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Abstract: In Knopik (2005) the ageing class MTFR (Mean
Time to Failure or Repair) of lifetime distribution was introduced.
In this paper, we show that the family MTFR is closed under weak
convergence of distribution and convolution. We prove that the dual
family MTFRD (in a particular case) is closed under mixtures.
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1. Introduction

Let T be a random variable (lifetime) having a distribution function F (t) =

P{T � t} with F (0−) = 0 and a finite mean value ET =
∞∫
0

R(t)dt, where R(t)

denotes a survival (reliability) function R(t) = 1 − F (t).
Let

ET (x) =

x∫

0

R(t)dt (1)

Definition 1.1 The random variable T ∈ MTFR (MTFRD), if the function

h(x) =
F (x)

ET (x)
for x > 0 (2)

is non-decreasing (non-increasing).

In particular, it is well known that (see Klefsjö, 1982; Knopik, 2005; Marschall,
1972)

IFR ⊂ MTFR ⊂ NBUE,
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where IFR denotes increasing failure rate function and NBUE new better then
used in expectation classes of distributions. In Barlow (1979) it was proved for
the absolutely continuous distribution that

IFRA ⊂ MTFR .

In this paper, we prove this inclusion for any random variable. The class
MTFR (Knopik, 2005) is closed under the operation of maximum for inde-
pendent and absolutely continuous random variables and is closed under the
operation of minimum for independent, identically distributed and absolutely
continuous random variables. In this paper, we show that the family MTFR is
closed under weak convergence of distributions and convolution and we prove
that the dual family MTFRD is closed under non-crossing mixtures and ab-
solutely continuous random variables.

2. Properties of the class MTFR

2.1. Inclusion IFRA ⊂ MTFR

Let

g(x) =
− lnR(x)

x
for x ∈ {x : x > 0 and R(x) > 0} . (3)

It is known that, if the function g(x) is non-decreasing if and only if T ∈ IFRA.
By (3), we have

F (x) = 1 − e−xg(x) for x > 0.

To show the inclusion IFRA ⊂ MTFR, we need two lemmas.

Lemma 2.1 If g(x) is non-decreasing, then

x∫

0

e−tg(t)dt � F (x)
g(x)

for g(x) > 0.

Proof. By the fact that g(x) is non-decreasing, we have

x∫

0

e−tg(t)dt �
x∫

0

e−tg(x)dt =
1

g(x)
{1 − e−xg(x)} for g(x) > 0.

Lemma 2.2 If g(x) is non-decreasing, then

x+y∫

x

e−tg(t)dt � 1
g(x)

{e−xg(x) − e−(x+y)g(x+y)} for g(x) > 0.
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Proof. The function g(x) is non-decreasing, since

x+y∫

x

e−tg(t)dt �
x+y∫

x

e−tg(x)dt =
1

g(x)
{e−xg(x) − e−(x+y)g(x)}

and finally

x+y∫

x

e−tg(t)dt � 1
g(x)

{e−xg(x) − e−(x+y)g(x+y)} .

Proposition 2.1

IFRA ⊂ MTFR

Proof. By definition, we have T ∈ MTFR if and only if

F (x)
ET (x)

� F (x + y)
ET (x + y)

for x > 0, y � 0. (4)

The inequality (4) is equivalent to

x+y∫

x

e−tg(t)dt {1 − e−xg(x)} �
x∫

0

e−tg(t)dt {e−xg(x) − e−(x+y)g(x+y)}. (5)

From Lemma 2.1 we obtain

x∫

0

e−tg(t)dt {e−xg(x) − e−(x+y)g(x+y)} �

1
g(x)

{1 − e−xg(x)}{e−xg(x) − e−(x+y)g(x+y)} (6)

By Lemma 2.2, we have

1
g(x)

{1 − e−xg(x)}{e−xg(x) − e−(x+y)g(x+y)} � {1 − e−xg(x)}
x+y∫

x

e−tg(t)dt (7)

From (6) and (7), we obtain (5), this completes the proof of Proposition 2.1.
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2.2. Limit distributions

Let Fn be the distribution function of Xn. The sequence {Xn} is called conver-
gent in distribution to X if lim

n→∞Fn(t) = F (t) for all continuity points t of F (t).

Then we write Fn
LD−−→ F .

Let A be a class of distribution functions. Then ALD denotes is the class
obtained by taking limits in distributions of sequences of member A.

Proposition 2.2 The class MTFR and dual class MTFRD are closed under
limit in distribution. We write

MTFRLD = MTFR (MTFRD)LD = MTFRD .

Proof. Let Tn ∈ MTFR, Tn has the distribution function Fn(t) and the reliability
function Rn(t). We suppose that Fn

LD−−→ F , then lim
n→∞Rn(t) = R(t) for all

continuity points of R(t).
Let

ETn(t) =

t∫

0

Rn(x)dx .

It is known (Deshpande, 1986) that ETn(t)/ ETn is a distribution function,
which is called the equilibrium distribution and gn(t) = Rn(t)/ ETn is the den-
sity function of equilibrium distribution. It plays an important role in renewal
theory. In Basu (1984) it is proved, that Fn

LD−−→ F implies lim
n→∞ETn = ET ,

where ET =
∞∫
0

R(t)dt for HNBUE (HNBUE is a class called harmonic new

better than used in expectation, see Basu, 1984).
It is known that MTFR ⊂ NBUE ⊂ HNBUE. Thus, we have

lim
n→∞ gn(t) = lim

n→∞
Rn(t)
ETn

=
R(t)
ET

. (8)

The limit (8) is the local limit theorem for density functions gn(t). According to
the Scheffe theorem, the local limit theorem implies the integral limit theorem
(Billigsley, 1968, Stoyanow, 1989). Thus, we have

lim
n→∞

ETn(t)
ETn

=
ET (t)
ET

, (9)

where ET (t) =
t∫
0

R(x)dx.

Let

hn(t) =
Fn(t)

ETn(t)
.
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By the assumptions and (8), (9) we obtain

lim
n→∞hn(t) =

F (t)
ET (t)

.

If functions hn(t) are non-decreasing, then h(t) = F (t)/ ET (t) is also non-
decreasing. Hence T ∈ MTFR. For dual class MTFRD the proof is analogous.

2.3. Mixture of distributions

Let Fα be a set of distributions functions, where the index α is governed by the
distribution function G(x). Mixture F (x) of Fα(x) according to G(x) is given
by Barlow (1981),

F (x) =

∞∫

−∞
Fα(x)dG(α). (10)

To see that class MTFR is not closed under mixtures, we consider a mixture of
non-identical exponential distributions. In this case the failure rate function is
strictly decreasing, so F can not be MTFR.

If T is an absolutely continuous random variable, then Definition 1.1 is
equivalent to

f(t)ET (t) − F (t)R(t) � 0 for t � 0, (11)

where f(t) is the density function of T .

Proposition 2.3 We suppose that F (x) is the mixture of Fα(t), α ∈ A, with
each Fα ∈ MTFRD and no two distinct Fα(t) and Fα′(t) crossing on (0,∞).
Then T ∈ MTFRD.

Proof. If T ∈ MTFRD then by (11), we obtain

F 2(t) � F (t) − f(t)ET (t) . (12)

By the Chebyschew inequality for similarity ordered function (Barlow, 1981),
we obtain

F 2(t) =

∞∫

−∞
Fα(t) dG(α)

∞∫

−∞
Fα(t) dG(α) �

∞∫

−∞
F 2

α(t) dG(α).

According to (12), we write

F 2(t) �
∞∫

−∞
[Fα(t) − fα(t)ETα(t)] dG(α) = F (t) − f(t)ET (t),
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where fα(t) is the density function corresponding to distribution function Fα(t),
and

ETα(t) =

t∫

0

Rα(x)dx.

Thus, we have T ∈ MTFRD.

2.4. Convolution

Proposition 2.4 If T1 and T2 are independent, T1, T2 ∈ MTFR, then T =
T1 + T2 ∈ MTFR.

Proof. Let the random variables T1, T2, T have distribution functions F1(t),
F2(t), F (t) and reliability function R1(t), R2(t), R(t) respectively.

Let

ET i(t) =

t∫

0

Ri(x) dx for i = 1, 2.

It is known that

F (t) =

t∫

0

F1(t − z) dF2(z), (13)

R(t) =

t∫

0

R1(t − z) dF2(z), (14)

ET (t) =

t∫

0

ET 1(t − z) dF2(z). (15)

Next, we show that

ET (u + v)F (u) � ET (u)F (u + v) for u, v � 0. (16)

From (13), (14), (15) for the left-hand sides of (16), we have

ET (u + v)F (u) =

u+v∫

0

u∫

0

ET 1(u + v − z1)F1(u − z) dF2(z) dF2(z1) (17)

For the right-hand sides of (16), we obtain

ET (u)F (u + v) =

u+v∫

0

u∫

0

F1(u + v − z1)ET 1(u − z) dF2(z) dF2(z1). (18)
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If z1 � z + v, then

ET 1(u + v − z1)F1(u − z) − F1(u + v − z1)ET 1(u − z) � 0
and (19)

ET (u + v)F (u) − ET (u)F (u + v) � 0 .

We divide the set S = {z, z1) : 0 � z � u, 0 � z1 � u + v} into three parts:

S1 = {(z, z1) : 0 � z � u, z + v � z1 � u + v},
S2 = {(z, z1) : 0 � z � u, v � z1 < z + v},
S3 = {(z, z1) : 0 � z � u, 0 � z1 < v}.

Now, we consider the one to one transformation of the triangles S1 on the
triangle S2. This transformation has the form

(z, z1)
α−→ (z1 − v, z + v).

Let g(z, z1) = ET 1(u + v − z1)F1(u− z)−F1(u + v − z1)ET 1(u− z). It can be
seen that

g(z, z1) = −g(α(z, z1)

and
∫∫

S1

g(z, z1) dF2(z) dF2(z1)+
∫∫

S2

g(z, z1) dF2(z) dF2(z1) = 0 .

Thus
∫∫

S

g(z, z1) dF2(z) dF2(z1) =
∫∫

S3

g(z, z1)dF2(z)dF2(z1) � 0 .

This completes the proof of Proposition 2.4.

3. Conclusion

The survey of the results proved in Section 2 shows that the ageing class MTFR
have many important properties. We are interested now whether Proposition
2.3 is true without the assumption on absolute continuity. And, we conjecture
that class MTFRD is not preserved under arbitrary mixtures (a crossing may
occur).
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