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Abstract: We consider the control problem with multidimen-
sional integral functional where state and control satisfy a system
of the first order hyperbolic PDE. Next, a type of deformation with
control of the domain is described and then we define suitable shape
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1. Introduction
The aim of this paper is to present some new approach to shape optimization.
Shape functionals are difficult to study by dynamic programming methods. The
main difficulty appears since there are no classical dynamic programming tools
which allow to consider multidimensional domains. The second difficulty is how
to choose a suitable deformation of the domain in order to get new functional
(shape functional) depending on some new quantities. Such a functional should
allow for applying known mathematical tools so as to have possibilities to deter-
mine some optimality conditions with respect to chosen deformation. The most
popular method is to distinguish one parameter in the deformation and then
try to calculate different derivatives (see, e.g., Nazarov, Sokolowski, 2003). In
last few years we find in literature a notion of topological derivative applied to
shape functionals (see, e.g., Sokolowski, Zochowski, 1999; Nazarov, Sokolowski,
2003). It uses the variation of the geometrical domain resulting in the change of
the topological characteristic by removing a small ball from that domain - the
parameter is the radius of that ball.

Our approach is close to the classical control problem. We consider as a con-
trol problem the multidimensional integral functional with the state and control
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subject to satisfy a system of first order hyperbolic PDE (see, e.g., Encyclope-
dia of Mathematics of Kluwer). For that problem we apply our earlier result
concerning sufficient optimality conditions in terms of dual dynamic program-
ming PDE (Section 2). Next we describe a type of deformation of the domain
following Zolesio (see, e.g., Sokolowski, Zolesio, 1992) but adding to that defor-
mation a control which allow to control (to some extent) that deformation and
then we define suitable shape functional. Having defined trajectory and control
of deformation we are able to apply the dual dynamic programming tools (see
Nowakowski, 1992) to derive optimality condition for our shape functional with
respect to that deformation.

2. Control problem

Consider the following optimal control problem (P):

minimize J(x, u) =
∫

Ω

L(t, x(t), u(t))dt (1)

subject to
xti(t) = fi(t, x(t), u(t)) a. e. on Ω, i = 1, ..., n (2)

u(t) ∈ U a. e. on Ω (3)

x(t) = ϕ(t) on ∂Ω (4)

where Ω is a given bounded subset of Rn with Lipschitz boundary and U is
a given nonempty set in Rm; L : Ω × R × Rm → R, fi : Ω × R × Rm → R
for i = 1, ..., n and ϕ : Rn → R are given functions; x : Ω → R, x ∈ W 1,2(Ω)
and u : Ω → Rm is a Lebesgue measurable function. We assume that for all
s in R, the functions (t, u) → L(t, s, u), (t, u) → fi(t, s, u) for i = 1, ..., n are
(L×B)-measurable, where L×B is the σ-algebra of subsets of Ω×Rm generated
by products of Lebesgue measurable subsets of Ω and Borel subsets of Rm, and
that for each (t, u) ∈ Ω × Rm, the functions s → L(t, s, u), s → fi(t, s, u)
for i = 1, ..., n are continuous. We would like to stress that we assume the
existence of solutions to (2)-(4).

A pair x(t), u(t) is called admissible, if it satisfies (2)-(4) and L(t, x(t), u(t))
is summable; then the corresponding trajectory x(t) is called admissible.

3. A sketch of the dual approach

Let us sketch the main idea of the dual approach. Let V (t, p) be a C1 function
defined on a subset P of Rn+2 of the variables (t, p) = (t, y0, y), y0 ≤ 0, and
satisfying the following conditions:

V (t, p) = y0Vy0(t, p) + yVy(t, p) = Vp(t, p)p (5)
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with Vy(t, p) = −x(t, p) for (t, p) ∈ P , where x(t, p) is such a function defined
on P that for each admissible trajectory x(t) there exists a function p(t) =
(y0, y(t)), p ∈ W 1,2(Ω), (t, p(t)) =

(
t, y0, y(t)

) ∈ P , such that x(t) = x(t, p(t));∫
∂Ω

V (s, p(s))ν(s)ds = −
∫

∂Ω

y(s)x(s, p(s))ν(s)ds − SD (6)

and

y0

∫
∂Ω

Vy0(s, p(s))ν(s)ds = −SD,

where ν(·) is the exterior unit normal vector to ∂Ω and

SD := inf
{
−y0

∫
Ω

L(t, x(t), u(t))dt
}

(7)

over admissible pairs x(t), u(t), t ∈ Ω, such that there are a function p(t) =
(y0, y(t)), p ∈ W 1,2(Ω), (t, p(t)) ∈ P , and a function ψ : Rn → R satisfying the
conditions: x(t) = x(t, p(t)) for t ∈ Ω, x(t, ψ(t)) = ϕ(t) and p(t) = ψ(t) on ∂Ω.
By ∫

∂Ω

h(s)ν(s)ds,

where h : Ω → R is a real valued function and ν(·) is the exterior unit normal
vector to ∂Ω, we mean in the paper the integral taken from the scalar product
of two n-dimensional vectors (h(·), ..., h(·)︸ ︷︷ ︸)

n

and ν(·) = (ν1(·), ..., νn(·)). The

function V (t, p) satisfies the partial differential equation

n∑
i=1

Vti(t, p) +H(t,−Vy(t, p), p) = 0, (8)

where H(t, v, p) = y
∑n

i=1 fi(t, v, u(t, p)) − y0L(t, v, u(t, p)) and u(t, p) is an
optimal dual feedback control, and the dual partial differential equation of mul-
tidimensional dynamic programming (DPDEMDP)

max {−∑n
i=1 [Vti(t, p) + yfi(t,−Vy(t, p), u)]

+y0L(t,−Vy(t, p), u) : u ∈ U
}

= 0. (9)

Remark 3.1 We would like to stress that the duality, which is sketched in this
section is not a duality in the sense of convex optimization. It is a new noncon-
vex duality, first time described in Nowakowski (1992) for which we do not have
the relation sup(D) ≤ inf(P ) (D – meaning the dual problem, P – the primal
one). But, instead of it, we have other relations, namely (5) and (6) – they are
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a generalization of transversality conditions from classical mechanics. Different
duality, different relation. If we find a solution to (8) then checking the relation
(5) for concrete problems is not very difficult. How to do that for most ceases, is
described in the section Example and Conclusions of this paper. In our opinion
there are no relations between duality described here and the duality of Kloetzler
as the latter is in fact a kind of generalization of the convex duality to nonconvex
problems (more details about that approach see Pickenhain, 2001).

4. Sufficiency theorem
The theorems below, proved in Galewska, Nowakowski (2003) provide the suf-
ficient conditions for optimality, which a solution V (t, p) of the dual partial
differential equation of multidimensional dynamic programming and an optimal
dual feedback control, respectively, should satisfy.

Theorem 4.1 Let V (t, p) be a C1 solution of DPDEMDP (9) on P such that
(5) holds. Let x(t), u(t), t ∈ Ω, be an admissible pair and let p(t) = (y0, y(t)),
p ∈W 1,2(Ω), (t, p(t)) ∈ P , be such a function that x(t) = −Vy(t, p(t)) for t ∈ Ω.
Suppose that for almost all t ∈ Ω,

−
n∑

i=1

[Vti(t, p(t)) + y(t)fi(t,−Vy(t, p(t)), u(t))]

+y0L(t,−Vy(t, p(t)), u(t)) = 0. (10)

Then x(t), u(t), t ∈ Ω, is an optimal pair relative to all admissible pairs x(t),
u(t), t ∈ Ω, for which there exists such a function p(t) = (y0, y(t)), p ∈W 1,2(Ω),
(t, p(t)) ∈ P , that x(t) = −Vy(t, p(t)) for t ∈ Ω.

We now define the concept of an optimal dual feedback control.

Definition 4.1 A function u = u(t, p) from a subset P of Rn+2 of the points
(t, p) = (t, y0, y), y0 ≤ 0, into U is called a dual feedback control, if there exists
the solution x(t, p), (t, p) ∈ P , of the system of partial differential equations

xti = fi(t, x, u(t, p)), i = 1, ..., n (11)

such that for each admissible trajectory x(t), t ∈ Ω, there is a function p(t) =
(y0, y(t)), p ∈ W 1,2(Ω), (t, p(t)) ∈ P , such that x(t) = x(t, p(t)) for t ∈ Ω. (It
is clear that the solution x(t, p) is not unique).

Definition 4.2 A dual feedback control u(t, p) is called an optimal dual feedback
control, if there exist a function x(t, p), (t, p) ∈ P , corresponding to u(t, p) as
in Definition 4.1, and a function p(t) = (y0, y(t)), p ∈ W 1,2(Ω), (t, p(t)) ∈ P ,
such that, for

SD = −y0

∫
Ω

L(t, x(t, p(t)), u(t, p(t)))dt (12)
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defining Vy0(t, p(t)) by

y0

∫
∂Ω

Vy0(s, p(s))ν(s)ds = −SD

and for Vy(t, p) = −x(t, p), there is V (t, p) satisfying (5).

The following fundamental theorem gives sufficient optimality conditions for
the existence of an optimal dual feedback control.

Theorem 4.2 Let u(t, p) be a dual feedback control in P . Suppose that there
exists a C1 solution V (t, p) of DPDEMDP (9) on P and satisfying (5). Let
p(t) = (y0, y(t)), p ∈ W 1,2(Ω), (t, p(t)) ∈ P , be such a function that x(t) =
x(t, p(t)), u(t) = u(t, p(t)), t ∈ Ω, is an admissible pair. Assume further that:

Vy(t, p) = −x(t, p) for (t, p) ∈ P , (t, p) ∈ P , (13)

y0

∫
∂Ω

Vy0(s, p(s))ν(s)ds = y0

∫
Ω

L(t, x(t, p(t)), u(t, p(t)))dt. (14)

Then u(t, p) is an optimal dual feedback control.

5. Shape optimization problem
Let Ω1 be a given C2 class simply connected subset of R

n. From now on we
assume that U is a given nonempty, compact set in (Rm)+ i.e. all u ∈ U have
coordinates ui ≥ 0. In order to construct the deformation of Ω1 the following
boundary value problem is introduced:

For a given control v(t) ∈ U, t ∈ Ω1, being a Hoelder continuous function
find z ∈ H1(Ω1) satisfying (in weak sense){

Δz = v in Ω1,
z = 1 on Γ1 = ∂Ω1.

(15)

Put

z−1(ρ) = {t ∈ Ω1 : z(t) = ρ}, 0 ≤ ρ ≤ 1
and

Γ1 = z−1(1)
and

Ωρ = {t ∈ Ω1 : 0 < z(t) < ρ}.
Since U is bounded, Ω1 is domain of class C2, it follows that a solution to (15)
is a function z(t, v) of class C2(Ω1). Thus boundary of Ωρ is locally Lipschitz.

Following Zolesio (Sokolowski, Zolesio, 1992) we introduce the field

Z(t, v) = ‖∇z(t, v)‖−2∇z(t, v).
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Then the deformation is defined by Tρ(w, v) = t(ρ, w, v), where t(·, ·, ·) is a
solution to

d

dρ
t(ρ, w, v) = Z(t(ρ, w, v), v),

with w ∈ Γ1 and the initial condition

t(1, w, v) = w.

In the control theory we write it as:

d

dρ
t(ρ, w) = Z(t(ρ, w), v), (16)

t(1, w) = w.

Any trajectory t(ρ) corresponding to control v satisfying (16) is called admissible
and the pair (t(ρ), v) is an admissible pair. The set of graphs of all admissible
trajectories is denoted by T . We can deform Ω1 by changing ρ. Thus we get
the deformed domains:

Ωρ = {t ∈ Ω1 : 0 < z(t, v) < ρ}.
We should stress that our deformation Ωρ depends on the control v(t) too, i.e.
we should, rather, write Ωρ(v). We note that in (15) the control v(t) is defined
in Ω1. However if we consider (15) in Ωρ(v) then the solution z(t, v) exists
in Ωρ(v) and it agrees with that of (15) but with new boundary conditions
i.e. z = ρ on ∂Ωρ. Of course, v is now also considered only in Ωρ(v) and to
underline that, we shall write in the next part of the paper that v is defined in
[ρ, 1], i.e. v(τ), τ ∈ [ρ, 1]. For each domain Ωρ(v) we can consider the optimal
control problem (P). For each problem with the domain Ωρ(v), according to
the sufficiency Theorem 4.1, there exists an optimal value depending on ρ and
trajectory t(ρ) (see also Definition 4.2)

J(ρ, t(ρ)) = −SD(ρ, v) = y0

∫
∂Ωρ(v)

Vy0(s, p(s))n(s)ds,

where n(·) is the exterior unit normal vector to ∂Ωρ(v). In this way we get
the new functional J(ρ, t(ρ)) depending only on ρ and t(ρ) i.e. we can treat
J(ρ, t(ρ)) as a terminal functional at (ρ, t(ρ)) with state t(s) and control v(s)
defined in [ρ, 1]. However, the starting point is now (1, t(1)) and the terminal
point is (ρ, t(ρ)). Therefore, as the boundary condition for partial dynamic
programming we will assume the value

J(ρ, t(ρ)). (17)

For the functional J(ρ, t(ρ)) we can formulate dual dynamic construction as in
Nowakowski (1992), where now our functional does not depend explicitly on
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a state t(s), s ∈ [ρ, 1]. Thus, we should treat that problem as to minimize
J(ρ, t(ρ)) with respect to control v : [ρ, 1] → U and state t(s), s ∈ [ρ, 1]. So, by
applying construction from Nowakowski (1992) let Y (s, p) be a function defined
on a set P ⊂ [ρ, 1]× Rn+1, (s, p) = (s, y0, y), y0 ≤ 0 and satisfying

Y (s, p) = y0Yy0(s, p) + yYy(s, p) = Yp(s, p)p on P. (18)

We require that for each admissible trajectory t(s), s ∈ [ρ, 1] satisfying (16) there
exist a p(s) = (y0, y(s)) – absolutely continuous such that t(s) = −Yy(s, p(s)),
s ∈ [ρ, 1], p(1) = p0; p0 is fixed for all admissible trajectory t(s), s ∈ [ρ, 1].

Let

y0Yy0(ρ, p) = −JD(ρ, p)

with dual value function defined by

JD(ρ, p) = inf{−y0SD(ρ, v)} = inf{−y0J(ρ, t(ρ))}
where infimum is taken over all admissible pairs (t(s), v(s)), s ∈ [ρ, 1] whose
trajectories are starting at (1,−Yy(1, p)). Then, by (17),

y0Yy0(ρ, p) = y0J(ρ,−Yy(ρ, p)), (ρ, p) ∈ P (19)

and Y (s, p) satisfies

Ys(s, p) +H(s,−Yy(s, p), p) = 0, (s, p) ∈ P,

where H(s, x, p) = yZ(x, u(s, p)) and u(s, p) is an optimal dual feedback control
and the partial differential equation of dynamic programming is:

min {Ys(s, p) + yZ(−Yy(s, p), v) : v ∈ U} = 0, (s, p) ∈ P. (20)

6. Sufficiency theorem
In this section, we formulate sufficiency conditions which allow us to determine,
at least theoretically, the optimal state t(s) under control v(s), s ∈ [ρ, 1].

Theorem 6.1 Let Y (s, p) be a C1 solution of the partial differential equation
(20) on P and such that (18) and (19) hold. Let (t(s), v(s)) be an admissible
pair, s ∈ [ρ, 1] and let p(s), s ∈ [ρ, 1], p(1) = p0 – absolutely continuous be such
that t(s) = −Yy(s, p(s)), s ∈ [ρ, 1] and satisfies

Ys(s, p(s)) + y(s)Z(−Yy(s, p(s)), v(s)) = 0, in [ρ, 1]. (21)

Then, t(s), v(s), s ∈ [ρ, 1] is an optimal pair relative to all admissible pairs
t(s), v(s), s ∈ [ρ, 1] for which there exists such absolutely continuous function
p(s) = (y0, y(s)), p(1) = p0, that t(s) = −Yy(s, p(s)), s ∈ [ρ, 1].
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Proof. Take any admissible pair t(s), v(s), s ∈ [ρ, 1], whose graph of trajectory
is contained in T and for which there exists an absolutely continuous function
p(s) =

(
y0, y(s)

)
, p(1) = p0 lying in P such that t(s) = −Yy(s, p(s)) for s ∈ [ρ, 1].

Then, from (18), we have , for almost all s ∈ [ρ, 1]

Ys(s, p(s)) = y0 (d/ds)Yy0(s, p(s)) + y(s) (d/ds)Yy(s, p(s)). (22)

Let W (s, p(s)) be a function defined on P by the formula

W (s, p (s)) := −y0Yy0(s, p(s)). (23)

Since

y0 (d/ds)Yy0(s, p(s)) = − (d/ds)W (s, p (s))

and

(d/ds)Yy(s, p(s)) = −Z(−Yy(s, p(s)), v(s))

a. e. on [ρ, 1], it follows, by (22) and (41), that for almost all s ∈ [ρ, 1],

(d/ds)W (s, p (s)) = −Ys(s, p(s)) − y(s)Z(−Yy(s, p(s)), v(s)) . (24)

Thus, by (24) and (20), we get

(d/ds)W (s, p (s)) ≤ 0 a. e. on [ρ, 1] . (25)

Similarly, by (24) and (21), we obtain

(d/ds)W (s, p(s)) = 0 a. e. on [ρ, 1] . (26)

By (25) and (26) we get that function W (s, p (s)) is a nonincreasing function of s
andW (s, p(s)) is constant on [ρ, 1] and equals −y0Yy0(ρ, p(ρ)) = −y0Yy0(1, p0)).
Thus, by (23) and −y0Yy0(1, p(1)) = −y0Yy0(1, p0)), we get

−y0Yy0(ρ, p(ρ)) ≤ −y0Yy0(ρ, p(ρ)), (27)

−y0J(ρ, t(ρ)) ≤ −y0J(ρ, t(ρ)), (28)

which proves the assertion of the theorem.

6.1. Example

Let us consider an example meant to explain what is the real value of the
above theory. We consider the following nonlinear optimization problem (P):
put L(t, x, u) := x 4

√
xu and fi(t, x, u) := 13 4

√
xu2/(72) for i = 1, 2, (t, x, u) ∈

Ω×R×R, where Ω is a ball in R2 with radius equals 1/2 and center (1/2, 1/2).
Let further P :=

{
(y0, y) ∈ R2 : y0 ≤ 0, y > 0

}
. Thus by the verification of
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Theorem 4.1 we obtain analogously as in Galewska, Nowakowski (2003) that for
c = (1/2, 9/13), V (t, cp) := −(9y/13)13/9 + 9(y0/2)2

∑2
i=1 ti

/
(26) one obtains

(1/2) y0

∫
∂Ω

Vy0(s, cp(s))ν(s)ds (29)

= (1/2)y0

∫
Ω

L(t, x(t, p(t)), u(t, p(t)))dt,

where

x(t, p(t)) =
(∑2

i=1
ti

)4/13

(30a)

u(t, p(t)) = (9/13)y0

(∑2

i=1
ti

)−5/13

(30b)

and v is a normal to ∂Ω. Therefore, by Theorem 4.2

u(t, p) = (9/13)y0 (y)−5/9 (31)

is an optimal dual feedback control and from (12) we conclude that

SD = −1
4
(y0)2π (32)

is a minimal value of the problem under consideration in the subspace ofW 1,2(Ω){
x ∈W 1,2(Ω) : x(t) = ϕ(t) on ∂Ω

}
(33)

where

ϕ(t) =

(
2∑

i=1

ti

)4/13

for t ∈ ∂Ω.

According to Section 5 next step is to solve, for a given control v(t) ∈
U = [0, 10], t ∈ Ω, linear elliptic equation (14). It is well known that there
exists explicit formula for the solution:

z(t, v) =
∫

∂Ω

K(t, h) · 1dsh +
∫

Ω

G(t, h)v(h)dh, (34)

where, in our case (t = (t1, t2), h = (h1, h2))

K(t, h) =
1 − |t− (1/2, 1/2)|2

4π |t− h|2 ,
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and

G(t, h) =
1
2π

log |t− h|

− 1
2π

log
(
4 |t− (1/2, 1/2)|2 |h− (1/2, 1/2)|2

+1/4− 2 < t− (1/2, 1/2), h− (1/2, 1/2) >)1/2
.

To calculate the field Z(t, v) we need the derivative zt1 and zt2 :

zt1(t, v) = −
∫

∂Ω

(
t1

2π |t− h|2 +
(t1 − h1)

(
1 − (t21 + t22

))
2π |t− h|4

)
dsh

− 1
2π

∫
Ω

t1v(h)
|t− h|2 dh− 1

2π

∫
Ω

(2 < t− (1/2, 1/2), h− (1/2, 1/2) > −1/2)v(h)
|< t− (1/2, 1/2), h− (1/2, 1/2) > −1/2|2 dh

zt2(t, v) = −
∫

∂Ω

(
t2

2π |t− h|2 +
(t2 − h2)

(
1 − (t21 + t22

))
2π |t− h|4

)
dsh −

∫
Ω

t2v(h)
|t− h|2 dh

− 1
2π

∫
Ω

(2 < t− (1/2, 1/2), h− (1/2, 1/2) > −1/2)v(h)
|< t− (1/2, 1/2), h− (1/2, 1/2) > −1/2|2 dh.

Then

Z(t, v) = (Z1(t, v), Z2(t, v)) =
(zt1(t, v), zt2(t, v))

|(zt1(t, v), zt2(t, v))|2

and the partial differential equation of dynamic programming is:

min {Ys(s, p) + y1Z1(−Yy(s, p), v) + y2Z2(−Yy(s, p), v) : v ∈ U} = 0,
(s, p) ∈ P1 (35)

where P1 =
{
(y0, y1, y2) : y0 ≤ 0, y1, y2 ∈ (−1/2, 0)

}
. We easily check that the

minimum in (35) is attained at v ≡ 0. Therefore, equation (35) takes the form

Ys(s, p) =yZ(−Yy(s, p), 0) = y1

∫
∂Ω

−Yy1(s, p)
2π |−Yy(s, p) − h|2 dsh (36)

+ y1

∫
∂Ω

(−Yy1(s, p) − h1)
(
1 − (Yy1(s, p)2 + Yy2(s, p)2

))
2π |−Yy(s, p) − h|4 dsh

+ y2

∫
∂Ω

−Yy2(s, p)
2π |−Yy(s, p) − h|2 dsh

+ y2

∫
∂Ω

(−Yy2(s, p) − h2)
(
1 − (Yy1(s, p)2 + Yy2(s, p)2

))
2π |−Yy(s, p) − h|4 dsh.

Since the function Y (s, p) has to satisfy (18) too, in order to find such a function
we can help ourselves by defining Yy(s, p) and then try to find Y (s, p) satisfying
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(18) and (35). To this effect let us take Yy1(s, p) = y1−1/2, Yy2(s, p) = y2−1/2,
s ∈ [ρ, 1], y1, y2 ∈ (−1/2, 0). Then, we see that for all (s, p) ∈ P1 Ys(s, p) ≤ 0.
Taking into account (18) and (19) we get

Ys(s, p) =
∂

∂s
y0J(s,−Yy(s, p)) at s = ρ.

Let us observe that ρ was arbitrarily chosen and fixed and the above equality is
true for all such ρ. Since y0 ≤ 0 thus we infer that

∂

∂s
J(s,−Yy(s, p)) ≥ 0 at s = ρ for each 0 < ρ ≤ 1.

Hence it follows that the maximum value of J(ρ,−Yy(ρ, p)) is taken for ρ = 1.
This result is intuitively obvious as J(ρ,−Yy(ρ, p)) > 0 for all 0 < ρ ≤ 1 and
the volume of Ωρ increases with ρ in that case i.e. for v = 0.

6.2. Conclusions

Let us write down, in consecutive steps, what we did to solve the above example.
First it is necessary to solve the original control problem with given domain
Ω. It is (32) in the example. The next step is to solve, for a given control
v(t) ∈ U, t ∈ Ω, linear elliptic equation (14). It is easy, if the domain Ω
is a ball, for then we have an explicit formula (34). Now we build the field
Z(t, v) and having that we form the partial differential equation of dynamic
programming (35). We do not need, very often, to solve it explicitly. In many
cases it is enough to have information on Ys(s, p) only. It is the case because
of our construction: Ys(s, p) = d

dsy
0J(s,−Yy(s, p)) at s = ρ. J(ρ,−Yy(ρ, p)) is

the value of our functional considered on the domain Ωρ. Thus, knowing the
sign of d

dsJ(s,−Yy(s, p)) in some neighborhood of ρ we have information on
the increase or decrease of the value of the functional J(ρ,−Yy(ρ, p)) when the
domain Ωρ is changing together with ρ. It is worth to stress that, generally, we
do not need to know that the function ρ→ J(ρ, t(ρ)) is differentiable. One more
aspect should be underlined: Theorem 6.1 states sufficient optimality conditions
in terms of the optimal pair t(s), v(s), s ∈ [ρ, 1], however, if we look carefully
at the construction of Section 5 then we see that a trajectory t(ρ) must satisfy
initial conditions on the boundary of Ω i.e. t(1, w) = w for all w ∈ ∂Ω. In most
cases the pair t(s), v(s), s ∈ [ρ, 1] will be optimal for all w ∈ ∂Ω. Hence in those
cases it is enough to investigate only Ys(s, p) = yZ(−Yy(s, p), v), (s, p) ∈ P1.

Therefore the theory described in Sections 5 and 6 gives us a new tool for
studying a certain type of shape optimization problems. We believe that the
method described here can be also developed for a different type of deformations
of the domain Ω.
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7. ε-Value function

In practice it is more important to have a function, which may be calculated
effectively. This is why we will now deal with objects that we call ε−value func-
tions. These functions are very useful when we want to construct numerical
approximation of the value function. They allow to check whether our approx-
imate function is already good enough or not.

Definition 7.1 By a dual ε−value function we mean any function JεD(s, p)
defined in P ⊂ [ρ, 1] × Rn+1 ∈ P , (s, p) = (s, y0, y), y0 ≤ 0, which satisfies the
following inequalities:

JD(ρ, p) ≤ JεD(ρ, p) ≤ JD(ρ, p) − εy0, (ρ, p) ∈ P ,

where JD(·, ·), is the dual value function and ε > 0 is any given number.

Definition 7.2 An admissible trajectory tε(s) under control uε(s), s ∈ [ρ, 1] is
called an ε−optimal trajectory if there exists an absolutely continuous function
pε(s), s ∈ [ρ, 1], p(1) = p0 lying in P , such that

−y0
εJ(ρ, tε(ρ)) ≤ −y0

εJ(ρ, t(ρ)) − y0ε

relative to all admissible pairs t(s), v(s), s ∈ [ρ, 1] for which there exists such
a function p(s) = (y0

ε , y(s)), p-absolutely continuous, that t(s) = −Yy(s, p(s)),
s ∈ [ρ, 1], p(1) = p0, where Y (s, p) is a solution to (37).

Theorem 7.1 Let Y (s, p), (s, p) ∈ P be a C1 solution of the following partial
differential inequality

0 ≤ max {Ys(s, p) + yZ(−Yy(s, p), v) : v ∈ U} ≤ −1
2
y0ε, (s, p) ∈ P, (37)

and such that

Y (s, p) = Yp(s, p)p− 1
2
y0ε(1 − s), (s, p) ∈ P (38)

and (19) holds. Let (tε(s), vε(s)) be an admissible pair, s ∈ [ρ, 1] and let pε(s),
s ∈ [ρ, 1]– absolutely continuous, be such that tε(s) = −Yy(s, pε(s)), s ∈ [ρ, 1],
p(1) = p0 and satisfy

0 ≤ Yρ(ρ, pε(ρ)) + yε(ρ)Z(−Yy(ρ, pε(ρ)), vε(ρ)) ≤ −1
2
y0

ε ε, in [0, 1]. (39)

Then tε(s), vε(s), s ∈ [ρ, 1] is an ε-optimal pair for the dual ε-value function
JεD(ρ, p) = −y0

εYy0(ρ, p) relative to all admissible pairs t(s), v(s), s ∈ [ρ, 1] for
which there exists such a function p(s) = (y0

ε , y(s)), p-absolutely continuous that
t(s) = −Yy(s, p(s)), s ∈ [ρ, 1], p(1) = p0.
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Proof. Take any admissible pair t(s), v(s), s ∈ [ρ, 1], whose graph of trajectory
is contained in T and for which there exists an absolutely continuous function
p(s) =

(
y0

ε , y(s)
)

lying in P such that t(s) = −Yy(s, p(s)) for s ∈ [ρ, 1]. Then,
from (38), we have, for almost all s ∈ [ρ, 1]

Ys(s, p(s)) = y0
ε (d/ds)Yy0(s, p(s)) + y(s) (d/ds)Yy(s, p(s)) +

1
2
y0

ε ε. (40)

Let W (s, p(s)) be a function defined on P by the formula

W (s, p (s)) := −y0
εYy0(s, p(s)). (41)

Since

y0
ε (d/ds)Yy0(s, p(s)) = − (d/ds)W (s, p (s))

and

(d/ds)Yy(s, p(s)) = −Z(−Yy(s, p(s)), v(s))

a. e. on [ρ, 1], it follows, by (40) and (41), that for almost all s ∈ [ρ, 1],

(d/ds)W (s, p (s)) = −Ys(s, p(s)) − y(s)Z(−Yy(s, p(s)), v(s)) +
1
2
y0

ε ε. (42)

Thus, by (42) and (37), we get

y0
ε ε ≤ (d/ds)W (s, p (s)) a. e. on [ρ, 1]. (43)

Similarly, by (42) and (39), we obtain

y0
ε ε ≤ (d/ds)W (s, pε(s)) ≤ 0 a. e. on [ρ, 1]. (44)

By (43) and (44) we get that function W (s, p (s)) and W (s, pε(s)) are nonin-
creasing functions of s on [ρ, 1]. Thus, by (41) and (19), we get

y0
ε ε− y0

εYy0(ρ, pε(ρ)) ≤ −y0
εYy0(ρ, p(ρ)),

−y0
εJ(ρ, tε(ρ)) ≤ −y0

εJ(ρ, t(ρ)) − y0
ε ε

which proves the assertion of the theorem.
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