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Abstract: The paper deals with the estimation problem of
model parameter values, in tasks where overestimation implies re-
sults other than underestimation, and where losses arising from this
can be described by a quadratic function with different coefficients
characterizing positive and negative errors. In the approach pre-
sented, the Bayes decision rule was used, allowing for minimizing
potential losses. Calculation algorithms were based on the theory
of statistical kernel estimators, which frees the method from distri-
bution type. The result constitutes a complete numerical procedure
enabling effective calculation of the value of an identified parameter
or – in the multidimensional case – the vector of parameters. The
method is aimed at both of the main contemporary approaches to
uncertainty modeling: probabilistic and fuzzy logic. It is universal
in nature and can be applied in a wide range of tasks of engineering,
economy, sociology, biomedicine and other related fields.
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1. Introduction

A basic role in many problems of modern science and practical applications is
played by the proper identification of parameters used in a model describing re-
ality under consideration, e.g. an object or process. Due to obvious metrological
reasons, a precise – in the strictest sense of the word – measure of their values
is never possible. In real applications, the underestimation of a parameter value
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very often implies different results from overestimation, both in quality and
quantity. A task where losses resulting from this can be described by a linear
function with different coefficients characterizing positive and negative errors
was analysed in Kulczycki (2000, 2001), Kulczycki and Wisniewski (2002). In
this paper, the problem has been transposed onto the more complex case of an
quadratic asymmetrical function.

As an example to illustrate the reason for the above task, an optimal control
problem will be considered. Such systems have shown themselves in practice
to be very sensitive to the inaccuracy of modeling, which was – in fact – the
main limit of their applications. However, the performance index defined here
primarily for the purposes of control, can also refer to quality of identification
allowing for creation of an optimal procedure for estimation of model parameter
values, notably lowering this sensitivity. Thus, consider the following task of
optimal control for a quadratic performance index with infinite end time, unit
matrix/parameter for the integrand function of the performance index (Athans
and Falb, 1966; Section 9.5). The object is the dynamic system

ẋ(t) =

[

λ 1
0 λ

]

x(t) +

[

0
λ

]

u(t) , (1)

where λ ∈ R\{0}. Moreover, let Λ ∈ R\{0} represent an estimator of the
parameter λ. An optimal feedback controller is defined on the basis of the
value Λ, not necessarily equal to the value of the parameter λ existing in the
object. The values of the performance index obtained for the particular Λ, are
shown in Fig. 1. One can see that the resulting graph can be described with
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Figure 1. Performance index value as a function of the parameter Λ; (λ = 1)).
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great precision by a quadratic function with different coefficients for positive
and negative errors, which in fact proves that over- and underestimation of
the parameter λ have different effects on the performance index value. Similar
outcomes can also be obtained for time-optimal control, therefore in the second
main type of classical optimal control. Over- and underestimation of object
parameters produce here original phenomena – sliding trajectories and over-
regulations, with a significantly different influence on the performance index.

Similar conditioning can also be shown for many problems outside the area
of optimal control, or even broadly understood engineering. For example, as
stated by Kahneman – a Nobel laureate in the field of economics – behavior in
business is not completely rational. According to his theory, a human reacts
strongly to extreme stimuli and is disposed to exaggerating losses as well as
undervaluing gains. This fear of large losses enables animals to survive in nature,
however, in the economy it leads to an irrational dread of change. Therefore,
if one describes the psychological preferences of an ordinary person applying
mathematical means similar to the performance index used in optimal control,
then the shape of those preferences takes the quadratic and asymmetrical form
displayed in Fig. 1. Here an inverse relationship to losses and gains is represented
by asymmetry, and fear of extremes by the quadratic form.

The uncertainty of the examined parameters will be considered in this paper
for a probabilistic approach. The methodology of statistical kernel estimators
is applied to estimate the distribution of probability measure, which makes
the result independent of arbitrary assumptions concerning the type of this
distribution. An algorithm based on the Bayes decision rule is proposed, which
allows for obtaining minimal expectation value for potential losses. The basic
form of the procedure investigated here can be easily generalized for different
aspects common in applications – as an example a multidimensional case, when
the vector of parameters is submitted to identification, will be considered in
detail. Furthermore, the investigated method can be used for other uncertainty
approaches apart from that of probability, e.g. fuzzy logic.

It must be stressed that the main goal of this paper is the presentation of an
algorithm in its complete form, ensuring – in particular – that its practical im-
plementation does not demand of the user detailed knowledge of the theoretical
aspects or laborious research and calculations.

This paper is based on dissertation (Mazgaj, 2005), where additional details
of the problems concerned may be found.

2. Mathematical preliminaries

2.1. Elements of decision theory

The main aim of decision theory (Berger, 1980) is the selection of a concrete
decision, based on a representation of measure characterizing the imprecision of
states of nature. Thus, assume the space R

n as the set of all states of nature,
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and the density of distribution of a measure on R
n for such imprecision (e.g.

the density of distribution of a probability measure for a probabilistic approach
or a membership function for a fuzzy logic approach) denoted by M . Let there
be given also the nonempty set of possible decisions D, as well as the loss
function l : D × R

n → R while its values l(d, z) can be interpreted as losses
occurring in a hypothetical case when the state of nature (deterministic or crisp
in probabilistic or fuzzy approaches, respectively) is z and the decision d is
taken. If for every d ∈ D the integral

∫

Rn
l(d, z)M(z)dz exists, then the Bayes

loss function lB : D → R ∪ {±∞} can be defined as

lB(d) =

∫

Rn

l(d, z)M(z)dz . (2)

Every element dB ∈ D such that

lB(dB) = min
d∈D

lB(d) (3)

is called a Bayes decision, and the procedure of its discovery – a Bayes decision
rule. The Bayes decision is chosen in such a way, therefore, as to minimize the
mean value (with respect to the measure represented by the function M) of
losses following the decision d. In tasks investigated further in this paper, the
Bayes decision will constitute a Bayes estimator or a Bayes defuzzyficator for
the probabilistic or fuzzy approaches, respectively.

2.2. Statistical kernel estimators

Let the n-dimensional random variable X , with a distribution having density
f , be given. Its kernel estimator f̂ : R

n → [0,∞) is calculated on the basis of
the m-element random sample x1, x2, . . . , xm acquired experimentally from the
variable X , and is defined in its basic form by the formula

f̂(x) =
1

mhn

m
∑

i=1

K

(

x− xi

h

)

, (4)

where the function K : R
n → [0,∞), which is measurable, symmetrical relative

to zero, and has a weak global maximum at this point, fulfils the condition
∫

Rn
K(x)dx = 1, and is called a kernel, whereas the positive coefficient h is

known as a smoothing parameter. In the particular procedures concerning ker-
nel estimators, additional requirements regarding the functions f and K are
assumed, although these are not restrictive from an applicational point of view.
It should be stated that the kernel estimators allow for identification of density
of practically any distribution, without an assumption concerning its type.

Fixing values introduced in definition (4), i.e. choosing the form of the kernel
K and calculating the value of the smoothing parameter h, is most often carried
out using the mean squares criterion.
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Thus, from the statistical point of view, the form of the kernel seems not to
have an essential meaning, thanks to which it becomes possible for the choice
of the function K to be arbitrary, taking into account above all the required
properties of the estimator obtained, e.g. class of regularity, positive values,
or other qualities important in the case of a particular problem, especially the
convenience of calculations.

In the one-dimensional case, for the function K, the classical forms of densi-
ties of probability distributions (e.g. normal, Cauchy, triangular and others) or
their linear combinations, are used. The most effective is the so-called Epanech-
nikov kernel

KE(x) =

{

3
4 (1 − x2) for x ∈ [−1, 1]

0 for x ∈ (−∞,−1) ∪ (1,∞) .
(5)

In the multidimensional case, two natural generalizations of the above concept
are used: radial and product kernels. However, the former is somewhat more
effective, although from an applicational point of view, the difference is imma-
terial and the product kernel – significantly more convenient in analysis – is
often favored in practical problems. The n-dimensional product kernel K can
be expressed as

K(x) = K





















x1

x2

...
xn





















= K(x1) · K(x2) · . . . · K(xn) , (6)

where K denotes the one-dimensional kernel. Among product kernels, the most
effective is based on the one-dimensional Epanechnikov kernel, i.e. when K is
given by formula (5).

As opposed to the form of the kernel, the value of the smoothing parameter
has significant influence on the quality of the estimator obtained. In any case,
convenient algorithms have been developed to secure calculation of the value of
h close to optimal, on the basis of a random sample. As the product kernel will
be used in this paper, a presentation of the one-dimensional case is sufficient.
Thus, the most convenient algorithm is the so-called plug-in method. Its concept
consists in the calculation of this parameter using an approximate method, and
after r steps of improving the result, one obtains a value close to optimal. In
practice, it is taken that r ≥ 2, with the lowest possible value recommended. On
the basis of simulation research carried out for the needs of the task investigated
in this paper, r = 3 was assumed. In this case the plug-in method consists in
the application of the following formulas:

ψ̃10 =
−945

64π1/2σ̂11
, (7)
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while σ̂ denotes the estimator of standard deviation

σ̂ =

√

√

√

√

1

m− 1

m
∑

i=1

x2
i −

1

m(m− 1)

( m
∑

i=1

xi

)2

(8)

and

g1 =

(

−2L(8)(0)

mP (L)ψ̃10

)1/11

(9)

g2 =

(

−2L(6)(0)

mP (L)ψ8(g1)

)1/9

(10)

g3 =

(

−2L4(0)

mP (L)ψ6(g2)

)1/7

, (11)

finally

h =

(

R(K)

mP (K)2ψ4(g3

)1/5

, (12)

where

R(K) =

∫

R

K(x)2 dx (13)

P (K) =

∫

R

x2K(x) dx (14)

ψr(g) =
1

m2gr+1

m
∑

i=1

m
∑

j=1

L(r)

(

xi − xj

g

)

. (15)

The kernelK, applied in the kernel estimator (4), is used only in the last step. In
all the other steps, a different kernel L, more convenient for the plug-in method,
may be used.

The value of the smoothing parameter h introduced in definition (4) is the
same for all kernels, mapped to particular elements of the random sample. In
“dense” areas of such elements, the above value should be lessened (which al-
lows for showing better the specific features of the distribution), as opposed
to areas where such elements are “sparse” and it should be increased (which
causes additional smoothing of “tails”). The parameter modification procedure
achieves this goal in compliance with the following algorithm:

(A) the kernel estimator f̂ is specified according to the basic formula (4);
(B) the modifying parameters si > 0 of the form

si =

(

f̂(xi)

s̄

)−1/2

for i = 1, 2, . . . ,m (16)
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are calculated, where s̄ is the geometric mean of the numbers f̂(x1), f̂(x2), . . .,

f̂(xm), given by the logarithmic equation

log(s̄) =
1

m

m
∑

i=1

log(f̂(xi) ; (17)

(C) the kernel estimator with the modification of the smoothing parameter is
ultimately defined as

f̂(x) =
1

mhn

m
∑

i=1

1

sn
i

K

(

x− xi

hsi

)

. (18)

Details of the above-presented methodology of statistical kernel estimators are
found in Kulczycki (2005), Silverman (1986), Wand and Jones (1995).

3. Algorithm

3.1. Basic, one-dimensional case

The parameter under investigation, whose value is to be estimated, will be de-
noted by x. The basic one-dimensional case, i.e. where x ∈ R, is presented
below. In order to adhere to principles of decision theory presented in Sec-
tion 2.1, the parameter x will be treated here as the value of a one-dimensional
random variable. According to point estimation methodology, it is assumed
that the metrologically achieved measurements of the above parameter, i.e.
x1, x2, . . . , xm, are the sum of its “true” (although unknown) value and ran-
dom disturbances of various origin. The goal of this study is the calculation of
the estimator of this parameter (hereinafter denoted by x̂), which would approx-
imate the “true” value, the best from the point of view of a practical problem
investigated.

In order to solve this task, the Bayes decision rule will be used, ensuring the
minimum of expected value of losses. According to the conditions formulated
in the Introduction, the loss function is assumed in quadratic and asymmetrical
form:

l(x̂, x) =

{

a(x̂− x)2 for x̂− x ≤ 0

b(x̂− x)2 for x̂− x ≥ 0
, (19)

while the coefficients a and b are positive and not necessarily equal to each
other. Thus, the Bayes loss function (2) is given by the formula

lB(x̂) = a

∞
∫

x̂

(x̂− x)2f(x)dx+ b

x̂
∫

−∞

(x̂ − x)2f(x)dx , (20)
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where f : R → [0,∞) denotes the density of distribution of a random variable
representing the uncertainty of states of nature, i.e. the parameter in question.
It is readily shown that the function lB fulfils its minimum for the value being
a solution of the following equation with the argument x̂:

(a− b)

x̂
∫

−∞

(x̂− x)f(x)dx− a

∞
∫

−∞

(x̂ − x)f(x)dx = 0 . (21)

This solution exists and is unique. Upon dividing the above equation by b, one
obtains its equivalent form

(a

b
− 1
)

x̂
∫

−∞

(x̂ − x)f(x)dx =
a

b

∞
∫

−∞

(x̂− x)f(x)dx . (22)

This implies that it is not necessary to identify the parameters a and b separately,
but only their ratio.

Solution of equation (21) for a general case is not an easy task. However, if
estimation of the density f is obtained using statistical kernel estimators, then
– thanks to a proper choice of the kernel form – one can design an effective
numerical algorithm to this end. Let, therefore, a continuous kernel of positive
values, and also fulfilling the condition

∞
∫

−∞

xK(x)dx <∞ (23)

be used. For any fixed i = 1, 2, . . . ,m the functions Ui : R → R and Vi : R → R

given by

Ui(x) =
1

hsi

x
∫

−∞

K

(

y − xi

hsi

)

dy (24)

Vi(x) =
1

hsi

x
∫

−∞

yK

(

y − xi

hsi

)

dy (25)

can then be defined. The choice of form of the kernel K should be made so that
the functions I : R → R and J : R → R such that

I(x) =

x
∫

−∞

K(y)dy (26)

J(x) =

x
∫

−∞

yK(y)dy (27)
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can be expressed by relatively simple analytical formulas, which results in a
similar property regarding the functions Ui and Vi.

If an expected value is estimated by the arithmetical mean value of a sample,
then criterion (21) can be described equivalently as

m
∑

i=1

[(a− b)(x̂Ui(x̂) − Vi(x̂) + axi] − ax̂m = 0 . (28)

Denoting the left side of the above formula by L(x̂), one can – thanks to the
equality V ′

i (x̂) = x̂U ′

i(x̂) directly resulting from dependencies (24)-(25) – express
the value of its derivative as

L′(x̂) =

m
∑

i=1

[(a− b)Ui(x̂)] − am . (29)

In this situation, the solution of equation (21) can be calculated numerically on
the basis of Newton’s algorithm as the limit of the sequence {x̂j}

∞

j=0 defined by

x̂0 =
1

m

m
∑

i=1

xi (30)

x̂j+1 = x̂j −
L(x̂j)

L′(x̂j)
for j = 0, 1, . . . , (31)

with the functions L and L′ being given by formulas (28)-(29), whereas the stop
criterion takes on the form

|x̂j − x̂j−1| ≤ 0.01σ̂ , (32)

where σ̂ denotes the estimator of the standard deviation (8). Depending on
the conditions of application under investigation, the above form of Newton’s
algorithm can be modified and enhanced by additional aspects, available in the
literature on the subject (e.g. Dalquist and Bjork, 1983; Stoer and Bulirsch,
1983).

As mentioned, an important positive feature consists in the possibility to
choose the kernel form with regard to the requirements of the practical task
investigated. In the above considerations, the following four requirements for
this subject have been formulated:

(A) continuity and positivity of the function K;
(B) the finite first moment of the above function, required by condition (23);
(C) the function I defined by dependence (26) should be expressed by a

relatively simple analytical formula;
(D) similarly with respect to the function J , given by formula (27).

The most effective Epanechnikov kernel (5) does not fulfil the first of the
above conditions. Because of this, the Cauchy kernel

KC(x) =
2

π

1

(1 + x2)2
(33)
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can be proposed, or more general – a linear combination of the Epanechnikov
(5) and Cauchy (33) kernels:

K(x) = αKE(x) + (1 − α)KC(x) , (34)

with

α ∈ [0, 1) . (35)

If the constant α takes on a value close to 1, then kernel (34) has effectiveness
near to optimal, however, due to the Cauchy kernel having positive values, the
combination (34) will also have this feature. In practice it is recommended that

α = 0.9 , (36)

which ensures effectiveness close to the one for the optimal Epanechnikov kernel,
although it is not so close to 1, to avoid computational difficulties connected
with approximations of numerical methods. Note, however, that in the case
of α = 0, only the Cauchy kernel is used, leading to a drop of about half in
calculation time.

For any fixed i = 1, 2, . . . ,m, the function Ui defined by formula (24) is
therefore a linear combination of appropriate functions for the Epanechnikov
and Cauchy kernels:

Ui(x) = αUi,E(x) + (1 − α)Ui,C(x) , (37)

while

Ui,E(x) =



































0 for x < xi − hsi

−x3 + 3xix
2 + 3(h2s2i − x2

i )x+ x3
i + 2h3s3i − 3h2s2ixi

4(hsi)3

for xi − hsi ≤ x ≤ xi + hsi

1 for x > xi + hsi

(38)

Ui,C(x) =
1

π
arctg

(

x− xi

hsi

)

+

x− xi

hsi

π

[

1 +

(

x− xi

hsi

)2
] +

1

2
. (39)

Similarly one can denote for the function Vi given by (25):

Vi(x) = αVi,E(x) + (1 − α)Vi,C(x) , (40)
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where

Vi,E(x) =



































0 for x < xi − hsi

−3x4 + 8xix
3 + 6(h2s2i − x2

i )x
2 + x4

i − 6h2s2i x
2
i + 8h3s3i xi − 3h4s4i

16(hsi)3

for xi − hsi ≤ x ≤ xi + hsi

xi for x > xi + hsi

(41)

Vi,C(x) =xi













1

π
arctg

(

x− xi

hsi

)

+

x− xi

hsi

π

[

1 +

(

x− xi

hsi

)2
] +

1

2













−
hsi

π

[

1 +

(

x− xi

hsi

)2
] . (42)

When using linear combination (34) with α 6= 0, the smoothing parameter h
should be calculated separately for each component kernel (5) and (33), which
enables to obtain proper form separately for each of them and, consequently, a
suitable one – from the practical point of view – for their linear combination.
In Section 2.2 the third order plug-in method was proposed for the above pur-
pose. For Epanechnikov (5) and Cauchy (33) kernels, the quantities occurring
in formulas (9)-(12) are, respectively, given as

P (KE) =
3

15
(43)

R(KE) =
9

15
(44)

and

P (KC) = 1 (45)

R(KC) =
5

4π
. (46)

As the kernel L, introduced in the plug-in method, Cauchy kernel can be pro-
posed. The quantities occurring in formulas (9)-(11) are expressed, respectively,
as:

P (L) = P (KC) = 1 (47)

L(4)(x) = K
(4)
C (x) =

48

π

35x4 − 42x2 + 3

(1 + x2)6
(48)
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L(6)(x) = K
(6)
C (x) =

5760

π

21x6 − 63x4 + 27x2 − 1

(1 + x2)8
(49)

L(8)(x) = K
(8)
C (x) =

80640

π

165x8 − 924x6 + 990x4 − 220x2 + 5

(1 + x2)10
. (50)

The modifying parameters s1, s2, . . . , sm should be directly calculated based
on the algorithm presented in Section 2.2.

Finally, in this way, the complete algorithm has been investigated, allowing
for calculation of the value of the Bayes estimator for the quadratic and asym-
metrical loss function (19), in the basic one-dimensional case. All quantities
necessary for its numerical implementation have been directly given, as a result
of which, after the introduction of the random sample value x1, x2, . . . , xm and
the assumed value of the quotient a

b , one obtains the desired estimator value.
Thus, assuming the kernel K in the form (34), with the application of (5), (33),
and possibly (36), on the basis of the random sample value x1, x2, . . . , xm one
can calculate – using the procedures described by formulas (7)-(12) and (15)
with derivations (43)-(50) – the values of the smoothing parameters h sepa-
rately for Epanechnikov and Cauchy kernels, and then according to the proce-
dure presented in Section 2.2 – the modifying parameters s1, s2, . . . , sm. For the
assumed quotient a

b , this allows for defining the functions Ui as well as Vi based
on dependencies (37)-(42), and also – thanks to equalities (28)-(29) – L as well
as L′. The above completes the quantities required to use Newton’s algorithm
(30)-(32), and, consequently, to obtain the desired estimator value.

3.2. Multidimensional case

The proposed method can be easily generalized for different cases commonly
appearing in applications: multidimensional (the vector of parameters), con-
ditional (a dependence on external factors) and polynomial (a loss function of
a degree higher than quadratic); for a commentary see Kulczycki and Mazgaj
(2003). As a particularly important example for practice, a multidimensional
case, when a number of parameters (i.e. their vector) is submitted for estima-
tion, will be presented in details below. For the sake of clarity of presentation,
a two-dimensional case will be worked out here. The idea itself may be trans-
posed for larger dimensions, although at a natural – in such a situation – cost
of increasing complexity.

In order to illustrate the conditioning of such a problem, the example from
optimal control examined in the Introduction will be continued now. Consider
the dynamical system resulting from inclusion of the inertia of an actuator in
model (1), therefore replacement of the control u with the additional coordinate
x3, and adding the third differential equation in the form

ẋ3(t) = −τx3(t) + u(t) , (51)
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with the inertia constant τ > 0. Joining thus formulas (1) and (51), one obtains
the following differential equation:





ẋ1(t)
ẋ2(t)
ẋ3(t)



 =





λ 1 0
0 λ λ

0 0 −τ









x1(t)
x2(t)
x3(t)



+





0
0
1



u(t) . (52)

Submitted for estimation, therefore, are the parameters derived from the differ-
ent subsystems: λ directly from the object and τ characterizing the actuator,
and so are independent. The feedback controller is defined based on the val-
ues of the estimators Λ and T, which differ from the values of the parameters
λ and τ existing in the object. The results of errors of estimation of both of
these parameters are, however, correlated – in effect they can cumulate or be
partially eliminated. A spatial graph for the performance index for particu-
lar Λ and T, i.e. the two-dimensional counterpart of one shown in Fig. 1, can
be approximated with great accuracy using a two-dimensional, quadratic and
asymmetrical loss function, of the form which will be defined below.

Let therefore the estimated parameters x1, x2 ∈ R × R be treated as the

two-dimensional vector

[

x1

x2

]

, and their estimators:

[

x̂1

x̂2

]

. Similarly to the

one-dimensional case, the vector of parameters will be taken to be the value of
a two-dimensional random variable. Ultimately, the two-dimensional quadratic
and asymmetrical loss function is given by the following dependence:

l

([

x̂1

x̂2

]

,

[

x1

x2

])

=



































































al(x̂1 − x1)
2 + ald(x̂1 − x1)(x̂2 − x2) + ad(x̂2 − x2)

2

if x̂1 − x1 ≤ 0 and x̂2 − x2 ≤ 0

ap(x1 − x1)
2 + apd(x̂1 − x1)(x̂2 − x2) + ad(x̂2 − x2)

2

if x̂1 − x1 ≥ and x̂2 − x2 ≤ 0

al(x̂1 − x1)
2 + alg(x̂1 − x1)(x̂2 − x2) + ag(x̂2 − x2)

2

if x̂1 − x1 ≤ 0 and x2 − x2 ≥ 0

ap(x̂1 − x1)
2 + apg(x̂1 − x1)(x̂2 − x2) + ag(x̂2 − x2)

2

if x̂1 − x1 ≥ 0 and x̂2 − x2 ≥ 0

(53)

where al, ap, ag, ad > 0, ald, apg ≥ 0 and apd, alg ≤ 0. The coefficients ald, apd,
alg, apg represent the complementary correlation of estimation errors for both
parameters. It is also worth noting that in the case when the parameters ald,
apd, alg, apg equal zero, the problem is reduced to two separate tasks in the
basic one-dimensional form, investigated in the previous section.

Assume independence of the estimated parameters. This for example can
mean that they originate from different subsystems of an object under research,
which was illustrated by the example from the area of optimal control at the
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beginning of this section. Then the density f representing their uncertainty
may be shown as the product of the one-dimensional densities f1 : R → [0,∞)
and f2 : R → [0,∞) corresponding to particular composites, i.e.

f(x1, x2) = f1(x1)f2(x2) . (54)

The Bayes loss function (2) assumes its minimum for the value, which is the
solution for the following two equations with arguments x̂1 and x̂2:

x̂1
∫

−∞

f1(x1)dx1



(apg − apd − alg + ald)



x̂2

x̂2
∫

−∞

f2(x2)dx2 −

x̂2
∫

−∞

x2f2(x2)dx2



 +

+(apd − ald)



x̂2 −

∞
∫

−∞

x2f2(x2)dx2







+ 2al



x̂1 −

∞
∫

−∞

x1f1(x1)dx1



+

+2(ap − al)



x̂1

x̂1
∫

−∞

f1(x1)dx1 −

x̂1
∫

−∞

x1f1(x1)dx1



+

+ald



x̂2 −

∞
∫

−∞

x2f2(x2)dx2



+

+(alg − ald)



x̂2

x̂2
∫

−∞

f2(x2)dx2 −

x̂2
∫

−∞

x2f2(x2)dx2



 = 0 (55)

and

x̂2
∫

−∞

f2(x2)dx2



(apg − apd − alg + ald)



x̂1

x̂1
∫

−∞

f1(x1)dx1 −

x̂1
∫

−∞

x1f1(x1)dx1



 +

+ (alg − ald)



x̂1 −

∞
∫

−∞

x1f1(x1)dx1







+ 2ad



x̂2 −

∞
∫

−∞

x2f2(x2)dx2



+

+2(ag − ad)



x̂2

x̂2
∫

−∞

f2(x2)dx2 −

x̂2
∫

−∞

x2f2(x2)dx2



+

+ald



x̂1 −

∞
∫

−∞

x1f1(x1)dx1



+

+(apd − ald)



x̂1

x̂1
∫

−∞

f1(x1)dx1 −

x̂1
∫

−∞

x1f1(x1)dx1



 = 0 . (56)
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This solution exists and it is unique. The above equations (55)-(56) constitute
a two-dimensional equivalent to criterion (21).

The densities f1 and f2 were estimated by the statistical kernel estimators
f̂1 and f̂2, respectively, using the kernel K assumed to fulfill conditions (A)-
(D) formulated in Section 3.1. Note that the modifying parameters should be
calculated based on the algorithm from Section 2.2 applying product kernel
(6) with the above form of the function K (although denoted there as K) –
consequently, the obtained values s1, s2, . . . , sm will be the same in further parts
of the procedure for both coordinates.

The solution of equations (55)-(56) may be calculated through efficient nu-
merical methods. To this end with any fixed i = 1, 2, . . . ,m, one can define the
functions Ui,1 : R → R, Ui,2 : R → R, Vi,1 : R → R and Vi,2 : R → R, given by
formulas (24)-(25), while x, xi, h should be replaced with quantities relating to
the first and second coordinates, i.e. x1, xi,1, h1 in the case of the functions Ui,1

and Vi,1, as well as x2, xi,2, h2 for Ui,2 and Vi,2, respectively. After introducing
the above notations, criteria (55)-(56) can be described in the following form:

m
∑

i=1

{

Ui,1(x1)
[

(apg − apd − alg + ald) (x2Ui,2(x2) − Vi,2(x2)) +

+(apd − ald)(x2 − xi,2)
]

+ 2al(x1 − xi,1)+

+2(ap − al) (x1Ui,1(x1) − Vi,1(x1)) + ald(x2 − xi,2)+

+(alg − ald) (x2Ui,2(x2) − Vi,2(x2))

}

= 0 (57)

m
∑

i=1

{

Ui,2(x2)
[

(apg − apd − alg + ald) (x1Ui,1(x1) − Vi,1(x1)) +

+(alg − ald)(x1 − xi,1)
]

+ 2ad(x2 − xi,2)+

+2(ag − ad) (x2Ui,2(x2) − Vi,2(x2)) + ald(x1 − xi,1)+

+(apd − ald) (x1Ui,1(x1) − Vi,1(x1))

}

= 0 . (58)

If one denotes the left hand sides of the above equations as L1(x1, x2) and
L2(x1, x2), the values of the partial derivatives of the functions L1 and L2 with
respect to x1 and x2 are given as

∂L1(x1, x2)

∂x1
=

m
∑

i=1

{

1

h1si
K

(

x1 − xi,1

h1si

)

[

(apg − apd − alg + ald)×

(x2Ui,2(x2) − Vi,2(x2)) + (apd − ald)(x2 − xi,2)
]

+

+2(ap − al)Ui,1(x1) + 2al

}

(59)
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∂L2(x1, x2)

∂x2
=

m
∑

i=1

{

1

h2si
K

(

x2 − xi,2

h2si

)

[

(apg − apd − alg + ald)×

(x1Ui,1(x1) − Vi,1(x1)) + (alg − ald)(x1 − xi,1)
]

+

+2(ag − ad)Ui,2(x2) + 2ad

}

. (60)

Then the solution of equations (55)-(56) can be calculated through Newton’s

algorithm, as the limit of the two-dimensional sequence

{

x̂j,1

x̂j,2

}∞

j=0

defined by

x̂0,1 =
1

m

m
∑

i=1

xi,1 (61)

x̂0,2 =
1

m

m
∑

i=1

xi,2 (62)

x̂j+1,1 = x̂j,1 −
L1(x̂j,1, x̂j,2)

∂L1(x̂j,1, x̂j,2)

∂x1

for j = 0, 1, . . . (63)

x̂j+1,2 = x̂j,2 −
L2(x̂j,1, x̂j,2)

∂L2(x̂j,1, x̂j,2)

∂x2

for j = 0, 1, . . . , (64)

while the quantities in the above dependencies are given by formulas (57)-(60),
whereas the stop condition takes the form of the conjunction of the following
inequalities:

|x̂j,1 − x̂j−1,1| 6 0.01 σ̂1 (65)

|x̂j,2 − x̂j−1,2| ≤ 0.01σ̂2 , (66)

where σ̂1 and σ̂2 denote the estimators of standard deviations for particular
coordinates, whose values can be obtained on the basis of formula (8).

For the kernel K it is recommended to once again take the linear combi-
nation of the Epanechnikov and Cauchy kernels (34). Separate calculations of
the smoothing parameters are desired not only for both coordinates of the pa-
rameters’ vector, but when α 6= 0, also for the component kernels KE and KC .
Proper formulas for the values of the functions Ui,1, Ui,2 and Vi,1, Vi,2 are given
by dependencies (37)-(42), which must be used respectively for the first and
second coordinates.

4. Other approaches to uncertainty modeling

The method investigated in this paper has been presented until now for a prob-
abilistic approach, currently the most commonly used way of describing uncer-
tainty. However, the formula itself has a universal character and can be applied
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to other concepts of this description. The above task is considered in this section
with fuzzy logic as an example.

Thus, the membership function of a fuzzy number is often estimated on the
basis of the verbal opinions of a group of experts, expressed intuitively with
an inevitable imprecision. Let therefore m values x1, x2, . . . , xm belonging to
the membership function domain be the subject of the experts’ opinions. Each
of them receives an expert’s score by the mapping of the nonnegative number
w1, w2, . . . , wm representing the value of this score (not all equal to zero), and
also positive parameters s1, s2, . . . , sm characterizing imprecision in the sense
that, if an expert’s score is less precise, the respective parameter is bigger.
Then – with regard to the kernel estimator for a probabilistic approach (18)
– one can define the membership function of a fuzzy number by the following
formula:

µ(x) = c

m
∑

i=1

wi

si
K

(

x− xi

hsi

)

, (67)

whereby the meanings of the function K and the parameter h remain unchanged
with respect to the basic definition (4) for n = 1, and the positive constant c is
chosen, so that

max
x∈R

µ(x) = 1 . (68)

For the kernel types used in practice such a constant exists.
In many theoretical and application tasks the need arises to characterize a

fuzzy number with a real number, in this case called defuzzyfier. The proce-
dure investigated in this paper can be applied to obtain a Bayes defuzzyfier
with quadratic and asymmetrical loss function. An equation which allows the
calculation of such a value may be expressed in a form similar to formula (21):

(a− b)

x̂
∫

−∞

(x̂− x)µ(x)dx− a

∞
∫

−∞

(x̂− x)µ(x)dx = 0 (69)

and proceeded according to Section 3.1. It is worth noting that – with regard to
the form of dependence (69) – the value of the parameter c defined by condition
(68) need not in fact be calculated, as it should be cancelled out anyway.

5. Experimental verification

Correct functioning of the procedure presented here has been verified using
numerical simulation1. The first to be considered is the one-dimensional case,

1The calculations were carried out in ACK CYFRONET AGH on SGI 2800 (grant
KBN/SGI2800/PK/019/2003) and Sun Fire 6800 (grant MNiI/Sun6800/PK/057/2004) com-
puters.
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investigated in Section 3.1. At the beginning assume that the uncertainty of an
estimated parameter has the distribution

0.75N(0, 1) + 0.25N(4, 1) (70)

and is therefore a linear combination of normal distributions with unique stan-
dard deviations, but with expectation values 0 and 4, respectively. The coeffi-
cients for this combination are not equal – the values 0.75 and 0.25 state that
the first ,,share” is three times greater than the second. The distribution under
investigation is thus bimodal and asymmetrical. Its expected value equals 1,
while its standard deviation is 2. Table 1 shows the results obtained for five
quotient values a

b = 1
10 , 1

3 , 1, 3, 10 and the random sample sizes m=10, 20, 50,
100, 200, 500, 1000. For every case 1000 samples were generated, and the mean
value and standard deviation of the results calculated on the basis of them have
been denoted using the usual “mean value ± standard deviation” notation. The
theoretical values of the estimator are given below the quotient values a

b .

Table 1. Results for basic one-dimensional case with distribution (70)

m

a

b
=

1

10

a

b
=

1

3

a

b
= 1

a

b
= 3

a

b
= 10

-0.448 0.221 1.000 2.011 3.154

10 -0.515 ± 0.504 0.200 ± 0.544 0.997 ± 0.674 1.947 ± 0.827 3.016 ± 0.940

20 -0.511 ± 0.367 0.200 ± 0.389 1.003 ± 0.478 1.995 ± 0.587 3.130 ± 0.630

50 -0.500 ± 0.228 0.201 ± 0.241 1.000 ± 0.300 2.013 ± 0.374 3.172 ± 0.384

100 -0.489 ± 0.159 0.205 ± 0.170 0.998 ± 0.212 2.012 ± 0.268 3.173 ± 0.268

200 -0.476 ± 0.114 0.211 ± 0.123 1.002 ± 0.152 2.020 ± 0.190 3.181 ± 0.187

500 -0.467 ± 0.073 0.214 ± 0.078 1.000 ± 0.096 2.017 ± 0.119 3.173 ± 0.116

1000 -0.463 ± 0.052 0.216 ± 0.054 1.002 ± 0.067 2.018 ± 0.083 3.172 ± 0.080

Thus, if a
b = 1 then – resulting directly from the form of criterion (20) – the

estimator investigated in this paper reduces to the expectation value, equal to
1 in the case examined here. The condition a

b = 1
3 means that losses caused by

overestimation are three times greater than those implied by underestimation
– the estimator should therefore take a value less than the expectation value.
Actually, it is shifted to 0.221. This effect is intensified when a

b = 1
10 ; the

estimator value is then –0.448. Contrary to this, in the case of a
b = 3 the losses

connected with overestimation are less than those implied by underestimation,
therefore the estimator should increase the expected value – it is now equal to
2.011. When a

b = 10 this effect is intensified and the value of the estimator
investigated in this paper equals 3.154.

In each case represented by a particular column of the above table, as the
size of a random sample m increases, the mean estimation error and its standard
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deviation tend to zero. From an applicational point of view, these fundamental
properties are demanded of estimators used in practice. This property, above
all, states that as the sample size increases, the estimators’ values achieved tend
to a theoretical value, and their “dispersion” decreases. This allows for the
obtaining of any desired precision, although the proper sample size must be
guaranteed. In practice this implies a necessity for compromise between these
two quantities.

Similar results were also obtained for the typical unimodal distribution

N(0, 1) , (71)

as well as trimodal

0.25N(−5, 2) + 0.5N(0, 1) + 0.25N(5, 2) . (72)

In particular, in relation to values of standard deviations of the particular distri-
butions (70)-(72), the obtained mean values and variances of estimation errors
were, respectively, similar. Moreover, despite significant changes in the type of
distribution tested, the procedure of calculating the estimator did not undergo
any modification. The above features result from the application of nonpara-
metric methodology of statistical kernel estimators, independent of distribution
occurring.

The results regarding the two-dimensional case, worked out in Section 3.2,
will now be presented. For clarity of interpretation and comparative analysis, a
typical two-dimensional standard normal distribution

N

([

0
0

]

,

[

1 0
0 1

])

(73)

is considered. The obtained results are displayed in Table 2, with similar no-
tations like previously. The first of its five columns is dedicated to the basic
verification of correctness of the procedure worked out: thus, if the values of the
coefficients ald, apd, alg, apg are taken equal zero, then, as mentioned before,
the two-dimensional problem is reduced to two separate one-dimensional tasks
– the results are therefore in accordance with these expectations. In the other
four columns of Table 2, it is also shown that changes in the coefficients ald,
apd, alg, apg imply corresponding shifts of the estimator in directions related to
smaller losses. The last column also confirms that equality of respective coef-
ficients causes mutual compensation of their influence – in this case the rise of
the conditions |ald| = |apd| and |alg| = |apg|, with al = ap, results in the values
of the estimator of the first coordinate being close to zero.

Remarks regarding complex multimodal distributions are identical to those
presented earlier for the one-dimensional case: the results and also the algorithm
did not undergo any change.

Finally, results are presented, obtained using the estimator investigated here
in the example from the field of optimal control, described in the Introduction
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m

al=10.0, ap=1.0
alg=0.0, apg=0.0
ald=0.0, apd=0.0
ag=1.0, ad=10.0

al=1.0, ap=1.0
alg=0.0, apg=0.0
ald=3.0, apd=0.0
ag=1.0, ad=1.0

al=1.0, ap=1.0
alg=0.0, apg=0.0
ald=10.0, apd=0.0
ag=1.0, ad=1.0

al=1.0, ap=1.0
alg=0.0, apg=0.0
ald=10.0, apd=-3.0
ag=1.0, ad=1.0

al=1.0, ap=1.0
alg=0.0, apg=0.0
ald=10.0, apd=–10.0
ag=1.0, ad=1.0

0.9015
0.9015

0.1956
0.1956

0.3985
0.3985

0.2020
0.6163

0.0000
0.8211

10 0.8933 ± 0.3721
0.9130 ± 0.3957

0.1859 ± 0.3322
0.1916 ± 0.3304

0.3635 ± 0.3900
0.3592 ± 0.3766

0.1805 ± 0.3976
0.5648 ± 0.3617

0.0016 ± 0.4258
0.7487 ± 0.3726

20 0.9164 ± 0.2660
0.9342 ± 0.2809

0.1933 ± 0.2307
0.1978 ± 0.2329

0.3855 ± 0.2748
0.3873 ± 0.2715

0.1952 ± 0.2786
0.5991 ± 0.2573

-0.0027 ± 0.3009
0.7943 ± 0.2651

50 0.9265 ± 0.1763
0.9366 ± 0.1790

0.1970 ± 0.1498
0.2000 ± 0.1456

0.3987 ± 0.1794
0.3990 ± 0.1722

0.2026 ± 0.1802
0.6166 ± 0.1636

-0.0002 ± 0.1939
0.8174 ± 0.1693

100 0.9270 ± 0.1235
0.9331 ± 0.1262

0.1989 ± 0.1060
0.1987 ± 0.1020

0.4035 ± 0.1282
0.3997 ± 0.1242

0.2074 ± 0.1277
0.6178 ± 0.1151

0.0035 ± 0.1371
0.8221 ± 0.1188

200 0.9260 ± 0.0883
0.9273 ± 0.0925

0.1981 ± 0.0746
0.1985 ± 0.0731

0.4018 ± 0.0900
0.4030 ± 0.0891

0.2052 ± 0.0906
0.6196 ± 0.0833

0.0003 ± 0.0985
0.8230 ± 0.0854

500 0.9228 ± 0.0592
0.9200 ± 0.0585

0.1987 ± 0.0488
0.1948 ± 0.0481

0.4038 ± 0.0591
0.3989 ± 0.0578

0.2059 ± 0.0591
0.6176 ± 0.6176

0.0004 ± 0.0640
0.8228 ± 0.0557

1000 0.9212 ± 0.0416
0.9210 ± 0.0398

0.1977 ± 0.0336
0.1974 ± 0.0328

0.4025 ± 0.0403
0.4031 ± 0.0403

0.2050 ± 0.0405
0.6210 ± 0.0376

0.0001 ± 0.0439
0.8259 ± 0.0391
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as motivation. Thus, on the basis of Fig. 1 the quotient a
b has been fixed at

5.2. It is assumed that the uncertainty of the estimated parameter is of uniform
distribution in the interval [0.5; 1.5]. For the purpose of comparison, optimal
feedback controllers obtained for the parameters Λ, assumed as the arithmetical
mean value of elements of the random sample and then the estimator proposed
in this paper, were synthesized. Taking into account only those results for
which the system was stable, the value of the performance index turned out to
be about 40% less in the second case. Moreover, the margin of stability was
significantly increased. Generally, the benefits resulting from the application of
the methods worked out here are greater for the more complex systems, and
when overestimation and underestimation of the model parameters have very
differing effects on the performance index, i.e. when the asymmetry of the loss
function is sharper.

The presented method was also initially verified experimentally with the
aid of an industrial robot, confirming the accuracy of the presented concept.
Results – although more complicated because of nonlinearities and complexity
of the model applied – yielded similar conclusions to those presented above,
obtained using numerical simulation.

6. Summary

This paper has presented the method of parameter identification for those
tasks, where the losses resulting from estimation errors can be described by the
quadratic and asymmetrical function. The asymmetry represents here the differ-
ing influences of under- and overestimation. Besides the basic one-dimensional
task, the multidimensional case – i.e. when a vector of parameters is submitted
to identification – has been investigated as an example for possible generaliza-
tions. The method is universal in nature and can find applications in many areas
of science and practice, also outside engineering. Although the uncertainty of
the parameters was considered for the most common probabilistic approach, the
procedure worked out can equally be used for descriptions of uncertainty other
than probability, for example based on fuzzy logic – in this case one can obtain
the value of an optimal defuzzyfier.

To estimate the distribution of the uncertainty measure of the tested para-
meters, the statistical kernel estimators were used, which made the investigated
procedure independent of the distribution type. The solution of the problem
was based upon the Bayes decision rule, thereby allowing for obtaining of mini-
mum mean value of losses. Finally, a complete algorithm was designed enabling
the calculation of the value of an estimator on the basis of measurements of the
tested quantity, and also following the fixing – often natural in practical tasks
– of the ratio of the loss function coefficient.

It should be stressed that the procedure elaborated is complete – all formulas
necessary for its direct application have been given in this paper.
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