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Abstract: Bitmap models are a known technique to model field
based geographic information. Commonly, geographic information
is modelled in a crisp sense, even though in reality it most likely
is an approximation. In this article, we present the use of bitmap
based structures to model imprecise or uncertain locations and ditto
regions; these structures should be considered to be extensions of
respectively a point and a polygon. The imprecission or uncertainty
is modelled using fuzzy set theory. Apart from presenting the struc-
tures, appropriate operators are defined and explained.
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1. Introduction

Traditional geographic information systems use basic geometry elements (i.e.
points, lines, arcs, polygons) to model features (Rigaux, Scholl, Voisard, 2002;
Shekhar, Chawla, 2003). A feature, in essence an object on the map, can be
a point (i.e. precise location), a line or a polyline1 (i.e. to indicate roads or
rivers) or a polygon (i.e. a region, a lake). Using these basic geometry elements,
only crisp data can be modeled: a feature is set at one given location; a region
has a fixed surface area and ditto boundary, associated data (numerical or text
data associated with a position) are crisp. In reality, it turns out that lots of
data are inherently prone to imprecision or uncertainty: the exact location of
a feature can be imprecisely known (i.e. the whereabouts of a person or the
location of a lightning strike in an open field), an area can have a non-crisp
border (i.e. in soil compositions: the border between a sandy soil and clay),

1A polyline is a set of connected lines: the endpoint of one line is the starting point of
another line.
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associated data can be vague or uncertain (i.e. predictions of temperatures,
or population numbers), etc. Traditional systems can not take this inherent
vagueness (caused by imprecision, uncertainty or a combination of these) into
account, resulting in the fact that the traditional model is an approximation of
reality without any indication regarding the quality of the approximation, nor
how much it deviates from reality. Modelling just this would enrich the model a
great deal, (see Morris, 2001), yielding a better representation of reality which
in turn would provide more realistic analysis and predictions.

In this article, an approach for the modelling of vaguely defined regions
(this can be seen as an extension of the traditional concept of polygon) and
positions (this can be seen as an extension of the traditional concept of a point) is
presented. It is important to realize that - while objects (positions and regions)
will be modelled - the field based concept of a bitmap is used. However, as the
bitmaps are used in a different sense than is more common, this will require
some specific operators: the term fuzzy bitmap is used to indicate bitmaps in
this usage.

For the modelling of imprecision and vagueness, fuzzy set (Zadeh, 1975;
Prade, 1982; Zimmerman, 1999; Dubois, Prade, 2000, 2001) theory is used.

2. Definition of a fuzzy bitmap

A fuzzy bitmap is in essence an extension of a regular, crisp bitmap. Similar to
a regular bitmap, a fuzzy bitmap is considered to be limited to a certain, crisp
region (the region of interest). In order to formally define a fuzzy bitmap, first
the concepts of cell and grid will be defined.

With the understanding that X is the universe of all the locations (points)
considered in the GIS, a subset c ⊆ X is called a cell if it is convex, i.e.:

∀p1, p2 ∈ c, ∃p3 ∈ c :
−→p1 + −→p2

2
= −→p3. (1)

The cell is the smallest unit known to the bitmap; for some operators the center
point of a cell is used as the reference point for this cell. This point will be
denoted as pc.

A grid — in this context — partitions the region of interest R in a finite
collection of disjoint cells

G = {c ⊆ X |∀c1, c2 ∈ G : c1 ∩ c2 = ∅;
⋃

ci∈G

= R}. (2)

In Verstraete et al. (2005), the bitmap was considered a global structure; now
it is limited to a region of interest. This difference is resembled in this altered
definition of a grid. In general, all cells have similar shapes and sizes, although
the fuzzy bitmaps are not limited to this: in the examples here cells will be
rectangular, but the length and width proportions of cells can differ. Each grid
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has a fixed number of horizontal and vertical cells. Other shapes of cells, i.e.
hexagonal, are possible but not considered here.

Similarly to traditional bitmaps, a value will be associated with every cell
of the bitmap. In a fuzzy bitmap, these values are limited to the range [0, 1] as
they will represent membership grades.2 The membership function associates
every cell of a grid with its membership grade for a given bitmap B:

µB : G → [0, 1] (3)

c 7→ µB(c). (4)

The definition of a fuzzy bitmap B̃ using grid G and membership function
µ then is:

B̃ = {(cj , µB(cj))|cj ∈ G}. (5)

This definition differs from the one in Verstraete et al. (2005) in that the cells are
no longer numbered using two indices (coordinates), but only using one index.
The reason for this is twofold: first to accommodate the definition for both
regular and irregular grids; second, this numbering also matches the numbering
of cells in Esri MapObjects, which is used for a prototype implementation. The
downside to this numbering is that given a cell, its relative position to other
cells of the same bitmap is not immediately known. Several bitmaps can be
defined using the same grid. This means that they cover the same region of
interest and that their cells are exactly the same size; the associated values of
the cells can differ, though.

3. Using fuzzy bitmaps as fuzzy regions

3.1. Using bitmaps to represent crisp regions

A region in a GIS is commonly represented by means of a polygon. It is possible,
however, to use a bitmap to represent geometric figures, using algorithms like
those used to display vector graphics on a computer screen. In Fig. 1a, a polygon
is shown; Figs. 1b and 1c show the same polygon in a bitmap representation. In
Fig. 1b the grid is also shown, it is more coarse than in Fig. 1c (where the grid
has been omitted for the readability of the image). It is obvious that a more
refined grid will lead to a better approximation of the polygon.

3.2. Using bitmaps to represent fuzzy regions

In this section, the concept of fuzzy regions is introduced. Conceptually, a
fuzzy region is a region with an imprecisely or uncertainly defined boundary.

2The membership grade 0 is included in a bitmap as this facilitates the implementation
by allowing all bitmaps to bounded by a rectangular region of interest (the added cells then
are assigned membership grade 0.) For any operation, they can simply be ignored; the value
0 then serves as a dummy value to identify these cells.



150 J. VERSTRAETE, G. DE TRÉ, A. HALLEZ

(a) (b) (c)

Figure 1. Use of a bitmap to approximate a crisp region.

(a) (b) (c)

Figure 2. Use of a bitmap to approximate a fuzzy region.

Various representations exist, most of which use some variant of the egg-yolk
model (Cohn and Gotts, 1994; Gotts and Cohn, 1995). Some have extended
the egg-yolk model to provide a model of the boundary itself, i.e. Beaubouef,
Petry (2001), Hallez, Verstraete (1995), Clementini (2004). The main difference
between the traditional egg-yolk model and our approach is that the egg-yolk
model does not provide a model for the broad boundary itself; in our approach
each point of the fuzzy region - which includes the broad boundary - is assigned
a value3 to indicate to what extent it belongs to the region. In this bitmap
approach, a fuzzy region is represented as a fuzzy bitmap B̃, where the mem-
bership grade associated with every cell is the extent to which this cell belongs
to the region. This interpretation, in which all cells belong to the region (but
some only to a given extent) is an example of what is called in fuzzy set theory
a veristic interpretation (Dubois, Prade, 1997).

In Fig. 2a, a simple fuzzy region is shown. For representation purposes,
greyscales are used: black equals membership grade 1, the lower the membership
grade of a point (or in the case of the bitmap: a cell) is, the lighter its shade of
grey. Figs. 2a and 2b show a representation of this fuzzy region in the bitmap
approach. The grid used in Fig. 2c is more refined than the grid used in Fig. 2b,
which - as already was shown in the crisp case - yields a more accurate model.

A fuzzy region can be used for various purposes: soil composition (i.e. indi-
cating clay ground), population densities, etc. A special case occurs when the
fuzzy region is interpreted as possible locations for a point, in which case it will
be referred to as a fuzzy point, as explained in the next Section.

It is important to emphasize that while the traditional concept of a bitmap

3The bitmap approach does not work on a point basis, but on a cell basis; different points
are grouped in cells, and this value is assigned to cells.
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Figure 3. Alphacuts for bitmaps.

is a field based model, our approach uses basically the same concept on which a
feature based model supporting imprecission and uncertainty is defined. Con-
sequently, for the remainder of the paper, a fuzzy bitmap will either be a fuzzy
region (Section 3.3) or a fuzzy point (Section 4).

While for practical uses the bitmap model suffers from the fact that it is
a discrete model, it can still serve some applications. Being a discrete model,
the bitmap model is particularly interesting for theoretical purposes, as this
facilitates the definition of various operators. Ongoing work is also aimed at
development of a similar, more accurate model.

3.3. Operations on single fuzzy bitmap-regions

3.3.1. α-cut

When working with fuzzy structures, at some point there will be the need to
defuzzify information, which implies there must be means to omit everything
fuzzy. This can be needed for instance to display the results, but also to make
it possible for a fuzzy model to be exported to a system that has no support for
fuzzy models, or to a system that supports another model for fuzzy geographic
information. As many extensions of geographic operators presented here make
use of α-cuts, they are considered first.

Traditionally in fuzzy set theory, the α-cut operator is used for defuzzifica-
tion: the α-cut of a fuzzy set returns all the elements which have a membership
grade greater than a given threshold. Elements whose membership grade is not
greater than this threshold are not in the result set. Fig. 3a is an illustration of
this.

In the bitmap model, the α-cut takes a fuzzy bitmap as argument (Fig. 3b)
and results in a new fuzzy bitmap, as illustrated on Fig. 3c. The cells of this
new fuzzy bitmap will only have associated values 0 or 1. The resulting bitmap
will share the same grid as the bitmap used as argument:

G̃result = Gorig. (6)

In fuzzy set theory, a difference is made between a strong α-cut and weak
α-cut ; this difference is also reflected in our model. The strong α-cut of a fuzzy
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set returns the elements with a membership grade strictly greater than a given
threshold:

B̃α = {(cj, 1)|µBorig
(cj) > α, cj ∈ G}. (7)

A special case of a strong α-cut is the support ; this is the strong alpha-cut
with threshold 0. This is an important alpha cut, as it results in all the elements
that belong to some extent to the fuzzy set.

B̃α0
= {(cj , 1)|µBorig

(cj) > 0, cj ∈ G}. (8)

Analogous to the strong α-cut, the weak α-cut of a fuzzy set returns the
elements with a membership grade greater than or equal to a given threshold:

B̃α = {(cj, 1)|µBorig
(cj) ≥ α, cj ∈ G}. (9)

Similarly to the strong α-cut, the weak α-cut has a special case, now for
a threshold equalling 1. This α-cut is called the kernel, and returns all the
elements that fully belong (membership grade 1) to the given fuzzy set:

B̃α1 = {(cj , 1)|µBorig
(cj) ≥ 1, cj ∈ G}. (10)

3.3.2. Surface area

For the calculation of the surface area of a fuzzy region, there are two possible
interpretations. The first is when the surface area is interpreted as a measure-
ment for the area. For a fuzzy region, this will mean its surface area will be a
fuzzy number. The second interpretation is when the surface area is considered
to be an expression of fuzzy cardinality (Klir, Yuan, 1995); in this case the
surface area of a fuzzy region will be the cardinality of the fuzzy set and will
thus be a crisp number. Both interpretations are considered below.

The calculation of the fuzzy surface area S̃ of a fuzzy bitmap B̃ makes use
of the previously defined α-cut. Conceptually, the surface area of each weak
α-cut will be used to determine the fuzzy number that represents the surface
area. Similar to the calculation of the distance, first the available α-cuts are
considered. In practice, only the α-cuts at membership grades present in B̃ will
need to be considered:

0 < α0 < α1 < ... < αn ≤ 1 (11)

where ∃c ∈ B̃ : µB̃1
(c) = α. Based on each of these α-values, Sα can be defined:

Sα =
∑

µB̃(cj)>α

S(cj), ∀cj ∈ B. (12)

Using these Sα, the fuzzy surface area S̃α

µS̃(B̃)(x) =

{

αi if Sαi ≤ x < Sαi+1

αn if x = Sαn .
(13)
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As mentioned before, the surface area of a region can also be interpreted as
a cardinality (in a sense, it counts the number of points in that region). For a
fuzzy region, this interpretation for the surface calculation is equivalent to the
notion of fuzzy cardinality (Klir, Yuan, 1995). In this concept, the surface area
of each cell is considered and its associated membership grade will be used to
determine just how much this area contributes to the total (cardinality of the)
area:

card(B̃) =
∑

c∈B̃

(S(c) × µ(c)). (14)

3.3.3. Minimum bounding rectangle

In traditional GIS systems, a minimum bounding rectangle of a polygon is the
smallest rectangle that can contain the polygon, and the sides of which are par-
allel to the axes used (Rigaux, Scholl, Voisard, 2002). This concept can be used
for a number of purposes, ranging from determining the relative position of two
features to optimizing operators (i.e. if the MBRs of two regions do not over-
lap, the regions do not overlap). For a fuzzy region, two variants of the concept
of an MBR are considered. The first is a fuzzy minimum bounding rectangle,
which results in a fuzzy defined rectangle (i.e. another bitmap structure); the
second requires an alpha level, and results in a crisp rectangle bounding this
alpha level.

The concept of the fuzzy minimum bounding rectangle as introduced here
should not be confused with the fuzzy minimum bounding rectangle defined
in Somodevilla and Petry (2004), where the authors define both the minimum
bounding rectangle and the inscribed rectangle of a fuzzy region, along with a
number of intermediate rectangles, in order to approximate this region.

A fuzzy MBR will yield a bitmap with the same grid as the original bitmap.
The fuzzy MBR of a bitmap will be a new bitmap whose every α-cut is rectan-
gular. The fuzzy MBR bitmap is defined such that these rectangular α-cuts are
MBRs for the same α-cuts of the original bitmap. This is illustrated on Fig. 4:
Fig. 4a shows the original bitmap, Fig. 4b shows its fuzzy MBR.

As a bitmap holds a finite number of cells, it also holds a finite number of
membership grades. Consequently, only these grades that are present in the
bitmap should be considered as α-cuts to define the fuzzy MBR.

Consider all these α-cuts. With each α-cut, a bitmap-MBR can be defined:
a rectangle made of cells such that all cells belonging to this α-cut are inside
the rectangle and no smaller rectangle can be defined. Such a rectangle can be
considered for each α-level, and each rectangle can be considered as a bitmap.
The union of all these (overlapping) bitmaps - as explained in Section 3.5.3 -
yields a new bitmap. The construction of this bitmap-MBR is explained below
in pseudo-code.
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(a) (b)

Figure 4. Concept of the fuzzy MBR.

Fuzzy_Bitmap Fuzzy_MBR (Fuzzy_Bitmap B)

result_x, temp_x: fuzzy_bitmaps, same grid as B, all grades=0

BEGIN

determine available alpha levels in B

for each alpha level x

determine B_x

find the cells with grade=1 in B_x that are closest to the

left/right/top/bottom side of the grid

use these cells to define a rectangle in temp_x:

leftmost cell determines lefthand side of the rectangle

rightmost cell determines righthand side of the rectangle

topmost cell determines tophand side of the rectangle

bottommost cell determines bottom side of the rectangle

cells inside this rectangle are assigned membership grade 1

cells outside this rectangle are assigned membership grade 0

for each cell with grade=1 in temp_x

if the same cell in result has a value < x

assign this cell the value x in result

end for

end for

return result_x

END

This new bitmap has the property that its α-cuts are MBRs for the same
α levels in the original bitmap, this new bitmap is considered as the fuzzy
MBR. Note that membership grades in the fuzzy MBR will always be concentric:
higher grades towards the middle, lower grades towards the edge of the fuzzy
bitmap.
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The fuzzy MBR has the disadvantage that it still is a bitmap-structure,
making it impossible for existing systems to use this information without mod-
ifications. The crisp MBR of a bitmap is a polygon (a rectangle), just like any
MBR in traditional systems. In addition to a bitmap, the calculation of a crisp
MBR also requires an α level: this level determines the cells of the bitmap
around which the MBR is considered.

The crisp MBR can be calculated as follows: first, the fuzzy MBR is de-
termined. Next, the α-cut at the given level is considered. This will yield a
bitmap with cells having an associated membership grade 1 and cells with an
associated grade 0. The outline of the cells with an associated grade 1 can now
be represented as a polygon (by construction it will be a rectangle), resulting
in a traditional MBR.

3.3.4. Convex hull

The convex hull of a polygon (Rigaux, Scholl, Voisard, 2002) is an interesting
operator in traditional GIS systems. It is commonly used to optimize other
operators and tests, i.e. if the convex hulls of two polygons do not intersect, the
polygons themselves do not intersect. It can also be used for indexing. Even
in this usage, fuzzification makes sense: the same fuzzy region can have index
entries for different α-levels.

Traditionally, the convex hull of a polygon results in a new polygon; for
fuzzy regions, the convex hull of a fuzzy region will result in a new fuzzy region.
The approach is quite similar to the calculation of the fuzzy MBR: for every
α-cut, the convex hull is considered. By recombining these results using the
union operator, a new bitmap containing the fuzzy convex hull is obtained.
Fig. 5 shows a simplified example (the cells are not considered) to illustrate the
concept: Fig. 5a shows a fuzzy region, its fuzzy convex hull is shown on Fig. 5b.

Similar to the calculation of the fuzzy MBR, only the α-levels at membership
grades that occur in B̃ need to be considered.

Fuzzy_Bitmap Fuzzy_Convex_Hull (Fuzzy_Bitmap B)

result_x, temp_x: fuzzy_bitmaps, same grid as B, all grades=0

BEGIN

determine available alpha levels in B

for each alpha level x

determine B_x

consider the centerpoints of cells with grade=1 in B_x that

neighbour cells with grade=0 or

neighbour the edge of the bitmap

generate convex hull of polygon defined by these centerpoints



156 J. VERSTRAETE, G. DE TRÉ, A. HALLEZ

(a) (b)

Figure 5. Simplified illustration of the concept of the fuzzy convex hull.

(a) (b)

Figure 6. Example of a fuzzy convex hull of an extended bitmap.

rasterize the polygon (using the current grid as raster)

if a cell belongs to the edge or the inside of the polygon

assign it grade=1 in temp_x

for each cell with grade=1 in temp_x

if the same cell in result has a value < x

assign this cell the value x in result

end for

end for

return result_x

END

In the algorithm, a rasterization-method is required. These methods are com-
mon in the realm of computer graphics, for a description of different rasterization-
techniques we refer to Foley and Feiner (1996), Angel (2003).

On Fig. 6a fuzzy bitmap is considered (it is the rasterized example of Fig. 5.
The fuzzy bitmap is shown on Fig. 6b. This result might not appear to be
convex, but a bitmap representation is limited in that it can only consider cells
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Figure 7. Concept of distance between fuzzy regions.

as its smallest unit. The bitmap usually is an approximation of a polygon, the
convex hull of a bitmap will also be an approximated polygon. The fuzzy bitmap
as constructed above has the property that at every α-level it holds the convex
hull for the original bitmap (at that same α-level).

3.4. Operations on multiple fuzzy bitmap-regions with non-spatial
result

3.4.1. Distance between fuzzy bitmaps

The geographic operator that will be considered here is the distance operator.
Only the distance between two fuzzy regions is explained; the distance between
a fuzzy and a crisp region is analogous.

In the crisp case, the distance between two regions is defined as the shortest
distance of all possible distances between these two regions; this definition is
the basis for defining the distance between two fuzzy regions:

d(R1, R2) = min(d(p1, p2), ∀p1 ∈ R1 ∧ ∀p2 ∈ R2). (15)

When dealing with fuzzy regions, it stands to reason that the result will be
a fuzzy number: if the regions are imprecisely defined, so must the distance
between them. This is illustrated in Fig. 7

In order to extend the distance operator, first all the membership grades of
both arguments must be considered:

0 < α0 < α1 < ... < αn ≤ 1 (16)

where ∀, αi∃c ∈ B̃1 ∪ B̃2 : µB̃1
(c) = αi ∨ µB̃2

(c) = αi. Along with each of these
α-values, lα can be defined; lα is the shortest distance between the α-levels of
the bitmaps:

lα = min
(

d(pc
1, p

c
2), ∀pc

1 ∈ B̃1α ∧ pc
2 ∈ B̃2α

)

. (17)

The distance is considered between centerpoints4 of all cells that belong to this

4Depending on the accuracy of the bitmaps - this will depend on the application - an
alternate definition could use all the points p1 ∈ B̃1α

and p2 ∈ B̃2α
of the each cell instead

of only the center points.
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Figure 8. Example of distance between two extended bitmaps representing fuzzy
regions.

α-level in each of the bitmaps; lα is defined for all α levels occuring in both
bitmaps. The distance lα0 is the shortest distance that occurs; the distance lαn

is the longest.

The distance between two fuzzy regions is then defined using the lα values
as:

µd̃(B̃1,B̃2)
(x) =

{

αi if x ∈ [lαi , lαi+1 [
αn if x = lαn

(18)

This operator is a straightforward application of the Zadeh‘s extension prin-
ciple, applied to the distance as defined between regions. To illustrate the
operator, consider the bitmaps B1 and B2 as shown in Fig. 8a. The distance
between the fuzzy regions represented by these bitmaps is shown in Fig. 8b. As
the distance is considered at all available α-levels, the fuzzy number appears
in steps. As the extended bitmaps are an approximation for the regions, this
stepped distance can be considered to be an approximation as well. A nice
representation of this fuzzy number is obtained by considering its convex hull,
as illustrated by the thick line in Fig. 8b.

3.5. Operations on fuzzy bitmap-regions with spatial result

3.5.1. The new grid

Traditionally in GIS, different data can be combined in what is called an overlay.
Overlays are essential to combine different types of data, or data from different
sources.

When overlaying multiple bitmaps, it is important to note that this usually
includes a change in the region of interest. Consequently, before any operation
can be considered, the new region of interest must be determined. This new
region of interest will encompass the regions of interest of its arguments. Next,
the arguments must also be considered within this new region of interest, which
implies extending their grid to match the region.
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(a) (b)

(c) (d)

Figure 9. Constructing the grid that combines two existing grids.

In the first paragraph, defining the new region of interest is considered, as
is adapting the arguments of the operators to match this new region. In the
subsequent paragraphs a number of set-operations are defined.

Consider two grids as shown on Fig. 9a. The first step in defining the grid
is determining the new region of interest. This region of interest is basically
the union of the regions as considered by the bitmap arguments. However, as
a bitmap is considered to have a rectangular outline, the region is extended in
such a way that its outline be a rectangle, see Fig. 9b.

In a second step, the region of interest is partioned by the grid of the first
bitmap, but with its gridlines lenghtenend beyond its own region of interest to
the outline of the newly defined region of interest, thus possibly dividing cells
of the other grid. The lengthened gridlines are drawn using dashed lines on
Fig. 9c.

In consecutive steps, the grids of other bitmap arguments are used to parti-
tion the new region of interest (and its cells, if needed) even further. Essentially,
the cells of one grid can be divided by the other grid into smaller cells. This
can be seen on Fig. 9d.

The result of this construction is that every cell that was present in one of
the arguments is present in the new region of interest, either as a whole, or par-
titioned in a number of smaller cells. Now, the original grids are discarded, and
every bitmap that is an argument is now using these grids for its cell definitions
(cell coordinates used below are relative to this grid), as illustrated on Fig. 10.
While this action potentially changes the resolution of a bitmap, its overall ap-
pearance is not altered by this: cells either inherit their membership grade from
the original bitmap, or are assigned 0 if they cover regions not covered by the
original bitmap.
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Figure 10. Mapping the bitmap from its original grid to the newly constructed
grid.

3.5.2. Intersection

One way of combining data of multiple bitmaps is by considering their intersec-
tion. If the fuzzy bitmaps B̃1 and B2 model features A and B respectively, the
intersection of both bitmaps will model the regions where both features A and
B are present.

The intersection is performed by a T-norm operator, i.e. the minimum. As
the operator is applied on a per cell basis, any T-norm can be used:

µB̃3
(c3(n, m)) = T (µB̃1

(c1(n, m), µB̃2
(c2(n, m))).

3.5.3. Union

The union of two bitmaps can be used to yield the regions where one of two
features (each modeled by its own bitmap) occurs.

This operator is performed by a T-conorm (i.e. maximum), but again, as
the operator is applied on a per cell basis, any T-conorm can be used:

µB̃3
(c3(n, m)) = S(µB̃1

(c1(n, m), µB̃2
(c2(n, m))).

Other operators, such as difference, are completely analogous.

4. Fuzzy bitmaps for fuzzy points

In the previous section, a bitmap was used to model a fuzzy region, where all
points of the bitmap were considered to belong completely or to some extent to
the region. In this section, the modelling fuzzy points is considered. A fuzzy
point is in essence an extension of a point: the representation of a single position,
but with uncertainty or imprecision regarding that position. In practical uses,
a fuzzy point can be used to model a number of things: the estimated position
of a person/object on a map derived from limited knowledge (i.e. close to a
church tower, a bridge and a river; or position after a given time interval after
the last know gps coordinates), matching different sources of information (i.e.
identify the same crossing on a map and an aerial photograph).
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By considering a fuzzy region as a model for all the possible locations of
a point, the model for a fuzzy region can be used as a basis to represent a
fuzzy point. This fuzzy region is represented as a fuzzy bitmap B̃, where the
membership grade associated with every cell is the extent to which this cell is a
possible location for the fuzzy point. The main difference is the interpretation of
the bitmap: as a point is being modelled, only one location is valid at all times.
Consequently, the interpretation of the fuzzy bitmap is possibilistic (a fuzzy
region has a veristic interpretation: all points are valid but to a different extent).
This difference in interpretation influences some operators (such as distance),
whereas other operators either remain the same (perhaps with a difference in
interpretation), or might even lose their meaning.

4.1. Operations on single fuzzy bitmaps (points)

The operations on single fuzzy bitmaps as described in the previous section are
the same when considering fuzzy points. The various α-cuts can be useful when
working with fuzzy points, the fuzzy MBR and fuzzy convex hull can be used to
work on the possible locations for a point. Even the fuzzy surface can be used,
to determine over what area the point is located.

Of course, in all these operations, one must consider the difference in inter-
pretation: when modelling a fuzzy point, only one point (cell) is considered at
a time (with fuzzy regions, all cells were considered at the same time).

4.2. GIS-operations on multiple fuzzy bitmaps (points)

In this section, traditional operators on points will be adapted to work with
the concept of fuzzy points. For the sake of argumentation, consider two fuzzy
bitmaps B̃1, respectively B̃2, used to represent the fuzzy points p̃1 and p̃2. The
notation p will be used to indicate traditional crisp points.

Most operators are similar to the operators defined above. Only the opera-
tors that differ from the operators in the fuzzy-region section will be considered.

4.2.1. Distance between fuzzy points

The Euclidean distance d between two crisp points is defined as

d(p1(x1, y1), p2(x2, y2)) =
√

(x2 − x1)2 + (y2 − y1)2 (19)

The distance d̃ between two fuzzy positions p̃1, p̃2 will be a fuzzy number, which
can be defined using Zadeh’s Extension Principle (Zadeh, 1975):

µd̃(p̃1,p̃2)
(x) = sup

p1, p2 ∈ X

x = d(p1, p2)

min(µp̃1(p1), µp̃2(p2)). (20)

This concept can be seen in Fig. 11.
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Figure 11. Concept of distance between fuzzy points.
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Figure 12. Example of distance between extended bitmaps representing fuzzy
points.

In the case of the bitmap, the definition must work on a per cell basis.
Consequently, this definition becomes

µd̃(B̃1,B̃2)
(x) = sup

c1 ∈ B̃1, c2 ∈ B̃2

x = d(c1, c2)

min(µB̃1
(c1), µB̃2

(c2)) (21)

This concept can be seen in Fig. 12. Similarly as the distance between
regions, the obtained number can be approximated by its convex hull, thus
resulting in the thick line in Fig. 12b.

Other distance measures can be defined in an analogous way.

4.2.2. Set-operations on multiple fuzzy bitmaps (points)

The set-operations as described in the section concerning fuzzy regions can be
used for fuzzy bitmaps that represent fuzzy locations. Set operations in the
context of fuzzy points are necessary when there is different data concerning
the location of a point. For example: it can be known that a point is near
a river and close to a water tower. The intersection operator will provide a
means of combining these two pieces of information. To do this, first a bitmap
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can be constructed with possible locations near a river, then a second bitmap
can hold possible locations that are close to a water tower. The intersection of
these bitmaps yields the possible locations that are both close to a river and
near a water tower.

5. Conclusion

In this paper, bitmap models - commonly a field based model - were extended
for the modelling of fuzzy regions and fuzzy points. The presented models
should be seen as extensions of polygons and points, respectively. In addition
to the representation of the data, operators commonly found in GIS systems
were extended to these bitmap models. The surface, bounding rectangle and
convex hull of a fuzzy bitmap can be calculated, as can the distance between,
and the intersection and union of two fuzzy bitmaps be determined. Additional
operators that allow the defuzzification (using α-cuts) of a fuzzy bitmap increase
the usability in traditional systems.

The theoretical definitions and algorithms have been implemented in a work-
ing prototype, which illustrates their feasibility. Further research is aimed at
optimizing the operators and adding more operators, i.e. for determining rel-
ative positions between regions and/or points. The bitmap model is an easy
model to reason upon, but it still is a discrete model. Work on a more accu-
rate representation for fuzzy points and regions based on triangulated irregular
networks is also ongoing.
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