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Abstract: In the paper we review stochastic properties of wavelet
coefficients for time series indexed by continuous or discrete time.
The main emphasis is on decorrelation property and its implications
for data analysis. Some new properties are developed as the rates
of correlation decay for the wavelet coefficients in the case of long-
range dependent processes such as the fractional Gaussian noise and
the fractional autoregressive integrated moving average processes. It
is proved that for such processes the within-scale covariance of the
wavelet coefficients at lag k is O(k2(H−N)−2), where H is the Hurst
exponent and N is the number of vanishing moments of the wavelet
employed. Some applications of decorrelation property are briefly
discussed.
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1. Introduction

Let (X(t))t∈R be a real valued stochastic process such that EX(t) = 0 and

EX(t)2 < ∞ for any t ∈ R. Throughout, the index t will have connotation
of actual time. We refer to such a process as the time series. In Section 4 we
also discuss the case of the discrete uniform sampling when t ∈ Z. Consider a
function ψ(·) ∈ L2(R) such that

∫
ψ(s) ds = 0 and let

ψj,k(t) = 2−j/2ψ(2−jt− k) for j, k ∈ Z

be its rescaled and translated version. The function ψ(·) is called a wavelet
when the family {ψj,k(·)}j,k∈Z forms an orthonormal basis in L2(R). Note
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in particular that the L2-norm of ψ denoted by ‖ ψ ‖2 equals 1. The name
”wavelet” corresponds to the oscillating nature of ψ(·) expressed by its moment
of order 0 equal to 0 and its compact support or quickly diminishing tails.
Observe that if ψ(·) has a compact support [a, b] then the support of ψj,k(·) is
[2j(a+ k), 2j(b+ k)]. 2j is called a scale of ψj,k(·) and j its resolution or octave.
Negative js correspond to finer resolutions than nonnegative ones.

For a general introduction to wavelets with emphasis on applications to sta-
tistics we refer to Vidakovic (1999) and to Percival and Walden (2000) for a
careful exposition of the discrete time series case. Abry et al. (2002) provide an
excellent review of the subject devoted mainly to continuous time processes. We
also refer the reader to Nason and von Sachs (1999) and Gençay et al. (2002).
Here, our aim is to provide a self-contained and up-to-date exposition of the
stochastic properties of the wavelet coefficients for both continuous and discrete
time and to point out analogies between both cases. In particular, we discuss a
decorrelation property of wavelet coefficients for stationary processes with spe-
cial emphasis on the case of long-range dependence. Although this phenomenon
is widely known and frequently used in applications, formal results concerning
decorrelation exist only in few cases of specific processes including a fractional
Brownian motion (Tewfik and Kim, 1992; Flandrin, 1992) and some short-range
dependent processes as in Dijkerman and Mazumdar (1994). In Sections 3 and
4 we establish two new results on the rates of decorrelation for the two most
popular models of long-range dependent processes: fractional Gaussian noise
(FGN) (Theorem 3.1) and fractionally differenced ARMA processes (FARIMA)
(Theorem 4.1). Namely, we give a formal proof of the fact that in both cases
when a wavelet with N vanishing moments is used the within-scale covariance
of wavelet coefficients at lag k is O(k2(H−N)−2). In Proposition 3.8 we state the
assumptions under which such results can be obtained without imposing a spe-
cific parametric structure on the process. In Section 2 we discuss four important
examples of wavelets, for which decorrelation property may be established via
the results proved in the paper. In Section 4 we study the case of discrete time
series. In the applications section (Section 5) we shortly discuss how the effect of
decorrelation is used to study the properties of wavelet-based estimators of the
Hurst exponent of long-range dependence and to simulate long-range dependent
processes.

Let φ(·) be a scaling function pertaining to ψ(·) (see Vidakovic, 1999, Sec-
tion 3.3) and uk the Fourier coefficients of φ1,0(·) := 2−1/2φ(·/2) with respect
to an orthonormal sequence {φ0,k(·)}k∈Z = {φ(· − k)}k∈Z:

uk = 2−1/2

∫
φ(t/2)φ(t− k) dt, k ∈ Z,

(vk)k∈Z is an analogously defined sequence of the Fourier coefficients of ψ1,0(·) =

2−1/2ψ(·/2):
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vk = 2−1/2

∫
ψ(t/2)φ(t− k) dt.

Unless specified otherwise,
∫

stands for an integral over R. We have vk =
(−1)kuL−1−k for the so-called quadrature mirror filters, where L is the length
of the filter (vk) i.e. the minimal l ∈ N such that vj = 0 for j 6∈ {0, 1, . . . , L−1}.

In the paper we focus on stochastic properties of wavelet coefficients (details)
based on a trace (X(t))t∈R:

dj,k =

∫
X(t)ψj,k(t) dt (1)

and respective approximation (scaling) coefficients

aj,k =

∫
X(t)φj,k(t) dt, (2)

where φj,k(t) = 2−j/2φ(2−jt − k). Mapping X(·) → (dj,k)j,k∈Z is called a

Discrete Wavelet Transform (DWT). Note that as the typical wavelet is centered
around 0 and quickly decaying for large t, the wavelet coefficients dj,k can be
viewed, due to

∫
ψ = 0, as the differences of the weighted averages of X(t) at the

scale 2j in a vicinity of 2jk. On the other hand, the approximation coefficients
correspond to aggregation of the process at the scale 2j. The shape of the trace
X(·) should resemble that of ψj,k(·) in order for large values of dj,k to occur.
Observe also that dj,k = D(2j , 2jk), where D(a, τ) is a Continuous Wavelet
Transform (CWT) defined as

D(a, τ) =
1√
a

∫
X(t)ψ

( t− τ

a

)
dt.

A crucial property of those sets of coefficients is that for a given resolution j both
(dj,·) and (aj,·) can be recursively computed from approximation coefficients at
finer resolutions. Namely (see, e.g. Vidakovic, 1999, Section 4.2),

dj,k =
∑

n∈Z

v−naj−1,2k−n =
∑

n∈Z

v∨naj−1,2k−n = v∨· ⋆ aj−1,·(2k), (3)

where v∨n = v−n denotes the sequence vn with reversed time and ⋆ denotes the
convolution in l2(Z).

Analogously,

aj,k =
∑

n∈Z

u∨naj−1,2k−n = u∨· ⋆ aj−1,·(2k). (4)

Observe that the coefficients dj,k are obtained by two consecutive operations:
first the sequence (aj−1,·) is filtered using the sequence (v∨· ) (a filtering stage)
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and then all elements of the resulting sequence with odd indices are discarded
(a decimation stage). The filters (v−n) and (u−n) preserve high and low fre-
quencies of the process, respectively. The two equalities above justify the so
called pyramidal algorithm (Burt and Adelson, 1983). Here, the approximation
coefficients a0,k at resolution 0 are calculated directly from the sample path of
the process X(t) using equation (2). Then the coefficients dj,k and aj,k at a res-
olution j ≥ 1 are calculated recursively from approximation coefficients aj−1,k

at the finer resolution j−1. The coefficients (aj−1,·) can be reconstructed using
the sequences (aj,·) and (dj,·) pertaining to a coarser scale. Thus, for any J ∈ N

the initial approximation coefficients (a0,·) may be recovered from a family of de-
tail sequences {(dj,·), j = 1, . . . , J} and the coarsest approximation coefficients
(aJ,·). Let P0X(t) be the projection of the sample path X(t) on the closure of
a subspace of L2(R) spanned by (φ0,k(·))k∈Z. It follows that sequences (aJ,·)
and (dj,·)j=1,...,J contain full information about P0X(t). Namely,

P0X(t) =
∑

k∈Z

aJ,kφJ,k(t) +

J∑

j=1

∑

k∈Z

dj,kψj,k(t) (5)

in L2(R). Let us note that if the decimation step is replaced by a uniform
sampling in k one arrives at non-decimated DWT (NDWT; see, e.g. Nason and
Sachs, 1999, or Chapter 5 in Percival and Walden, 2000), also called maximal
overlap DWT, which can be used in the problems studied here as well.

2. Examples

In this section and throughout the paper we denote by U(λ) = |u(λ)|2 =
|
∑

k∈Z uke
ikλ|2 a squared gain (power) function of filter u = (uk) and by V (λ)

the analogously defined function for filter v = (vk). The material contained
in this section can be found e.g. in Vidakovic (1999), Section 3.4. For more
detailed expositions we refer the reader to Daubechies (1992), Meyer (1994),
and Wojtaszczyk (1997).

Example 2.1 Let φ(x) = I[0,1](x) and ψ(x) = I[0,1/2](x) − 1[1/2,1](x) with IA
denoting indicator of a set A. Then it is easy to see that the system of functions
(ψjk(x))j,k∈Z is an orthonormal basis in L2(R). The obtained system is the
well-known Haar basis. Note that φ satisfies the scaling equation

φ1,0(x) =
1√
2
φ0,0(x) +

1√
2
φ0,1(x)

and for ψ we have

ψ1,0(x) =
1√
2
φ0,0(x) −

1√
2
φ0,1(x).
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Thus, the coefficients of the filter u are u0 = u1 = 1√
2
, and the squared gain

function U(λ) = 2 cos2(λ/2). The coefficients of the filter v are v0 = 1√
2
,

v1 = − 1√
2
, and the squared gain function V (λ) = 2 sin2(λ/2). The Haar wavelet

has one vanishing moment:
∫∞
−∞ ψ(x)dx = 0. It is compactly supported but

discontinuous, and its Fourier transform being ψ̂(λ) = − (eiλ/2−1)2

2πiλ decays slowly.
The Haar scaling function enjoys the rare property of being symmetric in time
domain. The use of the filter v in this case is equivalent to the differencing
procedure.

Example 2.2 Let φ(x) = sinc(x) = sin(πx)
πx . Since φ̂(λ) = I[−π,−π](λ), the

system (φ(x− k))k∈Z is orthonormal. The function φ satisfies the scaling equa-
tion φ1,0(x) =

∑
k∈Z ukφ0,k(x), where the coefficients of the filter u are given by

uk = 1√
2
sinc( π

2k ). The pertaining wavelet ψ(x) = sinc π(x−1/2)−2sinc 2π(x−
1/2) is called the Shannon wavelet. Its Fourier transform has a simple form

ψ̂(λ) = −e−iλ/2I[−2π,−π]∪[π,2π](λ). Note that the Shannon filter u is the ideal
low-pass and v an ideal high-pass filter. The squared gain functions of the
Shannon filters satisfy

U(λ) = 2I[−π/2,−π/2](λ), V (λ) = 2I[−π,−π/2]∪[π/2,π](λ).

Example 2.3 Let ν be a smooth function satisfying

ν(x) + ν(1 − x) = 1

ν(x) = 0, x ≤ 0

ν(x) = 1, x ≥ 1.

Then define Φ as

Φ(λ) =






1 |λ| ≤ 2π
3

cos(π
2 ν(

3|λ|
2π − 1)) 2π

3 ≤ |λ| ≤ 4π
3

0 |λ| ≥ 4π
3

.

Denote the inverse Fourier transform of Φ by φ. The system of translates
(φ(x−k))k∈Z is orthonormal, which follows from the properties of ν. Since Φ is
supported on a compact interval, φ is infinitely differentiable but has an infinite
support. The Fourier transform of the pertaining wavelet ψ is

ψ̂(λ) = −e−iλ/2[Φ(λ− 2π) + Φ(λ + 2π)]Φ(λ/2).

The function ψ̂ is supported on [− 8π
3 ,

8π
3 ]. This construction was introduced by

Y. Meyer in 1988, and the pertaining family of wavelets indexed by function ν
bears his name.
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Example 2.4 Assume that the squared gain function of a filter u is of the
following form

U(λ) = 2

(
1 − c

∫ λ

0

sin2N−1 xdx

)

and the transfer function

u(λ) =
√

2

(
1 + eiλ

2

)N

· L(λ),

where u(λ) =
∑

k∈Z uke
ikλ and the constant c is such that U(π) = 0.

If the trigonometric polynomial L is suitably chosen, the function φN satis-
fying the scaling equation is compactly supported on [−N,N−1] and belongs at
least to the class CN/5(R). This construction is due to I. Daubechies. It was the
first proposal of a compactly supported differentiable wavelet. The wavelets of
this family shall be referred to in the paper as D(N). The squared gain function
of the Daubechies filter v equals

V (λ) = 2c

∫ λ

0

sin2N−1 xdx . (6)

Let us note that the wavelet ψN hasN vanishing moments of order 0, 1, . . .N−
1 (see, e.g. Gençay et al., 2002, p. 114, see also remark following Theorem 4.2).

3. Stochastic properties of the wavelet coefficients

Observe that since dj,k and aj,k depend on underlying process X(t) they are
random and therefore it is of interest to study their stochastic properties. We
begin with a property stating that stationarity ofX(t) is inherited by the wavelet
coefficients at each resolution level.

Proposition 3.1 Let (X(t))t∈R be a strongly stationary time series. Then
(dj,k)k∈Z is strongly stationary sequence for each j ∈ Z.

Proof. We will prove that (dj,k1+h, dj,k2+h)
D
= (dj,k1

, dj,k2
), where

D
= means

equality of distributions. The extension to m-dimensional distributions for
m > 2 is straightforward. We have

(dj,k1+h, dj,k2+h) =

2−j/2

(∫
X(t1)ψ(2−jt1 − k1 − h) dt1,

∫
X(t2)ψ(2−jt2 − k2 − h) dt2

)
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= 2−j/2

(∫
X(t1 + 2jh)ψ(2−jt1 − k1) dt1,

∫
X(t2 + 2jh)ψ(2−jt1 − k2) dt2)

D
= 2−j/2

(∫
X(t1)ψ(2−jt2 − k1) dt1,

∫
X(t2)ψ(2−jt2 − k2) dt2

)

= (dj,k1
, dj,k2

),

where the penultimate equality follows from the stationarity of X(t). The same
property holds when X(t) has stationary increments i.e. becomes stationary
after differencing with a step h for any h ∈ N. In particular, this is the case of
the fractional Brownian motion described in Example 3.1 of Section 3.

Proposition 3.2 Let (X(t))t∈R be time series such that Yh(t) := X(t + h) −
X(t) is strongly stationary for any h ∈ N. Then for any j ∈ Z the coefficients
(dj,k)k∈Z form a strongly stationary sequence.

The last proposition is proved analogously to Proposition 3.1 by using mul-
tivariate extension of the equalities

∫
X(t+ h)ψ(t) dt =

∫
(X(t+ h) −X(h))ψ(t) dt

D
=

∫
(X(t) −X(0))ψ(t) dt =

∫
X(t)ψ(t) dt,

where the first and the last equality follows from
∫
ψ(t) dt = 0 and the second

one from stationarity of increments. Observe that Proposition 3.1, but not
necessarily Proposition 3.2, is true for the approximation coefficients aj,k.

From the very definition of wavelet and approximation coefficients it follows
that for a zero-mean process X(t) we have Eajk = Edj,k = 0. Consider now a
zero mean weakly stationary process X(t) with a covariance function r(t) :=
E(X(t+s)−EX(t+s))(X(s)−EX(s)) = E(X(t+s)X(s)). Assume additionally
that a spectral distribution of X(t) is absolutely continuous i.e. there exists
f ∈ L1(R) such that

r(t) =

∫

R

eitλf(λ) dλ

for t ∈ R. The function f is called the spectral density of X(t) and is de-
fined uniquely up to a set of Lebesgue measure 0. Thus, denoting by ĝ(t) =∫
eitλg(λ) dλ the Fourier transform of a function g, we have that r = f̂ . We

stress that for a continuous time process the spectral distribution might be sup-
ported on the whole real line in contrast to discrete time series when its support
is confined to [−π, π).
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It follows from the definition of the wavelet coefficients that their covariance
can be written as

Cov(dj,k, dj′,k′) = E(dj,kdj′,k′) =

∫
E(X(t)X(s))ψj,k(t)ψj′,k′(s) dt ds

=

∫
r(t − s)ψj,k(t)ψj′,k′(s) dt ds.

The next proposition provides a convenient representation of the covariance in
terms of the spectral density function of the process.

Proposition 3.3 Assume that the spectral density of (X(t))t∈R exists. Then

Cov(dj,k, dj′,k′) = 2(j+j′)/2

∫
f(λ)ψ̂(2jλ)ψ̂∗(2j′λ)eiλ(2j k−2j′k′) dλ, (7)

where ∗ denotes complex conjugation.

This is stated, for instance, as equation (13.8) in Walter (1994).
Proof. The proposition follows from the above expression for covariance and
definition of a spectral density by changing the order of integration

Cov(dj,k, dj′,k′) =

∫
r(u)ψj,k(s+ u)ψj′,k′(s) du ds

=

∫
eiλuf(λ)ψj,k(s+ u)ψj′,k′(s) dλ du ds

=

∫
f(λ)

∫
eiλ(s+u)ψj,k(s+ u) duψj′,k′(s)e−iλs ds dλ

=

∫
f(λ)ψ̂j,k(λ)ψ̂∗

j′,k′(λ) dλ

after noting that ψ̂j,k(λ) = 2j/2ψ̂(2jλ)ei2jkλ.

Consider first the behavior of second order moments of dj,k when (X(t))t∈R
is weakly dependent.

Proposition 3.4 Assume that the spectral density f of (X(t))t∈R exists, is

bounded on R and continuous at 0. Then Ed2
j,k → 2πf(0) when j → ∞ for any

k ∈ Z.

Proof. Let fj(λ) := f(λ/2j)|ψ̂(λ)|2. The proof follows from (7), Edj,k = 0 and
the decomposition

Ed2
j,k =

∫
f(λ/2j)|ψ̂(λ)|2 dλ =

∫
fj(λ) dλ

=

∫

|λ|≤j

fj(λ) dλ +

∫

|λ|>j

fj(λ) dλ. (8)
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As the spectral density is bounded and ψ̂ ∈ L2(R), the second integral tends to
0 when j → ∞ whereas the first is asymptotically equivalent to 2πf(0) in view

of Plancherel equality ‖ ψ̂ ‖2
2= 2π ‖ ψ ‖2

2= 2π and continuity of f at 0.

The proposition also holds when spectral density has a limit at 0 with f(0)
replaced with the value of the limit.

Remark 3.1 Observe that the second moment of dj,k for the Haar wavelet ψ
corresponds to a well-known statistical quantity. Namely, in this case

dj,k = 2−j/2
(∫ 2jk+2j−1

2jk

X(s) ds−
∫ 2j(k+1)

2jk+2j−1

X(s) ds
)
,

and thus Ed2
j,k = 2j−1σ2

X(2j−1), where for a stationary X(t)

σ2
X(τ) = 2−1

E

(1

τ

∫ τ

0

X(s) ds− 1

τ

∫ 2τ

τ

X(s) ds
)2

is the Allan’s variance (see, e.g. Percival and Walden, 2000, Section 8.6) mea-
suring the variability of adjacent averages of size τ of the process. At the same

time for the Haar wavelet ajk =
∫ 2j(k+1)

2jk
X(s) ds and its variance corresponds

to the marginal variance of an aggregated process at the scale 2j.

We deal now with covariance of dj,k and dj,k′ for a fixed j. From Proposi-
tion 3.3 we get

Cov(dj,k, dj,k′) =

∫
f(λ/2j)|ψ̂(λ)|2eiλ(k−k′) dλ = f̂j(k − k′).

Thus in view of the Lebesgue lemma we have

Proposition 3.5 If fj ∈ L1(R) then Cov(dj,k, dj,k′) → 0 when |k − k′| → ∞.

In particular, fj ∈ L1(R) when f is bounded or ψ ∈ L1(R), which implies
that its Fourier transform is bounded. By imposing stronger conditions on fj

the decay rates of the covariance of (dj,·) are obtained.

Proposition 3.6 (a) If fj is p times differentiable, f
(p)
j ∈ L1(R) and f

(s)
j (λ) →

0 when λ→ ∞ for s = 0, 1, . . . , p− 1, then |Cov(dj,k, dj,k′ )| = o(|k − k′|−p).

(b) If ψ̂(·) is compactly supported and fj ∈ Cp(R) then (a) holds.

Part (b) is stated in Walter (1994) in Proposition 13.1(iii) for the Meyer type
wavelets.
Proof. Integration by parts p times yields

Cov(dj,k, dj′,k′) =
(−1)p

(i(k − k′))p

∫
f

(p)
j (λ)eiλ(k−k′) dλ = o(|k − k′|−p)
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by the Lebesgue lemma and noting that the boundary terms disappear due to

f
(s)
j (λ) → 0 for s = 0, 1, . . . , p− 1 when λ→ ∞. By the same token we get the

proof of (b).

Remark 3.2 Note that if r and ψ are such that integrals
∫
|r(t)||t|p dt and∫

|ψ(t)||t|p dt are finite then fj ∈ Cp(R) and f
(k)
j (λ) → 0 for k = 0, 1, . . . , p.

This follows from the observation that by the inversion formula for the Fourier
transform f ∈ Cp(R) in view of

∫
|r(t)||t|p dt < ∞. Moreover, its derivatives

tend to 0 for λ→ ∞ in view of the Lebesgue lemma. The same properties hold

for |ψ̂|2. Thus, in this case only the integrability of f
(p)
j needs to be checked in

order to satisfy the assumptions of Proposition 3.6(a).

Observe that the wavelet coefficients dj,k and dj′,k′ at possibly different

levels j and j′ become asymptotically uncorrelated when |2jk − 2j′k′| → ∞
and analogous conditions to those imposed in Proposition 3.6 are assumed for
a function fj,j′ (λ) = f(λ)ψ̂(2jλ)ψ̂∗(2j′λ). Moreover, if the support of ψ̂ is
bounded and does not contain a neighborhood of 0 (as in the case of the Shannon

wavelets) supports of ψ̂(2j ·) and ψ̂(2j′ ·) become disjoint for sufficiently large
|j − j′| and in this case Cov(dj,k, dj′,k′) = 0 for arbitrary k, k′ ∈ Z.

Consider now the case when the spectral density f ∈ L1(R) has a pole at 0,
more specifically

f(λ) ∼ cf |λ|−γ for λ→ 0, (9)

where 0 < γ < 1, cf > 0 and ∼ denotes asymptotic equivalence i.e.
f(λ)/cfλ

−γ → 1 when λ→ 0. It follows from (9) that
∫
|r(t)| dt = ∞ (compare

discussion in Section 4.1); this case of slowly decaying correlations is often de-
scribed as long-range dependence or long-memory. The occurrence of the pole
of f at 0 explains the often used name 1/f -type processes. Beran (1994) is
a nice introduction to statistical problems for discrete long-memory processes
(defined also by (9)).

Example 3.1 Let (Y (t))t∈R be the fractional Brownian motion (FBM) with the
Hurst coefficient 1 > H ≥ 0 i.e. Gaussian process with stationary increments

which is H-self-similar i.e. such that for each a > 0 (Y (at))t∈R

D
= (aHY (t))t∈R.

Consider its first order difference (X(t))t∈R defined as X(t) := Y (t+ 1)−Y (t).
Process (X(t))t∈R is called the fractional Gaussian noise (FGN) and it is easy
to see that it is stationary and its covariance

rX(t) =
σ2

2

(
|t+ 1|2H + |t− 1|2H − 2|t|2H

)
,

where σ2 = EY 2(1). When t → ∞, rX(t) ∼ H(2H − 1)σ2t2H−2 for H 6= 1/2,
thus the fractional Gaussian noise is long-range dependent when 1/2 < H < 1.
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Its spectral density is (Samorodnitsky, Taqqu, 1994, formula (7.2.25))

f(λ) =
σ2

C(H)

∣∣∣
eiλ − 1

iλ

∣∣∣
2

|λ|−2(H−1/2)

with C(H) a positive constant depending only on H . Thus for H > 1/2 the
spectral density of the FGN satisfies (9) with γ = 2(H − 1/2).

Example 3.2 Let (Y (t))t∈R be a stationary Gaussian long-range dependent

process such that rY (t) ∼ ct−α for 0 < α < 1 and G ∈ L2(R, φ). Consider
the subordinated Gaussian process X(t) := G(Y (t)). It turns out (see, e.g.
Beran, 1994, Section 3.2) that the covariance function of X(t) satisfies rX(t) ∼
m!cmt−mα provided mα < 1, where m is Hermite rank of G defined as the
smallest integer n ≥ 1 such that E(G(Z)Hn(Z)) 6= 0, where Hn(·) denotes nth

Hermite polynomial and Z is the standard normal random variable. Thus for m
such that mα < 1 the subordinated Gaussian process ((X(t))t∈R is long-range
dependent.

Example 3.3 Let (Y (t))t∈R and (Z(t))t∈R be independent copies of a Gaussian

stationary long-range dependent process such that rY (t) = rZ(t) ∼ ct−α/2 with
0 < α < 1. Then X(t) = (Y 2(t) + Z2(t))/2 is a long-range dependent process
with rX(t) = r2

Y (t) ∼ c2t−α having exponential marginals. Long-range depen-
dence of the processes subordinated to the process X(t) can be characterized
analogously to the Gaussian case described in Example 3.2 with the role of the
Hermite polynomials taken over by the Laguerre polynomials (see Gajek and
Mielniczuk, 1999).

It turns out that the type of strong dependence defined in (9) implies that the
wavelet coefficients behave differently than in the weak dependent case.

Proposition 3.7 Assume that (i) ψ ∈ L1(R), (ii) condition (9) is satisfied and
(iii) sup|λ|≥εn

|f(λ)| = O(ε−γ
n ) for any εn → 0. Then

Ed2
j,k ∼ 2jγcf

∫
|λ|−γ |ψ̂(λ)|2 dλ, (10)

when j → ∞.

Proof. Observe that the integral on the RHS of (10) exists since

∫
|λ|−γ |ψ̂(λ)|2 dλ ≤ sup |ψ̂|2

∫

|λ|≤1

|λ|−γ dλ+

∫
|ψ̂(λ)|2 dλ <∞

as ψ̂ ∈ L2(R) and is bounded in view of ψ ∈ L1. Consider decomposition
(8) and observe that the second integral on its right hand side is bounded
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by O(2j/j)γ)
∫
|λ|>j

|ψ̂(λ)|2 dλ = o(2jγ). Since condition (iii) is equivalent to

sup|λ|≤εn
|f(λ)/cf |λ|−γ − 1| → 0 for εn → 0 the first integral can be written as

2jγ

∫

|λ|≤j

(
cf |λ|−γ + o(|λ|−γ)

)
|ψ̂(λ)|2 dλ.

Since
∫
|λ|≤j |λ|−γ |ψ̂(λ)|2 dλ →

∫
|λ|−γ |ψ̂(λ)|2 dλ as j → ∞ the last expression

is equivalent to 2jγcf
∫
|λ|−γ |ψ̂(λ)|2 dλ in this case.

Remark 3.3 Note that as the definition of long-range dependence specifies only
the behaviour of the spectral density at 0, it is easy to construct LRD processes
such that the assumption (iii) of Proposition 3.7 is not satisfied. Namely, this
happens when f has another singularity at frequency ω 6= 0 as in the case
f(λ) ∼ C|1 − eiλ|−γ |1 − 2 cosωeiλ + e2iλ|1/2−η, where η > 1/2, considered in
Gray et al. (1989).

Let us note that if the conditions of Proposition 3.7 are satisfied with condition
(i) replaced by φ ∈ L1(R) then we have in view of Eaj,k = 0 that

Ea2
j,k ∼ 2jγcf

∫
|λ|−γ |φ̂(λ)|2 dλ, (11)

when j → ∞. Thus, in both cases of the wavelet and the approximation coeffi-
cients we have a power law dependence of their variance at the octave j on the
scale 2j . Observe that the equivalencies (10) and (11) yield a straightforward
method of estimating γ. Namely, they imply that log2 Ed2

j,k and log2 Ea2
j,k re-

gressed on j should be approximately linear with a slope γ. We will return to
this problem in Section 5.

Remark 3.4 When (X(t))t∈R is the fractional Brownian motion it is easy to
see that

Ed2
j,k =

∫
Cov(X(t), X(s))ψj,k(s)ψj,k(t) ds dt

=
σ2

2

∫
(|t|2H + |s|2H − |t− s|2H)ψj,k(s)ψj,k(t) ds dt

=
−σ2

2

∫
|t− s|2Hψj,k(s)ψj,k(t) ds dt

=
−σ2

2
22j(H+1/2)

∫
|t− s|2Hψ(s)ψ(t) ds dt.

Thus, in this case a counterpart of (10) is exact scaling of variance for any

j, k ∈ Z. By a similar argument one can show that actually dj,k
D
= 2j(H+1/2)d0,k.
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Hence the translation invariance (stationarity) and scale invariance (self-simi-
larity) is preserved by the wavelet transform for the FBM although the self-si-
milarity coefficient changes in the latter case. Note that the factor of j in the
exponent in (10) is γ = 2H − 1 for the FGN whereas it is 2H + 1 in the above
formula for the FBM. The difference is due to the fact that the FGN is the first
order difference of the FBM (see also remark following Proposition 3.9).

Consider now the question of how quickly the covariance of dj,k and dj,k′

decays in long-range dependent case when |k − k′| → ∞. The main issue here
is that despite long-range dependence of (X(t)) the wavelet coefficients (dj,·)
are actually weakly dependent if the wavelet ψ(·) is appropriately chosen. In
order to appreciate why it is plausible, observe that if wavelet ψ is such that
its Fourier transform ψ̂ vanishes in a neighborhood of 0 the function fj defined
above does not have a pole at 0. One might then expect that the assumptions
of Proposition 3.6 are satisfied for certain p if ψ̂ is sufficiently smooth. In the
more general case consider the wavelet ψ such that its first N moments vanish
i.e.

∫
xsψ(x) dx = 0 for s = 0, 1, . . . , N − 1. N = 1 for the Haar wavelet and in

general is equal to the order of Daubechies wavelet (see, e.g. Gençay et al., 2002,

p. 114). If, moreover, Nth absolute moment of ψ exists then ψ̂(λ) = O(|λ|N ) in
a neighborhood of 0 and thus fj(λ) is O(|λ|2N−γ) there. Then it is reasonable
to expect that in this case assumptions of Proposition 3.6 are satisfied with
p = 2N − 1 yielding Cov(dj,k, dj,k′ ) = O(|k − k′|1−2N ).

To get some more insight into the decorrelation property of the wavelet
coefficients consider also the following reasoning. Suppose that a localization
property holds for a characteristic function of fj , namely

f̂j(k) ∝
∫

|λ|≤βk

fj(λ)e
iλk dλ (12)

when k → ∞ for some positive βk such that lim supk→∞ βk < ∞ and ak ∝ bk
means that the limit of ak/bk is finite and non-zero.

Note that (12) is trivially satisfied with βk = β if the support of ψ̂ is contained
in [−β, β] or if f is band-limited. Suppose that fj(λ) = |λ|δI[−π,π] for 0 < δ < 1.
Then (12) holds true with βk = π/k. Namely, integration by parts and change of

variables yields
∫ π

0 λδ cos kλ = −δk−δ−1
∫ kπ

0 λδ−1 sinλ and the last integral con-

verges for k → ∞. On the other hand,
∫ π/k

0
λδ cos kλ = −δk−δ−1

∫ π

0
λδ−1 sinλ.

Moreover, (12) holds true for δ = 1 due to equality
∫ π

0
λ cos kλ =

∫ ekπ/k

0
λ cos kλ,

where ek equals 2 or 1 depending on whether k is even or odd, respectively. By
the same token βk = O(k−1/δ) can be chosen for δ > 1. Observe also that The-
orem 4.1 implies that the localization property with βk ∼ k−1 holds for fj(·)
pertaining to the FARIMA(0, d, 0) process and the Daubechies wavelet.

In the following C stands for a generic positive constant.

Proposition 3.8 Suppose that N first moments of ψ vanish and
∫
|x|N |ψ(x)| dx

<∞, f is bounded outside some neighborhood of 0 and conditions (9) and (12)
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are satisfied. Then

Cov(dj,k, dj,k′) ≤ C|k − k′|−2N−1+γ

∫

|λ|≤ηk−k′

|λ|2N−γ dλ

with ηk = kβk. In particular, for βk = O(k−α), Cov(dj,k, dj′,k′) = O((|k −
k′|)(−2N−1+γ)α).

For α = 1 the last equality corresponds to conjecture based on heuristic
reasoning in Abry et al. (2003) stating that an exponent of the covariance
decay is at least −2N − 1 + γ = 2(H − N) − 2. It seems that some kind of
property analogous to (12) is needed in order to prove such claim.
Proof. In view of (12) it is sufficient to bound

∫

|λ|≤ηk−k′

1

k − k′
fj

( λ

k − k′

)
eiλ dλ

for |k − k′| → ∞. Assumptions imply that ψ̂(i)(0) = 0 for i = 0, 1, . . . , N − 1

and ψ̂(N)(λ) is continuous and hence |ψ̂(λ)| ≤ C|λ|N . Moreover, |f(λ)| ≤
C|λ|−γ on a bounded neighborhood of 0. Thus, the last integral is bounded by
C|k − k′|−2N−1+γ

∫
|λ|≤ηk−k′

|λ|2N−γ dλ.

Consider now a decorrelation property for the special case when X(t) is the
fractional Gaussian noise. Then we have

Theorem 3.1 Assume that (X(t))t∈R is the fractional Gaussian noise with
the Hurst coefficient H and the wavelet ψ has a compact support and has N
vanishing moments. Then Cov(dj,k, dj′,k′) = O(|k − k′|2(H−N)−2) when |k −
k′| → ∞.

Proof. Observe that in view of the basic representation of the covariance of dj,k

and dj,k′ , the form of the covariance for the FGN and its symmetry we have

Cov(dj,k, dj,k′) =

∫
r(t − s)ψj,k(t)ψj,k′ (s) dt ds

= 2j

∫
r(2j(s− t+ k′ − k))ψ(t)ψ(s) dt ds

= 2j

∫
r(2j(t+ k′ − k))Λ(t) dt

= 2j−1σ2

∫
(|at,l + 1|2H + |at,l − 1|2H − 2|at,l|2H)Λ(t) dt,

where Λ(t) :=
∫
ψ(s− t)ψ(s) ds, l := k′ − k and at,l := 2j(t+ l). It was proved

by Tewfik and Kim (1992) that for any compactly supported function g having
k vanishing moments

∫
|at,l|2Hg(t) dt = O(|l|2H−k) (13)
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when l → ∞. Moreover, from the assumptions it easily follows that for Λ defined
above we have that it is compactly supported and has 2N vanishing moments.
Moreover, the formula for Cov(dj,k, dj,k′) implies that

Cov(dj,k, dj,k′) = 2j−1σ2

∫
|at,l|2H Λ̄(t) dt,

where Λ̄(t) := Λ(t+ 2−j) + Λ(t− 2−j) − 2Λ(t). Note that in view of properties
of Λ, Λ̄ is compactly supported and has 2N + 2 vanishing moments since for
any n ∈ N we have

∫
tnΛ̄(t) dt =

∫
(t+ 2−j)n + (t− 2−j)n − 2tn)Λ(t) dt =

∫
wn−2(t)Λ(t) dt,

where wn−2 is a polynomial of degree n− 2. Thus the proposition follows from
(13) for g = Λ̄.

Remark 3.5 As indicated in the proof above for the FBM process we have
Cov(dj,k, dj,k′ ) = O(|k′ − k|2(H−N)) (Tewfik and Kim, 1992; Flandrin, 1992).
The improvement for the FGN in Theorem 3.1 is intuitively related to the fact
that the power function pertaining to differencing filter equals |1 − exp(−iλ)|2
and behaves like λ2 at 0. Observe also that it follows from the proposition that
even for N = 1, satisfied e.g. by the Haar wavelet, the covariance function of
(dj,·) is absolutely summable.

Theorem 3.2 Assume that φ(·) has a compact support and (X(t))t∈R is a
strongly stationary process such that rX(t) ∼ cr|t|−α for 0 < α < 1. Then

Cov(aj,k, aj,k′) ∼ cr2
j(1−α)|k′ − k|−α

(∫
φ(t) dt

)2

when |k′ − k| → ∞.

Proof. Reasoning as in the proof of Theorem 3.1 we get for Λ̃(t) =
∫
φ(s −

t)φ(s) ds

Cov(aj,k, aj,k′) = 2j

∫
r(2j(s− t+ k′ − k))φ(s)φ(t) ds dt

∼ cr2
j |k′ − k|−α

∫
Λ̃(t)

|2j( t
k′−k + 1)|α dt

∼ cr2
j(1−α)|k′ − k|−α

∫
Λ̃(t) dt,

where the last equivalence follows from the fact that Λ̃(·) has a compact support
by expanding (t/(k′−k)+1)−α for |t/(k′−k)| < 1 as in Tewfik and Kim (1992).
Noting that

∫
Λ̃(t) dt = (

∫
φ(t) dt)2 6= 0 (Wojtaszczyk, 1997, Proposition 3.16)

we obtain the result.
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It follows from the last theorem that in contrast to the wavelet coefficients
the decorrelation property does not hold for the approximation coefficients aj,k

of the LRD process and their strength of dependence within fixed scale matches
that of process X(t). For example, for the Haar wavelet aj,k form a discrete
aggregated process for each j and a sequence of normalized aggregated processes
tends to the FGN with the same γ as in (9).

Let us consider a parallel approach to study dependence of wavelet coeffi-
cients and investigate how their spectral densities on different levels relate. The
spectral density of (aj,·) and (dj,·) will be denoted by fa

j (·) and fd
j (·), respec-

tively. We have

Proposition 3.9 Assume that the spectral density f is bounded outside
[−2−jπ, 2−jπ] for some j ≥ 0 and φ, ψ ∈ L1(R). Then

fa
j (λ) =

∑

n∈Z

f
(λ+ 2nπ

2j

)
|φ̂(λ+ 2nπ)|2 (14)

and

fd
j (λ) =

∑

n∈Z

f
(λ+ 2nπ

2j

)
|ψ̂(λ+ 2nπ)|2. (15)

Proof. In view of Cov(aj,k, aj,k′ ) =
∫
f̃j(λ)e

iλ(k′−k) dλ , where f̃j(λ) =

f(λ/2j)|φ̂(λ)|2, to prove (14) it is enough to show that

∫

R

fj(λ)e
iλl dλ =

∫ π

−π

fa
j (λ)eiλl dλ.

Observe that the integral on the right hand side exists. This follows from sep-
arate consideration of the summand for n = 0 and summands for n 6= 0 in
the definition of fa

j (·). The pertaining integral is finite due to f ∈ L1(R) and

sup |φ̂(·)| < ∞ in the first case and due to boundedness of f outside a small

neighborhood of 0 and
∫ π

−π

∑
n∈Z |φ̂(λ + 2nπ)|2 =

∫
R
|φ̂(λ)|2 dλ < ∞ in the

second. Equality (14) follows from the observation that

∣∣∣
∫ π

−π

∑

n∈Z

f
(λ+ 2nπ

2j

)
|φ̂(λ+2nπ)|2eilλ dλ−

∫ kπ

−kπ

f
( λ

2j

)
|φ̂(λ)|2eilλ dλ

∣∣∣→ 0

as k → ∞. The above expression is bounded by
∫ π

−π

∑
|n|>k f((λ+2nπ)/2j)|φ̂(λ+

2nπ)|2 dλ which tends to 0 in view of the previous argument.

Recall that v(z) =
∑

j∈Z vjz
j, V (λ) = |v(eiλ)|2, and u(z) and U(z) are

analogously defined functions pertaining to the sequence (ui). Then the spectral
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density of v∨· ⋆ a0,· equals to V (λ)fa
0 (λ) (see Brockwell, Davis, 1987, Theorem

4.4.1). In order to derive the spectral density of the decimated process v∨· ⋆
a0,·(2k) observe that the spectral density of Z̄k = Z2k is g1(λ) = 2−1(g(λ/2) +
g(λ/2 + π)), where g(·) is the spectral density of (Zk) periodically extended to
R. This follows from the observation that

rZ̄(k) =
1

2

∫ 2π

−2π

g(λ/2)eikλ dλ =

∫ π

−π

g1(λ)e
ikλ dλ,

where periodicity of g(·) was used for the last equality. Thus, in view of recursive
relations of the pyramidal algorithm we have

Proposition 3.10 For any i ≥ 1

fa
i (λ) =

1

2
(U(λ/2)fa

i−1(λ/2) + U(λ/2 + π)fa
i−1(λ/2 + π))

and

fd
i (λ) =

1

2
(V (λ/2)fa

i−1(λ) + V (λ/2 + π)fa
i−1(λ/2 + π)).

Observe that it follows from the Proposition 3.10 that

fd
1 (λ) =

1

2

(∑

n∈Z

f(λ/2 + 2nπ)|φ̂(λ/2 + 2nπ)|2V (λ/2)

+
∑

n∈Z

f(λ/2 + (2n+ 1)π)|φ̂(λ/2 + (2n+ 1)π)|2V (λ/2 + π)
)

and the expression on the right hand side equals (15) for j = 1 due to equality

|ψ̂(λ)|2 = 2−1V (λ/2)|φ̂(λ/2)|2 (see, e.g. Vidakovic, 1999, equation (3.13)).

4. Time series with discrete time

The wavelet transform is defined for a continuous time stochastic process and it
is important to understand whether its scope can be extended to discrete time
series (X(n))n∈Z. We will discuss two approaches to tackle this problem.

4.1. Embedding in a continuous time process (Veitch et al., 2000)

This approach involves extending (X(n))n∈Z to (X̃(t))t∈R in such a way that

X(n) = X̃(n) for n ∈ Z and spectral densities of X(n) and X̃(n) coincide.
Consider

X̃(t) =
∑

n∈Z

X(n)sinc(t− n) (16)
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where

sinc(x) =

{
sin(πx)

πx for x 6= 0;

1 for x = 0.

It turns out that such X̃(t) is well defined.

Proposition 4.1 (Veitch et al., 2000) Let X(n) be a weakly stationary process
with mean 0. Then X̃(t) defined in (16) converges in L2(R) for any t ∈ R.
Moreover, the random spectral measure of (X̃(t)) coincides with the random
spectral measure Z of (X(n))n∈Z.

Proof. For a fixed 0 ≤ r < 1 define Y (k) = X̃(k+ r) for k ∈ Z and observe that

Y (k) =
∑

n∈Z

X(n)sinc(k + r − n) =
∑

n∈Z

X(k − n)sinc(n+ r)

=
∑

n∈Z

X(k − n)hr(n) = X ⋆ hr(k),

where hr(n) = sinc(n + r). The convolution X ⋆ hr(k) converges in L2(R)
provided hn,r(e

−iλ) :=
∑

|j|≤n hr(j)e
−ijλ converges in L2([−π, π), F ), where F

is the spectral measure of (X(n)). Moreover, denoting by h(e−iλ) the limit of
hn,r(e

−iλ) we have Y (k)=
∫ π

−π
h(e−iλ)eikλ dZ(λ). Observe that sinc(x+r) is the

Fourier transform of (2π)−1eiλrI[−π,π)(λ) at x. As hn,r(e
−iλ) → eirλI[−π,π)(λ)

for any λ ∈ [−π, π) and sup|λ|≤π |hn,r(e
−iλ)| is uniformly bounded in n (see

Brockwell, Davis, 1987, Proposition 4.11.2), convergence in L2([−π, π),
F ) holds and thus Y (k) is well defined. Moreover,

X̃(k + r) = Y (k) =

∫ π

−π

eirλeikλ dZ(λ) =

∫ π

−π

ei(r+k)λ dZ(λ)

for arbitrary t = k + r.

Thus, from the last proposition it follows, in particular, that if the spectral
density of X(n) exists then the wavelet coefficients d̃j,k pertaining to the process

X̃(t) satisfy

Cov(d̃j,k, d̃j′,k′) =

∫ π

−π

f(λ)ψ̂j,kψ̂
∗
j′,k′(λ) dλ =

∫
r(t− s)ψj,k(t)ψj′k′ (s) dtds,

where r(t) :=
∫ π

−π e
iλtf(λ) dλ for t ∈ R. Hence the results of Section 3 are valid

for d̃j,k if f is meant as the spectral density of the sequence X(n). Consider
in particular a white noise process (ε(n))n∈Z. Then ε̃(t) is correlated with

ε̃(t′) if t − t′ ∈ R \ Z. Indeed, rε̃(t) = (σ2/2π)
∫ π

−π
eitλ dλ = sinc(t)σ2 and∫∞

−∞ |rε̃(t)| dt = ∞, thus (ε̃(t)) is long-range dependent. However, we have
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Proposition 4.2 Assume that the support of ψ̂ is contained in [−2lπ, 2lπ] for
some l ∈ Z. Then for (j, k) 6= (j′, k′) and min(j, j′) ≥ l the wavelet coefficients
d̃j,k and d̃j′,k′ are uncorrelated.

Proof. We have

Cov(dj,k, dj′,k′) =
σ2

2π
2(j+j′)/2

∫ π

−π

ψ̂(2jλ)ψ̂∗(2j′λ)eiλ(2j k−2j′k′) dλ

=
σ2

2π
2(j+j′)/2

∫
ψ̂(2jλ)ψ̂∗(2j′λ)eiλ(2j k−2j′k′) dλ

= σ2

∫
ψj,k(t)ψj′,k′(t) dt = 0,

where the penultimate equality follows from the fact that the support of ψ̂(2j ·)
is contained in [−2l−jπ, 2l−jπ] ⊂ [−π, π] for j ≥ l.

In particular, the proposition holds for the Meyer wavelet with l = 2 as the
support of ψ̂ ⊂ [−4π, 4π] and for the Shannon wavelet with l = 1.

A simple calculation shows that the approximation coefficients ã0,k pertain-

ing to the process X̃ are actually obtained by filtering the process X(n) with
the filter I(·), where I(m) =

∫
sinc(t + m)φ(t) dt. Thus there is no need to

calculate X̃(t) for all t to evaluate (a0,k).
It is common to consider long-range dependent processes for discrete time.

In this case they are either defined by the condition (9) in which f is the spectral
density of the process defined on (−π, π] or by r(k) ∼ Ckγ−1 where r(·) is the
pertaining covariance function of X(n). These two conditions are equivalent
provided r(·) is of bounded variation and quasi-decreasing i.e. r(k+1) ≤ r(k)(1+
C/k) for some C <∞ and sufficiently large k (see Yong, 1974, Theorem III-14).

Example 4.1
Fractional autoregressive integrated moving average FARIMA(0, d, 0) with 0<
d < 1/2 is defined as a process X(n) such that (1 − B)dX(n) = ε(n), where
(ε(n))∞−∞ is i.i.d. Gaussian N(0, σ2) sequence. Moreover, (1 − B)d is the frac-

tional differencing operator defined by (1 − B)d =
∑∞

k=0

(
d
k

)
(−1)kBk where(

d
k

)
= Γ(d+1)/(Γ(k+1)Γ(d−k+1)), Γ(·) is the gamma function and BkX(n) =

X(n− k). For properties of FARIMA(0, d, 0) processes including the proof that
they are LRD with γ = 2d see, e.g., Beran (1994).

4.2. Direct application of the pyramidal algorithm to (X(n))n∈Z

The second approach to deal with a discrete time series consists in formally
defining the approximation coefficients at the scale 0 as a0,n = X(n) and using
the recursions of the pyramidal algorithm to define the coefficients dj,n and aj,n

for j > 0. Observe that this can be put in a continuous time framework consid-
ered in Section 4.1 by embeddingX(n) in a processX⋄(t) =

∑
n∈ZX(n)φ(t−n).
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Indeed, due to orthogonality of {φ(· − k)} for different k we have that

a0,n =

∫
X⋄(t)φ(t − n) dt =

∫ (∑

k∈Z

X(k)φ(t− k)

)
φ(t− n) dt = X(n).

Moreover, one can prove by the methods similar to those used for Proposition 4.1
that the spectral density of X⋄(·) equals f̃(λ)|φ̂(λ)|2, where f̃(·) is the periodic
extension of f(·) to R. Thus, the only difference between the process X̃(t) in
(16) and X⋄(t) is that the spectral densities of X(n) and X⋄(t) differ when
φ(·) 6= sinc(·). However, if X(n) is LRD, then X⋄(t) retains this property

with the same γ when φ̂(·) is continuous at 0. This is true in most cases e.g.
when the number of nonzero vi is finite (see Wojtaszczyk, 1997, Theorem 4.1).
Note, moreover, that for a scaling function φ with the support in [0,1] putting
X̄(t) := X(n) for t ∈ [n, n+ 1) yields (a0,n) = CX(n). It is frequently easier to
study the dependence structure of the wavelet coefficients by referring directly
to the pyramidal algorithm starting at X(n). The rest of this section is devoted
to providing examples of such an approach. In particular, equations (3) and (4)
imply that

Cov(dj,k, dj′,k′) =
∑

m,n

vm−2kvn−2k′Cov(aj−1,m, aj′−1,n)

Cov(aj,k, aj′,k′) =
∑

m,n

um−2kvn−2k′Cov(aj−1,m, aj′−1,n)

(see, e.g. Vanucci, Corradi, 1999) which can be used to compute recursively the
covariance structure of the wavelet coefficients. Moreover, as in this approach
the pyramidal algorithm applies, Proposition 3.10 is still true with fa

0 (·) = f(·),
where f(·) stands for the spectral density of the sequence X(n). We show now
that this recursive relation implies decorrelation property of djk for a discrete
long-range dependent processes when the Daubechies wavelet D(N) is used.

Proposition 4.3 Let X(n) be a weakly stationary process with mean 0 and f ∈
L1[−π, π) its spectral density. If f (l) exists almost everywhere, is bounded on the
compact subsets of [−π, π)\{0} and xlf (l)(x) is integrable for l = 0, 1, . . . , 2N ,
then the process (dj.) of Daubechies D(N) wavelet coefficients for X(n) satisfies

|rd
j (k)| = o(|k|−2N ),

where rd
j (·) is the covariance function of (dj·) and k → ∞.

Proof. Consider first j = 1. The sequence (rd
1(k))k∈Z consists of the Fourier

coefficients of fd
1 . Observe that it is enough to show that fd

1 has an integrable
derivative of order 2N and (fd

1 )(l)(−π) = (fd
1 )(l)(π) for l = 0, 1, . . . , 2N − 1, as
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then we will obtain the assertion via integration by parts as in Proposition 3.6.
By Proposition 3.10 (fd

1 )(l)(x) = 1
2l+1

∑
i+i′=l Pii′ (x), where

Pii′(x) = f (i)(x/2)V (i′)(x/2) + f (i)(x/2 + π)V (i′)(x/2 + π).

Since Pii′ (π) = Pii′ (−π) for i+ i′ ≤ 2N , also (fd
1 )(l)(−π) = (fd

1 )(l)(π).
As V (i′)(x) = O(|x|2N−i′ ) by Example 2.4 in Section 2, the first component

of Pii′ is then O(f (i)(x/2)|x|2N−i′ ) and thus is integrable by assumption, while
the second is bounded, as f (i)(x/2 + π) is bounded in [−π, π) and V (i′) exists
and is bounded everywhere.

In order to prove the result for an arbitrary j, it is enough to show that
fa

1 shares the properties of f . Then, by induction, fa
j satisfies the assumptions

of the proposition and the above argument applied to fd
j+1 yields rd

j+1(k) =

o(|k|−2N ). Again, by Proposition 3.10

(fa
1 )(l)(x) =

1

2l+1

∑

i+i′=l

f (i)(x/2)U (i′)(x/2) + f (i)(x/2 + π)U (i′)(x/2 + π).

Since U (i′) exist and are bounded everywhere, derivatives of fa
1 exist al-

most everywhere for l = 0, 1, . . . , 2N and are bounded on compact subsets of
[−π, π)\{0}. Integrability of xl(fa

1 )(l)(x) follows from integrability of xif (i)(x/2)
and
xi′U (i′)(x/2).

By a simple induction we get from Proposition 3.10 that for j = 1, 2, . . .

fd
j (λ) =

1

2j

2j−1∑

k=0

Vj

(λ+ 2kπ

2j

)
f
(λ+ 2kπ

2j

)
, (17)

where Vj(λ) := V (2j−1λ)
∏j−2

l=0 U(2lλ) and f(·) is periodically extended to R

(see Percival and Walden, 2000, exercise 348b).
We will prove now that the rate of decorrelation established in Theorem 3.1

for the FGN process also holds for the FARIMA process, i.e. in the case of
the FARIMA process we can obtain a more stringent bound on the rate of
decorrelation.

Theorem 4.1 Let X(n) be the FARIMA(0, d, 0) process with 0 < d < 1/2 and
dj,k are defined as in Proposition 4.3. Then

|rd
j (k)| = O(|k|−2(N−H)−2) when k → ∞.

Proof. We prove the result for j = 1, the general case is proved similarly using
(17). In view of the proof of Proposition 4.3 and the fact that the spectral
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density of the FARIMA(0, d, 0) process equals f(λ) = (σ2/2π)2−2d sin−2d(|λ|/2)
for λ ∈ (−π, π], it is enough to prove that

∫ π

0

(sin−2d(λ/2)V (λ/2))(2N) cos kλ dλ = O(k2d−1),

taking into account symmetry of f and H = d + 1/2. The above equality will
follow from

∫ π

0

(sin−2d(λ/2))(s)(V (λ/2))(2N−s) cos kλ dλ = O(k2d−1) (18)

for s = 0, 1, . . . , 2N . Observe that in view of (6) V (i)(λ) = C(sin2N−1 λ)(i−1)

for i ≥ 1 and thus for s < 2N the integrand in (18) equals
C(sin−2d(λ/2))(s)(sin2N−1(λ/2))(2N−s−1) cos kλ. We expand the derivatives and
note that that the only unbounded term in the integrand is of the form
C(sin−2d(λ/2)) cos2N−1 cos kλ. We consider this term, the other terms are
treated using analogous but simpler reasoning. Thus, it is sufficient to prove
that

∫ π

0

sin−2d(λ/2) cos2N−1(λ/2) cos kλ dλ = O(k2d−1).

Integrating by parts we see that the above integral equals

d

k

∫ π

0

sin−2d−1(λ/2) cos2N (λ/2) sinkλ dλ

+
2N − 1

2k

∫ π

0

sin−2d+1(λ/2) cos2N−2(λ/2) sinkλ dλ.

The integrand of the second integral is bounded and thus the second term is
O(k−1). In order to treat the first integral we approximate it by the analogous
integral with the term sin−2d−1(λ/2) replaced by (λ/2)−2d−1. Substituting λ :=
kλ/2 we see that the difference between the two integrals is not larger than

C

k2

∫ kπ/2

0

|(sinλ/k)−2d−1 − (λ/k)−2d−1|(cosλ/k)2N | sin 2λ| dλ. (19)

We have that

| sin−2d−1(λ/k) − (λ/k)−2d−1| ≤
≤ Cmax(sin(λ/k)−2d−2, (λ/k)−2d−2)| sin(λ/k) − (λ/k)|
= O((λ/k)(−2d+1))

in view of | sin(λ/k) − (λ/k)| = O((λ/k)3) and sin(λ/k) ≥ (2/π)(λ/k) for λ ∈
[0, kπ/2]. Thus, (19) is O(k−1). Moreover, observe that the approximating
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integral

C

k2

∫ kπ/2

0

(λ/k)−2d−1(cosλ/k)2N sin 2λdλ

= Ck2d−1

∫ kπ/2

0

λ−2d−1 cos2N (λ/k) sin 2λdλ

= O(k2d−1)

since the above integral is bounded for k ∈ N as the integrand is O(λ−2d−1) for
large λ and O(λ−2d) for λ close to 0.

Remark 4.1 Observe that in both cases of the FGN and the FARIMA process
considered in Theorems 3.1 and 4.1 it was essential to use the exact form of either
the covariance function or the spectral density to prove the rate O(n−2(N−H)−2)
of within-scale decorrelation.

Intuitively, in view of (17), fd
j (·) corresponds to the spectral density of the

sequence obtained by taking every 2jth element of the sequence pertaining to
the the sequence X(n) filtered by a filter vj = (vj,k) with the power function
Vj . Indeed, we have

Proposition 4.4 For l ∈ Z

∫ π

−π

fd
j (λ)eiλl dλ =

∫ π

−π

f(λ)Vj(λ)e
i2jλl dλ. (20)

Proof. Observe that in view of (17) the left-hand side of (20) can be written as

1

2j

2j−1∑

k=0

∫ π

−π

Vj

(λ+ 2kπ

2j

)
f
(λ+ 2kπ

2j

)
eiλl dλ.

Changing variable to λ := (λ + 2kπ)/2j in each integral above separately and
using periodicity of eil· and Vjf(·) we get that the above expression equals to

2j−1∑

k=0

∫ (2k+1)π/2j

(2k−1)π/2j

Vj(λ)f(λ)ei2j λl dλ =

∫ 2π−π/2j

−π/2j

Vj(λ)f(λ)ei2j λl dλ

=

∫ π

−π

Vj(λ)f(λ)ei2j λl dλ.

The proposition is equivalent to equation (348b) in Percival and Walden (2000).
Here, our line of argument is reversed as Proposition 3.10 and (17) are proved
first. Moreover, observe that equality (17) leads to the following analogue of
Proposition 4.3 stated for a general finite filter v.
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Theorem 4.2 Let (vi)
L−1
i=0 be a finite wavelet filter such that its transfer function

v(λ) =
∑L−1

k=0 vke
ikλ satisfies v(i)(0) = 0 for 0 ≤ i ≤ N−1. Then Proposition 4.3

holds under conditions on f assumed there.

Proof. Observe that the condition on v(λ) translates to
∑L−1

k=0 k
jvk = 0 for

0 ≤ j ≤ N − 1. Thus

∑

0≤k,l≤L−1

(k − l)jvkvl =

j∑

s=0

(
j

s

) L−1∑

k=0

ksvk

L−1∑

l=0

lj−svl = 0

for 0 ≤ j ≤ 2N − 1, which is equivalent to V (j)(0) = 0 for 0 ≤ j ≤ 2N − 1.
Now the proof follows analogously to the proof of Proposition 4.3 by using (20)
and noting that since V (2N)(0) = O(1) we have that V (k)(λ) = O(|λ|2N−k) in
[−π, π) and this order is inherited by Vj(λ) as derivatives of U(·) exist and are
bounded in [−π, π).

Remark 4.2 A simple inductive argument (see Vidakovic, 1999, p. 83) shows
that the condition v(i)(0) = 0 for 0 ≤ i ≤ N−1 is equivalent to vanishing of first
N moments of ψ. Observe also that the above proof indicates that, heuristically,∫
(fd

j )(2N)(x)eikx dx should behave as C1

∫ π

−π x
−γeikx dx ∼ C2k

γ−1 (Zygmund,

1959, p. 186). Thus it is plausible that rd
j (k) = O(k−2N−1−γ) under assumptions

of Theorem 4.2. We were unable, however, to make this argument formal apart
from a special case of the FARIMA process studied in Theorem 4.1.

Let us note that Craigmile and Percival (2005) studied the rate of between-
scales decorrelation for certain generalized fractionally differenced processes
when the length of the filter L tends to infinity. For other results concerning
between-scales decorrelation see Dijkerman and Mazumdar (1994) and McCoy
and Walden (1996).

Observe that the filter vj = (vj,k) with the power function Vj has a unit
energy, i.e. the following proposition holds which will be used in Section 5.2.

Proposition 4.5 For j ∈ N
∑

k∈Z v2
j,k = 1.

Proof. Proposition holds for j = 1 as v1,k = vk defined in Section 1 and∑
k∈Z v

2
k =‖ ψ1,0 ‖2

2= 1. Observe that

2π
∑

k∈Z

v2
j,k =

∫ π

−π

∑

m,n∈Z

vj,mvj,ne
iλ(m−n) dλ =

∫ π

−π

Vj(λ) dλ.

Thus, it is enough to prove that
∫ π

−π
Vj(λ) dλ = 2π. Noting that Vj(λ) =
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Vj−1(2λ)U(λ) and using periodicity of Vj−1(·) and U(·) we have

∫ π

−π

Vj(λ) dλ =

∫ π

−π

Vj−1(2λ)U(λ) dλ =
1

2

∫ 2π

−2π

Vj−1(λ)U(λ/2) dλ

=
1

2

∫ π

−π

Vj−1(λ){U(λ/2) + U(λ/2 + π)} dλ

=

∫ π

−π

Vj−1(λ) dλ

as U(λ) + U(λ+ π) = 2 (see, e.g. Wojtaszczyk, 1997, Lemma 3.12). Thus, the
proof follows by induction argument.

Remark 4.3 Observe that it follows from the last two propositions that if X(n)
is the noise process with the variance σ2 and with the corresponding spectral
density f(λ) = (σ2/2π)I[−π,π)(λ), then

Ed2
j,k =

∫ π

−π

fd
j (λ) dλ =

σ2

2π

∫ π

−π

Vj(λ) dλ = σ2.

Thus, the variance of wavelet coefficients at each level equals to the variance of
the underlying process. Moreover, in this case equality holds in Proposition 3.4.

In order to understand better the decorrelation property of the wavelet co-
efficients in this case consider for a moment the situation when the sequences
(ui) and (vi) correspond to ideal filters. Namely, let (ui) be the ideal (Shannon)
low-pass filter such that the corresponding power function U(λ) = 2I[−π/2,π/2]

and (vi) is the ideal high-pass filter such that V (λ) = 2(I[−π,π) − I[−π/2,π/2]] for
λ ∈ [−π, π). Fig. 1 indicates how much power functions U(·) and V (·) for the
Daubechies wavelet of order 5 differ from the ideal ones.

Equation (14) implies that in order to obtain fa
1 , the spectral density f is

dilated from the interval [−π/2, π/2) to [−π, π) and multiplied by 1/2. On the
other hand, fd

1 is obtained from f in the following way: the spectral density
is dilated from the interval [π/2, π) to [π, 2π), multiplied by 1/2, moved by
2π to the left and symmetrically extended to [0, π). In this way fd

1 depends
only on the restriction of f to [π/2, π). Analogously, fd

i is based on values
of f only for the frequencies λ ∈ [π/2i, π/2i−1) and thus it is not influenced
by a possible pole at 0 of the spectral density f in the long-range dependent
case. Moreover, (i− 1)fold decimation results in considerable flattening of the
original part of the spectral density f for large i. As a result, after few iterations
fd

i resembles a constant function which is a spectral density of a white noise.
Fig. 2 shows the spectral densities of autoregressive processes AR(1,−0.6) and
AR(1, 0.6) together with fd

i for i = 1, 2, 3. We see that the shape of fd
1 in these

cases is considerably different as the region [π/2, π) corresponds to the lowest
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Figure 1. Power functions U(·) and V (·) for Daubechies wavelet of order 5

(respectively, the highest) part of the spectral density. However, most of the
difference disappears for spectral densities of the wavelet coefficients of the third
octave. Fig. 3 shows slow decay of correlations of (a1,.) and contrasts it with the
behaviour of correlations of (d1,.) for a sample path of the FGN with H = 0.9
consisting of 2048 observations.

5. Applications

We focus on two applications related to the properties studied in the previous
sections, namely on estimation of an exponent γ of a spectral density at 0 in
(9) for long-range dependent processes or equivalently their Hurst exponent
H . First we consider estimation of γ based on wavelet and scaling coefficients
making use of (10). We focus here on regression based methods, MLE approach
is described in Wornell (1995).
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Figure 2. Spectral densities fd
i , i = 1, 2, 3 for AR(1,-0.6) and AR(1,0.6) for

Daubechies wavelet of order 5

5.1. Estimation of exponent γ of spectral density at 0

LetX(1), . . . , X(n) be an observable part of a sample path of a discrete Gaussian
LRD process, µj = Ed̃2

j,k = Ed2
j,k and

µ̂j =
1

nj

nj∑

k=1

d̃2
j,k,

where nj ≈ n/2j is a number of wavelet coefficients at the scale 2j which can be
calculated based on X(1), . . . , X(n) without extrapolating for the past or the
future values. The coefficients d̃2

j,k are defined as in Section 4 and pertain to

a continuous time process X̃(t) in which X(n) is embedded. In further consid-
erations we assume that d̃j,k are independent within scales and among scales
i.e. their weak dependence proved in Propositions 3.6, 3.8 and Theorem 3.1 is
idealized to independence.

From (10) it follows that

log2 µj ∼ jγ + log2 C1,
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Figure 3. Autocorrelations for details d1,k and approximations a1,k for the FGN
with H = 0.9 and n = 2048 and Daubechies wavelet of order 5

where C1 = cf
∫
|x|−γ |ψ̂(x)|2 dx. Observe that as µ̂j is an unbiased estimate of

µj and X(n) are Gaussian, the assumed idealization implies that

log2 µ̂j is approximately distributed as jγ + log2 C1 + log2

(Znj

nj

)
,

where Znj has χ2 distribution with nj degrees of freedom due to independence
assumption. Using two-term Taylor expansion

log2

(Znj

nj

)
≈ 1

ln 2

(Znj

nj
− 1 − 1

2

(Znj

nj
− 1
)2)

(21)

we get

gj = E log2

(Znj

nj

)
≈ −1

nj ln 2

and similarly

Var
(

log2

(Znj

nj

))
≈ 2

nj ln2 2
.
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Thus, the following equation approximately holds

yj = log2 µ̂j − gj = jγ + log2 C1 + εj , (22)

for j = 1, 2, . . . , j2 where εj := log2(
Znj

nj
) − gj are independent and Eεj ≈ 0,

Var(εj) ≈ 2(nj ln2 2)−1. Integer j2 is the maximal index for which µ̂j can be
calculated based on the sample of size n. In order to estimate γ Abry et al.
(1995) and Abry and Veitch (1998) proposed to fit a weighted least squares
(WLS) line to points (j, log2 µ̂j − gj) and consider its slope γ̂d as an estimate of

γ. The corresponding estimate of H is Ĥd = (1 + γ̂d)/2. WLS coefficients β0

and β1 are obtained as minimizers of WSST =
∑

j wj(yj −β0−β1j)
2, where wj

are proportional to Var(εj)
−1. Thus, in the considered case one takes wj = nj .

Veitch and Abry (1999) also proposed a method of estimating cf in (9). Bardet

et al. (2000) studied the properties of Ĥd.

Observe that (22) holds only approximately due to the fact that the relation
(9) is asymptotic for j → ∞. This suggests rejecting a certain number of lowest
octaves when fitting WLS line, i.e. only points corresponding to j ∈ {j1, . . . , j2}
are considered in (22) where j1 ≥ 1 is a chosen integer. The data-dependent
choice of the lowest octave is proposed in Taqqu et al. (2003).

It turns out that assuming independence of the wavelet coefficients at each
scale, Ĥd is an unbiased estimator of H and its asymptotic variance is close to
the minimal asymptotic variance given by the Cramér-Rao bound. Moreover,
Ĥd outperforms, in terms of the Mean Squared Error, most of nonparametric
estimators of the Hurst parameter based on the scaling property, such as the
variogram or the R/S estimator and performs a on par with the Whittle max-
imum likelihood estimator when a parametric form of the process is assumed.
We stress that the construction the wavelet estimator, in particular the form of
the bias terms gj and weights wj rests crucially on the decorrelation property
of the wavelets coefficients.

Note that construction of a competing estimator of H based on the analo-
gous asymptotic equivalence for the approximation coefficients (11) is possible.
However, as ajk are long-range dependent, no matter how many vanishing mo-

ments the wavelet ψ has, all advantages of the above approach to develop Ĥd

would be lost here. Also, let us note that other estimators of H for parametric
models based on approximate decorrelation of the wavelet coefficients have been
proposed (see e.g. Zhang et al., 2004, and Craigmile et al., 2005).

5.2. Simulation of a stationary process with a given spectrum

We briefly describe the idea of generating sample paths of a stationary Gaussian
process with a spectral density specified in analytic form. There are two main
reasons for applying the wavelet approach. The first is that a classical Durbin-
Levinson algorithm using covariances γ(0), γ(1), . . . , γ(n− 1) to generate X(1),
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X(2), . . . , X(n) is quite expensive computationally as it requires O(N2) oper-
ations. Secondly, in many cases it is more convenient to use frequency domain
information in the form of a spectral density instead of a covariance function in
time domain. Davis and Harte (1987) provide an example of such approach.

The main idea of approximate generation of a discrete time stochastic process
with a given spectral density using wavelets relies on (5) and the fact that vari-
ances of detail and approximation coefficients can be estimated from the spec-
trum. We have in view of Proposition 4.4 Var(dj,k) =

∫ π

−π Vj(λ)f(λ) dλ, where
Vj(·) is defined below (17). Consider now the power function Vj corresponding
to the ideal high-pass filter. According to the disscusion below (17) Vj(·) is equal
to a constant C on intervals [−π/2j−1,−π/2j] and [π/2j, π/2j−1] and 0 else-
where. It follows from the normalization condition

∫ π

−π
Vj(λ) dλ = 2π proved in

Proposition 4.5 that C = 2j . Thus, using the mean value theorem for integrals
we have

Var(dj,k) = 2j+1

∫ π/2j−1

π/2j

f(λ) dλ ≈ 2πf(λj),

where λj is the midpoint of the interval [π/2j , π/2j−1].

Suppose now that we would like to generate n = 2N observations pertain-
ing to discrete time zero-mean Gaussian processes having a spectral density
f using resolution levels j = 1, 2, . . . , J . Since dj,k are normal N(0, σ2

j ) with

σ2
j ≈ 2πf(λj) we generate dj,k, j = 1, . . . , J, k = 1, . . . , Nj = 2N−j as indepen-

dent normal variables with variances specified accordingly. We stress that the
decorrelation property of wavelet coefficients is used here. A sample path is
generated using approximation to (5) for discrete time

Xsim(n) = aJ,1φJ,1(n) +
J∑

j=1

Nj∑

k=1

dj,kψj,k(n).

Here, aJ,1 is a normal variate with mean 0 and the variance vJ =
∫ π/2J

−π/2J f(λ) dλ.

In the case when f has a pole at 0 instead of approximating the last integral
it is preferable to use vJ = Var(X(n))− 2

∫ π

π/2J f(λ) dλ. Simulations in McCoy

and Walden (1996) indicate that the above method performs comparably with
exact but much more time consuming time domain methods.

As an aside note that in view of the previous discussion regressing Ed2
jk on

logλj is tantamount to regressing log f(λj) on logλj . When variants of the
periodogram are used to estimate the spectral density and λjs are replaced
by the Fourier frequencies λj = 2πj/n one arrives at usual frequency domain
estimates of γ (see Beran, 1994).
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6. Conclusion

In the paper we have studied stochastic properties of the wavelet and the ap-
proximation coefficients for a time series indexed by either continuous or discrete
time. Starting with an analysis of the continuous time series we have discussed
two approaches to extend the wavelet analysis to the discrete time series. The
first one relies on embedding in the continuous time series whereas the second is
a direct application of the pyramidal algorithm to the time series sequence. In
particular, the second approach yields the similar results to results for continu-
ous time due to the fact that recursive relations for the spectral densities stated
in Proposition 3.10 hold in both cases. Special attention has been paid to the
long-memory case and it is shown that if the considered wavelet has a sufficient
number of vanishing moments the covariance of the wavelet coefficients decays
arbitrarily quickly. Such property is essential for one of the methods of time
series generation with the given spectral density. Moreover, it greatly facilitates
studying properties of estimators of the Hurst coefficient based on the wavelet
coefficients as it allows for treating them as approximately independent random
variables.
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