁ’) > Z(ﬁ) + 1, implying, without loss of
generality, that ¢(h') = £(h) + 2, it must be that the first component (call it

a*) of R’ is the last component in h € H', for some ¢ > {%}, after which h is

truncated to form h. Since a* %ﬁ, it must be that for the extended vector (a*, ﬁ),
ccomp(a*, }AL) > (. But by construction, (a*, iL) C i if f(ﬁ’) = Z(ﬁ) + 2 implying
that ccomp(h') > ccomp(a*, h) and thus b/ ¢ B(¢) and therefore cannot belong
to a subset of it. ]

Between two consecutive periods, players cannot gain more than one unit
length of memory. However, they may lose their current memory by more than
one period if realization of play increases the heterogeneity of the current path
of play significantly. As examples, let ( = 4 and consider the evolution of play
given by the following end tail of a period ¢ history At = {....... ,a',a,a,a} . Then,
ht = {a,a,a}. Suppose now that at period ¢, the realized action profile is a.
Then, hit! = {a,a,a,a} and therefore £(ht*1) = 4 > ¢(h') = 3. Now consider
the end tail ht = {....... a",d',a,,a'}. Here, ht = {a’,a,a’} . Suppose now that
at period t, the realized action profile is a”. In that case, hiT! = {d’,a"} and
therefore £(htt1) = 2 < £(h') = 3.

In general, let () (A | h) denote the relation that A’ is an n-period ahead suc-
cessor of h and consider the set B(C)Ef;) (h). Before ending this section, we prove
the following three lemmas on reducibility and periodicity of M = (B(¢), f)-

LEMMA 3.3 If ( < oo, then Yh,h' € B(C), In(h,h') < oo such that h' €

B(C)Eg(h’h,))(h}, i.e., every state is reachable from any state in some finite time.

Proof. Since A is a finite set, ¢ < 0o, and VYa € A,Vh € B(¢) we have Pr(a €
A fz) > 0, we can begin to construct any % by adding from the right the first
element of i’ to fz, then adding to the far right the second element of ' to the
previous extension of iL, ..... , then adding to the far right the last element of ' to

the previous extension of h. This only needs finitely many such addition steps
for any h,h' € B((). [ |
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To move to the next lemma, we require the notion of periodicity of Markov
chains. Given the Markov chain M = (B((), f), the state h has period d if

d:GCD{TEZ+ N >o}

where GCD stands for greatest common divisor. If d = 1 for all h € B((), the
Markov chain M = (B({), f) is called aperiodic.

LEMMA 3.4 (i) If ¢ =1, then M = (B((), fx) is aperiodic.
(i) If ¢ > 2, M = (B((), fn) has period greater than one.

Proof. (i) When ¢ = 1, h is a singleton set, implying that B(1) = A. Since
Pr(a’ | a) > 0 Va,a' € A, the result follows.

(ii) Take any ¢ > 2 and any h € B(C). The set B({)E&)(ﬂ) is such that
Vi e B(C)S}A)(}AL), Im(h')with m(h')-th last element of h being the first element

of fz’,m(iL’) + 1-th last element of i being the second element of 7/, ...., last
clement of h being the second last element of 7/, and the last element of A’
being a new far right addition to h. Now, B =h only if h is a finite constant
sequence of elements of A. Since such sequences form only a proper subset of

B(¢), M = (B(C), fr) loses aperiodicity. [ |

Since M = (B((), fa) is irreducible by Lemma 3.3, any two states h and K’
will have the same period and therefore we can define the period of the Markov
chain itself. For example, with ¢ = 2, h can be either {a,a} or {a’} . If h = {a, a}
and i/ = {a}, fﬁl)(ﬁ’ | h) = 0 since realization of action profile a given a history
segment {a,a} implies that h' = {a,a}.

4. Convergence results

Having established the above properties of the Markov chain M = (B((), fi),
in this section we prove two convergence results, one when ¢ = 1, the case when
the Markov chain is aperiodic, and the other when ¢ > 2, and the Markov chain
loses aperiodicity. These results will help us characterize long run outcomes of
I'*°. As the result for ( = 1 will turn out to be the fundamental one, we will
state and provide a self contained proof of it by closely following Theorem 8.9 in
Billingsley (1986). The theorem in Billingsley (1986) is as follows: If the state
space is finite and the Markov chain is irreducible and aperiodic, then there is
a stationary distribution {m;}, and

piy — 77]" < Ap",

where A >0 and 0 < p < 1.
We will then see that our result with ( > 2 is a direct consequence of the
result with ¢ = 1 once we further show that our original Markov chain defined
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above satisfies an additional requirement of primitivity, a term to be defined
later in this section. We will deal with these issues separately in the following
two subsections.

4.1. (=1

In the following theorem we prove that if ( = 1, there is a long run stationary
probability distribution for the evolution of the states of M. Let |B(¢)| denote
the cardinality of B(¢). Note that B(1) = A. Define

= min fOH|h). (8)

h,heB(1)

~x is the minimum probability, over all possible pairs of history segments, of
moving from a given current state to its immediate successor state. It therefore
gives a lower bound to the probability of evolution of the path of play in the
sense that given a realized path of play up to time ¢, -y, is the lowest probability
with which the most unlikely future path of play begins to evolve.

THEOREM 4.1 If ( =1,M = (B(1), fa) has a stationary distribution f(-) such
that Yh,h' € B(1),

AP B = fi(h)| < (1= B
with (1= BO)) € [0,1).
Proof. Let m(™ (h) = n}i/n /(\")(fz | B’), and M (h) = m&}xf/(\")(ﬁ | B'). Tt fol-
lows that m(®+)(h) — min Y V(0| ). (| ) > min Y7 f{V (" |

h'

h' 1XG B
RYm™ () = m™(h) and MO (R) = max " OB | W)L (h | BY) <
h' fl//
Bt
we have
0<mW () <mP(h)<..<MPh)< MY (h) <1. (9)

From the aperiodicity of M = (B(1), f\), we know that f)(\l)(fz | h') > OVh, b/ €
B(1) so that 0 < v\ < m. Fix any two states 2* and h**. For any arbitrary
function g o /(\1) let >+ g( ﬁl)(ﬁ)) be the summation over k € B(1) such that
f)(\l)(fz | h*) > f)(\l)(fz | /Az_**) and »_ g( >(\1)(il)) be the summation over i € B(1)
such that £ (h | h*) < £ (h | h**). Then,

o [0 = 10 )]

+ X [A0G ) = B )] =o. (10)
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Since

S SO R+ S fO | ) = B,

we get

S [V - 1>h|h**} = 1= A0 )
i

=S VG|
< 1- Bl (1)
From Egs. (10) and (11), we have
VR B = (TG
= (A1) = 10 ) K0
< 5 (AR = P ) MO (@)
+ X (AR = KO A7) m (@)

= 5 (AVG R = 10 G (MO @) = m™ (@)
< (=B (MO @) = m(@)).

Since h* and h** are arbitrary, we can write
MO () = m D (R) < (1= [BO))) (MO () = m™ (1))
implying that
M () —m™(h) < (1= [B1)])" (12)

From Egs. (9) and (12), we know that M (h) and m("(h) have a common
limit. Call this limit f}(h). From Eq. (12), we get

0 R = frh)] < (1= B (13)

Since 0 <y < Wli)l’ 1= |B(1)| € [0,1). Therefore,
lim (1 —~,|B(1))" = 0 implying that f(n)(h | By — fi(h)asn —oco. m

We are now in a position to deal with the case of { > 2.
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4.2. (>2

Lemma 3.4 shows that the Markov chain M = (B((), fn) is not aperiodic for
¢ > 2 and this prevents the existence of limiting probabilities. However, an
interesting property of the Markov chain, proved in Proposition 4.1 of this sec-
tion, is that for each value of ¢ there exists a positive integer n(¢) such that
f;L(O(iL | ) > 0 for all h, h' € B(¢). This makes the stochastic matrix primitive
(a nonnegative matrix A is primitive if there exists some finite k£ > 0 such that
A* >> 0) and enables us to convert the original Markov chain M = (B(¢), fx)
defined in Section 3 into its n(¢)- step Markov chain M™% = <B(C), f)\,n(@>
such that a unit transition period of M™¢) = <B(§),f)\’n(<)> is equivalent to
n(¢) transition periods of M = (B(C), f») . Since M™(C) = <B({), f,\7n(<)> is then
not only irreducible but also aperiodic (by construction), we obtain results on
stationary distributions of states of M™¢) = <B(§),f)\’n(<)>. This subsection
will deal with these issues.

PROPOSITION 4.1 Let M = (B((), fn) be the Markov chain as described in
Section 8. Define an integer function n : Zy \ {1} = Z4,n : { — n(C) such that

n(¢) = argmin {m €Zy | f(h | h)>0,Yh,h € B(C)}.

Then, (i) n(¢) exists and (ii) n(¢) = C.

Proof. (i) Denote by F(¢) = [f)\(ﬁ | iL’)LL B the stochastic matrix of the
h'e
Markov chain M = (B({), fa) and F™ its m—th power. We need to show the
existence of n(¢) € Z, such that F™(¢) >> 0, i.e., f;f(o(fz | ) > 0,Yh,h' €
B(C). T
Let (p;)I_; be the set of eigenvalues of F'(¢) and let C(p) = [] (p—p:) be its
i=1

r—1
characteristic function which can be rewritten as C(p) = p" + p' Z a;p—(r=1

i=1

with a; # 0 Vi =1,2,...,r. Define
b=#{pi | V(F(Q)) = Ipil ,W(F(Q)) = max {pi} }

Thus v(F(¢)) is the spectrum of F(¢). Since F(¢) is such that V¢, trace(F(¢)) >
0, by Lemma 4.10 in Graham (1987), b = 1. Since b = 1 is the definition for
F(¢) to be primitive (if b = 1, A¥ >> 0 for some finite & > 0, see Graham
1987), our result follows.

(ii) Part (i) establishes that for any value of ¢, there exists an integer n(¢)
such that f;f(o(fz | b)) > 0,Yh,h' € B(C). Let ¢ € Zy \ {1} and choose two
constant (— length sequences (a,a,....,a) and (a’,d/,....;a’) with a,d’ € A,
a # a’. Since ccomp of these sequences equal (, they are elements of B(().
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Without loss of generality, let h = (a,a,....,a) and b/ = (a/,d,.....a’). Tt is
straightforward to see that

argmin{m eZy | M| W) > o} =
m
Now choose any other pair of states h*, h** € B(¢) such that
m* = arg min {m € Zy | f(h* | h*) > O} > (.
Since Pr(a | h) > 0 Va € AYh € B(¢), and Ym < m* we have f{*(h* | h**) =0,
it must be that ¢(h*) = m* > ¢ implying that h* ¢ B((). Therefore, n(¢) = ¢. &

We will now deal with M¢ = (B((), fi,¢) which is irreducible and aperiodic
and prove the following theorem. Let

Yac=_ min frc(h|R). (14)
h,h'€B(C)

THEOREM 4.2 YV¢ > 2, M¢ = (B(Q), fa,c) has a stationary distribution g3 (-)
such that Vh, h' € B(C),

SRR = gi(B)] < (1= 1B
Proof. Given Proposition 4.1, this is a direct application of Theorem 4.1. ]

Notice that g} (h) is the stationary distribution of the (— step Markov chain
M@ = (B(C), fr¢) . Since our main concern is with the long run distribution
of the Markov chain M = (B((), fn), we need to interpret gj‘\(ﬁ) in terms of
M = (B(¢), fa) - In this sense, g’;\(ﬁ) is the long run probability with which A
occurs in every (— th period. Therefore the long run probability distribution
of M = (B(C), f») is such that f;(h) will be around g%(h) and at every (—
th period will exactly equal g} (iL) As far as our interests go, we can keep this
informal interpretation in mind and proceed to characterize long run outcomes
of I'™°.

5. Long run outcomes in Prisoners’ Dilemma

We are now in a position to characterize convergence of play in infinitely re-
peated Prisoners’ Dilemma. In the previous sections we abstracted from action
profiles and dealt with the evolution of history segments. These history segments
in turn are the information sets of the learning mechanism used in deciding upon
the choice probabilities. Since choice of actions, in turn, determines the actual
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path of play and therefore the sequence of future history segments used as in-
formation sets, convergence in probability of information sets should also imply
convergence of the choice probabilities. The case ( = 1 is rather simple as
history segments are then singleton sets of realized actions and convergence of
history segments immediately implies convergence of actions. However, when
¢ > 2, history segments may consist of more than one realized action pair and
therefore we need to study convergence of actual play more carefully. As be-
fore, we will study these two cases separately. The following proposition shows
that with ¢ = 1, highly rational probability choices converge to the stationary
Nash equilibrium if defecting is highly rewarding but otherwise converge to the
cooperative outcome.

PropPOSITION 5.1 Let ( = 1.
() If a+0 <28 and §+¢ > 20, Alim x(C,C)=1.

(ii) If a +0 > 23 and f+ < 20, lim f3(D, D) = 1.
—00
Proof. Consider the stochastic matrix Fj\(¢ = 1) = [fA(E | ﬁ')hﬁ 50 of the
h'e
Markov chain M = (B(1), fa). Since f5 = (f;(ﬁ))
probability distribution, we have
EC=Df=1  VYrel0,o00]. (15)

(i) f a+6 < 28 and 8+ ¢ > 260, and states are arranged in the order
(C,0),(C,D),(D,C), (D, D),

A is the stationary
heB(1)

1 0 0 1
mrcen-[ 900! w
01 10
From Egs. (15) and (16), we have
Alingoff(c, C) +Alingof;(D,D) = Alingoff(c, C) and
lim f{(C.D) + lm [i(D.C) = lim f(D.D).

Since 0 < f;(ﬁ) <1VA € [0,00],Vh € B(1), it follows that
Jlim f{(C,C) =1 and lim fi(h) =0 Vh € B(1),h # (C,C).

(ii) If a + 0 > 28 and 5 + € < 260 and the order of the states are preserved
as in part (i),

Jim (¢ =1) = (17)

= O O O
= O O O
= O O O
= O O O
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From Egs. (15) and (17), we have
)\lim i, C) = )\lim f(C,D) = )\lim x(D,C) =0, )\lim fx(D,D)=1.
|

Proposition 5.1 says that in Prisoners’ Dilemmas with A — oo, if the aver-
age cooperative payoff is less than the defective payoff and the average defective
payoff is higher than the cooperative payoff, sufficiently rational players indi-
vidually converge to the Nash equilibrium and play D most of the time in the
long run. On the other hand, if the average defecting payoff is less than the co-
operative payoff and the average cooperative payoff is greater than the defective
payoff, we expect rational play to converge to cooperation.

The intuition here is that with one period memory (and we will see that this
intuition extends to any finite cognitive bound), whenever play moves away from
at least one player defecting so that the most recent play was (C,C), players
perceive that a payoff from a deviation to action D is only the average of the
two possible payoff realizations from such a deviation and this average equals
O‘T*(’. Now, if 3, the current individual payoff at (C,C), is greater than this
average, then as rationality increases, players are less and less likely to deviate
from (C,C). Similarly, whenever play moves away from at least one player
cooperating so that the most recent play was (D, D), players perceive that a
payoff from a deviation to action C'is only the average of the two possible payoff
realizations from such a deviation and this average equals 2 ;‘6. Now if 8, the
current individual payoff at (D, D), is less than this average, then as rationality
increases, players are more and more likely to deviate from (D, D) and play
C' and hence they hardly ever stay at (D, D). Moreover, (C, D) or (D,C) are
never sustainable for long because ¢ is very small and hence the player who
is currently at such states playing C' deviates and plays D, a case where from
thereon both players have a very high probability of playing C. These two
forces work together (and get stronger and stronger as A — c0) to make sure
that the process converges to (C,C) for ever in the long run. This is more or
less how part (i) of Proposition 5.1 works. Part (ii) is its mirror image where
play converges instead to (D, D).

On the other hand, with infinite memory, players always remember some
past experience with action D that produced the ”highest possible” payoff of «,
and therefore as A — oo, they eventually deviate. Hence an important message
of this paper is that for the generalized quantal response learning model studied
here, the two limits, ( — oo (as in case of McKelvey and Palfrey) and A — oo for
a given but finite value of ¢ (which is addressed in this paper) do not commute.
In other words, to converge to the Nash equilibrium (D, D) in a Prisoners’
Dilemma game, it is not enough to be fully rational. What is also required is
full memory, falling short of which even full rationality does not guarantee Nash
equilibrium play in the long run in a Logit model of choice.
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The proposition shows that we can define two classes of Prisoners’ Dilem-
mas, one where defecting is relatively more rewarding and we converge to the
Nash equilibrium, and the other where cooperating is relatively more rewarding
and we converge to the Pareto dominant outcome. There are other classes of
Prisoners’ Dilemmas which do not fall in either of the two classes mentioned
above. However, Theorem 4.1 tells us that nevertheless, players will converge
to some stationary probability distribution in any finite game. We now extend
this proposition to any finite (.

PROPOSITION 5.2 Let oo > ¢ > 2.
(i) If a+ 6 <208 and B+ ¢ > 20,

Proof.
The strategy of the proof is as follows. We show that the system )\lim F f gy = gx
— 00

satisfies what is claimed in part (i) and part (ii) of the above statement. In order
to do this, we first compute Ff and show that lim Ff satisfies conditions under

A—00

which our results are outcomes of unique solutions to the system Alirilo F f gx = G-
The proof involves a number of steps, each considering subsets of the state space
of history segments that partition the set B({). For a given { > 2, denote by
Le(a,d,.....;d ") C H'(m, 74) the collection of history segments with cognitive
complexity between ¢ and ¢ — 1 and containing all elements a,d’,.....,a" at
least once and no other element.

(i) STEP 1. Consider L¢ {(C, D), (D,C), (D, D)} C H*(7p,7,). By the defi-
nition of the Prisoners’ Dilemma, Vi = 1,2, we have

Jim {o€ ()| b € Lo {(C.D).(D.0), (D. D)} } = 0.

STEP 2. Consider L¢ {(C, D), (D, D)} and L {(D,C), (D, D)} C H* (1, 7a)-
Given the definition of the Prisoners’ Dilemma,

lim {oP(t) | I € L{(C.D),(D,D)}} =
lim {oP(t) |1 € Le{(D,C),(D,D)}} = 1.

STEP 3. Consider L {(C, D), (C,C)} € H'(m,7,) and L {(D, C), (C,C)} C
H'(my,72). Vh! € L {(C,D),(C,C)}, 0§ (t) — 0 as X\ — oo (as a > () and

oP(t) — 1 as A — oo if h! is such that (C, D) occurs sufficiently many times
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while 0P () — 0 as A — oo if A? is such that (C,C) occurs sufficiently many
times. Thus, Vh! € L; {(C, D), (C,C)},

Z lim fyc(h! | ht) = 1.
. A—oo
h*€L:{(C,D),(D,D)}

Take any h" € L¢ {(C, D), (D, D)} . Then, by STEP 2, Vi = 1,2, 6P (t) — 1 as
A — co. The argument is symmetric YA € L¢ {(D, C), (C,C)} .

STEP 4. Let L {(D,D),(C,C)} C H'(7,7,) be collection of history seg-
ments containing both (C,C) and (D, D). L¢ {(D, D), (C,C)} C B(¢) if ¢ > 3.
Since [ > 0, either

lim £1,¢((C,C), Sotimes (0,C) | hte Le{(D,D),(C,C)})=1or
Jim £3.¢((C,0), (C-hztimes (¢ .C) | At e Le{(D,D),(C,C)}) = 1.

STEP 5. Let L {(C,D),(D,C)} C H'(m,7,) be collection of history seg-
ments containing both (C, D) and (D, C). L: {(C, D), (D,C)} C B(¢) if ¢ > 3.
By the definition of the Prisoners’ Dilemma,

lim. {a?(t) | it e L {(C, D), (D,C)}} =1.

STEP 6. Let L¢(a) C H'(7p, 7o) be collections of constant history segments,
a€A fa=(C,C)and (a+0)/2<pf

lim fy¢((D, D),.4=4me, (D, D) | ht e Le {(C,D)}) =

Jim fy (D, D), .$=.4me,(D, D) | bt e L {(D,C)}) = 1.

STEP 7. Define L(CC’C) {a,d,.....;a" "} € H' (1, 7,) such that 3a’ = (C,C)

and Ja” # (C,C). For any h' € Léc’c) {a,d,....,a""}, ht cannot be repeated.

To see this observe that given any ht = {al, ..... ,a”}, for some n, if a*¥ =

(C,C), k < n, and if 35 > 1 such that a(t + j) = (C,C), then ¥Ym > 1,
alt+j+m)=(C,C)if (B+¢€) > 20 and (o + 0) < 20. Thus starting from any
ht e Léc’c) {a,d,.....,a"'}, we end up in any one of the above cases.
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Now consider the stochastic matrix F = {fA7<(/Az | /Az’)} b B of the (—step
h'e
Markov chain M¢ = (B((), fr.c). Since g = {gj\(fz) heBo is the stationary
€
distribution VYA € [0,1],V2 < ¢ < oo,
Fyg5 = 63 (18)

Given STEP 1 through STEP 7 above, consider the permutation of Ff such
that the states are ordered as

- {(C, 0), .S 8mes (C, C)} ,

he = {(c,0), e o)},
hy = {(D,D) o times (D D)},
hy = {(D D), -z times(p D)},
hs = .

Then, as A — oo, F f satisfies the following conditions:

(i) lim fac(hr | hii=1,2,3,4)=1,

A—o00

(i) Jim fuclhy | hiyi=5,...,|B(C)]) =0, and

— 00
(iid) Yim frc(hii = 5, [BEQO)| | hjrj = 1,2, IBO]) = 0.
Furthermore, since f¢(h | B') € [0,1]Vh, 0 € B(¢) and . fac(h | ) =
heB(¢)

VA € B(¢) and VA € [0,00), it is easy to see that the unique solution to the
system as A — oo is

(ii) Following the proof in part (i) it can be shown that for the permutation
of F f such that the states are arranged in the following order,

o= {(D,D),.S ke (D, D)}
he = {(D,D), Dz tmeD, D)},
hy = {(C,C),..€.f..t.i.r?1??.,(c 0)},

e = {0, o)),
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ifa4+6>2Fand f+¢ <20, as A — 0, Ff satisfies
(i) lim frg(hr |
(’LZ) lim f,\7<(]A11 |

A—o00

(iid) Nim frg(hii = 5, IBO| | By = 1,2, BO]) = 0

hii=1,2,3,4)=1,
hii=5,....|B(C)] =0, and

and thus the result follows. [ |

The above proposition shows that if a + 6 < 26,5+ ¢ > 20 and ( < oo,
the Markov chain M¢ has stationary distribution gy such that the probability

of realizing the history segment {(C, C), s7.tmes (O C)} tends to 1 as A — oo.

run with probability one 7 The following Corollary deals with this.

COROLLARY 5.1 Let M and M°¢ be as defined above with long run stationary
distributions fy and g5 respectively. Consider any constant history segment

Then,

Proof. Consider any (— length period starting at t—¢ and ending at t—1 for some
t sufficiently large. Let m be the probability that a(7) = aVr € {t — (,....,t — 1}
and 77 be the probability that a(7) =aVr € {t = (,...., T}, T < t—1 for some
a € {C,D}? . 1t follows that 7y > 7 VT € {t — (,.....,t — 1} . Since

{Alingogi({(a), .§.‘...t.i.‘.n.?.s,(a)}) = 1} =>nm=1ast— oo,

we have
mp > 1VT e {t—(, ....,t —1} ast — 0.

Since by definition, 7 < 1, we get
ar=1vVT e{t—C(, .....,t —1} ast — o0

which implies
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The conditions o + 6 < 23 and 3 4 € > 26 guarantee that in the long run
(C, C) is played with probability one while a+6 > 25 and S+ < 26 guarantee
that (D, D) is played with probability one.

6. Application to other 2 x 2 games with ( =1

In this section we apply our general results to a large class of 2x2 games which
include Pure Coordination, Common Interest and the game of Chicken, under
the restriction that the length of the memory cannot exceed unity. We then
argue why the results in this section hold in principle even when the complexity
of the history segments used exceeds one.

6.1. Coordination games

In this class of games, we would like to distinguish between two types. The
first one is often called pure coordination games where § > 6 > Maz{e,a} and
the second one is often called common interest games where § > o > 6 > e.
Before we prove results on these games, let us highlight an important distiction
between them which is also reflected in the next two propositions. Consider the
following games G1 and G2 which are both coordination games:

G1: player 2 G2 player 2
C D C D
player 1 C 4,4 1,1 and player 1 C 4,4 1,3
D 1,1 2,2 D 3,1 2,2

Both games have two pure strategy Nash equilibria, namely (C,C) and (D, D)
and in both games (C, C) is the only efficient outcome, hence the term ”coordi-
nation”. But the crucial difference is that while in G1, both players prefer to be
in one of these Nash equilibria than not being in any, in G2, for the Nash equi-
librium (D, D), player 1 prefers (D, C') while player 2 prefers (C, D) while they
both prefer to be in (C,C) rather than in (D,C) or (C,D). However, notice
that while from (D, D), player 1 cannot deviate and implement (D, C) which
he prefers, neither can player 2 deviate and implement (C, D) which he prefers.
The game G1 is called pure coordination while game G2 is called common in-
terest, which are terms used to capture this difference. And as seen from the
statements of Propositions 6.1 and 6.2, for pure coordination games, the entry
« does not appear while it does in an importantly specific manner in common
interest games.
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6.1.1. Pure coordination

Consider a game of Pure Coordination with two pure strategy Nash equilibria
(C,C) and (D, D) with (C,C) Pareto dominating all other outcomes.

PROPOSITION 6.1 Let ( = 1 and T be a game of Pure Coordination. If 26 <
B+¢e,(C,C) is the unique long run equilibrium for A — oo.

Proof. Following the procedure described in the proof of Proposition 5.1, if the
states are arranged in the order (C,C), (D, D), (C,D),(D,C), and if 26 < 3,
we have

1100
. 0000
dm PC=D=1 4 ¢ o 1

00 1 0

and therefore the unique solution to the system Fy({ =1)f5 = f is as desired
when A\ — oo. n

Our model therefore predicts that players will eventually converge with prob-
ability one to the Pareto dominant Nash equilibrium in a game of Pure Coor-
dination if they have a unit cognitive bound and the Pareto dominant Nash
equilibrium is sufficiently payoff rewarding.

6.1.2. Common interest

Consider a game of Common Interest with two pure strategy Nash equilibria
(C,C) and (D, D) with (C,C) Pareto dominating all other outcomes.

PROPOSITION 6.2 Let ( = 1 and let T be a game of Common Interest. If

a > (B;E) >0, (C,C) is the unique long run equilibrium when A\ — oo.

Proof. If the states are arranged in the order (C, C), (C, D), (D, C), (D, D), and
if a > (%) > 6, we have

/\lim F,\((: = 1) =

SO O
— o O O
— o O O
SO O

and therefore the unique solution to the system Fj(¢ = 1)fx = f¥ is as desired
when A — oo. ]

Our model therefore predicts that players will eventually converge with prob-
ability one to the Pareto dominant Nash equilibrium in a game of Common
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Interest if they face unit cognitive bounds and « > (%) > 6. The intuition

behind this result is that with (%) > 6, payoff experience of § makes both

players play C with very high probability and eventually both players start
playing C. By the definition of a Common Interest game, once we observe play
of (C,C), players keep playing C with high probabilities which converge to one
as their rationality parameter approaches infinity. Moreover, if they ever ob-

serve play of (D,C) or (C,D), if a > (’3;€> , the probability of both players
playing D is very high. This further implies that with a very high probability

(which tends to one as rationality is increased unboundedly) we observe play of

(D, D) and then play converges to (C, C). If on the other hand a < (’B;E
may show that there exists a long run equilibrium where players alternatively
mis-coordinate.

),one

6.2. Chicken and the fairness equilibrium

Consider T with e > 0 > a > 3 > 0. Then I' is a game of Chicken with two
pure strategy Nash equilibria (C, D) and (D, C). Following Rabin (1993) and
Camerer (1997), suppose player 1 has a positive ‘sympathy’ coefficient when
player 2 ‘kindly helps’ player 1 and conversely a negative ‘sympathy’ coefficient
when player 2 behaves ‘meanly’ by choosing an action that hurts player 1. Rabin
assumes that such feelings add to the utility from money payoffs, but become
relatively less important as money payoffs rise. These assumptions and a few
others (see Rabin) lead to the concept of a fairness equilibrium. First let us
study the following example to understand this concept of fairness. Let I' be
represented by the following payoff matrix.

player 2
fight accommodate
player 1 fight 0.01,0.01 6,2
accommodate 2,6 44

In our model specification, C' = fight , D = accommodate, ¢ = 6,0 = 4, =
2,8 = 0.01. The two pure strategy Nash equilibria are (C, D) and (D,C). Al-
though in spirit it is a simultaneous move game, consider the following pre-play
thinking on part of the two players. Suppose we are in (C, D). If player 1 devi-
ates and ‘politely’ plays D, she sacrifices 2 to benefit player 2 an extra amount
of 2. This ‘nice’ choice triggers reciprocal niceness in the behavior of player 2
and rather than exploiting over player 1 choosing D, he prefers to sacrifice to
repay player 1’s kindness and plays D. If player 2 also reasons in the same way,
(D, D) is the unique outcome and is called the fairness equilibrium. Experimen-
tal evidence supports the fact that subjects tend to play fairness equilibrium
strategies in a game of Chicken (see Camerer, 1997).
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PROPOSITION 6.3 If 6 > (%) > «a and I" is game of Chicken, players converge

to the fairness equilibrium with probability one as A — oo.

Proof. It is easy to see that if the states are arranged in the order (D, D), (C, (),
(C,D), (D,C), and if § > (%) > «, we have

1100
. 001 1
Jm BC=D=1 105 9 0 0

000 0

and therefore the unique solution to the system Fy({ =1)f5 = f is as desired
when A\ — oo. n

From the above proposition we see that players converge to the fairness
equilibrium (D, D) with probability one in the long run if 6 > (%) > .
Thus, in the numerical example above our theory predicts that players will
converge with probability one to the fairness equilibrium (D, D). This result
also supports in some sense the assumption of Rabin (1993) that utility out
of sympathy is outweighed by increased money payoff incentives from daring
against a chicken which is necessary for the existence of a fairness equilibrium.
However, the intuition in our set up is that with unit cognitive bounds, since
B+ e < 26, if we observe the action profile (D, D), players keep playing D with
very high probabilities which tend to one as their rationality tends to infinity.
Furthermore, if the play ever leads to outcomes like (C, D) or (D, C), the player
playing D deviates and plays C' with very high probability while the player
playing C keeps playing C with very high probability too. This implies that
almost certainly, we may observe play of (C,C) in the subsequent period. By
the definition of the Chicken game, with rationality close to infinity, players
eventually start playing D with very high probability. At the limit, when the
rationality goes to infinity, play gets stuck in (D, D). Mention must be made here
that in the McKelvey and Palfrey (1995) formulation, players always converge
to either (C, D) or (D, C).

Before ending this section, we would like to mention the basic intuition
by which we claim (without providing formal proofs) that the results for this
section would actually hold for any finite cognitive bound. As long as players
are forced to use only most recent and finite history segments as information
sets for deciding upon the choice probabilities, the above conditions would drive
them to information sets wherefrom playing the long run outcome is enforced
with very high probability. The relative weights of payoffs are in some sense
stability conditions for the dynamic system generated by the behavior rules of
the players.
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7. A discussion on beliefs without experience

The results obtained in this paper can be easily supported in spirit in a model
with general belief-probabilities over outcomes generated by strategies for which
players have no experience. In the Prisoners’ Dilemma game for example, sup-
pose players believe that whenever they have no experience with a particular
strategy, the opponent chooses C' with probability w € (0,1). Consider a class
of games where wa + (1 —w)0 <  and wf + (1 —w)e > 6. Then, our theory
would predict that players in the long run will play (C,C) with probability
one. Similarly, consider another class of games where wa + (1 —w) 8 > 8 and
wf + (1 —w)e < 6. Then, our theory would predict that players in the long
run will play (D, D) with probability one. It follows from this discussion that
beliefs “on the forgotten path” or “off the actual path” of play becomes central.
However, our aim is not to provide a theory as to how such beliefs are formed.
One may argue that there is some inconsistency or asymmetry in these beliefs
as hypothesized here in the following sense. It seems that a player’s belief re-
garding whether her opponent cooperates or defects depends upon the action
the player herself chooses to play. For example, if the memory constrained in-
formation set contains only the outcome (C, C), the player believes that playing
C results in the outcome (C,C) in the following period with probability one
(which is possible only if the player believes that her opponent plays C' with
probability one), while playing D results in the outcome (D, C) with probability
w and the outcome (D, D) with probability 1 — w (which is now possible only
if the player believes her opponent plays C' with probability w). Firstly, in logit
models like the one used here, it would be incorrect to interpret w in terms of
a player’s belief regarding what her opponent will choose. Rather, it should be
thought of as the relative frequency of success (which could arise either when
both players cooperate or for the player who defects when her opponent still co-
operates). Clearly then, while confronting a strategy either without experience
or with forgotten outcomes, w becomes arbitrary. Secondly, it is not unknown
in social sciences and in particular in various studies in psychology that per-
ceptions towards risks may be different depending upon whether an agent is
herself in a cooperative or a defective mood. Also, a drastic change in mood of
a player within a period before an action is actually implemented may disturb
the ongoing beliefs over outcomes thereby leading to apparent inconsistencies.

8. Conclusion

We conclude with a summary of our results and relevant comparisons with the
existing literature. We studied infinite repetition of the Prisoners’ Dilemma.
Players were assumed to use a version of Logistic Quantal Response Learning
behavior. However, they face finite cognitive bounds in understanding histo-
ries of past play. We define two classes of Prisoners’ Dilemma games: one in
which the average defecting payoff is higher than the cooperative payoff and
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the average cooperative payoff is lower than the defective payoff; and the other
where the average defecting payoff is lower than the cooperative payoff and the
average cooperative payoff is higher than the defective payoff. As the degree
of rationality goes to infinity, we show that as long as players face finite cog-
nitive bounds, in the former class of games, play converges to the static Nash
equilibrium which is Pareto dominated while in the latter, play converges to the
Pareto dominant outcome where both players play the cooperative action. As
the degree of assumed rationality is reduced, the convergence point moves away
in both classes of games until it hits the centroid of the three-dimensional unit
simplex of probability distributions over action pairs. Note that there are other
classes of Prisoners’ Dilemmas which do not fall in any of the classes mentioned
above. However, we show that repetition of any finite game leads to some sta-
tionary long run distribution over the space of action profiles. Our theory calls
for experiments where subjects play the Prisoners’ Dilemma with an uncertain
terminal period. One easy way of capturing the notion of cognitive bounds in
such experimental set up would be to impose time restrictions within which
subjects need to decide upon their current actions. We then apply the results
obtained under the general framework to other classes of 2 x 2 games like Pure
Coordination, Common Interest and Chicken. We show that as long as players
face unit cognitive bounds, under relevant ordinal payoff restrictions, play con-
verges to the Pareto dominant Nash equilibrium in both Pure Coordination and
Common Interest games. In case of the Chicken game, we show that players
converge to the fairness equilibrium if ‘daring’ is not sufficiently rewarding.

9. APPENDIX
9.1. Results with alternative formulation

The McKelvey and Palfrey result of convergence of Logit equilibrium to the
Nash equilibrium when A — oo is proved with the alternative functional form of
the choice probabilities as in Eq. (7). Here we show that our results hold with
their formulation as well. In place of Eq. (6) or Eq. (7), consider a more general
choice probability function
F(rf(t),\)

7

o0 = 5 .
3 Pk, )

(19)

If F'(-) is continuous and bounded VA € (0, 00) and F(7¥(t),\) > 0 V(7 (t),\) €
R x (0,00), then these logistic choice probabilities are well defined. Further-
more, if (F(wf(t),)\)/F(wfl (t),)\)) — 0 as A\ — 0o whenever F(rF(t),)\) <

F(z¥ (t), \), convergence to Nash equilibrium as in McKelvey and Palfrey (1995)

3
is ensured. Thus our formulation as in Eq. (6) guarantees convergence to (D, D)
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with probability one when { = oo. As far as our results with { < oo are con-
cerned, they also hold good with Eq. (7) since our results depend on these
conditions on F'(.) as well.
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