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Abstract: In this paper a control algorithm based on a design
technique named “Robust Damping Control” is introduced. A ro-
bust observer is further shown to overcome the problem of using
velocity sensors that may degrade the system performance. The
proposed controller uses only position measurements and is capable
of disturbance rejection in the presence of unknown bounded distur-
bances without requiring the knowledge of its bound. Moreover, we
propose an accurate and fast time integration method to solve the
dynamic equations of the mobile manipulator system.

The simulation results of a 6 D.O.F. mobile manipulator illust-
rate the effectiveness of the presented algorithm.

Keywords: robust control, mobile manipulator, generalized-α
method, robust observer.

1. Introduction

Mobile manipulators based on their expanded workspace, have found many ap-
plications in industry. These intelligent systems have more capability in hazard-
ous situations such as toxic environments and in places that are difficult to
handle for humans.

A mobile manipulator is a robotic arm mounted on a moving base. The
mobile base (truck) is subject to holonomic or nonholonomic kinematic con-
straints, which makes control of mobile manipulators very difficult. Moreover,
the complex system structure, the highly coupled dynamics between the truck
and the mounted manipulator arm, and the mobility of the truck increase the
difficulty in designing a controller.

Control of mobile manipulators is a highly challenging research area with
great practical significance. In recent years, there has been growing interest in
the motion control of mobile manipulators (Kolmanovsky, McClamroch, 1995;
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Hootsmanns and Dubowsky, 1991; Tahboub, 1997 a,b; Lin and Goldenberg,
2001, 2002; Minami, Fujiyou and Asakura, 2002).

Tahboub (1997 a,b) introduced a robust controller based on a disturbance
observer. Furthermore, he has assumed the mobile manipulator’s nonlinear
terms as disturbance inputs and designed a linear observer to estimate these
terms. But since the complexity of the robotic system increases, separation
of nonlinear terms from the robot dynamics becomes a complicated and time
consuming task. Hootsmanns and Dubowsky (1991) have developed a control
method based on an extended jacobian transpose to compensate for dynamic
interactions between the manipulator and the truck. At the same time, some
other controllers have also been proposed based on genetic algorithm and neural
networks (Lin and Goldenberg, 2001; Minami, Fujiyou and Asakura, 2002).
Most of these methods require a precise knowledge of the dynamics of mobile
manipulators or they simplify the dynamic model by ignoring complex dynamics,
such as vehicle dynamics, payload dynamics, dynamic interactions between the
base and the arm, or unknown disturbances.

Recently, Lin and Goldenberg (2002) have presented a robust control method
named RDC (Robust Damping Control) to overcome these problems. But in
their controller there exist velocity terms and as we know feedback signals from
velocity sensors such as a tachometer can have a low SNR (signal-to-noise ratio)
and may degrade the performance of the system.

It should be noted that most of these approaches use only simple robotic
structures and consequently, the effect of dynamic complexities in the simula-
tions cannot be shown. Most importantly, since the increase of D.O.F. of the
mobile manipulator system amplifies the interaction between the truck and its
mounted arm, using common algorithms such as “Euler” and “Runge-Kutta”
to solve the dynamic equations causes an unwanted decrease in stability and
accuracy of the overall system.

In this paper a control algorithm, based on RDC method is introduced using
a robust velocity observer. The presented controller uses only position measure-
ments and therefore decreases the required number of sensors and improves the
performance of the robotic system. This technique features disturbance rejec-
tion in the presence of unknown bounded disturbances without requiring its
bound. Moreover, we have also proposed an accurate and fast time integration
technique to solve the sophisticated dynamic equations of a 6 D.O.F. mobile
manipulator.

The paper is organized as follows. The dynamics of mobile manipulators
subject to kinematics constraints and a method to solve it, is developed in
Section 2. The robust controller algorithm and its stability characteristics are
presented in Sections 3 and 4, respectively. Section 5 presents the simulation
results to illustrate the effectiveness of the proposed algorithms.
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2. Mobile manipulator dynamic equations

We consider a 6 D.O.F. mobile manipulator as in Fig. 1, in which θ2, θ3, θ4 and
θ5 are joint angles of the robot manipulator, θ1 is the direction of the truck in
the reference coordinate system, and ϕ1, ϕ2, ϕ3 and ϕ4 are rotation angles of
the mobile manipulator wheels; (xT , yT ) is the mass center of the truck that is
located on the contact point between the truck an its manipulator.

Figure 1. The mobile manipulator considered

In the selected structure, front wheels have differential drive structure. In
other words, the difference between the left and right wheel velocities determines
the orientation of the truck and each wheel has a separate actuator (τL, τR).

We have derived dynamic equations of this structure without using any refe-
rence, utilizing Lagrange method. However, because of the complexity of these
equations and since we want to focus on our control algorithm, we will put aside
the details and in the remainder of the paper we use the general form of these
equations.

Dynamic equations of a robot without any constraint have the following
general structure (Qu and Dawson, 1996):

M(q)q̈ + C(q, q̇)q̇ + F (q, q̇) = τ (1)

where M is the mass matrix, C is a matrix composed of the Coriolis and cen-
trifugal acceleration terms and F is a vector containing friction and gravitational
forces; q and τ are the generalized vector and the input torque vector of the
system, respectively, which are defined as follows:

q = (xT , yT , θ1, ϕ1, ϕ2, ϕ3, ϕ4, θ2, θ3, θ4, θ5)
T

τ = (0, 0, 0, τL, τR, 0, 0, τ2, τ3, τ4, τ5)
T (2)
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and τ2, τ3, τ4 and τ5 are torques exerted on the arm joints by the actuators.
If we consider the matrix form of the constraint equations of the system as

follows:

A(q)q̇ = 0, (3)

using Lagrange method the general dynamic equations of the mobile manipula-
tor in eq. (1) can be rewritten as follows:

M(q)q̈ + C(q, q̇)q̇ + F (q, q̇) +AT (q)λ = τ (4)

where λ is the vector of lagrangian factors.
In the subsequent section, we use the generalized-α method to solve equa-

tion (4).

2.1. Generalized-α method

In this section, we propose an accurate and fast time integration algorithm
to solve complex dynamic equations of a 6 D.O.F. mobile manipulator. This
method has better stability characteristics than common numerical techniques
such as “Euler” and “Runge-Kutta”.

Before using generalized-α numerical algorithm (see Chung and Hulbert,
1993) to solve dynamic equations we should take two stages as follows:

1. Lagrangian factors have to be eliminated from dynamic equations.
2. Some of the system variables must be eliminated via constraint equations.

Therefore, after extraction of the remaining variables we can compute the eli-
minated variables using the constraint equations.

We have from the constraint equations:



























































ẏT = ẋT tan θ1

ϕ̇1 =

[

ẋT

cos θ1
−

√
2

2
l1θ̇1

]

/r

ϕ̇2 =

[

ẋT

cos θ1
+

√
2

2
l1θ̇1

]

/r

ϕ̇3 = ϕ̇2

ϕ̇4 = ϕ̇1,

(5)

where r is the radius of wheels and l1 is the distance between truck’s center of
mass and wheel axis. Therefore, by replacing these equations in the dynamic
equations obtained from the elimination of the Lagrangian factors, we can write
the following general form:

G (qx, q̇x, q̈x) = M ′(qx)q̈x + F ′(qx, q̇x) = 0 , (6)
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in which qx is defined as:

qx = (xT , θ1, θ2, θ3, θ4, θ5)
T . (7)

Our final goal in dynamic simulation is to find qx = qx(t) such that equation (6)
is satisfied and the following initial values are established:

qx(0) = d

q̇x(0) = v (8)

where d and v are given position and velocity vectors, respectively.
We assume that dn, vn and an are estimations of qx (tn), q̇x (tn) and q̈x (tn)

in which the index n is the iteration number and we increase it and repeat the
algorithm until a predefined tolerance is satisfied. With this assumption we will
write dn+1 and vn+1 as a combination of dn, vn, an and an+1. Therefore, we
will need an additional equation for computation of an+1 having data from the
nth step.

The general form of the Generalized-α algorithm, Chung and Hulbert (1993),
is as follows:

dn+1 = dn + ∆t2
(

(1
2 − β)an + βan+1

)

vn+1 = vn + ∆t ((1 − γ)an + γan+1)

G(dn+1−αf
)an+1−αm

+H(dn+1−αf
, vn+1−αf

) = 0 (9)

d0 = d

v0 = v

a0 = G−1(d)H(d, v),

where:

dn+1−αf
=(1 − αf )dn+1 + αfdn

vn+1−αf
=(1 − αf )vn+1 + αfvn (10)

an+1−αm
=(1 − αm)an+1 + αman.

The second order accuracy of the algorithm is obtained by the condition:

γ =
1

2
− αm + αf . (11)

Moreover, the stability of the system is guaranteed if:

αm ≤ αf ≤ 1

2
, β ≥ 1

4
+

1

2
(αm − αf ). (12)

In these equations αm, αf , γ and β are some constants related to the numerical
algorithm and are selected so as to satisfy equation (11) and inequalities (12).
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By substituting eq. (9) in eq. (6) we have:

G (q (an+1) , q̇ (an+1) , q̈ (an+1)) = 0. (13)

The important point in this algorithm is to find an+1. For this reason,
we first choose an initial assumption such as an+1 = an and then modify this
assumption using Taylor expansion method to minimize the estimation error

of an+1 via a recursive algorithm. Therefore, in each step j we modify a
(j)
n+1

to compute a
(j+1)
n+1 and we repeat this routine until a predefined tolerance is

satisfied. In this way, we define:

a
(j+1)
n+1 = a

(j)
n+1 + ∆a

(j)
n+1. (14)

Now we write the Taylor expansion of equation (13) in a
(j)
n+1:

G
(

a
(j)
n+1

)

+
∂G (an+1)

∂an+1

∣

∣

∣

∣

an+1=a
(j)
n+1

∆a
(j)
n+1 ≈ 0. (15)

By the following definition:

J
(

a
(j)
n+1

)

=
∂G (an+1)

∂an+1

∣

∣

∣

∣

an+1=a
(j)
n+1

(16)

utilizing equations (9) and (10) we can conclude that:

J
(

a
(j)
n+1

)

=

[

(1 − αm)
∂G

∂q̈
+ (1− αf ) γ∆t

∂G

∂q̇
+ (1− αf )β∆t2

∂G

∂q

]

an+1=a
(j)
n+1

.

(17)

Using eqs. (15)-(17) we can compute the modification term of eq. (14) as:

∆a
(j)
n+1 = −J−1

(

a
(j)
n+1

)

G
(

a
(j)
n+1

)

. (18)

Therefore, equations (14) and (18) bring us enough information to compute

a
(j+1)
n+1 .

3. A novel robust controller based on robust observer

The robust controller applied to the structure of Fig. 1 has the ability to control
the mobile manipulator in the presence of bounded dynamic uncertainties and
external disturbances. In addition, rather than determining complex bounding
functions as conventional robust control approaches, the RDC compensation
terms generate a signal only based on the desired trajectory and sensory data,
and thus it does not need the knowledge of the system parameters.



Control algorithm for a mobile manipulator based on robust observer 1063

We assume that the dynamic equations of the mobile manipulator in a more
general form according to the equation (4) are given as:

M(q)q̈ + C(q, q̇)q̇ + F (q, q̇) +AT (q)λ + τd = E(q)

[

τv
τr

]

(19)

where τd is due to bounded unknown disturbances including unstructured dy-
namics, τv is the torque vector of mobile platform and τr is the torque vector
of robot manipulator.

The main idea of this method is to define a Lyapunov function for the mobile
manipulator system and to find control laws, which stabilize the system with
respect to this Lyapunov function. To define these control laws, we need to
prescribe some of the variables:

qv = [xT , yT , θ1, ϕ1, ϕ2, ϕ3, ϕ4]
T

qr = [θ2, θ3, θ4, θ5]
T (20)

v = [ϕ̇1, ϕ̇2]
T

where qv is the extended coordinate vector of the base, qr is the extended coor-
dinate vector of the arm and v is the vector of driving wheel velocities.

Now we can find a full rank matrix S(qv) such that:

q̇v = S(qv)v(t). (21)

We assume that the reference trajectory from the path planner is available and
according to Fig. 2 the desired trajectory for qr is qrd and the reference trajectory
for v is α. Therefore, we define system error variables as follows and our final
goal is to design a suitable controller to make these errors vanish:

z = v − α

e = qrd − qr (22)

r = ė+ ke.

Finally, ψ1 and ψ2 which are the RDC vectors of the arm and truck, respectively,
are defined as (Lin and Goldenberg, 2002):

ψ1 =
[

‖α̇‖ ‖q̈rd + k(r − ke)‖ ‖α‖‖q̇‖ ‖q̇rd + ke‖‖q̇‖ ‖q̇‖ 1
]

(23)

ψ2 =
[

‖q̈rd + k(r − ke)‖ ‖Sα̇+ Ṡα‖ ‖q̇rd + ke‖‖q̇‖ ‖α‖‖q̇‖ ‖q̇‖ 1
]

.

(24)

From the above definitions, it can be shown that control laws in the following
form stabilize the mobile manipulator system (Lin and Goldenberg, 2002):

τv = − kpvz − k1z ‖ψ1‖2

τr =kprr + ki

∫

rdt+ k2r ‖ψ2‖2
(25)
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Robust observer

As it can be seen, to compute RDC terms we require to measure joint position
and velocity values. In most robotic applications, position measurements are
available via accurate optical encoders while joint velocity values must be mea-
sured by sensors such as tachometers. This may cause noise injection into the
system and degrade system performance. So, a robust control algorithm which
only needs position measurements, not only decreases the number of sensors to
be used, but also improves the dynamic performance of the mobile manipulator.

In the following section we design a robust observer to estimate joint veloci-
ties and consider the effect of this observer on system stability.

The block diagram of the proposed novel algorithm containing robust con-
troller and the observer is shown in Fig. 2.

Figure 2. Block diagram of the system

In this regard, we consider the linear and decentralized observer as:

˙̂q =y + (Ko + In)(q − q̂)

ẏ =2Ko(q − q̂) + 2(q + q̂) (26)

where q̂ and ˙̂q, represent estimates of q and q̇ respectively, y is a vector of
intermediate variables and Ko is a diagonal gain matrix. By substituting Ko =
koI into the above equation in the discrete form, we obtain:

q̂(t+ ∆t) =q̂(t) + ∆t [y(t) + (ko + 1) (q(t) − q̂(t))]

y(t+ ∆t) =y(t) + ∆t [2ko (q(t) − q̂(t)) + 2 (q(t) + q̂(t))] . (27)

Therefore, assuming initial conditions y(0) = 0 and q̂(0) = q(0), we can estimate
the position vector q̂ (t+ ∆t). So we can compute joint velocities only by sensing
the joint position vector and estimating the position vector in the next time step.
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4. Stability analysis of the system with the controller and

observer

In this section, we will define some Lyapunov functions for different parts of the
system containing the mobile platform, arm and the observer. Then we merge
these functions to form a general Lyapunov function.

Let us choose the Lyapunov function of the combined system of base and its
mounted arm as in Lin and Goldenberg (2002):

V2 = V1 +
1

2

(

Sz
−r

)T

M

(

Sz
−r

)

; V2 ∈ P.D., (28)

where V1 is the Lyapunov function of the mobile platform and can be designed
for a given type of nonholonomic steering system (Kolmanovsky, McClamroch,
1995). Moreover there exists a positive continuous function of time w1 (t) > 0
such that V̇1 ≤ −w1.

As we can see in Lin and Goldenberg (2002), by using Lyapunov function V2

and system’s dynamics based on control laws in (25), the following inequality
will be fulfilled:

V̇2 < −kmin

{

(

‖z‖ ‖ψ1‖ −
‖∆1‖
2k1

)2

+

(

‖r‖ ‖ψ2‖ −
‖∆2‖
2k2

)2
}

+
‖∆max‖2

2kmin

(29)
where:

kmin = min {k1, k2}
‖∆max‖ = max {‖∆1‖ , ‖∆2‖} (30)

and ∆1, ∆2 are vectors containing bounds of system uncertainties (Lin, Gold-
enberg, 2002).

In (29) ‖∆max‖ is a bounded quantity, therefore, V2 decreases monotoni-
cally until the solutions reach a compact set determined by the RHS of (29).
The size of the residual set can be decreased by increasing kmin. According to
the standard Lyapunov theory and the extension of the LaSalle theory (Lewis,
Abdallah, Dawson, 1993), this demonstrates that without the observer system,
the control law (25) may guarantee global uniform ultimate boundedness of all
tracking errors.

Observer-based stability analysis

Now by using the same methodology we will show the stability of the proposed
algorithm.

Based on eqs. (19) and (26) we have:










¨̂q = 2ko(q − q̂) + 2(q + q̂) + (ko + 1)(q̇ − ˙̂q)

q̈ = M−1(q)τ −M−1(q)N(q, q̇)

N(q, q̇) = C(q, q̇)q̇ + F (q, q̇) +AT (q)λ + τd.

(31)
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If we eliminate lagrangian factors using the constraint equations, since state
variables of the system in (31) are decoupled we have the following reduced
order system:











¨̂qx = 2ko (qx − q̂x) + 2 (qx + q̂x) + (ko + 1) (q̇x − ˙̂qx)

q̈x = M−1
R (qx) τx −M−1

R (qx)NR (qx, q̇x)

NR (qx, q̇x) = CR (qx, q̇x) q̇x + FR (qx, q̇x) + τd .

(32)

Therefore:
{

q̈x − ¨̂qx = M−1
R (qx) τx + w2 − 2ko (qx − q̂x) − (ko + 1) (q̇x − ˙̂qx)

w2 = −M−1
R (q)NR (qx, q̇x) − 2 (qx + q̂x)

(33)

where the vector τx is defined as follows:

τx = (0, 0, τ2, τ3, τ4, τ5)
T
. (34)

Now, we define the following error variables:



















e = qxd − qx

ê = qxd − q̂x

ẽ = ê− e

r̃ = ẽ+ ˙̃e

(35)

where qxd is the desired position vector corresponding to the vector qx.
In this definition, ê is the estimation of the position error and ẽ is a vector

that represents the difference between estimation of the position error and the
measured position error.

Since the system without observer is stable, i.e. lim
t→∞

e (t) = 0, therefore, if

the observer error tracks measured error, the overall system will be stable. It
means that if the tracking error of the system, ẽ (t), converges to zero then the
overall mobile manipulator system will be guaranteed to be stable.

Using equation (33) we will conclude:

{

˙̃r = −kor̃ − koẽ+ w3

˙̃e = r̃ − ẽ ,
(36)

where:

w3 = M−1
R (qx) τx + w2. (37)

Now to consider the effect of the observer in the system’s stability, we define
the following Lyapunov function:

V3 = V2 + koẽ
T ẽ+ r̃T r̃; V3 ∈ P.D. (38)
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Differentiating equation (38) yields:

V̇3 = V̇2 + 2koẽ
T ˙̃e+ 2r̃T ˙̃r = V̇2 + 2koẽ

T (r̃ − ẽ) + 2r̃T (−kor̃ − kẽ+ w3)

= V̇2 − 2ko ‖ẽ‖2 − 2ko ‖r̃‖2 + 2r̃Tw3

≤ V̇2 − 2ko ‖ẽ‖2 − 2ko ‖r̃‖2
+

2

m
‖r̃‖ ‖τx‖ + 2r̃Tw2 (39)

where m is the lower bound of uncertainties in the mass matrix.
In order to compute a bound for w2 we have shown (in the Appendix) that:

‖NR (qx, q̇x)‖ ≤ β1 + β2 ‖x‖ + β3 ‖x‖2 (40)
∥

∥r̃T (qx + q̂x)
∥

∥ ≤ β4 ‖z′‖ + 2 ‖z′‖2
(41)

where β1, β2, β3 are positive constant factors and:

x =

[

e
ė

]

, z′ =

[

ẽ
r̃

]

, β4 = 2 Sup
t∈[0,∞]

‖qxd‖ . (42)

Using equation (25) and inequalities (39)-(41) we can conclude that:

V̇3 ≤V̇2 − 2ko ‖ẽ‖2 − 2ko ‖r̃‖2 +
2

m
‖r̃‖ (kpr ‖r‖ + k2 ‖r‖ ‖ψ2‖2)+

+ 2 ‖r̃‖
[

1

m

(

β1 + β2 ‖x‖ + β3 ‖x‖2
)

]

+ 4
(

β4 ‖z′‖ + 2 ‖z′‖2
)

. (43)

By substituting inequality (29) in (43) with some simplifications, we can obtain
the following result:

V̇3<− k′min

{

(

‖z‖‖ψ1‖ −
‖∆1‖
2k1

)2

+

(

‖r‖ ‖ψ2‖ −
‖∆2‖
2k2

)2

+ 2 ‖ẽ‖2 + 2 ‖r̃‖2

}

+
‖∆max‖2

2kmin
+

2

m
‖r̃‖

[

(kpr‖r‖ + k2‖r‖‖ψ2‖2) + (β1 + β2‖x‖ + β3‖x‖2)
]

+ 4(β4‖z′‖ + 2‖z′‖2) (44)

where:

k′min = min (kmin, ko) . (45)

This result, according to the standard Lyapunov theory, demonstrates that the
mobile manipulator system is globally uniformly stable and all tracking errors
will be bounded.
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5. Simulation results and conclusion

In the rest of this paper computer simulations are used to demonstrate the
performance of the dynamic algorithm, robust controller and observer. Fig. 3
shows a view of the simulator program.

Figure 3. A view of the simulation program

Figs. 4-a and 4-b illustrate the dynamic simulation results for two different
input torque vectors. In Fig. 4-a, since a 50 Nm torque is applied to the left
wheel, we expect the mobile manipulator to be inflexed from its initial state to
the right hand side on an elliptical path. In Fig. 4-b equal torques have been
applied to both left and right wheels and therefore the motion trajectory of the
robot is a straight line.

The control simulation results have been presented for two different cases:
when there is no dynamic parameter uncertainty in the system or in the presence
of uncertainty. In the latter case, the uncertainty is considered for the mass of
the link, which is connected to the object.

In this simulation, the desired input angles of the arm are considered as
sinusoidal signals with frequency of 0.1 KHz, π/8 phase and amplitude of π/6.
In addition, also desired wheel velocities are assumed to be sinusoidal.
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a) τ =(0,0,0,50,0,0,0,0,0,0,0) b) τ =(0,0,0,50,50,0,0,0,0,0,0)

Figure 4. Robot motion in x-y plane

Fig. 5 shows the wheel velocity errors in (rad/sec) and the position error of
links in (rad) are shown in Fig. 6 without any plant uncertainty.

At the same time, Fig. 7, for instance, demonstrates the control inputs of left
wheel and x-y rotational joint (joint 1) of the mobile manipulator, respectively.

Fig. 8 illustrates the position error of robot joints in (rad) and wheel velocity
errors are shown in Fig. 9 in (rad/sec) with plant uncertainty in the mass of the
link 5. We suppose that the mass of link 5 suddenly increases to five times of
its initial value at time t=7s. As we can see in Figs. 8 and 9 this uncertainty
has a little impact on the system accuracy and shows that we have reached the
desired goal.

Finally, Fig. 10 shows the desired and actual path of the end effector in
three directions (x, y and z). From this figure we can see that the end effector
path error is maximum in the ”z” direction, specially in the first few seconds of
simulation, however, this maximum error is negligible.

In this paper we proposed a robust controller and confirmed its effectiveness
by implementing simulations on a 6 D.O.F. mobile manipulator. An important
point in this controller is that we must select controller gain factors such that
system remains in the stability region. Moreover, in the simulation we can-
not unlimitedly increase time intervals, since this will cause instability of the
dynamic algorithm and consequently of the control algorithm.

One of the important advantages of the proposed dynamic algorithm is its
high accuracy that is necessary for the complex system of mobile manipulator.

In order to acquire a higher reliability of control algorithm in a practical
situation, we performed some modifications on the robust damping control al-
gorithm and we illustrated the performance of these modifications in our simu-
lations. Moreover, we designed a robust observer in order to estimate the joint
velocity that causes elimination of the velocity sensors, which decrease the signal
to noise ratio and degrade the performance of the system.
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Figure 5. Wheel velocity error without plant uncertainty

Figure 6. Position error of links without plant uncertainty
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Figure 7. Input control laws

Figure 8. Position error of links with plant uncertainty
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Figure 9. Wheel velocity error with plant uncertainty

Figure 10.Desired and actual paths of the end effector in the x, y and z directions
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Appendix

Proof of Inequality (40)

Assumption 1:
The Coriolis and centripetal term CR (qx, q̇x) is linear in q̇x. Therefore, it

follows that:

‖CR (qx, q̇x)‖ ≤ ξc (qx) ‖q̇x‖ (46)

where ξc (qx) is a known, positive definite function of qx.

Assumption 2:
The friction and gravity term CR (qx, q̇x) is bounded as follows:

‖FR (qx, q̇x)‖ ≤ ξg (qx) + ξf ‖q̇x‖ (47)

where ξg (qx) is a known, positive definite function of qx and ξf is a known
positive constant.

Assumption 3:
The lumped uncertainty term τd is bounded as:

‖τd‖ ≤ ξt (48)

where ξt is a known positive constant.
It follows from equation (32) and the above assumptions that:

‖NR (qx, q̇x)‖ ≤ (ξt + ξg (qx)) + ξf ‖q̇x‖ + ξc (qx) ‖q̇x‖2
. (49)

From the definitions (35) and (42) we can conclude that:

‖q̇x‖2 ≤ ‖q̇x‖2 + ‖qxd − qx‖2 = ‖ė‖2 + ‖e‖2 = ‖x‖2 (50)

and then:

‖q̇x‖ ≤ ‖x‖ . (51)

In addition, there exist some positive constants β1, β2 and β3 such that:

‖ξt + ξg (qx)‖ ≤ β1

‖ξf‖ ≤ β2 (52)

‖ξc (qx)‖ ≤ β3.

Therefore, from (49) we can write:

‖NR (qx, q̇x)‖ ≤ β1 + β2 ‖x‖ + β3 ‖x‖2
. (53)
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Proof of Inequality (41)

It follows from the definition (35) that:

∥

∥r̃T (qx + q̂x)
∥

∥ =
∥

∥

∥

(

ẽ+ ˙̃e
)T

(2qxd − ê− e)
∥

∥

∥
(54)

and therefore:
∥

∥r̃T (qx + q̂x)
∥

∥ ≤
∥

∥

∥

(

ẽ+ ˙̃e
)T

2qxd

∥

∥

∥
+
∥

∥

∥

(

ẽ+ ˙̃e
)T

(ẽ+ 2e)
∥

∥

∥
. (55)

It is obvious that:

‖qxd‖ ≤ Sup
t∈[0,∞)

‖qxd‖ . (56)

Consequently, utilizing the definition (42) since
∥

∥ẽ+ ˙̃e
∥

∥ ≤ ‖z′‖, we can conclude
that:

∥

∥r̃T (qx + q̂x)
∥

∥ ≤
(

2 Sup
t∈[0,∞)

‖qxd‖
)

‖z′‖ + 2 ‖z′‖2
. (57)
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