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Abstract: The optimal control problems and a weight mini-
mization problem are considered for elastic three-layered plate with
inner obstacle and friction condition on a part of the boundary. The
state problem is represented by a variational inequality and the de-
sign variables influence both the coefficients and the set of admissible
state functions. We prove the existence of a solution to the above-
mentioned problem on the basis of a general theorem on the control
of variational inequalities. Next, the approximate optimization prob-
lem is proved on the basis of the general theorem for the continuous
problem. When the mesh/size tends to zero, then any sequence of
appropriate solutions converges uniformly to a solution of the con-
tinuous problem. Finally, the application to the optimal design of
unilaterally supported of rotational symmetrical load elastic annular
plate is presented.
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1. Introduction

Plates and shells are main elements of many advanced structures. One of the
most important characteristic of a construction is its weight, which determines
the consumption of material needed for production of the construction as well
as some of its operating features.

We shall deal with an optimization problem for the unilateral contact be-
tween an elastic three-layered plate and inner obstacle. The model of three-
layered plate ignores shears in the middle layer. We assume that a homogeneous
and orthotropic plate occupying a domain Ω × (−[H〈0〉 + O], [H〈0〉 + O]) of the
space R

3 is loaded by a transversal distributed force p(x, y) perpendicular to
the plane XY. The plate is supported unilaterally by an inner rigid obstacle
(punch). Here, on the part of boundary ∂Ω we have the displacement with
friction of the points of ∂ΩCONTACT. The role of control variable is played by the
thickness of exterior layer (appearing also in the right-hand side) and the friction
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bound (slip limit), respectively. The control variables have to belong to a set of
Lipschitz continuous functions. The inner obstacle and the variable thickness
(the exterior layer) imply that the convex set of admissible states depends on the
control parameters. The cost functional represents a weight of the three-layered
plate. Into the weight minimization problem, we introduce constraints, which
express bounds for some mean values of the intensity of stress field. Moreover
we consider another cost functional which represents the intensity of shear forces
(the von Misess yield criterion). The state problem is modelled by a variational
inequality (fourth order elliptic variational inequality) where the control vari-
able influences both the coefficients of the linear monotone operator and the set
of admissible state functions. On the basis of the general existence theorem for
a class of optimization problems with variational inequalities, we prove the exis-
tence of at least one solution to the weight minimization (is treated via a penalty
method). We deduce the continuous dependence of the deflection on the control
variable (thickness of the plate and slip limit). Next we define a finite element
discretization of the penalized optimal control problem and prove its solvabil-
ity. Here, any sequence of approximate solutions, with mesh size decreasing to
zero, contains a subsequence, converging to a solution of the penalized control
problem. From here, taking into account a sequence of solutions with the pe-
nalization parameter tending to zero, any limit point is proved to coincide with
a solution of the original weight minimization problem. Finally, this theoretical
advance we apply to the shape optimization of elastic axisymmetric circular
plate with annular opening.

2. Basic relations

A three-layered plate consists of two exterior layers, which are made of a strong
material (the so-called carrier layers), and of a comparatively light, non-strong
middle layer (the so-called filler), the latter ensuring the joint work of the exte-
rior layers. Consider the three-layered plate whose middle layer is of thickness
H〈0〉(x, y) and two exterior layers are of thickness O(x, y). We suppose that O

is much less than H〈0〉 (O ≪ H〈0〉(x, y)) and that the material of the middle
layer is much more flexible that material of the exterior layers. In this case,
the shearing stresses perceive mainly the middle layer and the bending stresses
perceive mainly the exterior ones.

Suppose also that, in the transversal direction, the elasticity modulus of
the material of the middle layer is infinitely large. The material of the middle
layer is usually light, so that the mass of the plate is concentrated in the exterior
layers. This is why, in solving optimisation problems for three-layered plates, the
control is usually the function O(x, y) determining the thickness of the carrier
layers. In what follows, we assume that the equality: H〈0〉 + O = constant,
determining the parallelism of the midplanes of the carrier layer, holds. The
Kirchhoff hypotheses are supposed to be fulfilled for the three-layered plate as
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whole. Then the strain components 〈εxx, εyy, εxy〉 are expressed by the formulas





εxx(x, y, z) = ∂ξ(x, y, z)/∂x = −z∂2v(x, y)/∂x2,

εyy(x, y, z) = ∂η(x, y, z)/∂y = −z∂2v(x, y)/∂y2,

εxy = ∂ξ(x, y, z)/∂y + ∂η(x, y, z)/∂x = −2z(∂2v(x, y)/∂x∂y),

where under Kirchhoff hypotheses, the components ξ(x, y, z) and η(x, y, z) of
the vector of displacements of points of the plate in the directions of the X and
Y axes have the form{

ξ(x, y, z) = −z∂v(x, y)/∂x,

η(x, y, z) = −z∂v(x, y)/∂y,

where v(x, y) denote displacements of points of the midplane along the Z axis.
For an orthotropic plate the stress components 〈σxx, σyy, σxy〉 are determined

by the relations:




σxx(x, y, z) = E11εxx(x, y, z) + E12εyy(x, y, z)

= −E11z(∂2v(x, y)/∂x2) − E12z(∂2v(x, y)/∂y2),

σyy(x, y, z) = E12εxx(x, y, z) + E22εyy(x, y, z)

= −E21z(∂2v(x, y)/∂x2) − E22z(∂2v(x, y)/∂y2),

σxy(x, y, z) = Gεxy(x, y, z) = −2Gz(∂2v(x, y)/∂x∂y),

(2.1)

where

E11 = E1/(1 − µ12µ21),

E22 = E2/(1 − µ12µ21), ((2.2),1o)

E12 = E21 = µ21E11 = µ12E22,

[E1, E2, G, µ12, µ21] being the elasticity characteristics of the material.



222 J. LOVÍŠEK, J. KRÁLIK

In this formulae:

E11 is the Young modulus in direction x,
E22 is the Young modulus in direction y,
µ12 is the Poisson coefficient of contraction in direction y, due to a traction in

direction x,
µ21 is the Poisson coefficient of contraction in direction x, due to a traction in

direction y.
G is the tangetial shear modulus.

Suppose that






E1, E2, G are positive numbers,

µ1 and µ2 are constants, 0 6 µ12 < 1, or 0 6 µ21 < 1,

H〈0〉 > constant〈A〉 > 0,

H〈0〉 + O = constant〈B〉,

((2.2),2o)

where constant〈A〉 and constant〈B〉 are positive numbers.

The layers are assumed to be made of orthotropic materials, so that the
relation (2.1) between stresses and strains are valid, and moreover E11 = 0,
E22 = 0, E12 = 0, G = 0, for the inner layer, and the elasticity characteristics
of the exterior layers coincide.

For the bending moments and torque, we have in view of (2.1)





Mxx(x, y) =
[H〈0〉+O]∫

−[H〈0〉+O]

zσxx(x, y, z)dz

≈ −[(2H〈0〉 + O)/2]Oσxx(x, y,−[(2H〈0〉 + O)/2])

+[(2H〈0〉 + O)/2]Oσxx(x, y, [(2H〈0〉 + O)/2])

= D11(O)(∂2v/∂x2) + D12(O)(∂2v/∂y2),

where

D11(O) = (E11(2H〈0〉 + O)2O)/2, D12(O) = (E12(2H〈0〉 + O)2O)/2,

E11, E12 are the elasticity characteristics of exterior layers

for which ((2.2),1o) holds true.

(2.3a)

Similarly, we have





Myy(x, y) =
[H〈0〉+O]∫

−[H〈0〉+O]

zσyy(x, y, z)dz

≈ D21(O)(∂2v(x, y)/∂x2) + D22(O)(∂2v(x, y)∂y2),

Mxy(x, y) =
[H〈0〉+O]∫

−[H〈0〉+O]

zσxy(x, y, z)dz ≈ D33(O)(∂2v(x, y)/∂x∂y).

(2.3b)
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Here one has






D21(O) = (E21(2H〈0〉 + O)2O)/2 = D12(O),

D22(O) = (E22(2H〈0〉 + O)2O)/2,

D33(O) = G(2H〈0〉 + O)2O,

(2.4)

and [E21, E22, G] are the elasticity characteristics of the exterior layers.

Let Ω ⊂ R
2 be a bounded domain with smooth boundary ∂Ω and let S (x, y)

be a smooth function in Ω̄. We denote the standard Sobolev function spaces
by Hk(Ω) ≡ W k

2 (Ω), k = 1, 2. In the following L2(Ω) and L∞(Ω) denote the
space of Lebesgue-square integrable functions on Ω and the space of essentially
bounded functions on Ω with the standard norms ‖.‖L2(Ω) and ‖.‖L∞(Ω) respec-
tively. The inner product in L2(Ω) will be denoted by 〈., .〉L2(Ω).

Let the plate be clamped at a part ∂ΩDISPLACEMENT of the boundary ∂Ω whereas
on the remaining part ∂ΩCONTACT of the plate subjected to a contact with friction:
∂Ω = ∂ΩDISPLACEMENT ∪ ∂ΩCONTACT, be a mutually disjoint (non-overlaping) decom-
position of the boundary (MEAS ∂ΩDISPLACEMENT >0, MEAS ∂ΩCONTACT >0). Then, we
have

V (Ω) ={v ∈ H2(Ω) : M0v = 0 on ∂ΩDISPLACEMENT,

M1v = 0 on ∂ΩDISPLACEMENT in sense of traces},

M0v is the restriction of v to ∂ΩDISPLACEMENT, M1v = ∂v/∂n is the normal deriva-
tive on ∂ΩDISPLACEMENT, where [M0, M1] are trace (or boundary) operators.

On the part ∂ΩCONTACT of the boundary ∂Ω we have displacement with friction
on points of ∂ΩCONTACT. If the reaction force |V ∗

nz(v)| is below a certain value, the
friction is not overcome and there is no displacement v, above this value, there
is a displacement in a direction opposite to the force. This means that on the
part ∂ΩCONTACT we prescribe a slip limit F and the following friction conditions:
either the surface force |V ∗

nz(v)| is less that the slip limit F and the plate
remains in its original position, or |V ∗

nz(v)| equals F and the plate can slip into
a new equilibrium position in the opposite direction to the friction force. As a
consequence, we have the following condition on ∂ΩCONTACT

{
|V ∗

nz(v)| 6 F , |V ∗
nz(v)| < F ⇒ v = 0,

|V ∗
nz(v)| = F ⇒ There exists λ > 0 such that v = −λV ∗

nz(v).

Let us recall some connections between continuous functionals and the Radon
measures. We denote by CCOMPACT(Ω) the space of all continuous functions with
compact support in Ω. A sequence {θn}n∈N , θn ∈ CCOMPACT(Ω) converges to
θ ∈ CCOMPACT(Ω), if the supports of the functions θn belong to a compact subset
of Ω and {θn}n∈N converges to θ uniformly on Ω. Due to the representation
theorem every continuous linear functional V over CCOMPACT(Ω) can be represented
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by the integral

〈V , θ〉CCOMPACT(Ω) =

∫

Ω

θdµ for any θ ∈ CCOMPACT(Ω), (2.5)

where µ belongs to the set M (Ω) (the set of all measures defined on Ω). A linear
continuous functional V on CCOMPACT(Ω) is said to be positive, if V > 0 for all θ ∈
CCOMPACT(Ω), θ(x, y) > 0. Positive functionals on CCOMPACT(Ω) possess an important
property: linear and positive functional V on CCOMPACT(Ω) is continuous and can
be represented in the form (2.5) with a nonnegative measure µ.

The thickness O will be sought in the following set of admissible functions

U
O

ad(Ω) :={O ∈ C(0),1(Ω̄) : OMIN 6 O(x, y) 6 OMAX,

|∂O/∂x| 6 constant〈1〉, |∂O/∂y| 6 constant〈2〉

(or |∂O/∂ξ| 6 constant〈ξ〉, |∂O/∂η| 6 constant〈η〉)},

where C(0),1(Ω̄) denotes the set of Lipschitz functions OMIN, OMAX and [const〈1〉,
const〈2〉, const〈ξ〉, const〈η〉] are positive parameters, [ξ, η] some skew coordinates.

Due to Arzela theorem (Litvinov, 2000), U O

ad(Ω) is a compact subset of U O(Ω)
(= C(Ω̄)).

Taking into consideration the relations (2.1) to (2.4), we get the following
expression for the strain energy of the orthotropic plate as a functional of v(x, y)
say

E(O, v) =
1

2

∫

Ω

(
D11(O)

(
∂2v

∂x2

)2

+ 2D12(O)
∂2v

∂2x

∂v2

∂y2

+ D22(O)

(
∂2v

∂y2

)2

+ 2D33(O)

(
∂2v

∂x∂y

)2
)

dΩ. (2.6)

The convex function E(O, v) is weakly or Gâteaux differentiable on V (Ω),
the corresponding element from D∗(Ω) will by denoted by gradvE(O, v). We



Optimal control for elasto-orthotropic plate 225

have (the main variation of the strain (internal) energy)

〈gradvE(O, v), w〉V (Ω) = lim
λ→0

[E(O, v + λw) − E(O, v)]/λ

=

∫

Ω

[
∂2

∂x2

(
D11(O)

∂2v

∂x2

)
+

∂2

∂y2

(
D22(O)

∂2v

∂y2

)
+

∂2

∂x2

(
D12(O)

∂2v

∂y2

)
(2.7)

+
∂2

∂y2

(
D12(O)

∂2v

∂x2

)
+ 2

∂2

∂x∂y

(
D33(O)

∂2v

∂x∂y

)]
wdΩ,

for any w ∈ D(Ω).
Thus, according to (2.6) and (2.7), the following bilinear form on [V (Ω) ×

V (Ω)] corresponds to the strain energy of the ortohotropic plate (the variation
of the intenal energy or virtual work equation)

a(O, v, z) =

∫

Ω

[
D11(O)

(
∂2v

∂x2

) (
∂2z

∂x2

)
+ D22(O)

(
∂2v

∂y2

) (
∂2z

∂y2

)
+

D12(O)

((
∂2v

∂x2

) (
∂2z

∂y2

)
+

(
∂2v

∂y2

) (
∂2z

∂x2

))
+ (2.8)

2D33(O)

((
∂2v

∂x∂y

) (
∂2z

∂x∂y

)) ]
dΩ, [v, z] ∈ V (Ω).

Moreover for fixed v ∈ V (Ω) we consider the application: z → a(O, v, z),
D(Ω) → R (the linear continuous on D(Ω)). Then there exists the element
Q(O)v ∈ D∗(Ω) such that

〈Q(O)v, z〉D(Ω) = a(O, v, z) for any z ∈ D(Ω), or z ∈ H2
0 (Ω). (2.9)

Here the relation (2.9) defines the linear continuous operator Q(O) : V (Ω) →
D∗(Ω). If D(Ω) is dense in V (Ω) the operator Q(O) coincides with the operator
A (O): V (Ω) → V ∗(Ω) defined by the equation

〈A (O)v, z〉V (Ω) = a(O, v, z) for [v, z] ∈ V (Ω), O ∈ U
O

ad(Ω). (2.10)

(It is advantageous to consider the equivalent formulation when A (O) is gen-
erated by a bilinear, control dependent bounded functional a(O, ·, ·) : V (Ω) ×
V (Ω) → R.)

In the following we denote by A(O) the restriction of Q(O) to: D(A(O)) =
{v ∈ V (Ω) : Q(O)v ∈ L2(Ω), a(O, v, z) = 〈Q(O)v, z〉L2(Ω) for any z ∈ V (Ω)} =
{v ∈ V (Ω) there exists the element H(O)v∈L2(Ω)} such that: 〈H(O)v, z〉L2(Ω) =
a(O, v, z) for any z ∈ V (Ω)}. Thus, D(A(O)) is the set of the elements v ∈ V (Ω)
such that the linear form: z → a(O, v, z), which is defined on V (Ω) can be
prolonged to the linear continuous form on L2(Ω) consequently: D(A(O)) =
D(A(O)) and the operator A(O) coincides with the operator A(O) which is
defined by the triplet [V (Ω), L2(Ω), a(O, v, z)].
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The loading of the homogenous orthotropic plate (e.g. a concrete plate rein-
forced by welded ribs) is given by






1◦ The surface (traction) forces p(x, y).

2◦ The body forces (within the plate) 2[ω1H〈0〉 + ω2O],

where ωi = constant〈i〉, i = 1, 2 is a given specific weight.

Let us consider the following virtual work of external loading

〈L(e), v〉V (Ω) =

∫

Ω

[
p − 2(ω1H〈0〉 + ω2O)

]
vdΩ.

Here, the mapping e → L(e) from Uad(Ω) into V ∗(Ω) is continuous.
We define the friction functional Φ([O, F ], v) : V (Ω) → R

+
∞ by the formula

Φ([O, F ], v) :=

∫

∂ΩCONTACT

F |v|ds + IK (O,Ω)(v), (2.11)

where

F ∈ U
F

ad (∂ΩCONTACT) ={F ∈ C(0),1(∂ΩCONTACT) : 0 6 F (s) 6 FMAX,

|dF |ds| 6 constant〈a〉, a.e. in ∂ΩCONTACT},

with given positive constants [FMAX, constant〈a〉] and IK (O,Ω)(·) is the indicator
function of the set K (O, Ω).

In what follows, we set e = [O, F ] and define

Uad(Ω) = U
O

ad(Ω) × U
F

ad (∂ΩCONTACT).

Further, we introduce the function S ∈ C(Ω̄), to be given, describing a lower
unilateral obstacle. The obstacle function S : Ω̄ → R fulfils the condition:

(H0) MAX [x,y]∈∂Ω S (x, y) + (OMAX + H〈0〉) < 0.

Let us use the virtual displacement principle to establish a variational for-
mulation of the problem. To this end we introduce the set:

K (O, Ω) = {v ∈ V (Ω) : v(x, y) > S (x, y)+ (O(x, y)+H〈0〉) for [x, y] ∈ Ω}.

On the basis of the virtual displacement principle, we introduce the following
STATE PROBLEM: Given any e ∈ Uad(Ω), find u(e) ∈ K (O, Ω) such that

〈A (O)u(e), v−u(e)〉V (Ω) +Φ(e, v)−Φ(e, u(e)) > 〈L(e), v−u(e)〉V (Ω), (2.12)

holds for all v ∈ K (O, Ω).



Optimal control for elasto-orthotropic plate 227

Later on, we shall prove that the variational inequality has a unique solution
for any e ∈ Uad(Ω).

This is a mathematical model of an elastic orthotropic plate in the state of
static equilibrium, interacting with an obstacle (the obstacle shape is defined
by the equation z = S (x, y), [x, y] ∈ Ω). Furtermore, due to (2.9), from (2.12)
(here inserting v = u(e) + θ, θ ∈ D(Ω) and θ > 0), we immediately deduce that

µ([e, u(e)], Ω) = Q(O)u(e) − (p − 2ω1H〈0〉 − 2ω2O),

is a positive distribution on Ω, and consequently, a nonnegative Radon measure
in Ω. This measure describes the work of interaction forces between the plate
and the obstacle.

Let a specific weight ωi ∈ L∞(Ω) be given, ωi > 0, i = 1, 2. Thus, the weight
of the orthotropic (three-layered) plate is determined by

LWEIGHT(e) = 2

∫

Ω

[ω1H〈0〉 + ω2O]dΩ.

Moreover, the following constraints will be considered (the Norris strength cri-
terion)

(A1) SQ(e,M(e)) 6 0, Q = 1, 2, ..., NQ, NQ(< +∞),

where

SQ(e,M(e)) =9/4 MEAS Ω∗
Q

∫

Ω∗
Q

1

(H〈0〉 + O)4

× [M2
xx(e) + M2

yy(e) + (σR/τR)2M2
xy(e)]dΩ − σ2

R,

Ω∗
O
⊂ Ω̄ are given subdomains, σR, τR are given positive constants and M(e) are

the bending moment and torque, derived by the relation (2.3) from the solution
u(e) of (2.12).

Let us introduce the set of statically admissible control variables:

Gad(Ω) = {O ∈ Uad(Ω) :

NQ∑

Q=1

([S〈Q〉(e,M(e))]+) = 0}.

where [a]+ = max{0, a} denotes the positive part of a.
Here, we assume

Gad(Ω) 6= ∅. (2.13)

Now, our main task is to solve the Optimal Control Problem:

(P) e〈Q〉 = ArgMin
e∈Gad(Ω)

LWEIGHT(e).
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In the following, we remove the constraints (A1) by means of a penalty
method. To this end we introduce a penalized cost functional

L〈ε〉,WEIGHT(e,M(e)) = LWEIGHT(e)+(1/ε)

NQ∑

Q=1

(
[S〈Q〉(e,M(e))]+

)
, ε>0

and a penalized optimal control problem

(P〈ε〉) e〈ε〉 = ArgMin
e∈Uad(Ω)

L〈ε〉,WEIGHT(e,M(e)). (2.14)

3. Existence of a solution to the optimal control problem

We shall consider a class of abstract optimal control problems and prove their
solvability. Then, we shall apply the general result to our optimal control prob-
lem (P).

Let U(Ω) be a Banach space of controls, Uad(Ω) is a subset of admissible
controls. We assume that Uad(Ω) is compact in U(Ω). Let reflexive Banach
space V (Ω) be endowed with a norm ||.||V (Ω) and let V ∗(Ω) be its dual with a
norm ||.||V ∗(Ω), the duality pairing between V (Ω) and V ∗(Ω) being denoted by
〈., .〉V (Ω).

Definition 3.1 We say that a sequence {Kn(Ω)}n∈N of convex subsets of V (Ω)
converges to a set K(Ω), i.e. K(Ω) = Lim

n→∞
Kn(Ω) (convergence in the sense of

Mosco) if the following two conditions are satisfied:






1◦ For any v ∈ K(Ω) a sequence {vn}n∈N exists, such that vn ∈ Kn(Ω)

and lim
n→∞

vn = v in V (Ω).

2◦ If vn ∈ Kn(Ω) and vn → v weakly in V (Ω), then v ∈ K(Ω).

Definition 3.2 Let Wn : V (Ω) → [0,∞], n = 1, 2, . . . be a sequence of func-
tionals. We say that

W = Lim
n→∞

Wn,

if the following conditions hold:






1◦ For each V (Ω) there exists a sequence {vn}n∈N such that vn ∈ V (Ω),

lim
n→∞

vn = v in V (Ω), lim sup
n→∞

Wn(vn) 6 W (v).

2◦ For each sequence {Wnk
}k∈N and each sequence {vk}k∈N , vk ∈ V (Ω),

weakly convergent to v ∈ V (Ω), the inequality

W (v) 6 lim inf
nk→∞

Wnk
(vnk

)

holds.
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In view of Definition 3.2, W = Lim
n→∞

Wn implies that for each v ∈ V (Ω)

there exists a sequence {vn}n∈N such that vn → v strongly in V (Ω) and
lim

n→∞
Wn(vn) = W (v).

Let us consider a system {K(en, Ω)}n∈N , en ∈ Uad(Ω), of closed convex sub-
sets, K(en, Ω) ⊂ V (Ω) and a family {A(en)}n∈N of operators A(en) : V (Ω) →
V ∗(Ω), satisfying the following assumptions

(H1)






1◦
⋂

e∈Uad(Ω)

K(e, Ω) 6= ∅,

2◦ en → e strongly in U(Ω), en ∈ Uad(Ω) ⇒ K(e, Ω) = Lim
n→∞

K(en, Ω),

3◦ There exist constants: 0 < αA < MA independent of e ∈ Uad(Ω)

and such that{
αA||v − z||2V (Ω) 6 〈A(e)v − A(e)z, v − z〉V (Ω),

||A(e)v − A(e)z||V ∗(Ω) 6 MA||v − z||V (Ω),

4◦ en → e strongly in U(Ω), en ∈ Uad(Ω) ⇒ A(en)v → A(e)v

strongly in V ∗(Ω) holds for all v ∈ V (Ω).

Moreover, we consider a system of functionals {Φ(e, .)}, e ∈ Uad(Ω), Φ(e, .) :
V (Ω) → [0,∞], lower semicontinuous and convex on V (Ω) and such that

(H2)





1◦






en ∈ Uad(Ω), en → e strongly in U(Ω) ⇒ Φ(e, .) = Lim
n→∞

Φ(en, .),

dom Φ(e, .) ≡ {v ∈ V (Ω) : Φ(e, v) < +∞} = K(e, Ω)

for all e ∈ Uad(Ω).

Additionally we suppose that there is a bounded sequence {an}n∈N with

2◦





an ∈ K(en, Ω) and lim sup
n→∞

Φ(en, an) < +∞ for each sequence

{en}n∈N , en ∈ Uad(Ω) such that en → e strongly in U(Ω).

Finally, let a functional f ∈ V ∗(Ω) and a continuous mapping B : U(Ω) →
V ∗(Ω) be given.

For any e ∈ Uad(Ω) let us consider the following state variational inequality:
Find u(e) ∈ K(e, Ω) such that

{
〈A(e)u(e), v − u(e)〉V (Ω) + Φ(e, v) − Φ(e, u(e)) > 〈f + Be, v − u(e)〉V (Ω)

for all v ∈ K(e, Ω). (3.1)

Here, we note that there exists a unique solution u(e) ∈ K(e, Ω) for any e ∈
Uad(Ω). In fact, we may employ the general theory of variational inequalities
(see Cea, 1971; Duvaut, Lions, 1972).

Next, let a functional L : U(Ω) × V (Ω) → R be given such that

{
en → e strongly in U(Ω), en ∈ Uad(Ω) and vn → v weakly in V (Ω) ⇒

lim inf
n→∞

L (en, vn) > L (e, v). (3.2)
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Let us introduce a functional J : Uad(Ω) → R by the formula J(e) =
L (e, u(e)), u(e) is the solution of the state problem (3.1). Here we shall solve
the optimization problem

(B) e〈∗〉 = ArgMin
e∈Uad(Ω)

J(e).

Theorem 3.1 Let the data of the state problem (3.1) satisfy the assumptions
(H2). Let en ∈ Uad(Ω), en → e〈∗〉 strongly in U(Ω). Then one has: u(en) →
u(e∗) strongly in V (Ω).

Proof. Let us consider the state inequality (3.1) for any en, n = 1, 2, . . .. Next,
set v = an (see ((H1),2◦), adding the term 〈A(en)an, u(en) − an〉V (Ω) to both
sides, we derive the inequality

{
〈A(en)u(en) − A(en)an, u(en) − an〉V (Ω) + Φ(en, u(en))

6 〈f + Ben, u(en) − an〉V (Ω) + 〈A(en)an, an − u(en)〉V (Ω) + Φ(en, an).

Hence in view of ((H1),3◦,4◦), (H2) and the continuity of B, we deduce:
||u(en)||V (Ω) 6 constant for all n.

Thus there exists a subsequence {u(enk
)}k∈N ⊂ {u(en)}n∈N and element

u〈∗〉 ∈ V (Ω), such that

u(enk
) → u〈∗〉 weakly in V (Ω). (3.3)

The assumption ((H1),2◦) implies that: u〈∗〉 ∈ K(e〈∗〉Ω). From here, taking
into account (H2), we have

Φ(e〈∗〉, u〈∗〉) < +∞ (3.4)

By virtue of Definition 3.2 we can find a sequence {θk}k∈N , such that θk ∈
K(ek, Ω) and

{
θk → u〈∗〉 strongly in V (Ω),

lim
k→∞

Φ(enk
, θk) = Φ(e〈∗〉, u〈∗〉).

(3.5)

Here θk ∈ K(en, Ω) follows from (H2) and (3.4), (3.5).
Further, we consider again the inequality (3.1) for e = enk

, inserting v := θk,
and adding term 〈A(enk

)θk, u(enk
) − θk〉V (Ω) to both sides of (3.1). We obtain

lim sup
k→∞

〈A(enk
)u(enk

) − A(enk
)θk, u(enk

) − θk〉V (Ω)

6 lim sup
k→∞

〈A(enk
)θk, θk − u(enk

)〉V (Ω)

+ lim sup
k→∞

〈f + Benk
, u(enk

) − θk〉V (Ω)

+ lim sup
k→∞

Φ(enk
, θk) − lim inf

k→∞
Φ(enk

, u(enk
) 6 0. (3.6)
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The last inequality follows from the weak convergence of {u(enk
)}k∈N , (3.5),

the continuity of B and the following assertion

ek → e strongly in U(Ω), ek ∈ Uad(Ω) and vk → v strongly in V (Ω)

⇒ ||A(ek)vk − A(e)v||V ∗(Ω)

6 MA||vk − v||V (Ω) + ||A(ek)v − A(e)v||V ∗(Ω) → 0, (3.7)

which is a consequence of ((H1),3◦,4◦).
Moreover, due to the uniform monotonicity of [A(enk

)] ((H1), 3◦) and in
view of (3.6), we may write

lim
k→∞

||u(enk
) − θk||V (Ω) = 0. (3.8)

Thus, taking into account (3.8) and (3.5), we have

u(enk
) → u〈∗〉 strongly in V (Ω). (3.9)

Then the relations (3.7) and (3.9) give

A(enk
)u(enk

) → A(e〈∗〉)u〈∗〉 strongly in V ∗(Ω). (3.10)

Further (due to (H2) and Definition 3.2) for any v ∈ K(e, Ω) there exists a
sequence {ϑk}k∈N such that ϑk ∈ K(enk

, Ω), ϑk → v strongly in V (Ω) and we
may write

Φ(enk
, ϑk) → Φ(e〈∗〉, v). (3.10∗)

Hence, passing to the lim sup
k→∞

on both sides of the inequality:

〈A(enk
)u(enk

), u(enk
) − ϑk〉V (Ω) − 〈f + Benk

, u(enk
) − ϑk〉V (Ω)

6 Φ(enk
, ϑk) − Φ(enk

, u(enk
)),

we arrive at (by virtue of (3.9), (3.10), (3.10)∗ and (H2))

〈A(e〈∗〉)u〈∗〉, u〈∗〉−v〉V (Ω)−〈f +Be〈∗〉, u〈∗〉−v〉V (Ω) 6 Φ(e〈∗〉, v)−Φ(e〈∗〉, u〈∗〉).

Then, from the uniqueness of u(e〈∗〉), we deduce u〈∗〉 = u(e〈∗〉). Hence, the
whole sequence {u(enk

)}n∈N converges weakly to u(e〈∗〉) in V (Ω).

Theorem 3.2 Let the data of the state problem (3.1) satisfy the assumptions
(H1). Let the functional L satisfy the condition (3.2). Then there exists at
least one solution of the OPTIMAL CONTROL PROBLEM (B).

Proof. Since the set Uad(Ω) is compact in U(Ω), there exists a sequence {en}n∈N ,
such that en ∈ Uad(Ω), en → e〈∗〉 strongly in U(Ω), e〈∗〉 ∈ Uad(Ω), J(en) →

Inf
e∈Uad(Ω)

J(e). Then, (3.2) and Theorem 3.1 imply that

L (e〈∗〉, u(e〈∗〉)) 6 lim inf
n→∞

L (en, u(en)) = Inf
e∈Uad(Ω)

L (e, u(e)).
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As a consequence, e〈∗〉 is a solution to the problem (B).

We now consider the family of optimization problems (P〈εn〉) which depend
on εn > 0. Here we apply a penalty method for the existence of an optimal
solution (P).

Lemma 3.1 For any O ∈ U O

ad(Ω) the set K (O, Ω) defined in (2.9), is a non-
empty closed and convex subset of V (Ω) and On ∈ U O

ad(Ω), On → O strongly in
U O(Ω) ⇒ K (O, Ω) = Lim

n→∞
K (On, Ω).

Proof. The condition (H0) ensures that the set K (O, Ω) is nonempty for any
O ∈ UO

ad(Ω)v = 0 ∈ ∩K (O, Ω) for all O ∈ U O

ad(Ω). Let vn → v strongly in
V (Ω), where vn ∈ K (O, Ω). Next, due to the embedding theorem for the space
H2(Ω) we get: lim

n→∞
vn(x, y) = v(x, y) for every point (x, y) ∈ Ω. Here, as

vn(x, y) > S +(O+H〈0〉) for all (x, y) ∈ Ω, we obtain v(x, y) > S +(O+H〈0〉)
in Ω and hence v ∈ K (O, Ω) as claimed.





For any v ∈ K (O, Ω) there exists a sequence {vn}n∈N , such that:

vn ∈ V (Ω), vn ∈ K (O, Ω) for n sufficiently great and vn → v

strongly in V (Ω), as n → ∞. (3.11)

Indeed, let us define: O = v − (S + O + H〈0〉) so that O ∈ C(Ω̄), O > 0 in Ω̄
and

ϑn = (On − O) − O = On − v + (S + H〈0〉) ∈ C(Ω̄),

Πn = {[x, y] ∈ Ω : ϑn(x, y) > C/2},

where

C = max
[x,y]∈∂Ω

S (x, y) + (OMAX + H〈0〉) < 0

due to the assumption (H0).
Next, there exists an open set Π ⊂ Π ⊂ Ω such that

Πn ⊂ Π for any n. (3.12)

To see this, we realize that: ϑn = S +(On +H〈0〉) 6 C on the boundary ∂Ω.
Hence, the continuity of ϑn(x, y) and the constraints |∂On/∂x| 6 constant〈1〉

and |∂On/∂y| 6 constant〈2〉 imply that
∞⋃

n=1
Πn ⊂⊂ Ω and (3.12) follows. Obvi-

ously, there exists a function N ∈ C∞(Ω̄) such that N(x, y) = 1 for [x, y] ∈ Π
and N(x, y) = 0, ∂N(x, y)/∂n = 0 for [x, y] ∈ ∂ΩDISPLACEMENT, 0 < N(x, y) 6 1 for
[x, y] ∈ Ω. Let us set: vn = v + ||On − O||L∞(Ω)N. Then, vn ∈ V (Ω) and

||v − vn||V (Ω) = ||On − O||L∞(Ω)(||N||V (Ω)) → 0 as n → ∞.
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On the other hand, we may show that there exists n〈O〉 > 0 such that

n > n〈O〉 ⇒ vn > S + (On + H〈0〉) in Ω̄ ⇒ vn ∈ K (On, Ω). (3.13)

Indeed, let





1◦ [x, y] ∈ Π. Then one has

vn = v + ||On − O||L∞(Ω) > v + (On − O) > S + (On + H〈0〉).

2◦ Let [x, y] ∈ Ω̄ \ Π. Then we have

vn > S + (O + H〈0〉) + O+ |On − O|N. (3.14)

Taking into account that [x, y] /∈ Π, [x, y] /∈ Πn for any n and ϑn 6 C/2 one
has: (On − O) − O 6 (C/2), −C(N/2) + (1 −N)O 6 O+ |On − O|N.

Hence (inserting into (3.14, 2◦)), we obtain

vn > S + (O + H〈0〉) + A where A = −N(C/2) + (1 −N)O.

The function A is continuous and attains a positive minimum in the compact
set Ω̄\Π : M = A([xO, yO]) = min

Ω̄\Π
A > 0. Notice that, if N(xO, yO) = 0, then

[xO, yO] ∈ ∂ΩDISPLACEMENT and we have

A(xO, yO]) = O([xO, yO]) = −[S (xO, yO) + (O(xO, yO) + H〈0〉)] > −C > 0.

Next, taking into account: N(xO, yO) > 0 one has A(xO, yO]) > −CN(xO, yO)/2
> 0. On the other hand there exists nO(M) such that: n > nO(M) ⇒
||On − O||L∞(Ω) 6 M. Hence, then we have: A([x, y]) > A[xO, yO]) > ||On −
O||L∞(Ω) > [On(x, y) − O(x, y)], so that: vn(x, y) > S (x, y) + [On(x, y) + H〈0〉]
for n > nO(M) ⇒ vn ∈ K (On, Ω). This means that the condition 1◦ in the
Definition 3.1 is verified. Next we verify the condition 2◦. As vn ∈ K (On, Ω),
On → O strongly in U O(Ω) and vn → v weakly in V (Ω), then vn → v and
On → O strongly in C(Ω̄) and the inequality for the limit remains valid.

The form of K (O, Ω) follows directly from its definition. Since: S +(OMAX+
H〈0〉) 6 0 on Ω and due to the assumption (H0), the zero function belongs to

K (O, Ω) for any O ∈ U O

ad(Ω). As a consequence ((H1),1◦,2◦) are satisfied.

The subspace R(Ω) := {v ∈ V (Ω) : 〈A (O)v, v〉V (Ω) = 0} is the set of
rigid body motion of the plate. Let PV (Ω) be the subspace of all possible
(virtual) rigid body displacement of the middle plane, i.e., PV (Ω) := {v ∈
V (Ω) : (∂2v/∂x2)2 = 0, (∂2v/∂y2)2 = 0, (∂2v/∂x∂y)2 = 0}.

Lemma 3.2 Let v ∈ H2(Ω) and (∂2v/∂x2)2 = 0, (∂2v/∂y2)2 =0, (∂2v/∂x∂y)2 =
0. Then PV (Ω)= {0}, i.e. PV (Ω) reduces to the zero element.
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Proof. The regularization of the displacement v gives an element v〈h〉 ∈ C (Ω̄)
for which





∂2v〈h〉/∂x2 = [∂2v/∂x2]〈h〉 = 0,

∂2v〈h〉/∂y2 = [∂2v/∂y2]〈h〉 = 0,

∂2v〈h〉/∂x∂y = [∂2v/∂x∂y]〈h〉 = 0,

(3.15)

holds for every domain Ω〈∗〉 such that Ω̄〈∗〉 ⊂ Ω, provided h is sufficiently small

(h < dis (Ω̄〈∗〉, ∂Ω)). Then from the conditions (3.15) we conclude that v〈h〉 is

a linear polynomial. Since v〈hn〉 converges to v in L2(Ω) as hn → 0 and finite-
dimensional subspaces are closed in L2(Ω), we conclude that v〈hn〉 is a linear
polynomial in every interior subdomain Ω〈∗〉, Ω̄〈∗〉 ⊂ Ω and thus throughout in
Ω. Thus, the homogeneous boundary condition of ∂ΩDISPLACEMENT, however, yields
v = 0.

Lemma 3.3 The system {Φ(e, .)}, e ∈ Uad(Ω) of functionals defined by (2.11)
satisfies the assumptions (H2).

Proof. Since the integral is continuous on V (Ω) and the indicatrix lower semi-
continuous, their sum is lower semicontinuous on V (Ω) for any O ∈ U O

ad(Ω) and
F ∈ U F

ad (Ω). The convexity is immediate. For any e ∈ Uad(Ω), v ∈ K (O, Ω),
the integral is finite and the indicatrix vanishes.

Let us verify the assumption (H2). In the following we set

Φ(e, v) = Φ〈O〉e, v) + Φ〈Ō〉(e, v)

where

Φ〈O〉(e, v) =

∫

∂ΩCONTACT

F |v|dS, Φ〈Ō〉(e, v) = IK (O,Ω)(v).

From this we conclude that

|Φ(en, vn) − Φ(e, v)| 6|Φ〈O〉(en, vn) − Φ〈O〉(e, v)|

+ |Φ〈Ō〉(en, vn) − Φ〈Ō〉(e, v)| = |Q〈O〉| + |Q〈Ō〉|.

Next we shall verify the conditions (1◦) and (2◦) of Definition 3.2. First let
v ∈ K (O, Ω) . Then by virtue of Lemma 3.1 there exists a sequence {vn}n∈N

such that vn ∈ K (On, Ω), and vn → v strongly in V (Ω). Then we have

|Q〈O〉| 6 |Φ〈O〉(en, vn) − Φ〈O〉(e, vn)| + |Φ〈O〉(e, vn) − Φ〈O〉(e, v)|

6

∫

∂ΩCONTACT

(|Fn − F | |vn| + F |vn − v|)dS

6 constant (||Fn−F ||L∞(∂Ω)||vn||H2(Ω) + FMAX||vn−v||H2(Ω)) → 0.

Q〈Ō〉 = IK (On,Ω)(vn) − IK (O,Ω)(v) = 0.
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Hence, we may write

lim
n→∞

Φ(en, vn) = Φ(e, v). (3.16)

On the other hand, let v /∈ K (O, Ω). Here we set vn = v for all n = 1, 2, . . . .
From this we deduce that

lim sup
n→∞

Φ(en, vn) 6 lim sup
n→∞

∫

∂ΩCONTACT

Fn|v|dS + lim sup
n→∞

IK (On,Ω)(v)

6

∫

∂ΩCONTACT

F |v|dS + ∞ = Φ〈O〉(e, v) + Φ〈Ō〉(e, v) = Φ(e, v), (3.17)

since IK (O,Ω)(v) = +∞. Then we would have (due to (3.16) and (3.17))

lim sup
n→∞

Φ(en, vn) 6 Φ(e, v) for any v ∈ V (Ω).

As a consequence, condition ((H2),1◦) is satisfied.
Next let vn → v weakly in V (Ω). From this follows

lim inf
n→∞

Φ(en, vn) > lim inf
n→∞

Φ〈O〉(en, vn) + lim inf
n→∞

Φ〈Ō〉(en, vn),

so that in view of the compactness of the trace mapping H1(Ω) → L(∂Ω), we
may write

|Φ〈O〉(en, vn) − Φ〈O〉(e, v)| 6

∫

∂ΩCONTACT

(|Fn − F | |vn| + F |vn − v|)dS → 0.

Hence one has

lim
n→∞

Φ〈O〉(en, vn) = Φ〈O〉(e, v).

Further, one has

lim inf
n→∞

Φ〈Ō〉(en, vn) = lim inf
n→∞

IK (On,Ω)(vn) = Π,

where Π is either +∞ or zero. As Π = +∞, then obviously

Π > IK (O,Ω)(v). (3.18)

If Π = 0, there exists a subsequence {vk}k∈N ⊂ {vn}n∈N such that: vk ∈
K (Ok, Ω) for all k → ∞. Then by virtue of Lemma 3.1 the weak limit v belongs
to K (O, Ω) so that IK (O,Ω)(v) = 0 and (3.18) holds again. As a consequence,
condition (H2,2◦) is fulfilled, as well. Hence we conclude that

Φ(e, .) = Lim
n→∞

Φ(en, .)

holds, provided en → e strongly in U (Ω).
Finally, we can set an = 0, n = 1, 2, . . ., since 0 ∈ K (O, Ω) for all O ∈ U O

ad(Ω)
(due to (H0)). Then one has: Φ(en, an) = 0 for all n.
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Lemma 3.4 The family of operators {A (On)}n∈N , On ∈ U O

ad(Ω), defined by
(2.10), satisfies the assumption ((H1), 3◦, 4◦).

Proof. It is readily seen that

{
〈A (O)v, v〉V (Ω) > αA ||v||2V (Ω),

|〈A (O)v, z〉V (Ω)| 6 MA ||v||V (Ω)||z||V (Ω),
(3.19)

for any O ∈ U O

ad(Ω), for any [v, z] ∈ V (Ω), with the positive constants [αA , MA ],
independent of [O, v].

Indeed, due to the Sylvester criterion and the assumption ((2.2),2◦) we de-
duce the quadratic form

E1

1 − µ12µ21
ξ2
1 +

2µ1E2

1 − µ12µ21
ξ1ξ2 +

E2

1 − µ12µ21
ξ2
2 ,

for all [ξ1, ξ1] ∈ R to be a positive definite. Hence, we have

a(O, v, v) > αO

∫

Ω

[(∂2v/∂x2)2 + (∂2v/∂y2)2 + (∂2v/∂x∂y)2]dΩ,

where v ∈ V (Ω), O ∈ U O

ad(Ω), αO = constant > 0.
On the other hand, the definition of R(Ω), the present estimate for a(θ, v, v)

and Lemma 3.2 imply that R(Ω) = {0}.
Then, by Corollary 1.6.1 (Litvinov, 2000) the formula

{∫

Ω

[(∂2v/∂x2)2 + (∂2v/∂y2)2 + (∂2v/∂x∂y)2]dΩ

}1/2

defines a norm in V (Ω), which is equivalent to the original one, i.e., to the norm
of H2(Ω).

Further, we may write:

|〈A (O)v, w〉V (Ω)−〈A (O)z, w〉V (Ω)| =
∣∣
∫

Ω

[
(D11(O)(∂2(v−z)/∂x2)(∂2w/∂x2)

+D22(O)(∂2(v − z)/∂y2)(∂2w/∂y2) + D12(O)((∂2v(v − z)/∂x2)(∂2w/∂y2)

+(∂2(v − z)/∂y2)(∂2w/∂x2)) + 2D33(O)(∂2(v − z)/∂x∂y)(∂2w/∂x∂y)
]
dΩ

∣∣
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6 D11(OMAX )

∫

Ω

|(∂2(v − z)/∂x2)| |∂2w/∂x2|dΩ

+D22(OMAX)

∫

Ω

|(∂2(v − z)/∂y2)| |∂2w/∂y2|dΩ

+D12(OMAX)

∫

Ω

(|(∂2(v − z)/∂x2)| |∂2w/∂y2|

+|(∂2(v − z)/∂y2)| |∂2w/∂x2|)dΩ

+2D33(OMAX)

∫

Ω

|(∂2(v − z)∂x∂y)| |∂2w/∂x∂y|dΩ

6 max [D11(OMAX), D22(OMAX), D12(OMAX), 2D33(OMAX)]||w − z||V (Ω)||w||V (Ω)

6 constant [O3
MAX

+ O
2
MAX

+ OMAX]||v − z||V (Ω)||w||V (Ω).

As a consequence, the assumption ((H1),3◦) is satisfied.
Next, in order to to verify ((H1),4◦), we write

|〈A (On)v − A (O)v, w〉V (Ω)| =
∣∣
∫

Ω

[
(D11(On) − D11(O))(∂2v/∂x2)(∂2w/∂x2)

+(D22(On) − D22(O))(∂2v/∂y2)(∂2w/∂y2)

+(D12(On) − D12(O))((∂2v/∂x2)(∂2w/∂y2) + (∂2v/∂y2)(∂2w/∂x2))

+2(D33(On) − D33(O))(∂2v/∂x∂y)(∂2w/∂x∂y)
]
dΩ

∣∣

6 constant
(
||O3

n − O
3||L∞(Ω) + ||O2

n − O
2||L∞(Ω)

+||On − O||L∞(Ω)

)
||v||V (Ω)||w||V (Ω).

Then one has

||A (On)v − A (O)v||V ∗(Ω)

6 constant (||O3
n − O

3||L∞(Ω) + ||O2
n − O

2||L∞(Ω)

+||On − O||L∞(Ω))||v||V (Ω) → 0, (3.20)

as On → O strongly in U O(Ω).
We may introduce the state variational inequality (2.12) for u(On)∈K (On, Ω)

〈A (On)u(en), v − u(en)〉V (Ω) + Φ(en, v) − Φ(en, u(en))

> 〈L(en), v − u(en)〉V (Ω) (3.21)

for all v ∈ K (On, Ω).
Consequently, by virtue of Lemma 3.1, we may write (inserting the sequence

{an}n∈N (with v = an due to Lemma 3.3 into the variational inequality for
en ∈ Uad(Ω))
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〈A (On)u(en), an − u(en)〉V (Ω) + Φ(en, an) − Φ(en, u(en))

> 〈L(en), an − u(en)〉V (Ω) (3.22)

for n > nO.
Hence in view of ((3.19,1◦) and Lemma 3.3, we deduce that (we can set an =

0, n = 1, 2, . . ., since the zero function belongs to K (O, Ω) for any O ∈ U O

ad(Ω))

αA ||u(en)||2V (Ω)+Φ(en, u(en)) 6 〈L(en), v−u(en)〉V (Ω) 6 constant||u(en)||V (Ω)

and
||u(en)||V (Ω) 6 constant, for any n.

This means that there exists u♦ ∈ V (Ω) and a subsequence {u(enk
)}k∈N ⊂

{u(en)}n∈N , such that

u(enk
) → u♦ weakly in V (Ω). (3.23)

The functional v → 〈A (O)v, v〉V (Ω) is weakly lower semicontinuous on V (Ω)

for any O ∈ U O

ad(Ω). Consequently,

lim inf
n→∞

〈A (O)u(enk
), u(enk

)〉V (Ω) > 〈A (O)u♦, u♦〉V (Ω), since e ∈ Uad(Ω).

Moreover, we have

|〈A (Onk
)u(enk

), u(enk
)〉V (Ω) − 〈A (O)u(enk

), u(enk
)〉V (Ω)|

6 constant
[
||O3

nk
− O

3||L∞(Ω) + ||O2
nk

− O
2||L∞(Ω)

+||Onk
− O||L∞(Ω)

]
||u(enk

)||2V (Ω) → 0, (3.24)

as enk
→ e strongly in U (Ω).

From the above argument, we conclude that

lim inf
k→∞

〈A (Onk
)u(enk

), u(enk
)〉V (Ω) = lim inf

k→∞
(〈A (O)u(enk

), u(enk
)〉V (Ω)

+[〈A (Onk
)u(enk

), u(enk
)〉V (Ω) − 〈A (O)u(enk

), u(enk
)〉V (Ω)])

> lim inf
k→∞

〈A (O)u(enk
), u(enk

)〉V (Ω) > 〈A (O)u♦, u♦〉V (Ω). (3.25)

Further, we may write (using the decomposition:

〈A (Onk
)u(enk

), Q〉V (Ω) − 〈A (O)u♦, Q〉V (Ω)

= [〈A (Onk
)u(enk

), Q〉V (Ω) − 〈A (O)u(enk
), Q〉V (Ω)]

+〈A (O)(u(enk
) − u♦), Q〉V (Ω)

and the weak convergence of {u(enk
)}k∈N )

lim
k→∞

〈A (Onk
)u(enk

), Q〉V (Ω) = 〈A (O)u♦, Q〉V (Ω) for any Q ∈ V (Ω). (3.26)
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Taking into account (3.11), we obtain

|〈A (Onk
)u(enk

), vk − v〉V (Ω)| 6 constant||u(enk
)||V (Ω)||vk − v||V (Ω) → 0,

as k → ∞. (3.27)

Then due to (3.26) and (3.27), we arrive at

|〈A (Onk
)u(enk

), vk〉V (Ω) − 〈A (O)u♦, v〉V (Ω)|

6 |〈A (Onk
)u(enk

), vk − v〉V (Ω)|

+|〈A (Onk
)u(enk

), v〉V (Ω) − 〈A (O)u♦, v〉V (Ω)| → 0. (3.28)

Furthermore, weak convergence of {u(enk
)}k∈N and (3.11) yield that

〈L(enk
), vk − u(enk

)〉V (Ω) → 〈L(e), v − u♦〉V (Ω), (3.29)

when enk
→ e strongly in U (Ω).

On the other hand, from the inequality (3.21), we deduce that

〈A (Onk
)u(enk

), u(enk
)〉V (Ω) + Φ(enk

, u(enk
)) + 〈L(enk

), vk − u(enk
)〉V (Ω)

6 〈A (Onk
)u(enk

), vk〉V (Ω) + Φ(enk
, vk). (3.30)

Passing here in (3.30) to the limit inferior on both sides with k → ∞, using
(3.25), (3.28), (3.29) and Lemma 3.3, we obtain

〈A (O)u♦, u♦〉V (Ω)+Φ(e, u♦)+〈L(e), v−u♦)〉V (Ω) 6 〈A (O)u♦, v〉V (Ω)+Φ(e, v).

Consequently, u♦ satisfies the inequality (2.12). Since the solution u(e) of (2.12)
is unique, u♦ = u(e) follows and the whole sequence {u(en)}n∈N converges to
u(e) weakly in V (Ω).

Finally, it remains to verify the strong convergence. By virtue of (3.30),
(3.28) and (3.29), we can write

lim sup
n→∞

〈A (On)u(en), u(en)〉V (Ω)

6 〈A (O)u(e), v〉V (Ω)+Φ(e, v)−Φ(e, u(e))+〈L(e), u(e)−v〉V (Ω), (3.31)

for any v ∈ K (O, Ω).
Hence (we put v := u(e) in (3.31)) due to (3.25), we get

〈A (O)u(e), u(e)〉V (Ω) 6 lim inf
n→∞

〈A (On)u(en), u(en)〉V (Ω)

6 lim sup
n→∞

〈A (On)u(en), u(en)〉V (Ω) 6 〈A (O)u(e), u(e)〉V (Ω).

This means that

lim
n→∞

〈A (On)u(en), u(en)〉V (Ω) = 〈A (O)u(e), u(e)〉V (Ω). (3.32)
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Taking into account (3.24) and (3.32), we arrive at

lim
n→∞

〈A (O)u(en), u(en)〉V (Ω) = 〈A (O)u(e), u(e)〉V (Ω). (3.33)

Further, we equip the space V (Ω) with the scalar product

〈A (O)u(e), v〉V (Ω) = (u(e), v)A .

Hence (3.33) implies that the associated norms ||u(en)||A tend to ||u(e)||A .
Since the norms || · ||A and || · ||V (Ω) are equivalent, we are led to the strong
convergence

||u(en) − u(e)||V (Ω) → 0. (3.34)

Lemma 3.5 Let en → e strongly in U (Ω) as n → ∞, e ∈ Uad(Ω). Then one
has M(en) → M(e) strongly in [L2(Ω)]3.

Proof. We may write

||Mxx(en) − Mxx(e)||L2(Ω)

6 ||(D11(On)−D11(O))∂2u(en)/∂x2+(D12(On)−D12(O))∂2u(en)/∂y2||L2(Ω)

+ ||D11(O)(∂2u(en)/∂x2 − ∂2u(e)/∂x2)

+ D12(O)(∂2u(en)/∂y2 − ∂2u(e)/∂y2)||L2(Ω)

= M〈1n〉 + M〈2n〉.

Next, in view of (3.34) we have: M〈1n〉 → 0, M〈2n〉 → 0 as n → ∞. Equally, we
obtain

||Myy(en) − Myy(e)||L2(Ω) → 0, ||Mxy(en) − Mxy(e)||L2(Ω) → 0.

Lemma 3.6 Let en → e strongly in U (Ω) as n → ∞, e ∈ Uad(Ω). Then for
any Q = 1, 2, . . . , NQ

([SQ(en, M(en))]+) → ([SQ(e, M(e)]+).

Proof. Due to the estimate: |a+ − b+| 6 |a − b|, we may write:

∣∣ ([SQ(en,M(en))]+) − ([SQ(e,M(e))]+)
∣∣ 6

∣∣SQ(en,M(en)) − SQ(e,M(e))
∣∣

6(36/ MEAS Ω∗
Q

∫

Ω∗
Q

∣∣(1/(H〈0〉+On)4)(M2
xx(en)+M2

yy(en)+(σ0/τ0)
2M2

xy(en))

−(1/(H〈0〉 + O)4)(M2
xx(e) + M2

yy(e) + (σ0/τ0)
2M2

xy(e))
∣∣dΩ
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6 constant

∫

Ω∗
Q

∣∣(1/(H〈0〉 + On)4)([M2
xx(en) − M2

xx(e)] + [M2
yy(en) − M2

yy(e)]

+(σ0/τ0)
2[M2

xy(en) − M2
xy(e)]) + (1/(H〈0〉 + On)4)

−(1/(H〈0〉 + O)4)[M2
xx(e) + M2

yy(e) + (σ0/τ0)
2M2

xy(e)])
∣∣dΩ

6constant (1/(H〈0〉 + OMIN)4)

{ ∫

Ω∗
Q

(
|Mxx(en)+Mxx(e)||Mxx(en) − Mxx(e)|

+|Myy(en) + Myy(e)||Myy(en) − Myy(e)| + (σ0/τ0)
2|Mxy(en) + Mxy(e)|

×|Mxy(en) − Mxy(e)|
)
dΩ

}
+ constant (e)||(1/(H〈0〉 + On)4)

−(1/(H〈0〉 + O)4)||L∞(Ω) → 0,

as n → ∞, due to Lemma 3.5.

Lemma 3.7 The penalized optimal control problem (P〈εn〉) has a solution for
any εn > 0.

Proof. Note that the functionals L (e) and ([SQ(e,M(e))]+) are continuous in
Uad(Ω) and Uad(Ω) is compact in U (Ω) . Hence, there exists a minimizer e〈εn〉

of L〈εn〉(e,M(e)) in Uad(Ω).

Theorem 3.3 Let the condition (2.13) be satisfied. Let {εn}n∈N , εn → 0+ be a
sequence and {e〈εn〉}n∈N a sequence of solutions of the penalized optimal control
problems (P〈εn〉), {M(e〈εn〉)}n∈N the sequence of corresponding moment fields.

Then there exists a subsequence {εnk
}k∈N ⊂ {εn}n∈N and an element e〈O〉 ∈

Gad(Ω) such that
{

e〈εnk
〉 → e〈O〉 strongly in U (Ω),

M(e〈εnk
〉) → M(e〈O〉) strongly in [L2(Ω)]3,

(3.35)

where e〈O〉 is a solution of the optimal control problem (P).

Proof. There exists a subsequence {εnk
}k∈N ⊂ {εn}n∈N (here, Uad(Ω) is com-

pact in U (Ω)) such that ((3.35),1◦) holds with e〈O〉 ∈ Uad(Ω). In view of Lemma
3.5, we obtain ((3.35),2◦ ).

Further, the definition yields

LWEIGHT(e〈εnk
〉) + (1/εnk

)

NQ∑

Q=1

([SQ(e〈εnk
〉,M(e〈εnk

〉))]
+)

6 LWEIGHT(e) + (1/εnk
)

NQ∑

Q=1

([SQ(e,M(e))]+), (3.36)

holds for any e ∈ Uad(Ω).
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On the other hand, for an arbitrary element e from Gad(Ω), we have





εnk
LWEIGHT(e〈εnk

〉) +
NQ∑

Q=1
([SQ(e〈εnk

〉,M(e〈εnk
〉))]

+) 6 εnk
LWEIGHT(e),

0 6

NQ∑
Q=1

([SQ(e〈εnk
〉,M(e〈εnk

〉))]
+) 6 εnk

LWEIGHT(e).

Hence, passing to the limit with εnk
→ 0 and by virtue of Lemma 3.6, we arrive

at

NQ∑

Q=1

([SQ(e〈O〉,M(e〈O〉))]
+) = 0.

This means that the element e〈O〉 ∈ Gad(Ω).
Then, on account of (3.36), we obtain

LWEIGHT(e〈εnk
〉) 6 LWEIGHT(e〈εnk

〉)+(1/εnk
)

NQ∑

Q=1

([SQ(e〈εnk
〉,M(e〈εnk

〉))]
+)

6 LWEIGHT(e) (3.37)

for any e ∈ Gad(Ω).
We deduce form (3.37) the estimate (passing to the limit with εnk

→ 0 (or
k → ∞) and we use ((3.35),1◦))

LWEIGHT(e〈O〉) 6 LWEIGHT(e),

for any e ∈ Gad(Ω).

Lemma 3.8 For nonempty set Gad(Ω) there exists at least one solution of the
optimal control problem (P).

Proof. The proof follows immediately from Lemma 3.7 and Theorem 3.3.

4. Penalty method-cost functional with norm

We now investigate the technique in which the functional to be minimized is
augmented by a so-called penalty functional. The penalty functional is designed
so that it grows in magnitude as the amount by which the constraint is violated
grows, in other words, we pay a penalty in our optimization process for violat-
ing the constraint, and the more we violate it, the larger the penalty paid. We
remark that the penalty method is much more general than the Lagrange mul-
tiplier method (neither convexity for the functional or kinematically admissible
set need be assumed).
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For any e ∈ Uad(Ω) consider the following variational inequality:

Find u(e) ∈ K (e, Ω) such that

A(e)u(e)−u(e)〉V (Ω) >〈L(e), v−u(e)〉V (Ω) for all v∈K (e, Ω) (4.1)

where V (Ω) = H2
0 (Ω), L(e) ∈ L2(Ω), S ∈ H2(Ω) and e = [O, 0]T .

Consider now the optimal control problem (B):

Find an element e0 such that

L (eO) 6 L (e) for any e ∈ Uad(Ω), (4.2)

where L (e) = ||u(e) − zad||2L2(Ω), and the element zad ∈ L2(Ω) is given.

Further, we consider a family of optimization (Bε) problems depending on
ε > 0 . For a fixed ε > 0, an approximate problem is of the form

Inf
e∈Uad(Ω)

Lε(e) = Inf
e∈Uad(Ω)

[||uε(e) − zad||
2
L2(Ω)]. (4.3)

Here, uε(e) ∈ V (Ω) is a solution to the nonlinear equation (the penalized prob-
lem)

uε(e) ∈ V (Ω) : A(e)uε(e) + (1/ε)Q(e, uε(e)) = L(e), (4.4)

where

Q(e, uε(e))(x, y) =





[uε(e)(x, y) − (S + (e + H〈0〉))(x, y)],

if [uε(e)(x, y) − (S + (e + H〈0〉))(x, y)] 6 0,

0, if [uε(e)(x, y) − (S + (e + H〈0〉))(x, y)] > 0.

For any ε > 0 problem (4.3) is solvable. Next, we introduce the notations:

O = inf
e∈Uad(Ω)

L (e) and O〈ε〉 = inf
e∈Uad(Ω)

∈ Lε(e). (4.5)

Since the penalty operator Q(e, .) is a Lipschitz continuous, monotone op-
erator in L2(Ω), the penalized problem (4.4) is uniquely solvable. Moreover,
uε(e) ∈ V (Ω) ∩ H4(Ω) holds.

Indeed, the penalizator Q(e, .) : V (Ω) → V ∗(Ω) is of the form

〈Q(e, v), z〉V (Ω) = −

∫

Ω

([v − (S + (e + H〈0〉))]
−)zdΩ, (4.6)

with ([a]−) = inf(a, 0).
The linear form: z →

∫
Ω

([v − (S + (e + H〈0〉))]
−)zdΩ is continuous on V (Ω)

and defines the functional Q(e, v) ∈ V ∗(Ω).
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Next, in view of the inequality (([a + c]−) − ([b + c]−))d 6 |a − b| |d|, for
arbitrary real numbers, we can write

〈Q(e, v) − Q(e, z), w〉V (Ω)

=

∫

Ω

{([v − (S + (e + H〈0〉))]
−) − ([z − (S + (e + H〈0〉))]

−)}wdΩ

6

∫

Ω

|v − z| |w|dΩ 6 constant ||v − z||V (Ω)||w||V (Ω). (4.7)

Hence, from it follows the Lipschitz continuity of penalizator Q(e, v). More-
over, we have

〈Q(e, v) − Q(e, z), v − z〉V (Ω)

= −

∫

Ω

{
([v−(S +(e + H〈0〉))]

−)−([z−(S +(e+H〈0〉))]
−)

}
[v−z]dΩ

= −

∫

Ω

{([v − (S + H〈0〉)]
−) − ([z − (S + H〈0〉)]

−)}

×{[v − (S + (e + H〈0〉))] − [z − (S + (e + H〈0〉))]}dΩ

>

∫

Ω

{[v − (S + (e + H〈0〉))]
− − [z − (S + (e + H〈0〉))]

−}2dΩ

> 0, (4.8)

where we have used the relations:

−(([a]− − ([b]−))(a − b) = −(([a]−) − ([b]−))

×[(([a]+) − ([a]−)) − (([b]+) − ([b]−))]

= −(([a]−) − ([b]−))(([a]+) − ([b]+)) + (([a]−) − ([b]−))2

> (([a]−) − ([b]−))2,

for any [a, b] ∈ R.
Note that Q(e, v) = 0 ⇔ ([v − (S + (e + H〈0〉))]

−) = 0 ⇒ v ∈ K (e, Ω).
Here the hemicontinuity is a consequence of Lipschitz continuity of the op-

erator Q(e, .), i.e. for [v, z, w] ∈ V (Ω) the function λ → 〈Q(e, v + λz), w〉V (Ω) is
continuous on R.

Hence, due to the theory of monotone operators (Lions, 1969) we obtain
a unique solution uε(e) of the penalized equation (4.4).

Lemma 4.1 Let {uεn
(e)}n∈N be a sequence of solutions of the penalized problems

(4.4) for fixed e ∈ Uad(Ω). Then there exists a subsequence {εnk
} ⊂ {εn}n∈N

such that uεnk
(e) → u(e) weakly in V (Ω), where u(e) is a solution of the state

problem (4.1).
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Proof. The operator A(e) + (1/ε)Q(e, .) : V (Ω) → V ∗(Ω) is bounded, hemicon-
tinuous, monotone and coercive and due to Theorem 2.2.1 (Lions, 1969) for
every e ∈ Uad(Ω) there exists a solution uε(e) ∈ V (Ω) of the penalized equation
(4.4).

Let vO ∈ K (e, Ω) be an arbitrary element. Then, by inserting v = [uεn
(e)−

vO] in the equation

〈A(e)uε(e), v〉V (Ω) + (1/ε)〈Q(e), uε(e), v〉V (Ω) = 〈L(e), v〉V (Ω) (4.9)

and since Q(e, vO) = 0, we arrive at

〈A(e)uεn
(e), uεn

(e) − vO〉V (Ω)

+(1/εn)〈Q(e, uε(e)) − Q(e, vO), uε(e) − vO〉V (Ω)

= 〈L(e), uε(e) − vO〉V (Ω).

Then, using the monotonicity of Q(e, .), we have

〈A(e)uεn
(e), uε(n)(e) − vO〉V (Ω) 6 〈L(e), uε(e) − vO〉V (Ω).

Hence, the estimate (3.19) yields

αA||uεn
(e)||2V (Ω) 6 constant (||uεn

(e)||V (Ω)||vO||V (Ω)

+||uεn
(e)||V (Ω) + ||vO||V (Ω)).

Thus, we obtain the estimate

uεn
(e) 6 constant (does not depend on εn). (4.10)

This means that there exist the element u♦ and the subsequence {uεnk
(e)}k∈N

such that

uεnk
(e) → u♦ weakly in V (Ω). (4.11)

Further the equality (4.4) and the estimate (4.10) imply

||Q(e, uεnk
(e))||V ∗(Ω) = sup

v 6=0
[−〈A(e)uεnk

(e), v〉V (Ω)

+〈L(e), v〉V (Ω)]/||v||V (Ω) = 0(ε). (4.12)

In view of (4.10) and (4.12) we may write

lim
k→∞

〈Q(e, uεnk
(e)), uεnk )(e) − v〉V (Ω) = 0.

Next, we take into account the monotonicity of Q(e, .) and the weak convergence
(4.11). Hence, we arrive at

〈Q(e, v), u♦ − v〉V (Ω) > 0 for all v ∈ V (Ω). (4.13)
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Let v = u♦ + λz, λ > 0, z ∈ V (Ω). Then from the inequality (4.13), we
deduce that

〈Q(e, u♦ + λz), z〉V (Ω) > 0 for any λ > 0. (4.14)

By using the hemicontinuity of Q(e, .) we get after λ → 0

〈Q(e, u♦), z〉V (Ω) > 0 for all z ∈ V (Ω), (4.15)

which implies Q(e, u♦) = 0 and u♦ ∈ K (e, Ω).
Now take in (4.9) [v−uεnk

(e)] instead of v ∈ K (e, Ω), so that we can write

〈A(e)uεnk
(e), v − uεnk

(e)〉V (Ω)

−(1/εnk
)〈Q(e, v) − Q(e, uεnk

(e)), v − uεnk
(e)〉V (Ω)

= 〈L(e), v − uεnk
(e)〉V (Ω).

Hence, one has

〈A(e)uεnk
(e), v − uεnk

(e)〉V (Ω) > 〈L(e), v − uεnk
(e)〉V (Ω). (4.16)

We note that w → 〈A(e)w, w〉V (Ω) is a lower weakly semicontinuous func-
tional on V (Ω) and due to (4.11) we obtain

〈A(e)u♦, u♦〉V (Ω) 6 lim inf
k→∞

〈A(e)uεnk
(e), uεnk

(e)〉V (Ω). (4.17)

Taking into account (4.17) the state inequality (4.1) follows immediately
from (4.16). Hence we have u(e) = u♦. This concludes the proof.

Lemma 4.2 For any ε > 0 there exists a solution 〈eε〉 of the optimal control
problem (Bε). If {εn}n∈N is a sequence with the property εn > 0, εn → 0+,
then there exists its subsequence {εnk

}k∈N such that






eεnk
→ e〈∗〉 strongly in U (Ω),

uεnk
(eεnk

) → u(e〈∗〉) strongly in V (Ω),

Oεnk
→ O,

(4.18)

where uεnk
(eεnk

) ∈ V (Ω) fulfils the penalized equation (4.4) and u(e〈∗〉) ∈

K (e〈∗〉, Ω) solves the state variational inequality (4.1) with e = e〈∗〉.

Proof. Let {e〈n〉}n∈N ⊂ Uad(Ω) be a minimizing sequence for the functional
Lε( . ). The set Uad(Ω) is compact in the Banach space U (Ω) and hence it
contains a subsequence {eε〈nk〉}k∈N such that

eε〈nk〉 → e〈ε〉 (∈ Uad(Ω)) strongly in U (Ω). (4.19)
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Let u(eε〈n〉) be the corresponding sequence of solutions to the penalized
problem

A(eε〈n〉)uε(eε〈n〉) + (1/ε〈n〉Q(eε〈n〉, uε(eε〈n〉)) = L(eε〈n〉). (4.20)

Making use of the inequality

〈Q(eε〈n〉, uε(eε〈n〉)), uε(eε〈n〉) − (S + (eε〈n〉 + H〈0〉))〉L2(Ω)

=

∫

Ω

Q(eε〈n〉, uε(eε〈n〉))(uε(eε〈n〉) − S − eε〈n〉 − H〈0〉)dΩ > 0,

and the uniform coercivity of the family of operators {A(eε〈n〉)}n∈N we obtain
the boundedness of the sequence {uε(eε〈n〉)}n∈N in the space V (Ω). Hence,
there exists the sequence {uε(eε〈nk〉)}k∈N such that





uε(eε〈nk〉) → uε〈∗〉 weakly in V (Ω),

or

uε(eε〈nk〉) → uε〈∗〉 strongly in L2(Ω).

(4.21)

Further, we introduce the penalty functional by the relation

Q(e, z) = − ([z − S − e− H〈0〉]
−)

=
1

2
(z − S − e− H〈0〉 − |z − S − e− H〈0〉|).

Hence, we conclude that it is continuous as a function Q(., .) : U (Ω)×L2(Ω) →
L2(Ω). On the other hand we have

A(eε〈n〉)uε(eε〈n〉) → A(eε)uε〈∗〉 weakly in V ∗(Ω).

Thus, from (4.20), we conclude that

A(eε)uε〈∗〉 + (1/ε)Q(eε, uε〈∗〉) = L(eε).

So, we have uε〈∗〉 = uε(eε). Simultaneously, one has A(eε)uε(eε) ∈ L2(Ω)
and

A(eε〈n〉)uε(eε〈n〉) → A(eε)uε(eε) strongly in L2(Ω). (4.22)

We note that (4.22) is a consequence of the weak convergence of the same
sequence in the dual space V ∗(Ω), its boundedness in L2(Ω) and the density of
the space V (Ω) in L2(Ω).

Then, we can write

lim
k→∞

Lε(eε〈nk〉, uε(eε〈nk〉)) = Lε(eε, uε(eε))
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and eε ∈ Uad(Ω) is a solution of the optimal control problem (Bε) for fixed
ε > 0.

Let εn > 0, n = 1, 2, . . . fulfil εn → 0. The sequence {eεn
}n∈N of penalized

optimal thickness is bounded in Uad(Ω) and contains a subsequence {eεnk
}k∈N

fulfilling the convergence ((4.18),1◦). Consequently, one has

eεnk
→ e〈∗〉 weakly in V (Ω). (4.23)

Next, we consider the variational equality

〈A(eεnk
)uεnk

(eεnk
), uεnk

(eεnk
) − ([S + (eεnk

+ H〈0〉)]
+)〉V (Ω)

−(1/εnk
)〈([uεnk

(eεnk
) − (S + (eεnk

+ H〈0〉)]
−), uεnk

(eεnk
)

−([S + eεnk
+ H〈0〉]

+)〉L2(Ω)

= 〈L(eεnk
), uεnk

(eεnk
) − ([S + (eεnk

+ H〈0〉)]
+)〉V (Ω). (4.24)

Here, the penalizing number of (4.24) is non-negative and the sequence
{uεnk

(eεnk
)}k∈N of solutions to the penalized problem (4.20) is bounded in

V (Ω). Therefore, we can choose from the sequence {uεnk
(eεnk

)}k∈N a subse-

quence {uεnΠ
(eεnΠ

)}Π∈N such that

{
uεnΠ

(eεnΠ
) → u〈∗〉 weakly in V (Ω),

uεnΠ
(eεnΠ

) → u〈∗〉 strongly in L2(Ω).
(4.25)

On the other hand from the boundedness of the sequence {uεnΠ
(eεnΠ

)}Π∈N

in the space V (Ω) we deduce

||Q(eεnΠ
, uεnΠ

(eεnΠ
))||V ∗(Ω) 6 MεnΠ , (4.26)

where M > 0 and Π = 1, 2, . . . .

Taking into account (4.26) and ((4.25),2◦, ((4.18),1◦) we get

Q(e〈∗〉, u〈∗〉) = ([u〈∗〉 − (S + e〈∗〉 + H〈0〉]
−) = 0.

Hence, one has

u〈∗〉 ∈ K (e〈∗〉, Ω). (4.27)

Let u(e〈∗〉) ∈ K (e〈∗〉, Ω) be a solution of the variational inequality (4.1).
Then one has

〈A(e〈∗〉)u(e〈∗〉), u〈∗〉 − u(e〈∗〉)〉V (Ω) > 〈L(e〈∗〉), u〈∗〉 − u(e〈∗〉)〉V (Ω). (4.28)
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Further, we have simultaneously the identity

〈A(eεnΠ
)uεnΠ

(eεnΠ
), uεnΠ

(eεnΠ
) − u(e〈∗〉) + eεnΠ

− e〈∗〉〉V (Ω)

+(1/εnΠ)〈([uεnΠ
(eεnΠ

) − S − eεnΠ
− H〈0〉]

−), uεnΠ
(eεnΠ

)

−S − eεnΠ
− H〈0〉〉L2(Ω)

+(1/εn)〈([uεnΠ
(eεnΠ

) − S − eεnΠ
− H〈0〉]

−), u(e〈∗〉)

−S − e〈∗〉 − H〈0〉〉L2(Ω)

= 〈L(eεnΠ
), uεnΠ

(eεnΠ
) − u(e〈∗〉) + eεnΠ

− e〈∗〉〉V (Ω). (4.29)

From here and from the relation (4.28), we get the inequality

〈A(eεnΠ
)[uεnΠ

(eεnΠ
) − u(e〈∗〉)], uεnΠ

(eεnΠ
) − u(e〈∗〉)〉V (Ω)

+〈A(e〈∗〉)u(e〈∗〉), uεnΠ
(eεnΠ

) − u(e〈∗〉)〉V (Ω)

+〈[A(eεnΠ
) −A(e〈∗〉)]u(e〈∗〉), uεnΠ

(eεnΠ
) − u(e〈∗〉)〉V (Ω)

+〈[A(eεnΠ
)u(e〈∗〉), eεnΠ

− e〈∗〉〉V (Ω)

+〈A(eεnΠ
)[uεnΠ

(eεnΠ
) − u(e〈∗〉)], eεnΠ

− e〈∗〉〉V (Ω)

6 〈L(eεnΠ
), uεnΠ

(eεnΠ
) − u(e〈∗〉)〉V (Ω)

+〈L(e〈∗〉), uεnΠ
(eεnΠ

) − u(e〈∗〉)〉V (Ω) + 〈L(eεnΠ
), eεnΠ

− e〈∗〉〉V (Ω). (4.30)

Next, taking into account that the members with coefficients (1/εn
Π
) in

(4.29) are non-negative, we can omit them. Moreover, the uniform coerci-
vity of the family of operators {A(eεn

)}n∈N , the relations ((4.18),1◦, (3.24),
(4.23), ((4.25),1◦) and the continuity properties of the operators A( . ) : U (Ω) →
L(V (Ω), V ∗(Ω)), imply: u〈∗〉 = u(e〈∗〉) and the convergence ((4.18),2◦). Thus,
by (4.25) we have




lim inf
εn→0

Oεn
> L (e〈∗〉)

and

Lεn
(e) → L (e), for any e ∈ Uad(Ω).

(4.31)

Here uεn
(e) is a solution to equation (4.4) and u(e) denotes a solution to

(4.1). Therefore one has

Oεn
6 Lεn

(ê〈∗〉) → L (ê〈∗〉), (4.32)

where ê〈∗〉 is a solution to (4.1) and (4.2). Consequently

lim sup
εn→0

Oεn
6 L (ê〈∗〉). (4.33)

Then, from ((4.31), 1◦) and (4.33) it follows that e〈∗〉 is a solution to (4.1), (4.2)
and

lim
εn→0

Oεn
= L (e〈∗〉) = O.

This concludes the proof.



250 J. LOVÍŠEK, J. KRÁLIK

5. Approximate optimal control. The numerical solution

by the finite element method

We shall propose approximate solutions of the optimization problem for an elas-
tic three-layered plate by the finite element method. We restrict ourselves to par-
ticular domains (namely we suppose that Ω is a parallelogram) and introduce the
convex set given by formula K (Ω) = {v ∈ V (Ω) : M0v(∂ΩCONTACT) > 0}, respec-
tively. Here K (Ω) is the closure of K(Ω) = {v ∈ C∞(Ω̄), M0v = 0, M1v = 0
on ∂ΩDISPLACEMENT and M0v > 0 on ∂ΩCONTACT} in the space H2(Ω).

Let Th denote a uniform partition of Ω into a finite number of small (open)
parallelograms H〈i〉 by means of two systems of equidistant straight lines paral-

lel to the sides of Ω. Then, we may write Ω̄ =
N(h)⋃
i=1

H̄〈i〉, H〈i〉∩H〈j〉 = ∅ for i 6= j

and denote h = diam H〈i〉. Assume that Th is consistent with the parti-
tion of the boundary ∂Ω = ∂ΩCONTACT ∪ ∂ΩDISPLACEMENT, i.e. the number of points
∂Ω̄DISPLACEMENT ∩ ∂Ω̄CONTACT is finite and every point of this kind coincides with a

node of Th. Thus, we may write: ∂ΩCONTACT =
N(h)∑
j=1

A∗
〈j−1〉hA∗

〈j〉h. We introduce

the spaces Q〈k〉(H) of bilinear (k = 1) or bicubic (k = 3) polynomials defined
on the parallelogram H. If H is not rectangular, the spaces Q〈k〉(H) are defined
via the affine mapping

[x1, x2] = V(y1, y2) : x1 = y1 + y2 cosα, x2 = y2 sinα, (5.1)

which maps a rectangle H〈∗〉 onto H. We set

v ∈ Q〈k〉(H) ⇔ v ◦ V = v̂ ∈ Q〈k〉(H〈∗〉).

Let Σh be the set of all vertices AQ, 1 6 Q 6 M(h) (nodes of Th) of
parallelograms. Let Vh(Ω) be a finite-dimensional subspace of V (Ω) defined by

Vh(Ω) = {v ∈ V (Ω) : v|HO ∈ Q3(HO), 1 6 O 6 N(h)},

i.e. Vh(Ω) contains those functions, which are continuous and continuously dif-
ferentiable in Ω̄ and piecewise bicubic in each HO. Then, Kh(Ω) is defined be
following way:

Kh(Ω) = {v ∈ Vh(Ω) : 0 6 v(A〈j〉h), 1 6 j 6 N(h)}.

Let us take notations:

eh = [Oh, Fh]T ∈ U
O

ad〈h〉(Ω) × U
F

ad〈h〉(∂ΩCONTACT) (= Uad〈h〉(Ω)),

where

U
O

ad〈h〉(Ω) = U
O

ad(Ω) ∩ Q〈h〉(Ω)



Optimal control for elasto-orthotropic plate 251

and
U

F

ad〈h〉(∂ΩCONTACT) = U
F

ad (∂ΩCONTACT) ∩ Q〈h〉, CONTACT(Ω)

where
Q〈h〉, CONTACT(Ω) = Q〈h〉 (Ω)|∂ΩCONTACT

Q〈h〉(Ω) = {vh ∈ C(Ω̄) : vh|HO ∈ Q1(HO) for all parallelograms HO ∈ Th}.

In what follows, we shall consider any families {Thn
}n∈N , hn → 0+ of parti-

tions, which refine the original partition Th〈∗〉
. We say that a family {Thn

}n∈N

is regular if there exists a positive constant such that (hn/ρ) 6 C for any
HO ∈ ∪

hn

Thn
and Σh1 ⊂ Σh2 if h1 > h2, where ρ denotes the diameter of

the maximal circle contained in HO.
Here the approximate friction functional has the form

Φh(eh, vh) =
∑

O⊂∂ΩCONTACT

∫

O

Fh|vh(ΓO)|ds + IKh(Ω)(vh), (5.2)

where O denotes the edge of rectangle H ∈ Th adjacent to ∂ΩCONTACT and ΓO is
the midpoint of O. Now we may define the following APPROXIMATE STATE

PROBLEM:
Given any eh ∈ Uad〈h〉(Ω), find uh(eh) ∈ Kh(Oh, Ω) such that

〈Ah(Oh)uh(eh), vh − uh(eh)〉Vh(Ω) + Φh(eh, vh) − Φh(eh, uh(eh))

> 〈L(eh), vh − uh(eh))〉V (Ω), (5.3)

holds for all vh ∈ Kh(Ω).
Observe that we shall employ some simple formulas of numerical integration:

Thus instead of 〈A (Oh)uh(eh), vh〉V (Ω), we introduce the form

〈A (Oh)uh(eh), vh〉V (Ω) =

N(h)∑

j=1

{D11(Oh(Γ〈j〉))

∫

Hj

(∂2uh(eh)/∂x2)(∂2vh/∂x2)dΩ

+D22(Oh(Γ〈j〉))

∫

Hj

(∂2uh(eh)/∂y2)(∂2vh/∂y2)dΩ

+D12(Oh(Γ〈j〉))

∫

Hj

((∂2uh(eh)/∂x2)(∂2vh/∂y2)

+(∂2uh(eh)/∂y2)(∂2vh/∂x2))dΩ

+2D13(Oh(Γ〈j〉))

∫

Hj

(∂2uh(eh)/∂x∂y)(∂2vh/∂x∂y)dΩ}, (5.4)

where Oh ∈ U O

ad〈h〉(Ω), [uh(eh), vh] ∈ Vh(Ω) and Γ〈j〉 is the centroid of H〈j〉.
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Finally, let us define the penalized cost functional:

L〈ε〉WEIGHT〈h〉 = 2

∫

Ω

[ω1H〈0〉 + ω2Oh]dΩ+(1/ε)

NO∑

O=1

([SO(eh,Mh(eh))]+) = 0.

Here the approximate optimal control problem consists in finding a function
eε〈h〉,WEIGHT of the approximate optimal control problem such that

(Pε〈h〉) eε〈h〉,WEIGHT = ArgMin
eh∈Uad〈h〉(Ω)

{LWEIGHT(eh)

+(1/ε)

NO∑

O=1

([SO(eh,Mh(eh))]+)}.

Further, we shall prove the solvability of the problem (Pε〈h〉). To this end
we first establish the following lemmas.

Lemma 5.1 For any Oh ∈ U O

ad〈h〉(Ω), uh(eh) ∈ Vh(Ω), v ∈ H2(Ω) there holds

|〈Ah(Oh)uh(eh), v〉Vh(Ω) − 〈A (Oh)uh(eh), v〉V (Ω)|

6 constanth||uh(eh)||V (Ω)||v||V (Ω). (5.5)

Proof. We may write

|〈Ah(Oh)uh(eh), v〉Vh(Ω) − 〈A (Oh)uh(eh), v〉V (Ω)|

=

∣∣∣∣
N(h)∑

j=1

∫

Hj

{
[D11(Oh(Γ〈j〉)) − D11(Oh)](∂2uh(eh)/∂x2)(∂2v/∂x2)

+[D22(Oh(Γ〈j〉)) − D22(Oh)](∂2uh(eh)/∂y2)(∂2v/∂y2)

+[D12(Oh(Γ〈j〉)) − D12(Oh)]((∂2uh(eh)/∂y2)(∂2v/∂x2)

+(∂2uh(eh)/∂x2)(∂2v/∂y2))

+[D33(Oh(Γ〈j〉)) − D33(Oh)](∂2uh(eh)/∂x∂y)(∂2v/∂x∂y)
}
dΩ

∣∣∣∣

6

N(h)∑

j=1

∫

Hj

{
|D11(Oh(Γ〈j〉)) − D11(Oh)||(∂2uh(eh)/∂x2)(∂2v/∂x2)|

+|D22(Oh(Γ〈j〉)) − D22(Oh)||(∂2uh(eh)/∂y2)(∂2v/∂y2)|

+|D12(Oh(Γ〈j〉)) − D12(Oh)||(∂2uh(eh)/∂y2)(∂2v/∂x2)

+(∂2uh(eh)/∂x2)(∂2v/∂y2)|

+|D33(Oh(Γ〈j〉)) − D33(Oh)||(∂2uh(eh)/∂x∂y)(∂2v/∂x∂y)|
}
dΩ,

|D11(Oh(Γ〈j〉)) − D11(Oh(x, y))| 6 (3||O2
hgradOh||C(Ω̄)

+4H〈0〉||OhgradOh||C(Ω̄) + H2
〈0〉||gradOh||C(Ω̄))(h/2) 6 constant h



Optimal control for elasto-orthotropic plate 253

and we obtain the same estimates for [D22(Oh), D12(Oh), D33(Oh)]. Thus, the
estimate (5.5) follows by inserting and summing.

Lemma 5.2 For any Oh ∈ U O

ad〈h〉(Ω) and [v, z] ∈ V (Ω) there holds

{
|〈Ah(Oh)v, z〉Vh(Ω)| 6 constant〈1〉||v||V (Ω)||z||V (Ω),

〈Ah(Oh)v, v〉Vh(Ω) > constant〈2〉||v||
2
V (Ω),

(5.6)

where [constant〈1〉, constant〈2〉] are independent of [h, Oh, v, z].

Proof. The estimates (5.6) follow immediately from (5.4) and the bounds for
Oh.

Lemma 5.3 The set Kh(Ω) is a closed and convex subset of Vh(Ω) and K (Ω) =
Lim
n→∞

Khn
(Ω) (convergence in the sense of Glowinski).

Proof. Let {vhn
}n∈N , vhn

∈ Khn
(Ω) be the sequence such that vhn

→ v weakly
in V (Ω) for n → ∞. We can show that v ∈ K (Ω). Indeed, we have v ∈ V (Ω)
and

lim
n→∞

||vhn
− v||C(Ω̄) = 0. (5.7)

Here, we take into account the fact that the embedding of V (Ω) into C(Ω̄)
is compact (Adams, 1975). Assume that M0v < 0 in an interval ϑ ⊂ ∂ΩCONTACT.
Then ε > 0 and a subinterval ϑ〈∗〉 ⊂ ϑ exist such that M0v(x, y) 6 −ε for all
[x, y] ∈ ϑ〈∗〉. For sufficiently small h there exists always a node A〈i〉h ∈ ϑ〈∗〉,
A〈i〉h ∈ Th and we may write

|vh(A〈i〉h) − M0v(A〈i〉h)| = vh(A〈i〉h) − M0v(A〈i〉h)

> −M0v(A〈i〉h) > ε,

which contradicts (5.7). Hence we have M0v > 0 on ∂ΩCONTACT.
Next, we consider v ∈ K (Ω). Then functions vO ∈ K(Ω) exist such that

lim
O→∞

||vO − v||V (Ω) = 0. (5.8)

Denote by θhn
= Rhn

vO the Vh(Ω)-interpolate of vO over the partition Thn
.

Then θhn
∈ Khn

(Ω) holds, since the nodal parameters involve all the values
vO(A〈j〉). On the other hand ||Rhn

vO − vO||V (Ω) 6 constant h2
n||vO||H4(Ω) holds

for any regular family {Thn
}n∈N and therefore

lim
n→∞

||θhn
− v||V (Ω) = 0, (5.9)

which concludes the proof.
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Lemma 5.4 The system of functionals Φh〈n〉(eh〈n〉, vh〈n〉), eh〈n〉 ∈ Uad〈h〉(Ω)
defined in (5.2), satisfies the assumptions (H2).

Proof. Let us write

Φh(eh, vh) = Φh〈Π〉(eh, vh) + Φh〈Q〉(eh, vh),

where




Φh〈Π〉(eh, vh) =
∑

O⊂∂ΩCONTACT

∫
O

Fh|vh(ΓO)|dS,

Φh〈Q〉(eh, vh) = IKh(Ω)(vh).
(5.10)

Further, we consider a sequence {eh〈n〉}n∈N , eh〈n〉 → eh, as n → ∞, eh〈n〉 ∈
Uad〈h〉(Ω).

Let vh ∈ Kh(Ω), then, due to Lemma 5.3, there exists a sequence {vh〈n〉}n∈N ,
vh〈n〉 ∈ Kh(Ω), such that vh〈n〉 → vh as n → ∞. Hence, we may write

|Φh(eh〈n〉, vh〈n〉) − Φh(eh, vh)| 6 |Λ〈Π〉n| + |Λ〈Q〉n|, (5.11)

where





|Λ〈Π〉n| = |Φh〈Π〉(eh〈n〉, vh〈n〉) − Φh〈Π〉(eh, vh)|

6 |Φh〈Π〉(eh〈n〉, vh〈n〉) − Φh〈Π〉(eh, vh〈n〉)|

+|Φh〈Π〉(eh, vh〈n〉) − Φh〈Π〉(eh, vh)|

6
∑
O

(|vh〈n〉(ΓO)|
∫
O

|Fh〈n〉 − Fh|dS

+|vh〈n〉(ΓO) − vh(ΓO)|
∫
O

FhdS) → 0 as n → ∞,

|Λ〈Q〉n| = |IKh(Ω)(vh〈n〉) − IKh(Ω)(vh)| = 0 for all n.

(5.12)

Thus, from (5.11) and (5.12) we conclude that

lim
n→∞

Φh(eh〈n〉, vh〈n〉) = Φh(eh, vh). (5.13)

On the other hand, let vh /∈ Kh(Ω), setting vh〈n〉 = vh for all n = 1, 2, . . .,
we obtain

lim sup
n→∞

Φh(eh〈n〉, vh〈n〉) 6 lim sup
n→∞

∑

O

∫

O

Fh〈n〉|vh〈n〉(ΓO)|dS + ∞

=
∑

O

∫

O

Fh|vh(ΓO)|dS + Φh〈Q〉(eh, vh) = Φh(eh, vh). (5.14)

Now in view of (5.13) and (5.14), we obtain

lim sup
n→∞

Φh(eh〈n〉, vh〈n〉) 6 Φh(eh, vh).
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Let vh〈n〉 → vh as n → ∞. We may write

lim inf
n→∞

Φh(eh〈n〉, vh〈n〉)> lim inf
n→∞

Φh〈Π〉(eh〈n〉, vh〈n〉)+lim inf
n→∞

Φh〈Q〉(eh〈n〉, vh〈n〉).

Here, by the same arguments as in the case of Λ〈Π〉n, we obtain

lim
n→∞

Φh〈Π〉(eh〈n〉, vh〈n〉) = Φh〈Π〉(eh, vh).

Next, we may write

lim
n→∞

IKh(Ω)(vh〈n〉) = Q,

where Q is either +∞ or zero. If Q = +∞ then obviously

Q > IKh(Ω)(vh). (5.15)

If Q = 0, then there exists a subsequence {vh〈nk〉}k∈N ⊂ {vh〈n〉}n∈N such
that vh〈nk〉 ∈ Kh(Ω) for all k → ∞. The limit vh belongs to Kh(Ω), so that
IKh(Ω)(vh) = 0 and (5.15) holds again.

As a consequence, lim inf
n→∞

Φh〈Q〉(eh〈n〉, vh〈n〉) > Φh〈Q〉(eh, vh) and the condi-

tion ((H2),1◦) is fulfilled. To satisfy condition ((H2),2◦), we can choose a〈n〉 = 0
for all n, since 0 ∈ Kh(Ω). Then one has Φh(eh〈n〉, a〈n〉) = 0 for all n.

Lemma 5.5 The approximate problem (Pε〈h〉) has at least one solution for any
fixed rectangulation ThO

and any ε > 0.

Proof. For fixed ThO and for eh〈n〉 → eh strongly in V (Ω), eh〈n〉 ∈ Uad,h(Ω),
n = 1, 2, . . ., we may prove (paralleling the proof of Lemma 3.5) that

Mh〈n〉(eh〈n〉) → Mh(eh) strongly in [L2(Ω)]3.

Then, taking into account this relation, we prove that the functions ([SO(eh〈n〉,
M(eh〈n〉))]

+) are continuous in Uad,h(Ω) (see the proof of the analogous Lemma
3.6). Thus we have proved the following: the cost functional in (Pε〈h〉) is

continuous, as well. Obviously one has: eh ∈ Uad,h(Ω) ⇔ {eh(A〈Q〉h)}
M(h)

Q=1
∈

Ph ⊂ R
M(h), where A〈Q〉h are the vertices of Th. But here the set Ph is

compact in R
M(h), being bounded and closed. Hence the cost functional attains

its minimum in Uad,h(Ω).

Lemma 5.6 Assume that a sequence {ehn
}n∈N , ehn

∈ Uad〈h〉(Ω)(= U O

ad〈h〉(Ω)×

U F

ad〈h〉(∂Ω)) converges to a function e([O, F ]) in C(Ω̄)×C(∂Ω̄CONTACT) for hn →
0+.

The following state variational inequality for uhn
(ehn

) ∈ Khn
(Ω)

〈Ahn
(Ohn

)uhn
(ehn

), vhn
− uhn

(ehn
)〉Vh(Ω) + Φh(ehn

, vhn
) − Φh(ehn

, uhn
(ehn

))

> 〈L(ehn
), vhn

− uhn
(ehn

)〉V (Ω), (5.16)
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for all vhn
∈ Khn

(Ω) has a unique solution uhn
(ehn

) for any ehn
∈ Uad〈h〉(Ω)

and for any h.
Let u(e) ∈ K (Ω) be the (unique) solution of the variational inequality

〈A (O)u(e), v−u(e)〉V (Ω) +Φ(e, v)−Φ(e, u(e)) > 〈L(e), v−u(e)〉V (Ω), (5.17)

for all v ∈ K (Ω). Then one has

lim
n→∞

||uhn
(ehn

) − u(e)||V (Ω) = 0.

Proof. Take the zero function for vhn
in (5.16). Hence, we obtain

〈Ahn
(Ohn

)uhn
(ehn

), uhn
(ehn

)〉Vh(Ω) + Φhn
(ehn

, uhn
(ehn

))

6 〈L(ehn
), uhn

(ehn
)〉V (Ω).

Next, due to the estimate (5.6),2◦) and in view of (2.11), we may write

constant〈2〉||uhn
(ehn

)||2V (Ω) 6 ||L(ehn
)||V ∗(Ω)||uhn

(ehn
)||V (Ω).

Hence, we conclude that

||uhn
(ehn

)||V (Ω) 6 constant, for all h < h〈0〉 (5.18)

Thus a subsequence {uhnk
(ehnk

)}k∈N exists such that

uhnk
(ehnk

) → u♦ weakly in V (Ω). (5.19)

Since the embedding H2(Ω) ⊂ C(Ω̄) is completely continuous, we have

uhnk
(ehnk

) → u♦ strongly in C(Ω̄). (5.20)

Moreover, by inserting: vhk
= θhk

into inequality (5.16) we obtain

〈Ahnk
(Ohnk

)uhnk
(ehnk

), θhk
− uhnk

(ehnk
)〉Vh(Ω) + Φhnk

(ehnk
, θhk

)

−Φhnk
(ehnk

, uhnk
(ehnk

)) > 〈L(ehnk
), θhk

− uhnk
(ehnk

)〉V (Ω).

Next we can show for hnk
→ 0+ (or k → ∞)

lim inf
k→∞

〈Ahnk
(Ohnk

)uhnk
(ehnk

), uhnk
(ehnk

)〉V (Ω) > 〈A (O)u♦, u♦〉V (Ω). (5.21)

In fact, since O ∈ U O

ad(Ω), w → 〈A (O)w, w〉V (Ω) is a lower weakly semicon-
tinuous functional on V (Ω) and from (5.19) we conclude that

lim
k→∞

〈A (O)uhnk
(ehnk

), uhnk
(ehnk

)〉V (Ω) > 〈A (O)u♦, u♦〉V (Ω).
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Due to the relation

|〈A (Ohnk
)uhnk

(ehnk
), uhnk

(ehnk
)〉V (Ω) − 〈A (O)uhnk

(ehnk
), uhnk

(ehnk
)〉V (Ω)|

6 constant[||O3
hnk

− O
3||L∞(Ω) + ||O2

hnk
− O

2||L∞(Ω)

+||Ohnk
− O||L∞(Ω)]||uhnk

(ehnk
)||2V (Ω) → 0,

we may write

lim inf
k→∞

(〈A (O)uhnk
(ehnk

), uhnk
(ehnk

)〉V (Ω)

+[〈A (Ohnk
)uhnk

(ehnk
), uhnk

(ehnk
)〉V (Ω)

−〈A (O)uhnk
(ehnk

), uhnk
(ehnk

)〉V (Ω)]) > 〈A (O)u♦, u♦〉V (Ω),

which is the estimate (5.21).
Next from Lemma 5.1 and in view of (5.21), (5.18) we obtain

lim inf
k→∞

(〈A (Ohnk
)uhnk

(ehnk
), uhnk

(ehnk
)〉V (Ω)

+[〈Ahnk
(Ohnk

)uhnk
(ehnk

), uhnk
(ehnk

)〉Vh(Ω)

−〈A (Ohnk
)uhnk

(ehnk
), uhnk

(ehnk
)〉V (Ω)]) > 〈A (O)u♦, u♦〉V (Ω) (5.22)

Further, for any v ∈ V (Ω), we have

lim
k→∞

〈A (Ohnk
)uhnk

(ehnk
), v〉V (Ω) = 〈A (O)u♦, v〉V (Ω). (5.23)

In fact, we may write

|[〈A (Ohnk
)uhnk

(ehnk
), v〉V (Ω) − 〈A (O)u♦, v〉V (Ω)]|

6 |[〈A (Ohnk
)uhnk

(ehnk
), v〉V (Ω) − 〈A (O)uhnk

(ehnk
), v〉V (Ω)]|

+|〈A (O)(uhnk
(ehnk

) − u♦), v〉V (Ω)| → 0

in view of boundedness of {uhnk
(ehnk

)}k∈N , (5.19), (3.20).
Thus, due to (5.23) and by Lemma 5.1, we derive that

lim
k→∞

〈Ahnk
(Ohnk

)uhnk
(ehnk

), v〉Vh(Ω) = 〈A (O)u♦, v〉V (Ω). (5.24)

Moreover, taking into account Lemmas 5.2, 5.3, (5.18) and (5.9), we conclude
that

|〈Ahnk
(Ohnk

)uhnk
(ehnk

), θhnk
− v〉Vh(Ω)|

6 constant〈1〉||uhnk
(ehnk

)||V (Ω)||θhnk
− v||V (Ω) → 0. (5.25)

Then combining (5.25) with (5.24), we arrive at

|〈Ahnk
(Ohnk

)uhnk
(ehnk

), θhnk
〉Vh(Ω) − 〈A (O)u♦, v〉V (Ω)|

6 |〈Ahnk
(Ohnk

)uhnk
(ehnk

), θhk
− v〉Vh(Ω)|

+|〈Ahnk
(Ohnk

)uhnk
(ehnk

), v〉Vh(Ω) − 〈A (O)u♦, v〉V (Ω)| → 0. (5.26)
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Consider the estimate

|Φhn
(ehn

, vhn
) − Φ(ehn

, vhn
)| = |

∑

O⊂∂ΩCONTACT

∫

O

Fhn
(|vhn

(ΓO)| − |vhn
|)dS|

6 FMAX

∑

O

∫

O

|vhn
(ΓO) − vh|dS.

We may write

|vhn
(ΓO) − vhn

(s)| 6 (1/2) MEAS O|∂vhn
/∂s|

6 (1/2) MEAS O||grad vhn
||L2(HO)

6 constant MEAS Oρ−1
H

hH(MEAS HO)−(1/4)|vhn
|H1(HO)

6 constant〈∗〉h
3/2
n |vhn

|H1(HO),

using the estimate MEAS HO 6 constantOh2
H

.
Here, HO is the parallelogram adjacent to the edge O and ρH is the radius

of the largest circle inscribed in HO . Thus, we obtain

∑

O

∫

O

|vhn
(ΓO) − vh|dS 6 constant〈∗〉h

(3/2)
n

∑

O

MEAS O|vhn
|H1(HO)

6 constant〈∗〉h
(3/2)
n

( ∑

O

MEAS O

)(1/2)( ∑

O

|vhn
|2H1(HO)

)(1/2)

6 constant〈∗〉h
(3/2)

MEAS ∂ΩCONTACT)
(1/2)|vhn

|H1(Ω) → 0.

As a consequence

Λ〈Π〉h := |Φhn
(ehn

, vhn
) − Φ(ehn

, vhn
)| → 0. (5.27)

Since v ∈ K (Ω), we have

Λ〈Q〉h := |Φ(ehn
, vhn

) − Φ(ehn
, v)| = |

∫

∂ΩCONTACT

Fhn
(|vhn

| − |M0v|)dS

6 FMAX(MEAS ∂ΩCONTACT)
(1/2)||vhn

− M0v||L2(∂ΩCONTACT) → 0. (5.28)

Finally, we may write

Λ〈O〉h := |Φ(ehn
, v) − Φ(e, v)| = |

∫

∂ΩCONTACT

(Fhn
− F )|M0v|dS|

6 ||Fhn
− F ||L∞(∂ΩCONTACT)

∫

∂ΩCONTACT

|M0v|dS → 0. (5.29)
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Hence, by virtue of (5.27) to (5.29), we arrive at

|Φhn
(ehn

, vhn
)−Φ(e, v)| 6 Λ〈Π〉h + Λ〈Q〉h + Λ〈O〉h → 0 as hn → 0+. (5.30)

On the other hand, in a parallel way, we can deduce that

|Φhn
(ehn

, uhn
(ehn

)) − Φ(e, u♦)| → 0 as hn → 0+, (5.31)

using the boundedness of {uhn
(ehn

)}n∈N and compactness of the trace operator
M0.

Here, state inequality (5.16) can be rewritten as follows

〈Ahnk
(Ohnk

)uhnk
(ehnk

), uhnk
(ehnk

)〉Vh(Ω) + Φh(ehnk
, uhnk

(ehnk
))

6 〈Ahnk
(Ohnk

)uhnk
(ehnk

), θhk
〉Vh(Ω) + Φh(ehnk

, θhk
)

+〈L(ehnk
), uhnk

(ehnk
) − θhk

〉V (Ω). (5.32)

Hence, passing to the lim inf
k→∞

on both sides of the inequality, we deduce that the

left-hand side is bounded below by

〈A (O)u♦, u♦〉V (Ω) + Φ(e, u♦), due to (5.22) and (5.31). (5.33)

At the same time, the right hand side has the following limit

〈A (O)u♦, v〉V (Ω) + Φ(e, v) + 〈L(e), u♦ − v〉V (Ω)

as follows from (5.26), (5.30) and the continuity of L(e).
Thus, we arrive at

〈A (O)u♦, u♦ − v〉V (Ω) + Φ(e, u♦) 6 〈L(e), u♦ − v〉V (Ω) + Φ(e, v).

Now, since v ∈ K (Ω) was arbitrary and the inequality (5.17) has a unique
solution (see (3.19)), u♦ = u(e) and the whole sequence {uhn

(ehn
)}n∈N tends

to u(e) weakly in the space V (Ω).
Finally, we have to prove the strong convergence. Here, referring to the

variational inequality (5.16) and passing to limes inferior or limes superior as
hn → 0+, we apply (5.22), (5.24), (5.30) and (5.31), and deduce that

〈A (O)u(e), u(e)〉V (Ω) 6 lim inf
n→∞

〈Ahn
(Ohn

)uhn
(ehn

), uhn
(ehn

)〉Vh(Ω)

6 lim sup
n→∞

〈Ahn
(Ohn

)uhn
(ehn

), uhn
(ehn

)〉Vh(Ω) 6 〈A (O)u(e), v〉V (Ω)

+Φ(e, v) − Φ(e, u(e)) + 〈L(e), u(e) − v〉V (Ω), (5.34)

for all v ∈ K (Ω).
We may set v := u(e) in (5.34) to obtain

lim
n→∞

〈Ahn
(Ohn

)uhn
(ehn

), uhn
(ehn

)〉Vh(Ω) = 〈A (O)u(e), u(e)〉V (Ω). (5.35)
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Next, we have

|〈A (O)uhn
(ehn

), uhn
(ehn

)〉V (Ω) − 〈Ahn
(Ohn

)uhn
(ehn

), uhn
(ehn

)〉Vh(Ω)|

6 |〈A (O)uhn
(ehn

), uhn
(ehn

)〉V (Ω) − 〈A (Ohn
)uhn

(ehn
), uhn

(ehn
)〉V (Ω)|

+|〈A (Ohn
)uhn

(ehn
), uhn

(ehn
)〉V (Ω)−〈Ahn

(Ohn
)uhn

(ehn
), uhn

(ehn
)〉Vh(Ω)|

6 ||A (O)uhn
(ehn

) − A (Ohn
)uhn

(ehn
)||V ∗(Ω)||uhn

(ehn
)||V (Ω)

+constant hn||uhn
(ehn

)||V (Ω)||uhn
(ehn

)||L2(Ω) → 0, (5.36)

making use of (3.20), (5.18) and (5.5). Thus, from (5.35) and (5.36), we conclude
that

lim
n→∞

〈A (O)uhn
(ehn

), uhn
(ehn

)〉V (Ω) = 〈A (O)u(e), u(e)〉V (Ω). (5.37)

Next, from (5.37) and (2.10), it follows that

lim
n→∞

a(O, uhnk
(ehnk

), uhnk
(ehnk

))

= lim
n→∞

〈A (O)uhnk
(ehnk

), uhnk
(ehnk

)〉V (Ω)

= 〈A (O)u(e), u(e)〉V (Ω) = a(O, u(e), u(e)). (5.38)

But, the bilinear form a(O, ., .) can be taken for a scalar product in V (Ω)
(in view of ((3.19),1◦). On the other hand, by virtue of (5.38) and the weak
convergence of {uhn

(ehn
)}n∈N , we conclude that

lim
n→∞

a(O, (uhnk
(ehnk

) − u(e)), (uhnk
(ehnk

) − u(e))) = 0,

which in turn implies that uhn
(ehn

) → u(e) strongly in V (Ω).

Lemma 5.7 Let {ehn
}n∈N , hn → 0+ be a sequence of ehn

∈ Uad〈h〉(Ω) such
that ehn

→ e strongly in U (Ω), as hn → 0+.
Then one has

Mhn
(ehn

) → M(e) strongly in [L2(Ω)]3. (5.39)

Proof. By using inclusion: Uad〈hn〉(Ω) ⊂ Uad(Ω) and Lemma 3.5, we conclude
that

||M(ehn
) − M(e)||[L2(Ω)]3 → 0.

Further, from Lemma 5.6, we see that

||Mhn
(ehn

) − M(ehn
)||[L2(Ω)]3 → 0.

Then, in view of the triangle inequality, we obtain

||Mhn
(ehn

) − M(e)||[L2(Ω)]3

6 ||Mhn
(ehn

) − M(ehn
)||[L2(Ω)]3 + ||M(ehn

) − M(e)||[L2(Ω)]3 → 0

as hn → 0+.
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Lemma 5.8 We have

L〈ε〉,WEIGHT(ehn
,Mhn

(ehn
)) → L〈ε〉,WEIGHT(e,M(e)), as hn → 0+.

Proof. Proof is analogous to that of Lemma 3.6, being based on Lemma 5.7.

Lemma 5.9 For any e ∈ Uad(Ω) there exists a sequence {ehn
}n∈N , hn → 0+,

such that ehn
∈ Uad〈hn〉(Ω) and ehn

→ e strongly in U (Ω), as hn → 0+.

Proof. Here, we introduce the parallelogram Ω and use the skew coordinates
([ξ, η]) via the mapping (5.1). Let Ω = F (Ω〈0〉), Ω〈0〉 = (0, LA) × (0, LB),
h〈1〉 = (LA/m), h〈2〉 = (LB/n). Further, denote by Hij the grid points with
coordinates: ξ = ih〈1〉, η = jh〈2〉, i = 0, 1, 2, . . . , m, j = 0, 1, 2, . . . , n






O
〈0〉
ij = [(i − 1)h〈1〉, ih〈1〉] × [(j − 1)h〈2〉, jh〈2〉], Oij = F (O

〈0〉
ij ),

O
〈0〉
ij = ((i − (1/2))h〈1〉, (i + (1/2))h〈1〉) × ((j − (1/2))h〈2〉,

(j + (1/2))h〈2〉) ∩ Ω〈0〉,

Oij = F (O
〈0〉
ij ).

From this, we have that Oij is a neighbourhood of the point F (Hij). Here we
set

Oh(F (Hij)) = (MESOij)
−1

∫

Oij

O(x, y)dΩ, 0 6 i 6 m, 0 6 j 6 n. (5.40)

Next, we interpolate the nodal values (5.40) by functions from Q1(Oij).
Hence, we obtain Oh ∈ U O

ad〈h〉(Ω). We may write

∫

Oij

OhdΩ = (1/4) MES Oij

4∑

k=1

Oh(H
〈k〉
ij )

where H
〈k〉
ij are vertices of the parallelogram Oij . Introduce the notation: S〈ij〉

(the union of all parallelograms Oij which are adjacent to the node F (Hij)),
then we have

∫

Ω

OhdΩ =

m∑

i=1

n∑

j=1

∫

Oij

OhdΩ =

m∑

i=1

n∑

j=1

(1/4) MESOij

4∑

k=1

Oh(F (H
〈k〉
ij ))

=

m∑

i=0

n∑

j=0

Oh(F (Hij))(1/4) MES S〈ij〉

=

m∑

i=0

n∑

j=0

(MES S〈ij〉/4 MESOij)

∫

Oij

OdΩ

=

∫

Ω

OdΩ, since MES S〈ij〉 = 4 MESOij , ∪
i,j
Ōij = Ω.



262 J. LOVÍŠEK, J. KRÁLIK

Further, we introduce the functions Õ = O ◦ F , Õh = Oh ◦ F . Then, we
may transform (5.40) into the formula

Õh(Hij) = (1/ MESO
〈0〉
ij )

∫

O
〈0〉
ij

Õ dξdη. (5.41)

Next, take the system [ξ, η] as a skew coordinate system, parallel with the
edges of Ω. From this identification follows that






∂O/∂ξ = ∂Õ/∂ξ, ∂O/∂η = ∂Õ/∂η

and

∂Oh/∂ξ = ∂Õh/∂ξ, ∂Oh/∂η = ∂Õh/∂η,

for the corresponding points.

Let us extend Õ onto a rectangle (−h〈1〉/2, Lx + h〈1〉/2) × (−h〈2〉/2, Ly +

h〈2〉/2), so that the extension O〈0〉 = Õ in Ω〈0〉 and O〈0〉 is symmetric with
respect to the sides, namely: O〈0〉(Lx + s, η) = O〈0〉(Lx − s, η) for any η ∈
(−h〈2〉/2, Ly + h〈2〉/2), for any s ∈ (0, h〈1〉/2) and similarly along the other
sides of ∂Ω〈0〉. Taking this into account, we may write instead of (5.41)

Õh(Hij) = (1/h〈1〉h〈2〉)

∫

S
〈0〉
ij

O〈0〉dξdη, 0 6 i 6 m, 0 6 j 6 n, (5.42)

where S
〈0〉
ij denotes the (complete) rectangle with the center Hij and the lengths

of sides h〈1〉, h〈2〉.

Further, we have

(1/h〈1〉)|Õh(Hi+1,j)−Õh(Hi,j)| = (1/h2
〈1〉h〈2〉)

∣∣
∫

S
〈0〉
i+1,j

O〈0〉dξdη −

∫

S
〈0〉
ij

O〈0〉dξdη
∣∣

= (1/h〈1〉h〈2〉)
∣∣

∫

S
〈0〉
ij

(1/h〈1〉)[O〈0〉(ξ + h〈1〉, η) − O〈0〉(ξ, η)]dξdη
∣∣

6 (1/h〈1〉h〈2〉) constant〈ξ〉 MES S
〈0〉
ij = constant〈ξ〉, (5.43)

where we use the fact that |∂O〈0〉/∂ξ| 6 constant〈ξ〉 holds almost everywhere.

It follows from Õh ∈ Q1(O
〈0〉
ij ) in O

〈0〉
ij that the derivative ∂Õh/∂ξ attains its

maximum at the boundary ∂O
〈0〉
ij . Then, in view of (5.43), we get the estimate

|∂Oh/∂ξ| 6 constant〈ξ〉 for any [x, y] ∈ Ω.

Moreover, the upper bound constant〈η〉 for |∂Oh/∂n| can be derived in a

parallel way. Here we note that the maximum of Õh in O
〈0〉
ij is attained at some
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vertex of O
〈0〉
ij . Then, in view of (5.41), we easily verify that: OMIN 6 Oh(x, y) 6

OMAX for any [x, y] ∈ Ω̄. Hence, we have proven that Oh ∈ U O

ad〈h〉(Ω).

Notice that in order to get a convergence of {Ohn
}n∈N , we consider an

arbitrary point [x, y] ∈ Ω̄ and we may write (for [ξ, η] = F−1(x, y) ∈ O
〈0〉
ij )

|Ohn
(x, y) − O(x, y)| 6

∣∣∣
4∑

k=1

Õhn
(H

〈k〉
i,j )ωk(ξ, η) −

4∑

k=1

O(ξ, η)ωk(ξ, η)
∣∣∣

where ωk are the shape functions of Q1(O
〈0〉
ij ) (here one has ωk(H

〈m〉
ij ) = δkm at

the vertices).
Hence in view of (5.41), we obtain

|Ohn
(x, y) − O(x, y)| 6

4∑

k=1

∣∣Õhn
(H

〈k〉
ij ) − Õ(ξ, η)|ωk(ξ, η)

=

4∑

k−1

|(1/h〈1〉h〈2〉)

∫

S
〈0〉k

ij

O〈0〉(s1, s2)ds1ds2

−(1/h〈1〉h〈2〉)

∫

S
〈0〉k

ij

Õ(ξ, η)ds1ds2

∣∣ωk(ξ, η)

6

4∑

k−1

(1/h〈1〉h〈2〉)

∫

S
〈0〉k

ij

|O〈0〉(s1, s2) − Õ(ξ, η)|ds1ds2, (5.44)

where S
〈0〉k
ij denotes the rectangle with the center at Hk

ij and MES S
〈0〉k
ij =

h〈1〉h〈2〉.
On the other hand, we get

|O〈0〉(s1, s2) − Õ(ξ, η)| = |O〈0〉(s1, s2) − O〈0〉(ξ, η)|

6 |O〈0〉(s1, s2) − O〈0〉(ξ, s2)| + |O〈0〉(ξ, s2) − O〈0〉(ξ, η)|

6 (3/2)(h〈1〉constant〈ξ〉 + h〈2〉constant〈η〉). (5.45)

Then, due to (5.45) and (5.44), we have

|Ohn
(x, y) − O(x, y)| 6 12hn max(constant〈ξ〉, constant〈η〉).

Let ΠhF denote the Lagrange linear interpolant of F over partition of
∂ΩCONTACT, generated by Th. Since F ∈ W 1

∞(∂ΩCONTACT), interpolation theory
(Ciarlet, 1978) yields

||F − Πhn
F ||L∞(∂ΩCONTACT) 6 constant hn||F ||W 1

∞(∂ΩCONTACT).
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Obviously, 0 6 Πhn
F 6 FMAX everywhere. For any straight-line segment

PQ ∈ H, where P , Q ∈ ∂ΩCONTACT and H ∈ Th, we have

|∂Πhn
F/∂s| 6 (1/ MEAS PQ)|F (Q) − F (P )|

6 (1/ MEAS PQ)

Q∫

P

|∂F/∂s|dS 6 constantF .

Now, eh = [Oh, ΠhF ]T satisfies the conditions of the lemma.

Theorem 5.1 Let {eε〈hn〉,WEIGHT}n∈N , hn → 0+ be a sequence of solutions of the
approximate optimal control problem (Pε〈hn〉).

Then there exists a subsequence {eε〈hnk
〉,WEIGHT}k∈N ⊂ {eε〈hn〉,WEIGHT}n∈N and

an element eε〈∗〉,WEIGHT ∈ Uad(Ω) such that

{
eε〈hnk

〉,WEIGHT → eε〈∗〉,WEIGHT strongly in U (Ω),

Mhnk
(eε〈hnk

〉,WEIGHT) → M(eε,WEIGHT strongly in [L2(Ω)]3,
(5.46)

and eε,WEIGHT is a solution of the penalized optimal control problem (Pε). Each
uniformly convergent subsequence {eε〈hn〉,WEIGHT}n∈N tends to a solution of (Pε)
and ((5.46),2◦) holds.

Proof. Here we have Uad〈h〉(Ω) ⊂ Uad(Ω) and Uad(Ω) is compact in U (Ω) (

= C(Ω̄)×C(∂ΩCONTACT)). Hence, there exists a subsequence of {eε〈hn〉,WEIGHT}n∈N

such that ((5.46),1◦) holds with eε,WEIGHT ∈ Uad(Ω). Then, from Lemma 5.7 we
obtain ((5.46),2◦). In the following, we prove that e〈ε〉,WEIGHT is a solution of the
problem (P〈ε〉). Consider any e ∈ Uad(Ω) and we apply Lemma 5.9 to obtain
{ehk

}k∈N , ehk
∈ Uad〈hk〉(Ω), such that ehk

→ e strongly in U (Ω).

Now, the definition (P〈ε〉) implies that

L〈ε〉,WEIGHT〈h〉
(eε〈hk〉,WEIGHT ,Mhnk

(eε〈hnk
〉,WEIGHT))

6 L〈ε〉,WEIGHT〈h〉
(ehk

,Mhk
(ehk

)) (5.47)

for any hnk
.

Taking into account (5.47) and passing to the limit with hnk
→ 0+ and

applying Lemma 5.8 to both sides, we arrive at

L〈ε〉,WEIGHT(eε,M(eε)) → L〈ε〉,WEIGHT(e,M(e)).

Thus, the element eε,WEIGHT is a solution to the problem (P〈ε〉), what completes
the proof.
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6. Application to a circular plate with annular opening

We consider the case of an elastic circular plate with annular openings (the
midplane of the plate occupy a given bounded domain Ω = {[x, y] ∈ R

2, RA <
x2 + y2 < RB}) subjected to the axially symmetric loads (concentrated load
at the curve (circle) O〈a〉 and O〈b〉). Let the boundary ∂Ω be decomposed as

follows: ∂Ω = ∂ΩDISPLACEMENT ∪ ∂ΩCONTACT, where on ∂ΩDISPLACEMENT (with radius RA)
homogeneous conditions are prescribed, whereas on ∂ΩCONTACT (with radius RB)
the plate is unilaterally supported and is subject to a contact with friction.
The transversal displacements (deflection of axisymmetric plate) v belong to
the space (on ∂ΩDISPLACEMENT a homogeneous kinematic conditions are prescribed)

V (Ω) := {v ∈ H2(Ω) : M0v = 0, M1v = 0 on ∂ΩDISPLACEMENT}.

The investigated plate is circular, therefore we introduce the polar coor-
dinates by the transformation: x = r cos θ, y = r sin θ. Here we introduce
unilateral constraint imposed upon the deflection v on ∂ΩCONTACT (the plate is
subjected to a contact with friction)

K (Ω) := {v ∈ V (Ω) : M0v > 0 on ∂ΩCONTACT}

or

K (Ω〈AB〉) := {v ∈ V (Ω〈AB〉) : M0v > 0 at the point r = RA},

where

V (Ω〈AB〉) := {v ∈ H2(Ω〈AB〉) : M0v = 0, M1v = 0 at the point r = RB}.

Due to the axisymmetric load and axisymmetric boundary conditions on
∂Ω the state function depends only on the radius r. We deduce the following
relations for the bending moments [Mrr(O, r), Mθθ(O, r)] and for the torque
Mrθ(O, r)





Mrr(O, r) = Mrr(O) = D11(O)(d2v/dr2) + D12(O)(1/r)(dv/dr),

Mθθ(O, r) = Mθθ(O) = D21(O)(d2vdr2) + D22(O)(1/r)(dvdr),

Mrθ(O) = Mθr(O) = 0.

from which we conclude the isotropic material to be a partial case of the or-
thotropic one

E11 = E22 = E, ν12 = ν21 = ν, G = E/2(1 + ν).

Let us use the virtual displacement principle to establish a variational for-
mulation of the problem. To this end we introduce a bilinear form

〈A (O)v, z〉V (Ω〈AB〉) = a(O, v, z)

= 2π

∫

Ω〈AB〉

〈d2v/dr2, (1/r)dv/dr〉[K(O)]〈d2z/dr2, (1/r)dz/dr〉T rdr (6.1)
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and the virtual work of external loads by the formula

〈L, v〉V (Ω) = −

∫

OR1

p〈1〉vdS +

∫

OR2

p〈2〉vdS + 2π

∫

Ω

rp(r)vdr,

or

〈L, v〉V (Ω〈AB〉) = 2π[−p〈1〉ROR1
v(ROR1

)+p〈2〉ROR2
v(ROR1

)]+2π

∫

Ω〈AB〉

rp(r)vdr,

where

[K(O)] =

[
D11(O) D12(O)
D21(O) D22(O)

]

and

[K(O)] = (2EO
3/3(1 − ν2))

[
1 ν
ν 1

]
,

for isotropic plate, v is the Poisson ratio, and 2O is the thickness of the plate.
Here we assume that the thickness O of the exterior layers (or the plate half-

thickness) is not constant over the whole area Ω. Now, let it be axisymmetric.
Then we can assume that it is possible to express the thickness of the plate by
a function O ∈ Uad(Ω〈AB〉) where

Uad(Ω〈AB〉) =
{
O ∈ C(0),1(Ω̄〈AB〉), |dO/dr| 6 constant〈O〉,

0 < Omin 6 O(r) 6 Omax,

r ∈ Ω̄〈AB〉, where constant〈O〉 is a positive number
}
.

Lemma 6.1 The set K (Ω〈AB〉) ∩ C∞(Ω̄〈AB〉) is dense in K (Ω〈AB〉).

Proof. Consider a v ∈ K (Ω). Taking into account the partition of unity such
that {RA} ⊂ supp θ1, {RB} ⊂ supp θ2, supp θ1∩{RB} = ∅, supp θ2∩{RA} = ∅,
we may write

v =
2∑

j=1

vθj , vθj = vj

and solve the approximation of every vj separately.
If v2(RB) > 0, we extend the function by its tangent at r = RB for r > RB

and regularize by the formula:

Rκf(r) = Aκ−1

∞∫

−∞

ω(r − ρ, κ)f(ρ)dρ,

ω(a, κ) = exp(a2/(a2 − κ2)), for |a| 6 κ or ω(a, κ) = 0, for |a| > κ,

where A and κ are constants.
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Since the extension Ev2 is positive in a neighbourhood of the point r = RB,
its regularization RκEv2 > 0 for κ sufficiently small and

||Rκn
Ev2 − v2||H2(Ω〈AB〉) → 0 for κn → 0. (6.2)

If v2(RB) = 0, we extend v2 in such way that Ev2 is antisymmetric with
respect to the point r = RB, i.e. Ev2(r) = −v2(2RB − r) for r > RB.

Hence we deduce that RκEv2(RB) = 0 and (6.2) holds.
Next, the function v1 will be extended by zero for r < RA, then shifted to

the right and regularized (for κ less than the shift). Here we obtain functions:
v1κn

∈ C∞
0 (Ω〈AB〉) such that

||v1κn
− v1||H2(Ω〈AB〉) → 0 for κn → 0. (6.3)

On the other hand, making use of (6.2) and (6.3) we have

||(v1 − v1κn
) + (v2 − Rκn

Ev2)||H2(Ω〈AB〉)

6 ||v1 − v1κn
||H2(Ω〈AB〉) + ||v2 − Rκn

Ev2||H2(Ω〈AB〉) → 0,

which completes the proof.

Let us use the virtual displacement principle to establish a variational formu-
lation of the problem (shape optimization of elastic axisymmetric plate). Then,
the general statement of such a problem is as follows:

Given any O ∈ Uad(Ω〈AB〉) find u(O) ∈ K (Ω〈AB〉) such that

〈A (O)u(O), v − u(O)〉V (Ω〈AB〉) > 〈L, v − u(O)〉V (Ω〈AB〉), (6.4)

holds for all v ∈ K (Ω〈AB〉).
Now, we define the cost functional (desired deflection)





LDESIRED DEFLECTION(v) = 2π
∫

Ω〈AB〉

[v − zad]
2rdr

and

LINTENSITY OF SHEAR STRESS(O, v) = 2π
∫

Ω〈AB〉

[σ2
rr + σ2

θθ − σrrσθθ]rdr,

=

(
9

4 MEAS Ω〈AB〉

)
2π

∫
Ω〈AB〉

(H〈0〉 + O)4[M2
rr(O) + M2

θθ(O)

−Mrr(O)Mθθ(O)]rdr

or(
18π

4 MEAS Ω〈AB〉

) ∫
Ω〈AB〉

{(O(r))2[(d2v/dr2)2 + (dv/dr)2(1/r2)]

×(1 − ν + ν2) + [(dv/dr)(d2v/dr2](1/r)(−1 + 4ν − ν2)}rdr

= Q
∫

Ω〈AB〉

r(O(r))2ϕ([v, v])dr.

(6.5)
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The choice corresponds to the minimization of the expression (the so called von
Mises equivalent stress) evaluated on the surface of the plate.

Now, we define the following optimal control problems




O〈∗〉,DESIRED DEFLECTION = ArgMin
O∈Uad(Ω〈AB〉)

LDESIRED DEFLECTION(O, u(O))

and

O〈∗〉,INTENSITY OF SHEAR STRESS = ArgMin
O∈Uad(Ω〈AB〉)

LINTENSITY OF SHEAR STRESS(O, u(O)).

(6.6)

Approximation of the problem

Let N(h) be an integer and Th a partition of interval [RA, RB] into N(h)
subintervals Oj = [Rj−1, Rj] of the length h, j = 1, 2, . . . , N(h), R0 = RA,
RN(h) = RB. Here we shall consider only h that lead to a uniform partition of
the interval. Let Pk(O) be the polynomials whose order is at most k. We define





Uad〈h〉(Ω〈AB〉) := {O ∈ Uad(Ω〈AB〉) : O|Oj
∈ P1(Oj), for any j},

Vh(Ω〈AB〉) := {v ∈ V (Ω〈AB〉) : v|Oj
∈ P3(Oj), for any j},

Kh(Ω〈AB〉) := K (Ω〈AB〉) ∩ Vh(Ω〈AB〉).

(6.7)

Approximate State Problem:
Given any Oh ∈ Uad〈h〉(Ω〈AB〉), find uh(Oh) ∈ Kh(Ω〈AB〉) such that

〈Ah(Oh)uh(Oh), vh − uh(Oh)〉Vh(Ω〈AB〉) > 〈L, vh − uh(Oh)〉V(Ω〈AB〉)
, (6.8)

holds for all vh ∈ Kh(Ω〈AB〉).
Let the approximate Optimal Control Problem (Ph) be defined in the fol-

lowing way:

Find O〈∗〉h,DESIRED DEFLECTION ∈ Uad〈h〉(Ω〈AB〉)
and O〈∗〉h,INTENSITY OF SHEAR STRESS ∈ Uad〈h〉(Ω〈AB〉) such that






O〈∗〉h,DESIRED DEFLECTION = ArgMin
Oh∈Uad〈h〉(Ω〈AB〉)

LDESIRED DEFLECTION(uh(Oh))

O〈∗〉h,INTENSITY OF SHEAR STRESS = ArgMin
Oh∈Uad〈h〉(Ω〈AB〉)

LINTENSITY OF SHEAR STRESS〈h〉(Oh, uh(Oh)).

(6.9)

Next, we introduce a numerical quadrate finite element approximation of
(6.1). Taking into account (6.7), we have

〈Ah(Oh)vh, zh〉Vh(Ω〈AB〉) =

N(h)∑

j=1

2π

∫

Oj

(〈d2vh/dr2, (1/r)dvh/dr〉[K(Oh(aj))]

×〈d2zh/dr2, (1/r)dzh/dr〉T )rdr, (6.10)

where aj = (1/2)(Rj−1 + Rj), Oh ∈ Uad〈h〉(Ω〈AB〉), [vh, zh] ∈ V (Ω〈AB〉).
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Lemma 6.2 For any Oh ∈ Uad〈h〉(Ω〈AB〉) and vh, zh ∈ Vh(Ω〈AB〉) the following
estimate holds:

|〈Ah(Oh)vh, zh〉Vh(Ω〈AB〉) − 〈A (Oh)vh, zh〉V (Ω〈AB〉)|

6 constant〈1〉 h||vh||V (Ω〈AB〉)||zh||V (Ω〈AB〉), (6.11)

where the constant〈1〉 is independent of h.

Proof. We may write

|〈Ah(Oh)vh, zh〉Vh(Ω) − 〈A (Oh)vh, zh〉V (Ω)|

=
∣∣2π

N(h)∑

j=1

(

∫

Oj

〈d2vh/dr2, (1/r)dvh/dr〉

×([K(Oh(aj))] − [K(Oh(r))])〈d2zh/dr2, (1/r)dzh/dr〉T rdr)
∣∣

6 2π

N(h)∑

j=1

(

∫

Oj

|r(d2vh/dr2)(d2zh/dr2)[D11(Oh(aj)) − D11(Oh(r))]|dr

+

∫

Oj

|[(d2vh/dr2)(dzh/dr) + (dvh/dr)(d2zh/dr2)]

×[D12(Oh(aj)) − D12(Oh(r))]|rdr

+

∫

Oj

|(1/r)(dvh/dr)(dzh/dr)[D22(Oh(aj)) − D22(Oh(r))]|dr). (6.12)

Further, taking into account the estimate

|O3
h(aj) − O

3
h(r)| 6 (3/2)||O2

hdOh/dr||C(Ōj)h

6 (3/2)O2
MAX

constant〈O〉h = constant〈Q〉h, r ∈ Oj (6.13)

for (6.12), we conclude that

|〈Ah(Oh)vh, zh〉Vh(Ω〈AB〉) − 〈A (Oh)vh, zh〉V (Ω〈AB〉)|

6 max[E11, E22, E12]

N(h)∑

j=1

constant〈Q〉 h(

∫

Oj

|r(d2vh/dr2)(d2zh/dr2)|dr

+

∫

Oj

|(d2vh/dr2)(dzh/dr) + (dvh/dr)(d2zh/dr2)|dr

+

∫

Oj

|(1/r)(dvh/dr)(dzh/dr)|dr) 6 constant〈1〉 h||vh||V (Ω〈AB〉)||zh||V (Ω〈AB〉).
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Here the subspace Vh(Ω〈AB〉) is finite-dimensional, Vh(Ω〈AB〉) is a closed
subspace of V (Ω〈AB〉). Then, the bilinear form 〈Ah(Oh)., .〉Vh(Ω〈AB〉) is bounded
and Vh(Ω〈AB〉)-elliptic on Vh(Ω〈AB〉) × Vh(Ω〈AB〉) and 〈L, .〉Vh(Ω) is continuous
linear form on Vh(Ω〈AB〉)

The estimates
{
|〈Ah(Oh)vh, zh〉Vh(Ω〈AB〉)| 6 constant〈Π1〉||vh||V (Ω〈AB〉)||zh||V (Ω〈AB〉),

〈Ah(Oh)vh, vh〉Vh(Ω〈AB〉) > constant〈Π2〉||vh||2V (Ω〈AB〉)
,

(6.14)

follow immediately from (6.10) and the bounds for Oh. Hence the following
variational inequality (6.8) has a unique solution uh(Oh) for any h and any
Oh ∈ Uad〈h〉(Ω).

Furthermore, the problem that remains is to get an estimate

||u(O) − uhn
(Ohn

)||V (Ω),

where u(O) is the solution of (6.4) and uh(Oh) is the solution of (6.8). Next, we
may write (substituting the zero function for vh in (6.8))

constant ||uhn
(Ohn

)||2V (Ω〈AB〉)
6 〈Ahn

(Ohn
)uhn

(Ohn
), uhn

(Ohn
)〉Vh(Ω〈AB〉)

6 〈L, uhn
(Ohn

)〉V (Ω〈AB〉) 6 ||L||V ∗(Ω〈AB〉)||uhn
(Ohn

)||V (Ω〈AB〉).

Hence, we conclude that

||uhn
(Ohn

)||V (Ω〈AB〉) 6 constant. (6.15)

Then, a subsequence of {uhnk
(Ohnk

)}n∈N exists such that

uhnk
(Ohnk

) → u♦ weakly in V (Ω〈AB〉). (6.16)

But the embedding of H2(Ω〈AB〉) ⊂ C1(Ω̄〈AB〉) is completely continuous, this
means that

uhnk
(Ohnk

) → u♦ strongly in C1(Ω̄〈AB〉). (6.17)

Here, we may pass to the limit with hnk
→ 0+ in the inequality

uhnk
(Ohnk

) > 0 for r = RB,

to obtain that

u♦ > 0 for r = RB.

Thus, we deduce that u♦ ∈ K (Ω〈AB〉).
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Let us verify that u♦ = u(O) is the solution of (6.4). Given a function v ∈
K (Ω〈AB〉) (due to the Lemma 6.1 for any O ∈ Uad(Ω〈AB〉) the set K (Ω〈AB〉)∩
C∞(Ω̄〈AB〉) is dense in K (Ω〈AB〉)) there exists a sequence vOk

∈ K (Ω〈AB〉) ∩
C∞(Ω̄〈AB〉) such that vOk

→ v strongly in V (Ω〈AB〉). If we denote by ϑhk
=

Hhk
vOk

the Hermite cubic interpolate of vOk
over the partition Thnk

, the one
has ϑhk

∈ Vhnk
(Ω) and even ϑhk

∈ Khnk
(Ω〈AB〉).

Furthermore, we have

||Hhk
vO − vO||V (Ω〈AB〉) 6 constant〈1〉h

2
nk
||vO||H4(Ω〈AB〉) (6.18)

and therefore

||ϑhk
− v||H2(Ω〈AB〉) → 0, for hk → 0+. (6.19)

In view of the inequality (6.8), we may write (inserting vhnk
= ϑhk

)

〈Ahnk
(Ohnk

)uhnk
(Ohnk

), ϑhk
− uhnk

(Ohnk
)〉Vh(Ω〈AB〉)

> 〈L, ϑhk
− uhnk

(Ohnk
)〉Vh(Ω〈AB〉). (6.20)

Here we can show that for hnk
→ 0+

lim inf
k→∞

〈A (Ohnk
)uhnk

(Ohnk
), uhnk

(Ohnk
)〉V (Ω〈AB〉) > 〈A (O)u♦, u♦〉V (Ω〈AB〉).

(6.21)

In fact, since O ∈ Uad(Ω〈AB〉) → 〈A (O)u♦, u♦〉V (Ω〈AB〉) is a lower semicon-
tinuous functional on V (Ω〈AB〉) and from (6.16) we conclude that

lim
k→∞

〈A (O)uhnk
(Ohnk

), uhnk
(Ohnk

)〉V (Ω〈AB〉) > 〈A (O)u♦, u♦〉V (Ω〈AB〉).

Further, since

|〈A (Ohnk
)uhnk

(Ohnk
), uhnk

(Ohnk
)〉Vh(Ω〈AB〉)

−〈A (O)uhnk
(Ohnk

), uhnk
(Ohnk

)〉V (Ω〈AB〉)|

6 constant (||O3
hnk

− O||C(Ω̄〈AB〉)
+ ||O2

hnk
− O

2||C(Ω̄〈AB〉)

+||Ohnk
− O||C(Ω̄〈AB〉)

)||uhnk
(Ohnk

)||2V (Ω〈AB〉)
→ 0, (6.22)

we may write

lim inf
k→∞

(〈A (O)uhnk
(Ohnk

), uhnk
(Ohnk

)〉V (Ω〈AB〉)

+[〈A (Ohnk
)uhnk

(Ohnk
), uhnk

(Ohnk
)〉V (Ω〈AB〉)

−〈A (O)uhnk
(Ohnk

), uhnk
(Ohnk

)〉V (Ω〈AB〉)]) > 〈A (O)u♦, u♦〉V (Ω〈AB〉),

which gives the estimate (6.21).
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Then due to the estimates (6.12) and (6.22), we conclude that

lim inf
k→∞

(〈A (Ohnk
)uhnk

(Ohnk
), uhnk

(Ohnk
)〉V (Ω〈AB〉)

+[〈Ahnk
(Ohnk

)uhnk
(Ohnk

), uhnk
(Ohnk

)〉Vh(Ω〈AB〉)

−〈A (O)uhnk
(Ohnk

), uhnk
(Ohnk

)〉V (Ω〈AB〉)])

> 〈A (O)u♦, u♦〉V (Ω〈AB〉). (6.23)

For any v ∈ V (Ω〈AB〉)

lim
k→0

〈A (Ohnk
)uhnk

(Ohnk
), v〉V (Ω〈AB〉) = 〈A (O)u♦, v〉V (Ω〈AB〉). (6.24)

In fact, we may write

|〈A (Ohnk
)uhnk

(Ohnk
), v〉V (Ω〈AB〉) − 〈A (O)u♦, v〉V (Ω〈AB〉)|

6 |〈A (Ohnk
)uhnk

(Ohnk
), v〉V (Ω〈AB〉) − 〈A (O)uhnk

(Ohnk
), v〉V (Ω〈AB〉)|

+|〈A (O)(uhnk
(Ohnk

) − u♦), v〉V (Ω〈AB〉) → 0,

since uhnk
(Ohnk

) are bounded and (6.17) holds.
On the other hand, in view of (6.24) and Lemma 6.2, we derive that

lim
k→∞

〈Ahnk
(Ohnk

)uhnk
(Ohnk

), v〉Vh(Ω〈AB〉) = 〈A (O)u♦, v〉V (Ω〈AB〉). (6.25)

Further, due to the estimates (6.14) and (6.16), (6.19), we conclude that

|〈Ahnk
(Ohnk

)uhnk
(Ohnk

), ϑhnk
− v〉Vh(Ω〈AB〉)|

6 constant〈Π1〉||uhnk
(Ohnk

)||V (Ω〈AB〉)||ϑhnk
− v||H2(Ω〈AB〉) → 0. (6.26)

Hence (combining (6.26) with (6.25)), we arrive at

|〈Ahnk
(Ohnk

)uhnk
(Ohnk

), ϑhnk
〉Vh(Ω〈AB〉) − 〈A (O)u♦, v〉V (Ω〈AB〉)|

6 |〈Ahnk
(Ohnk

)uhnk
(Ohnk

), ϑhnk
− v〉Vh(Ω〈AB〉)|

+|〈Ahnk
(Ohnk

)uhnk
(Ohnk

), v〉Vh(Ω〈AB〉)

−〈A (O)u♦, v〉V (Ω〈AB〉)| → 0. (6.27)

Finally, we can write

|〈L, uhnk
(Ohnk

)〉Vh(Ω〈AB〉) − 〈L, u♦〉V (Ω〈AB〉)| → 0 (6.28)

making use of (6.16)
Now, the inequality (6.20) can be rewritten as follows

〈Ahnk
(Ohnk

)uhnk
(Ohnk

), uhnk
(Ohnk

)〉Vh(Ω〈AB〉)

6 〈Ahnk
(Ohnk

)uhnk
(Ohnk

), ϑhn
〉Vh(Ω〈AB〉)

+〈L, uhnk
(Ohnk

) − ϑhnk
〉Vh(Ω〈AB〉). (6.29)
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Let us pass to the lim inf
n→∞

on both sides of (6.29). Here, due to (6.23), the

left-hand side is bounded below by 〈A (O)u♦, u♦〉V (Ω〈AB〉).
Moreover, the right hand side possesses the following limit

〈A (O)u♦, v〉V (Ω〈AB〉) + 〈L, u♦ − v〉V (Ω〈AB〉),

as follows from (6.27), (6.28) and (6.16), (6.19). Thus, we arrive at the inequality

〈A (O)u♦, u♦ − v〉V (Ω〈AB〉) 6 〈L, u♦ − v〉V (Ω〈AB〉).

Since u♦ ∈ K (Ω) was arbitrary and the inequality (6.4) has a unique solu-
tion, u♦ = u(O) and the whole sequence {uhn

(Ohn
)}n∈N tends to u♦ weakly in

V (Ω〈AB〉).
Finally, it remains to prove the strong convergence. Note that due to (6.20)

and (6.4), we may write

|〈Ahn
(Ohn

)uhn
(Ohn

), uhn
(Ohn

)〉Vh(Ω〈AB〉) − 〈A (O)u(O), u(O)〉V (Ω〈AB〉)|

6 |〈L, uhn
(Ohn

) − ϑhn
〉Vh(Ω〈AB〉) − 〈L, u(O) − v〉V (Ω〈AB〉)|

+|〈Ahn
(Ohn

)uhn
(Ohn

), ϑhn
〉Vh(Ω〈AB〉) − 〈A (O)u(O), v〉V (Ω〈AB〉)|.

But, the first term on the right hand side has the zero limit (by (6.28) and
(6.19)), the second term has the zero limit (due to (6.27)).

Hence, we conclude that

lim
n→∞

〈Ahn
(Ohn

)uhn
(Ohn

), uhn
(Ohn

)〉Vh(Ω〈AB〉) = 〈A (O)u(O), u(O)〉V (Ω〈AB〉).

(6.30)

Then, taking into account (6.30), (6.11) and (6.22), we have

|〈A (O)uhn
(Ohn

), uhn
(Ohn

)〉V (Ω〈AB〉) − 〈A (O)u(O), u(O)〉V (Ω〈AB〉)|

6 |〈A (O)uhn
(Ohn

), uhn
(Ohn

)〉V (Ω〈AB〉)

−〈A (Ohn
)uhn

(Ohn
), uhn

(Ohn
)〉V (Ω〈AB〉)|

+|〈A (Ohn
)uhn

(Ohn
), uhn

(Ohn
)〉V (Ω〈AB〉)

−〈Ahn
(Ohn

)uhn
(Ohn

), uhn
(Ohn

)〉Vh(Ω〈AB〉)|

+|〈Ahn
(Ohn

)uhn
(Ohn

), uhn
(Ohn

)〉Vh(Ω〈AB〉)

−〈A (O)u(O), u(O)〉V (Ω〈AB〉)| → 0, (6.31)

for hn → 0.
Next, we define the scalar product (., .)A = 〈A (O)., .〉V (Ω〈AB〉) on V (Ω〈AB〉).

Then (6.31) implies that the associated norms ||uhn
(Ohn

)||A tend to ||u(O)||A .
Since the norms ||.||A and ||.||V (Ω〈AB〉) are equivalent, we are led to the strong
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convergence by the following estimate:

αA ||uhn
(Ohn

) − u(O)||2V (Ω〈AB〉)
6 ||uhn

(Ohn
) − u(O)||2A

= (uhn
(Ohn

) − u(O), uhn
(Ohn

) − u(O))A

= ||uhn
(Ohn

)||2A + ||u(O)||2A − 2(u(O), uhn
(Ohn

))A → 0, for hn → 0+.
(6.32)

Here, we have used the weak convergence uhn
(Ohn

) → u(O), the convergence
of the norm ||uhn

(Ohn
)||2

A
and the continuity of the linear functional (u(O), .)A .

Let the appropriate optimal control problems (6.5) be defined in the following
way: Find O∗〈h〉 ∈ Uad〈h〉(Ω〈AB〉) such that





LDESIRED DEFLECTION(uh(O∗〈h〉)) = min
Oh∈Uad〈h〉(Ω〈AB〉)

LDESIRED DEFLECTION(uh(O〈h〉))

or

JINTENSITY OF SHEAR STRESS〈h〉(uh(O∗〈h〉)) = LINTENSITY OF SHEAR STRESS〈h〉(O∗〈h〉, uh(O∗〈h〉))

= min
Oh∈Uad〈h〉(Ω〈AB〉)

JINTENSITY OF SHEAR STRESS,〈h〉(O〈h〉),

(6.33)

where uh(O〈h〉) solves (6.8) and the functional LINTENSITY OF SHEAR STRESS(O, u(O)) is
approximated by the functional

LINTENSITY OF SHEAR STRESS〈h〉(Oh, uh(Oh)) = Q

N(h)∑

j=1

O
2
h(aj)

∫

Oj

rS (uh(Oh), uh(Oh))dr.

Lemma 6.3 The optimal control problems (6.33) have at least one solution for
any sufficiently small and positive h.

Proof. Here we employ Theorem 3.2 for the operator Ah(Oh) with 〈h〉 fixed. Let
us choose U(Ω〈AB〉)=C(Ω̄〈AB〉), V(Ω〈AB〉)=Vh(Ω〈AB〉). The set Uad,〈h〉(Ω〈AB〉)
is closed. Then Uad,〈h〉(Ω〈AB〉) ⊂ U (Ω〈AB〉) is compact set and the form
Ah(Oh) fulfil ((H1),3o), (see the proof of the relation (6.14). Let us verify
((H1),4o). Let us assume [Oh, Oh〈n〉] ∈ Uad(Ω〈AB〉), Oh〈n〉 → Oh in U (Ω〈AB〉)
and uh〈n〉(Oh〈n〉) → uh(Oh) in Vh(Ω〈AB〉) for n → ∞. Then, we may write
(analogy to (3.20))

|〈Ah(Oh〈n〉)uh〈n〉(Oh〈n〉), θh〉Vh(Ω〈AB〉) − 〈Ah(Oh)uh(Oh), θh〉Vh(Ω〈AB〉)|

6 |〈Ah(Oh〈n〉)uh〈n〉(Oh〈n〉), θh〉Vh(Ω〈AB〉) − 〈Ah(Oh)uh〈n〉(Oh〈n〉), θh〉Vh(Ω〈AB〉)|

+|〈Ah(Oh)uh〈n〉(Oh〈n〉), θh〉Vh(Ω〈AB〉) − 〈Ah(Oh)uh(Oh), θh〉Vh(Ω〈AB〉)| → 0,

for n → ∞, for any θh ∈ Vh(Ω〈AB〉),

〈L, uh〈n〉(Oh〈n〉)〉Vh(Ω〈AB〉) → 〈L, uh(Oh)〉V (Ω〈AB〉).
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Moreover one has

LDESIRED DEFLECTION(Oh〈n〉, uh〈n〉(Oh〈n〉)) → L DESIRED DEFLECTION(Oh, uh(Oh))

LINTENSITY OF SHEAR STRESS(Oh〈n〉, uh〈n〉(Oh〈n〉)) → LINTENSITY OF SHEAR STRESS(Oh, uh(Oh)).

Then (6.8) coincides with (6.4) and since all the assumptions of Theorem 3.1
are fulfilled, the existence of a solution of (6.33) follows.

Lemma 6.4 Assume that a sequence {Ohn
}n∈N , Ohn

∈Uad〈h〉(Ω〈AB〉) converges
to a function O ∈ Uad(Ω〈AB〉) for hn → 0+. Then one has





lim
n→∞

LDESIRED DEFLECTION(Ohn
, uhn

(Ohn
)) = LDESIRED DEFLECTION(O, u(O)),

lim
n→∞

LINTENSITY OF SHEAR STRESS,〈hn〉(Ohn
, uhn

(Ohn
)) = LINTENSITY OF SHEAR STRESS(O, u(O)).

(6.34)

Proof. Due to (6.32), we obtain the assertion (6.34,2o). Indeed, we can write

|LINTENSITY OF SHEAR STRESS,〈hn〉(Ohn
, uhn

(Ohn
)) − LINTENSITY OF SHEAR STRESS(O, u(O))|

6 |Q

N(h)∑

j=1

O
2
hn

(aj)

∫

Oj

r[S (uhn
(Ohn

), uhn
(Ohn

)) − S (u(O), u(O))]dr|

+|Q

N(h)∑

j=1

∫

Oj

(O2
hn

(aj) − O
2(r))rS (u(O), u(O))]dr|

6constant〈A〉(||uhn
(Ohn

)||V (Ω〈AB〉)+||u(O)||V (Ω〈AB〉))||uhn
(Ohn

)−u(O)||V (Ω〈AB〉)

+ constant〈H〉(||Ohn
− O||C(Ω̄〈AB〉)

||u(O)||2V (Ω〈AB〉)
→ 0,

for n → ∞, since the sequence {||uhn
(Ohn

)||Vh(Ω〈AB〉)}n∈N is bounded and

Ohn
→ O strongly in C(Ω̄〈AB〉).

Next we have

|LDESIRED DEFLECTION(Ohn
, uhn

(Ohn
)) − LDESIRED DEFLECTION(O, u(O))|

6 ||uhn
(Ohn

) + u(O) − 2zad||L2(Ω〈AB〉)||uhn
(Ohn

) − u(O)||V (Ω〈AB〉) → 0.

Lemma 6.5 Let {O∗〈hn〉}n∈N , for hn → 0+ be a sequence of solutions of the
approximate problems (6.9). Then there exists a subsequence {O∗〈hnk

〉}k∈N such

that for hnk
→ 0+, O∗〈hnk

〉 → O∗ in C(Ω̄〈AB〉), uhnk
(O∗〈hnk

〉) → u(O∗) strongly

in V (Ω〈AB〉), where O∗ ∈ Uad(Ω〈AB〉) is the solution of the optimization problem
(6.6) and u(O∗) ∈ K (Ω〈AB〉) is the corresponding solution of (6.4).
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Proof. Let us consider a function H ∈ Uad(Ω〈AB〉). There exists a sequence
{Hhn

}n∈N , hn → 0+ such that Hhn
∈ Uad〈h〉(Ω〈AB〉) and Hhn

→ H strongly
in C(Ω̄〈AB〉). Here, we denote by uh(Hhn

) the solution of (6.8) where Ohn
is

replaced by Hhn
. Further, since Uad〈h〉(Ω〈AB〉) ⊂ Uad(ΩAB) and Uad(Ω〈AB〉)

is compact in C(Ω̄〈AB〉), hence we conclude that a subsequence of {Ohn
}n∈N

exists such that O∗〈hnk
〉 → O〈∗〉 uniformly in Ω̄〈AB〉 for hnk

→ 0+, so that

O〈∗〉 ∈ Uad(Ω〈AB〉). Next, in view of the definition of the problem (6.33), we
conclude that





LINTENSITY OF SHEAR STRESS,〈hn〉(O∗〈hn〉, uhn
(O∗〈hn〉))

6 LINTENSITY OF SHEAR STRESS,〈hn〉(Hhn
, uhn

(Hhn
)),

LDESIRED DEFLECTION(O∗〈hn〉, uhn
(O∗〈hn〉)) 6 LDESIRED DEFLECTION(Hhn

, uhn
(Hhn

)).

(6.35)

Let us pass to the limit with hnk
→ 0+ in (6.35) and apply Lemma 6.4 and

(6.32) to the sequences {O∗〈hnk
〉}k∈N and {Hhnk

}k∈N .
Thus we come to the inequality

{
LINTENSITY OF SHEAR STRESS(O〈∗〉, u(O〈∗〉)) 6 LINTENSITY OF SHEAR STRESS(H , u(H )),

LDESIRED DEFLECTION(O〈∗〉, u(O〈∗〉)) 6 LDESIRED DEFLECTION(H , u(H )).

(6.36)

On the other hand from (6.36), we conclude that

〈O〈∗〉,INTENSITY OF SHEAR STRESS, O〈∗〉,DESIRED DEFLECTION〉

are a solution of the problem (6.36). Moreover, due to (6.32), we may write

||uhn
(O∗〈hn〉) − u(O〈∗〉)||V (Ω〈AB〉) → 0, for hn → 0+.

and each uniformly convergent subsequence of {Ohn
}n∈N has the same property.

This paper has been supported by grant agency of Slovak Republic, grant
no. 1/2136/05 VEGA.
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