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Abstract: In this paper we study optimal control problems with
bang-bang solution behavior for a special class of semilinear dyna-
mics. Generalizing a former result for linear systems, optimality
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1. Introduction

The paper contributes to the recently widely discussed field of optimality condi-
tions for bang-bang type optimal controls, see e.g. Sarychev (1997), Osmolovskii
(2000), Milyutin and Osmolovskii (1998), Noble and Schaettler (2002), Agrachev,
Stefani and Zezza (2002). Continuing former investigations (Felgenhauer, 2001a,
b, 2003a) a duality based concept from Klötzler (1979), Maurer and Pickenhain
(1995) is applied to derive sufficient optimality conditions. In contrast to Mi-
lyutin and Osmolovskii (1998) (or also Agrachev, Stefani and Zezza, 2002), the
analysis is applicable for multiple switches of several control components, too.
The proofs use variation estimates without control linearization or approximat-
ing cones (see Milyutin and Osmolovskii, 1998; Osmolovskii, 2000), and thus,
directly yield strong local optimality results (see Theorem 3.2).

After introducing the problem in Section 2, the basic ideas of the concept
are shortly described in Section 3. In the next two sections, particular types
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of conditions are proved: at first, the problem is considered in case of convex
terminal functional under convexity assumptions on the Hamiltonian w.r.t. the
state variable. In this special case, the test functions needed in the duality
approach can be trivially found. Secondly, a certain Riccati type condition
(Theorem 5.1, Section 5) is derived where the matrix solution is considered
being piecewise continuous.

In Section 6, it is shown that the criteria obtained further guarantee strong
optimality of the switching points position. We recall the finite-dimensional
problem where minimization is performed over switching times as considered in
Agrachev, Stefani and Zezza (2002) and find explicit representations for second
variations of the objective functional. The result is compared to quadratic forms
used in Milyutin and Osmolovskii (1998), Osmolovskii and Lempio (2002).

The final section is devoted to a primal-dual Newton method for iterating
switching points, and a constructive optimality test for the auxiliary finite-
dimensional problem is described.

Throughout the paper, the following notations are used:
The Euclidean vector space of dimension k is Rk with the norm | · | and

scalar product uTv, u, v ∈ Rk. The superscript T herein and in general matrix
calculations denotes the transposed matrix, or the (raw-)vector. Further, the
Lebesgue space of measurable vector functions on [0, 1] with integrable | · |p is
written as Lp(0, 1;Rk), and Wm

p stands for the related Sobolev space of orderm.
The norm in Lp is given by ‖ · ‖p, 1 ≤ p ≤ ∞. For continuously differentiable
functions, we use spaces Cm. The (possibly partial) gradients and Hessian
matrices are written as ∇(·) resp. ∇2

(·) where the subscripts refer to particular
variables.

2. The problem. Regularity conditions

We consider the following optimal control problem with terminal functional and
a semilinear state equation on the time interval [0, 1]:

(P) min J(x, u) = k(x(1))
s.t. ẋ(t) = f(t, x(t)) + B(t)u(t) a.e. in [0, 1], (1)

x(0) = a, (2)
|ui(t)| ≤ 1, i = 1, . . . ,m, a.e. in [0, 1] . (3)

Notice that the control vector enters the state equation linearly, and the matrix
B = B(t) is independent of the state x.

The pair (x, u) ∈W 1
∞(0, 1;Rn)×L∞(0, 1;Rm) is called admissible for (P) if

the state equation (1) together with the boundary condition (2) and the control
constraints (3) are fulfilled. All data functions are assumed to be sufficiently
smooth, e.g. k, f are supposed to be twice continuously differentiable functions
with uniformly Lipschitz-continuous second derivatives on each compact D ⊂
Rn respectively K = [0, 1] ×D, and B ∈ C2([0, 1]).
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An admissible pair (x0, u0) is called a (global) minimizer for (P), if J(x0, u0)
≤ J(x, u) for all admissible (x, u). If for some ε > 0 the inequality holds for
any admissible (x, u) with ‖ x − x0‖∞ < ε then (x0, u0) is called a strong local
minimizer for (P).

For the above problem, necessary optimality conditions are given by Pon-
tryagin’s maximum principle. Using the Hamiltonian function

H(t, x, u, p) = pT f(t, x) + pTB(t)u,

for the adjoint function p the system

ṗ(t) = −A(t)T p(t) , p(1) = ∇xk(x(1)) (4)

with A = ∇xf is obtained, and the optimal control u0 satisfies

u0(t) ∈ arg max
|vi|≤1

{−H(t, x(t), v, p(t)) }.

The function σ = Hu = BT p is called the switching function.
In case of problem (P) where the system is governed by a differential equation

with given initial and free terminal state, the adjoint function is uniquely de-
termined. Moreover, if B is independent of x then all coefficients in the adjoint
equation are differentiable functions, and thus, the functions p and σ together
with their first-order time derivatives are Lipschitz continuous.

If σ ≡ 0 on a certain interval then this part of the control trajectory is called
a singular arc.

Assumption 2.1 (bang-bang regularity) The pair (x0, u0) is a solution such
that u0 is piecewise constant and has no singular arcs. For every j, the set
Σj = { t ∈ [0, 1] : σj(t) = 0 } is finite, and 0, 1 /∈ Σj.

Under the above assumption, almost everywhere the optimal control can com-
ponentwise be expressed by the formula

σ = BT p, u0 = −sign(σ) . (5)

We will further require that all points in Σj , j = 1, . . . ,m, be regular zeros
of the respective σ-component:

Assumption 2.2 (strict bang-bang property) For every ts ∈ Σj , j = 1, . . . ,m:
σj(ts) = 0 ⇒ σ̇j(ts) 	= 0.

In the strict bang-bang case, the j-th control component switches at ts ∈ Σj in
accordance with the jump condition

[
u0

j

]s
= u0

j(ts + 0) − u0
j(ts − 0) = −2 sign(σ̇j(ts)) . (6)

The set Σ of points where one or more components of σ vanish thus consists
of the control switching points. Notice that a switching point is called simple
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if only one σ-component is zero. In order to allow for simultaneous (multiple)
switches as well, introduce the notations

Σj = {tjs : s = 1, . . . , l(j)}

Σ = {tjs : s = 1, . . . , l(j), j = 1, . . . ,m}, L =
m∑

j=1

l(j).

(7)

It will be assumed that, in each Σj , the points are monotonically ordered so
that, with the definitions tj0 = 0, tj,l(j)+1 = 1 for all j, we have

tjs < tj,s+1, s = 0, . . . , l(j), j = 1, . . . ,m. (8)

3. Abstract sufficient optimality condition

In this section, we repeat some ideas from Klötzler (1979) and Maurer and
Pickenhain (1995) for using an abstract duality concept in deriving sufficient
optimality conditions for optimal control problems. The conditions are typically
expressed in terms of certain Riccati type equations, respectively inequalities.
As it was discussed in Felgenhauer (2001a), the main theorem in Maurer and
Pickenhain (1995) may be well adapted to problems with discontinuous control
solution. For the bang-bang situation, the scheme has been successfully applied
to the linear system case in Felgenhauer (2003a). The generalization to nonlinear
system dynamics requires relaxations for the class of dual feasible elements;
in particular, it is useful to include piecewise continuous functions with jumps
corresponding to the control discontinuities (see also Osmolovskii, 2000; Maurer
and Osmolovskii, 2004).

Let us first reconsider the case when the state equation in (P) is linear, i.e
f(t, x) = A(t)x. Suppose (x0, u0) ∈ W 1

∞ × L∞ to be an extremal such that,
with the costate p defined by (4), all conditions of the Pontryagin maximum
principle are fulfilled.

Introduce the (dual) function S : [0, 1] × Rn → R, and assume that S is
continuously differentiable w.r.t. x, and at least piecewise continuously differ-
entiable w.r.t. t. We will call S dual feasible if

Ψ(x, u, S) :=
∫ 1

0

[H(t, x(t), u(t),∇xS(t, x(t))) + St(t, x(t))] dt ≥ 0 (9)

for all (x, u) ∈W 1
∞ × L∞ such that |ui(t)| ≤ 1, |x(t) − x0(t)| ≤ ε for almost all

t ∈ [0, 1]. This condition consists in an integrated form of the Hamilton-Jacobi
inequality for the constrained problem (P).

For given ε > 0, further define

Φε(S) = inf
ξ
{k(ξ) + S(0, a) − S(1, ξ) : |ξ − x0(1)| ≤ ε }.
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Then, for any admissible pair (x, u) such that |x(t) − x0(t)| ≤ ε, and arbitrary
dual feasible S, the following duality relation for J = J(x, u) and Φ = Φε(S)
can be shown:

J(x, u) = k(x(1)) −
∫ 1

0

d

dt
S(t, x(t)) dt

+
∫ 1

0

[H(t, x(t), u(t),∇xS(t, x(t))) + St(t, x(t))] dt

≥ k(x(1)) + S(0, a) − S(1, x(1)) ≥ Φε(S) . (10)

In this sense, the problem (P) of minimizing J , and the problem of maximizing
Φε over all S with (9), may be considered as an abstract primal-dual problem
pair, see Klötzler (1979).

In addition to Ψ from (9), introduce

ψ(ξ, S) := k(ξ) − k(x0(1)) − S(1, ξ) + S(1, x0(1)) . (11)

Then one can characterize strict strong local minimizers by the following theo-
rem (see Maurer and Pickenhain, 1995, and also Felgenhauer, 2003a):

Theorem 3.1 Let (x0, u0) be admissible for (P). Suppose that a function S :
[0, 1] × Rn → R exists which is continuously differentiable w.r.t. x and piece-
wise continuously differentiable w.r.t. t such that for suitably chosen positive
constants c and ε the following relations hold:

(R1) Ψ(x, u, S) ≥ c
( ‖x− x0‖2

2 + ‖u− u0‖2
1

)
, Ψ(x0, u0, S) = 0,

for all admissible (x, u) with ‖x− x0‖∞ ≤ ε a.e. in [0, 1];

(R2) ψ(ξ, S) ≥ 0 ∀ ξ with |ξ − x0(1)| ≤ ε.

Then (x0, u0) is a strict strong local minimizer of (P) such that, for all admis-
sible (x, u) with ‖x− x0‖∞ ≤ ε, the objective functional suffices

J(x, u) − J(x0, u0) ≥ c
( ‖x− x0‖2

2 + ‖u− u0‖2
1

)
. (12)

Proof. The definitions (9) and (11) for Ψ and ψ yield

J(x, u) − J(x0, u0) = k(x(1)) +
∫ 1

0

[H(t, x, u,∇xS(t, x)) + St(t, x)] dt

+S(0, a) − S(1, x(1)) − k(x0(1))

= Ψ(x, u, S) + ψ(x(1), S) + S(0, a) − S(1, x0(1)).

By the chain rule, we see that S(0, a) − S(1, x0(1)) = −Ψ(x0, u0, S). Thus,
(12) is a direct consequence of (R1) together with (R2).
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The above theorem may be generalized to the case of test functions S which
are only piecewise continuous in time. It will be assumed that the discontinuity
points do not depend on ξ, i.e. jump discontinuities may occur only for t =
θk, k = 1, . . . , l. Setting θ0 = 0, and θΣ = (θ1, . . . , θl, θl+1) with θl+1 = 1, we
assume that, for each ξ, S(·, ξ) is continuously differentiable on (θk, θk+1), k =
0, . . . , l. Possible jump terms are written as

S(θk + 0, ξ) − S(θk − 0, ξ) = [S(·, ξ) ]k , k = 1, . . . , l.

These jump terms and their positions will be adapted later to the needs of the
optimality proof, see Section 5. In general, their number will correspond to the
overall number of (different) switching points of u0, i.e. tk from

∪m
j=1Σj = { tk : 1 ≤ k ≤ l }, l ≤ L, (13)

with 0 = t0 < t1 < · · · < tl < tl+1 = 1.
Let us redefine the auxiliary functionals Ψ resp. ψ by

Ψ(x, u, S) =
l∑

k=0

∫ θk+1

θk

[H(t, x, u,∇xS) + St] dt (14)

and (see (11) and (9))

ψ(ξΣ, S) = k(ξl+1) − k(x0(1)) − S(1, ξl+1) + S(1, x0(1))

+
l∑

k=1

[S(·, ξk) ]k −
l∑

k=1

[
S(·, x0(θk))

]k

where ξΣ denotes an arbitrary vector ξΣ = (ξ1, . . . , ξl, ξl+1) ∈ R(l+1)n.
Further, we abbreviate (x(θ1), . . . , x(θl+1)) by x(θΣ). Then in analogy to the
proof of Theorem 3.1 we obtain

J(x, u) − J(x0, u0) = Ψ(x, u, S) + ψ(x(θΣ), S)

+S(0, a) − S(1, x0(1)) +
l∑

k=1

[
S(·, x0(θk))

]k

= Ψ(x, u, S) − Ψ(x0, u0, S) + ψ(x(θΣ), S). (16)

For the modified situation, the result is summarized in the following theorem:

Theorem 3.2 Let S : [0, 1] × Rn → R be continuously differentiable w.r.t.
x and piecewise continuous w.r.t. t. Further assume that the number of time-
discontinuity points is not greater than L, their position is independent of x and,
in all continuity points, S is continuously differentiable w.r.t. t.
Suppose that for Ψ and ψ given by (14), (15) the relations (R1), (R2) hold true.
Then, for all (x, u) with ‖x− x0‖∞ ≤ ε,

J(x, u) − J(x0, u0) ≥ c
( ‖x− x0‖2

2 + ‖u− u0‖2
1

)
.
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In order to find candidates for the function S with the above properties, as
a rule, a quadratic ansatz is sufficient. For problem (P) it reduces to

S(t, x) = p(t)T (x− x0(t)) + 0.5 (x− x0(t))TQ(t)(x− x0(t)) (17)

where p is the adjoint function. Thus, jump discontinuities in S may only occur
if Q is discontinuous. In all continuity points we have

∇xS(t, x) = p(t) + Q(t)(x − x0(t)),
St(t, x) = ṗ(t)T (x − x0(t)) + 0.5 (x− x0(t))T Q̇(t)(x − x0(t))

− (p(t) +Q(t)(x − x0(t)))T ẋ0.

Using these expressions in Ψ =
∫ 1

0
R[t] dt from (14), one can write the integrand

in the following form:

R = (p+Q(x− x0))T (f +Bu) + ṗT (x − x0)
− (p+Q(x− x0))T (f0 +Bu0) + 0.5 (x− x0)T Q̇(x− x0)

(where f0 stands for f evaluated along x = x0(t)). Abbreviating further x−x0 =
y, u− u0 = v, we get the representation R = R1 + R2 with

R1 = pT (f − f0) − pT∇xf
0y + yTQ(f − f0) + 0.5 yT Q̇y (18)

= 0.5 yT
[
∇2

xH
0 + Q∇xf

0 + (∇xf
0)TQ + Q̇

]
y + o(|y|2), (19)

R2 = pTBv + yTQBv . (20)

The proof of the optimality conditions from Theorem 3.1, respectively. The-
orem 3.2 thus reduces to the construction of an appropriate matrix function
Q = Q(t) such that, for the related S and admissible (x0, u0), (R1) and (R2)
are locally satisfied.

4. Strong local optimality. Convex case

As a first application to the concept given in the previous section, consider
problem (P) with a locally convex terminal functional k = k(ξ). It will be shown
that then the positive semi-definiteness of the Hessian of H w.r.t x together
with the strict bang-bang property are sufficient for strong local optimality of a
given extremal (x0, u0). The result is a modest generalization of Theorem 3.4,
Felgenhauer (2003a), valid as well for multiple as for simple control switches.
The proof uses only Theorem 3.1 without the extension to discontinuous dual
test functions.

Theorem 4.1 Let (x0, u0) be an extremal of (P) and p a related adjoint function
such that, with σ = BT p, Assumptions 2.1 and 2.2 are fulfilled. Suppose further
that the function k = k(ξ) is convex at ξ = x0(1). If the Hessian matrix ∇2

xH
0[t]

(evaluated along the solution trajectory) is positive semi-definite on [0, 1] then
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(x0, u0) is a strict strong local minimizer. In particular, positive constants ε and
c exist such that

J(x, u) − J(x0, u0) ≥ c
( ‖x− x0‖2

2 + ‖u− u0‖2
1

)
for all admissible (x, u) satisfying ‖x− x0‖∞ ≤ ε.

For the proof, some auxiliary estimates are needed. The first preliminary
result is a standard estimate for ordinary differential equations based on Gron-
wall’s Lemma given here without proof.

Lemma 4.1 Let (x, u) be an admissible pair and assume ‖x−x0‖∞ ≤M . Then,
a constant c1 = c(f,B,M) exists such that the functions y = x−x0, v = u−u0

satisfy the estimate

‖ y ‖∞ ≤ c1‖ v ‖1 . (21)

In the next lemma, a matrix function Q for (17) is constructed.

Lemma 4.2 Suppose that the Hessian matrix ∇2
xH

0[t] = ∇2
xH(t, x0(t), u0(t), p(t))

is positive semi-definite on [0, 1]. Further, let (x, u) be admissible and denote
y = x − x0. Then, for every γ ∈ (0, 1), a constant ε = ε(f, p, γ) and a matrix
function Q with ‖Q‖∞ = O(γ) exist such that R1 from (18) satisfies∫ 1

0

R1[t] dt ≥ γ ‖ y ‖2
2 ∀ y : ‖y‖∞ ≤ ε. (22)

Proof. For small y, the variation term R1 has the expansion given by (19). If
we denote by Q1 the solution of the linear matrix differential equation

Q̇ + Q∇xf + ∇xf
TQ = 2 I, Q(1) = 0,

and set Q = γ Q1, then

‖Q ‖∞ = γ ‖Q1‖∞ =: cQγ,

and ∃ ε > 0:
R1[t] ≥ y(t)T∇2

xH [t]y(t) + 2 γ |y(t)|2 + o(|y(t)|2)
≥ γ |y(t)|2 ∀ y with |y(t)| < ε.

For y such that ‖y‖∞ < ε, after integrating over [0, 1] the last relation yields
the desired estimate (22).

From Lemma 4.1 and Lemma 4.2 we directly conclude that, for y from a
bounded set in L∞,∣∣∣∣

∫ 1

0

y(t)TQ(t)B(t)v(t) dt
∣∣∣∣ ≤ c2γ ‖v‖2

1 (23)

with a positive constant c2 depending on f and B but not on (x, u).
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The next lemma consists of the crucial part in estimating R2 from (20) under
strict bang-bang assumptions. Up to minor changes, the proof is repeated from
Felgenhauer (2003a), Section 3.

Lemma 4.3 For arbitrary admissible (x, u) and v = u− u0, under Assumption
2.2 a constant c3 = c(B, p, |Σ|) exists such that∫ 1

0

p(t)TB(t)v(t) dt ≥ c3‖ v ‖2
1 . (24)

Proof. First notice that, in case v = u − u0 = 0, the relation (24) trivially
holds. Thus it is supposed that v 	= 0 (i.e. v(t) is not equal zero on some subset
I ⊆ [0, 1] of positive measure, and consequently, ‖v‖p 	= 0 ∀ 1 ≤ p <∞).

From Assumption 2.2, the following property of BT p = σ follows: For given
δ > 0 denote ωδ =

⋃
1≤s≤l(ts − δ, ts + δ). Then positive constants cσ and δ̄ exist

such that ∀ δ ∈ ( 0, δ̄ ),

min
i

|σi(t) | ≥ 0.5 cσδ ∀ t ∈ [0, 1]\ωδ . (25)

Using this estimate for the integral term from (24), we obtain

J =
∫ 1

0

p(t)TB(t)v(t) dt =
∫ 1

0

m∑
i=1

|σi(t)| |vi(t)| dt

≥ 0.5 cσδ
∫

[0,1]\ωδ

| v(t) | dt . (26)

But the functions v ∈ L∞(0, 1;Rm) are uniformly bounded by a constant M =
2
√
m due to the control box constraints so that, with l = |Σ| denoting the

number of switching points, from Assumption 2.1 we get

‖v‖1 =
∫ 1

0

|v(t)| dt =
∫

[0,1]\ωδ

|v(t)| dt +
∫

ωδ

|v(t)| dt

≤
∫

[0,1]\ωδ

|v(t)| dt + 2lM δ .

This last relation together with (26) yields
J ≥ 0.5 cσδ ( ‖v‖1 − 2lMδ ) . (27)

Now one can choose an appropriate δ > 0 depending on v via

δ = M−1 min
{

1
4l
, δ̄

}
‖v‖1 = : cδ‖v‖1 .

In particular, δ < δ̄ so that from (27) it follows that

J ≥ 0.5 cσcδ(1 − 2lM cδ) ‖v‖2
1 ≥ c3‖v‖2

1,

where c3 > 0 is independent of (x, u).
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Proof of Theorem 4.1. Let γ be a positive number such that γ < min{1, c3/c2}
for the constants c2,3 from Lemma 4.3, respectively (23), and let Q = γ Q1 be
the related matrix function from Lemma 4.2.

Under the assumption that x − x0 = y is bounded by ‖y‖∞ < ε (see
Lemma 4.2) consider first Ψ(x, u, S) for S from (17), see (9):

Ψ(x, u, S) =
∫ 1

0

R[t] dt

=
∫ 1

0

R1[t] dt +
∫ 1

0

(
pTBv + yTQBv

)
dt

≥ γ ‖y‖2
2 + (c3 − c2γ) ‖v‖2

1

as a consequence of Lemmas 4.2 and 4.3 together with (23). Taking into account
that Ψ(x0, u0, S) = S(1, x0(1)) − S(0, a) = 0 due to (17) and choosing c =
min{γ, c3 − c2γ}, we arrive at

Ψ(x, u, S) ≥ c
( ‖x− x0‖2

2 + ‖u− u0‖2
1

)
,

i.e. the function S constructed from (17) with the given matrix function Q
satisfies condition (R1) from Theorem 3.1.

Let us finally check the inequality (R2): recalling that S(t, x0(t)) ≡ 0, Q(1) =
0 and p(1) = ∇xk(x0(1)), the term ψ from (11) reduces to

ψ(ξ, S) = k(ξ) − k(x0(1)) − S(ξ, 1)
= k(ξ) − k(x0(1)) − ∇xk(x0(1))T (ξ − x0(1)).

Due to the convexity assumption on k, the last expression is nonnegative, i.e.
(R2) is satisfied. Applying Theorem 3.1, we end up with the assertion.

5. Strong local optimality. Riccati approach

So far, the duality approach from Section 3 was successfully applied to problem
(P) without using the extensions made in Theorem 3.2. But for the case when
either H , or the terminal functional k, do not satisfy convexity assumptions,
next we will prove Riccati type optimality conditions including jump and multi-
point boundary restrictions. The results show analogies to those presented in
Section 1.9. of Osmolovskii (2000), but without assuming the switching points
to be simple. The proof, however, is methodically independent of Osmolovskii
and Lempio (2002), Milyutin and Osmolovskii (1998) (see also Maurer and
Osmolovskii, 2004). Since, in particular, no structural restrictions on control
variations are involved it supplements the former results in Felgenhauer (2003a).

In case of constrained control problems with continuous solutions, a modi-
fied weak Riccati approach was given in Maurer and Pickenhain (1995). For-
mally, in the bang-bang situation, these optimality conditions degenerate due
to ∇2

uH = 0. Thus, the estimation will be restarted from Theorem 3.2, where
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one has mainly to check Ψ and ψ from (15), (14) for their non-negativity. The
related Riccati condition is induced by (19).

Theorem 5.1 Let (x0, u0) be an extremal of (P) and p a related adjoint function
such that, with σ = BT p, the Assumptions 2.1 and 2.2 hold. Further, let all
switching points in ∪Σj from (13) be enumerated in monotone order.
On each interval [tk, tk+1], consider the matrix differential equation

Q̇ + Q∇xf + ∇xf
TQ + ∇2

xH
0 = 0. (28)

Suppose that the above system has solutions Q = Qk ∈ W 1
∞(tk, tk+1;Rn×n)

satisfying the following conditions:

(i) Qk(tk+1) = 0, k = 0, . . . , l − 1,
(ii) Qk(tk) � 0, k = 1, . . . , l,
(iii) ∇2

xk(x
0(1)) − Ql(1) � 0.

Then there exist positive constants c, ε such that

J(x, u) − J(x0, u0) ≥ c ‖ x− x0‖2
2 (29)

for all admissible (x, u) satisfying ‖ x − x0‖∞ ≤ ε, i.e. (x0, u0) is a strict
strong local minimizer for (P).

The proof of Theorem 5.1 consists of several parts. The first two parts deal
with the estimation of Ψ consisting of the integral terms

∫
R1dt and

∫
R2dt.

The functional term ψ will be evaluated afterwards.
In a preliminary step, we consider properties of the system (28), (i)-(iii): First
notice that, by continuity, a constant γ > 0 exists such that the differential
inequality

Q̇ + Q∇xf + ∇xf
TQ + ∇2

xH
0 � γ I. (30)

has a solution Q̃ satisfying (i), a strengthened inequality (ii) with right-hand
side γ I, and terminal condition (iii). Moreover, for small δ > 0, every solution
arc Q̃k can be continued to a function in W 1

∞(tk, tk+1 + δ;Rn×n) satisfying (30)
on this extended interval.
Denote θk = tk + δ, k = 1, . . . , l. If δ is taken sufficiently small then, by
continuity,

Q̃k(θk) − Q̃k−1(θk) � 0 . (31)

Further require that θk < tk+1 − δ for all k. Notice that

Q̃k(tk+1) = Qk(tk+1) = 0, ∇2
xk(x

0(1)) − Q̃l(1) � 0

remain true. Patching the parts Q̃k ∈ W 1
∞(θk, θk+1;Rn×n) together, we obtain

functions Qδ ∈ L∞(0, 1;Rn×n) with the following properties: ∃δ1 > 0 such
that for all δ < δ1 the functions Qδ are uniformly bounded in the sense

‖Qδ‖∞ ≤ M0, max
k

‖ ˙̃Qk‖∞ ≤ M1. (32)
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As a consequence, on each interval (θk−1, θk),

‖Qδ(t)‖ ≤ M1 | t− tk| . (33)

The function Qδ will be now inserted into S from (17) so that we obtain a
piecewise differentiable function with jumps on θΣ (where θk = tk + δ, k =
1, . . . , l, and θl+1 = tl+1 = 1).

Lemma 5.1 Let the assumptions of Theorem 5.1 hold. Further, suppose δ < δ1.
Then there exists a constant ε1 > 0 independent of δ such that, for R1 from
(18) with Q = Qδ and y = x− x0, the following assertion holds:

∫ 1

0

R1[t] dt ≥ 0.25 γ ‖y‖2
2 ∀ y : ‖y‖∞ ≤ ε1.

The proof is a direct consequence of the estimate (30) and the expansion
(19) for R1. Notice that, due to (32), the bound ε1 does not depend on δ.

Lemma 5.2 Let R2,i = viB
T
i (p + Qδy) be given in correspondence to (20).

Under the assumptions of Lemma 5.1, there exist positive constants δ2, ε2 such
that, for every δ < min{δ1, δ2} and i = 1, . . . ,m,

∫ 1

0

R2,i[t] dt ≥ 0 ∀ y : ‖y‖∞ ≤ ε2δ

and therefore,
∫ 1

0 R2[t] dt =
∑m

i=1

∫ 1

0 R2,i[t] dt is nonnegative.

Proof. As already noticed during the proof of Lemma 4.3 (see (26)), the control
constraints together with the bang-bang nature of u0 yield

R2,i = pTBivi + yTQδBivi = |σi| |vi| + yTQδBivi.

For the integral estimate, the interval [0, 1] will be split into two sets ωδ = ωδ(i)
and Iδ = Iδ(i) = [0, 1]\ωδ(i) defined by

ωδ = ∪{ωδ,k : tk ∈ Σi} with ωδ,k = (tk − δ, tk + δ).

Then, by Assumption 2.2, choosing δ sufficiently small one can guarantee the
following estimates for σi, i = 1, . . . ,m:

|σi(t) | ≥ 0.5 cσδ ∀ t ∈ Iδ(i), (34)
|σi(t) | ≥ 0.5 cσ|t− tk| ∀ t ∈ ωδ,k(i), tk ∈ Σi (35)

with a constant cσ > 0 depending on the minimal slope of σ-components at
their switching points (see (25)).
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Denote maxi ‖Bi‖∞ = β. For the integral over Iδ, from (34) and (32) we
get ∫

Iδ

R2,i[t] dt ≥
∫

Iδ

( |σi(t)| − |y(t)TQδ(t)Bi(t) |
) |vi(t)| dt

≥ ( 0.5 cσδ − M0β‖y‖∞)
∫

Iδ

|vi(t)| dt.

As the last formula shows, the integral is nonnegative if e.g.

‖y‖∞ ≤ 0.5
cσ
M0β

· δ . (36)

Next, consider the remaining integrals over ωδ: estimates (35), (33) lead to
∫

ωδ,k

R2,i[t] dt ≥
∫

ωδ,k

( |σi(t)| − |y(t)TQδ(t)Bi(t) |
) |vi(t)| dt

≥
∫

ωδ,k

( 0.5 cσ −M1β‖y‖∞) |t− tk| · |vi(t)| dt ≥ 0

if only ‖y‖∞ does not exceed a certain bound, say

‖y‖∞ ≤ 0.5
cσ
M1β

. (37)

Consequently, for some δ2 ∈ (0, 1) and ε2 ≤ 0.5cσ/(βmax{M0,M1}), from the
above relations we deduce

∫ 1

0

R2,i[t] dt =
∫

Iδ

R2,i[t] dt +
∑

k: tk∈Σi

∫
ωδ,k

R2,i[t] dt ≥ 0

for all δ < δ2 and y with ‖y‖∞ ≤ ε2δ, see (36), (37). Summation over i finally
shows that

∫ 1

0
R2[t] dt ≥ 0.

Notice that in the proof of the last lemma the estimates are decoupled w.r.t.
the control components. In particular, some of the sets Σi∩Σj may be nonempty,
i.e multiple switches may be handled as well.

Proof of Theorem 5.1. Combining the last two lemmas we get the desired
estimate for Ψ: first, determine δ̄ ≤ min{1, δ1, δ2} such that for δ = δ̄ the
conditions (31) – (33) and (34) – (35) are fulfilled. By setting ε′ = min{ε1, ε2δ̄},
we obtain

Ψ(x, u, S) =
∫ 1

0

R[t] dt =
∫ 1

0

(R1[t] +R2[t]) dt ≥ 0.25 γ ‖ x− x0‖2
2 (38)

for all admissible (x, u) such that ‖ x− x0‖∞ ≤ ε′.
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The proof is completed by checking the sign of ψ = ψ(x(θΣ), S): due to (17),
we may write ψ as

ψ(x(θΣ), S) = k(x(1)) − k(x0(1)) − p(1)T y(1) − 0.5 y(1)TQδ(1)y(1)

+ 0.5
l∑

k=1

y(θk)T [Qδ]
k
y(θk)

= k(x0(1) + y(1)) − k(x0(1)) − ∇xk(x0(1))T y(1)

− 0.5 y(1)TQδ(1)y(1) + 0.5
l∑

k=1

y(θk)T [Qδ]
k
y(θk)

= 0.5 y(1)T
(∇2

xk(x
0(1)) −Qδ(1)

)
y(1) + o(|y(1)|2)

+ 0.5
l∑

k=1

y(θk)T [Qδ]
k
y(θk)

(where δ = δ̄ is fixed). Conditions (iii) and (31) ensure that, for sufficiently
small |y(1)|, this last term is nonnegative. Hence, by (16) it follows that

J(x, u) − J(x0, u0) = Ψ(x, u, S) + ψ(x(θΣ), S) ≥ c ‖ x− x0‖2
2

for c = 0.25 γ, and ‖y‖∞ ≤ ε with an appropriately chosen ε ≤ ε′.

Remark 5.1 As the above proof shows, assumption (i) may be replaced by the
weaker condition
(i’) Qk−1(tk)Bi(tk) = 0 for all i with σi(tk) = 0, k = 1, . . . , l.

6. Strict optimality w.r.t. switching points

The conditions formulated in Theorem 4.1 (convex case) and Theorem 5.1 (gene-
ral semilinear case) guarantee the strict strong local optimality of the reference
solution (x0, u0). In particular, the optimality then holds true w.r.t. the subset
of feasible local variations with fixed control structure and number of switching
points. Considering only this particular type of variations, problem (P) can be
related to a finite-dimensional mathematical program with switching points as
main decision variables.

It will be shown that the switching set Σ0 corresponding to u0 provides a
strict minimum for this auxiliary finite-dimensional problem such that a Strong
Second-Order Optimality Condition (SSOC) is satisfied. To this aim, explicit
formulas are derived for first- and second-order derivatives w.r.t. switching
points. The formulas are new in that they allow to include multiple control
switches. Their relation to quadratic forms used e.g. in Osmolovskii (2000) for
deriving optimality conditions will be shortly discussed.



Optimality properties of controls with bang-bang components 777

For a given strong local minimizer pair (x0, u0) satisfying Assumptions 2.1
and 2.2, we denote by Σ0 = { tjs} the set of ordered switching points according
to (7) and (8). Let us consider vectors Σ ∈ RL, L =

∑m
j=1 l(j), in the neighbor-

hood of Σ0: if the distance |Σ − Σ0| is sufficiently small, then for the elements
τjs of Σ the monotonicity condition (8) is fulfilled. For simplicity, complete the
switching points set by τj0 = 0, τj,l(j)+1 = 1 for all j = 1, . . . ,m, and define

DΣ = {Σ = (τjs) : 0 < τjs < τj,s+1 < 1, s = 1, . . . , l(j)− 1, j = 1, . . . ,m }.

Then one can determine u = u(t,Σ) and x = x(t,Σ) by

uj(t,Σ) ≡ u0
j(tjs + 0) for t ∈ (τjs, τj,s+1), (39)

ẋ(t) = f(t, x(t)) + B(t)u(t,Σ), x(0) = a , (40)

and set φ(Σ) := k(x(1,Σ)). Obviously, Σ = Σ0 solves the following finite-
dimensional problem

min φ(Σ) = k (x(1,Σ)) w.r.t. Σ ∈ DΣ. (41)

Notice that the Strong Second-Order Optimality Conditions (SSOC) for (41)
with its open feasible set DΣ ⊂ RL have the form

∇Σ φ(Σ0) = 0, ∇2
Σφ(Σ0) � 0 . (42)

The derivatives of φ(Σ) given by (41) can be calculated from the chain rule
using the functions ηα(t,Σ)=(∂/∂τα)x(t,Σ) and ζαβ(t,Σ)=(∂2/∂τα∂τβ)x(t,Σ).
In order to possibly include the so-called multiple switching points where more
than one control component may jump at moment t = ts, we will use multi indi-
ces α = (i, r), β = (j, s) for abbreviating e.g. τir ∈ Σi by τα, τjs by τβ etc.
Formally, one can write

∂

∂τα
φ(Σ) = ∇xk(x(1,Σ))T ηα(1,Σ) = p(1)T ηα(1,Σ), (43)

∂2

∂τα∂τβ
φ(Σ) = ηα(1,Σ)T∇2

xk(x(1,Σ))ηβ(1,Σ) (44)

+ p(1)T ∂

∂τβ
ηα(1,Σ).

Expressions for ηα are found from solving the differentiated state equation,

η̇α(t,Σ) = A(t,Σ)ηα(t,Σ) a.e. , ηα(τα) = −b(τα), (45)

with data

A(t,Σ) = ∇xf(t, x(t,Σ)) , b(τα) = Bi(τir)
[
u0

i

]α
, α = (i, r),



778 U. FELGENHAUER

and
[
u0

]α = u0(tα +0)−u0(tα −0) (see (6)). Solutions can be represented by
means of the fundamental matrix solutions Φ = Φ(t,Σ), Ψ = Ψ(t,Σ) determined
from the systems

Φ̇ +AT Φ = 0, Φ(0) = I, Ψ̇ −AΨ = 0, Ψ(0) = I, (46)

and the Heaviside function χ in the following form:

ηα(t,Σ) = −χ(t, τα)Ψ(t,Σ)Φ(τα,Σ)T b(τα) . (47)

Inserting (47) into (43), it follows from p(t) = Φ(t)Ψ(1)T p(1) (see (4), (46))
that

∂

∂τα
φ(Σ) = − [

u0
i

]α
Bi(τα)T Φ(τα,Σ)Ψ(1,Σ)T∇xk(x(1,Σ))

= −σi(tα)
[
u0

i

]α
= 0. (48)

Thus, Σ0 is always a stationary solution of (41).
Repeating the differentiation of (47) w.r.t. τβ one can also find appropriate

representations for ζαβ . To this aim, derivatives of the matrix functions Φ =
Φ(t,Σ) and Ψ = Ψ(t,Σ) have to be provided. Denoting Mβ = ∂Φ/∂τβ, Nβ =
∂Ψ/∂τβ and Fβ = ∂A/∂τβ, from (46) we get

Ṁβ + ATMβ = −FT
β Φ, Ṅβ − ANβ = Fβ Ψ

(with initial values equal to zero matrices). The matrix function Fβ(t,Σ) =
(∂/∂τβ)A(t,Σ) is found by using a chain rule, and its k-th row (corresponding
to the k-th component fk of f) has the form F k

β = ηT
β ∇2

xfk. Consequently,
the functions Mβ and Nβ for t ≤ τβ vanish, and for t > τβ have integral
representations of the form

Mβ(t) = −Φ(t)
∫ t

τβ

Ψ(s)TFβ(s)T Φ(s) ds,

Nβ(t) = Ψ(t)
∫ t

τβ

Φ(s)TFβ(s)Ψ(s) ds.

In case α 	= β, the derivatives of (47) at t = 1 then may be written as

∂

∂τβ
ηα(1) = − [

Nβ(1)Φ(τα)T + Ψ(1)Mβ(τα)T
]
b(τα),

or, after some calculation,

ζαβ(1,Σ) = −Ψ(1)
∫ 1

t(α,β)

Φ(s)TFβ(s)Ψ(s) ds · Φ(τα)T b(τα) (49)

with t(α, β) = max{τα, τβ}.
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Further, in case α = β one can see from (47) that the expression ζαβ has to
be completed by an additive term,

ζαα(1,Σ) = Dα +
∫ 1

τα

Ψ(1)Φ(t)TFα(t)ηα(t) dt,

Dα = − Ψ(1)
d

dt

(
Φ(t)TBi(t)

)∣∣
t=τα

[
u0

i

]α
.

The derivatives are to be inserted into (44) and, after some simplifications, the
Hessian may be given a symmetric formulation (see Felgenhauer, 2004)

∇2
Σφ(Σ0) = η(1)T∇2

xk(x(1,Σ
0)) η(1) + diagα{ qα} (50)

+
∫ 1

0

η(t)T∇2
xH

0[t] η(t) dt

with

qα = p(1)TDα = −σ̇i(tα)
[
u0

i

]α
> 0, (51)

and the matrix function η(t) ∈ Rn×L assembled by columns ηα = ηir , i =
1, . . . ,m, r = 1, . . . , l(i), respectively.

The representation of ∇2
Σφ in (50) allows for discussing some special cases

where the SSOC (42) is fulfilled. As a first direct conclusion we deduce a
coercivity result under the assumptions of Theorem 4.1:

Lemma 6.1 Suppose that both Assumptions 2.1 and 2.2 hold. Further, assume
that the matrices ∇2

xH
0[t] (for all t ∈ [0, 1]) and ∇2

xk(x
0(1)) are positive semi-

definite. Then ∇2
Σφ(Σ0) is positive definite, i.e. the second order condition (42)

for problem (41) is satisfied at Σ0.

Secondly, formula (50) may be also compared to the quadratic form Ω used
in Milyutin and Osmolovskii (1998), Osmolovskii (2000) as a main tool for
testing optimality (see e.g. Milyutin, Osmolovskii, 1998, part II, par. 12.3 for
details): if we introduce a vector ξ̄ = (ξ̄α) ∈ RL corresponding to virtual shifts
in the switching set Σ0 = (tα), α = (i, r), then we obtain the second variation
ξ̄T∇2

Σk
0ξ̄ for k (or equally: J) related to ξ̄ resp. x̄ = η · ξ̄:

Ω(p, x̄) = x̄(1)T∇2
xk

0x̄(1) +
∑

α

qαξ̄
2
α +

∫ 1

0

x̄(t)T∇2
xH

0[t]x̄(t) dt. (52)

For the problem class (P), this form coincides with Ω from Milyutin and Os-
molovskii (1998) up to some natural extension needed for adapting the expan-
sion to possibly multiple switches of several control components. (The above
formula moreover suggests how the critical cone in Milyutin and Osmolovskii,
1998, Osmolovskii, 2000, should be modified for covering general switching set
variations.) The positive definiteness of ∇2

Σφ now can be checked by using (52).
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In particular, one can apply the so-called Q-transformation from Osmolovskii
and Lempio (2002) (see e.g. Proposition 2.1, or Theorem 2.3) and thus obtain
the following result (where a detailed proof for shortness is omitted):

Lemma 6.2 Let for (x0, u0) and the adjoint function p the bang-bang regularity
conditions from Assumptions 2.1 and 2.2 be fulfilled. Further suppose, that
the Riccati equation (28) admits piecewise solutions satisfying the multi-point
boundary restrictions (i)-(iii) from Theorem 5.1. Then ∇2

Σφ(Σ0) is positive
definite.

Remark 6.1 The boundary jump conditions formulated for Q in Theorem 5.1
differ from those in Osmolovskii and Lempio (2002) in that we prescribe one-
sided limits for Q at the switching points rather than fixing the jump terms.
Moreover, in case of simple switches, the conditions in Osmolovskii (2000) are
certainly closer to the related necessary optimality conditions, and stronger for,
e.g., problems with linear systems. The comparison for multiple switching re-
mains to be an open question.

7. Switching points iteration and optimality test

In case when the principal bang-bang structure of the optimal control is given, an
iterative method for finding switching points can be derived by extending (39)-
(40). As it was observed in Kim and Maurer (2003), the optimality properties of
(41) can be further utilized for deriving sensitivity results w.r.t. switching points
for parametric versions of the basic control problem (P). In Felgenhauer (2003b,
2004) certain shooting-type methods were used to this aim. In the present paper,
we propose a primal-dual Newton type method for iterating switching points
and analyze convergence conditions. As a by-product, an algorithm for testing
definiteness of the Hessian in (41) is obtained which is suitable for numerical
use in connection with so-called indirect methods.

Assume to be given a switching set approximation Σ = (τα) (where τα = τir
corresponds to the r-th switching point of the i-th control component), and
fix an initial guess uI ∈ {−1, 1 }m for u0(0). It is convenient to further denote
τi0 = 0, τi,l(i)+1 = 1 for all i. In analogy to (39)-(40), determine primal variables
x(t,Σ), u(t,Σ) by

ui(t,Σ) = (−1)ruI
i for τir < t < τi,r+1, (53)

ẋ(t) = f(t, x(t)) + B(t)u(t,Σ), x(0) = a.

Then, we will complete the mapping Σ → (x, u) by dual components p =
p(t,Σ), σ = σ(t,Σ) solving

ṗ(t) = −A(t,Σ)T p(t), p(1) = ∇xk(x(1,Σ)), (54)
σ(t,Σ) = B(t)T p(t,Σ). (55)
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If (x0, u0) is a solution of problem (P) with corresponding switching set Σ0

then, for uI = u0(0), we get x0(t) = x(t,Σ0), u0(t) = u(t,Σ0), and together
with p(t) = p(t,Σ0) and σ(t) = σ(t,Σ0) the pair (x0, u0) satisfies the maximum
principle. If Assumption 2.1 holds true, we additionally have

Wα(Σ0) = σi(τ0
α,Σ

0) = 0 ∀ τα ∈ Σi, i = 1, . . . ,m (56)

together with σi(t,Σ0) 	= 0 for t 	∈ Σi. The above system consists of L = dimΣ0

nonlinear equations. It can be used for improving the current switching points
approximation Σ = Σ1 by Newton’s method:

∂W (Σn)
∂Σ

· ∆Σ = −W (Σn), Σn+1 = Σn + ∆Σ. (57)

The iteration (57) can be carried out if the Jacobian ∂W/∂Σ is regular. Notice
that the matrix depends on the functions ηβ = (∂/∂τβ)x and ρβ = (∂/∂τβ)p
which solve the following multi-point boundary value problem:

η̇β(t) = A(t,Σ) ηβ(t), (58)

ηβ(0) = 0, ηβ(τβ) = −Bi(τβ)
[
uI

i

]β
,

ρ̇β(t) = −A(t,Σ)T ρβ(t) − ∇2
x

(
p(t,Σ)T f(t, x(t,Σ))

)
ηβ(t), (59)

ρβ(1) = ∇2
xk(x(1,Σ)) · ηβ(1).

This system is linear but coupled via terminal conditions.
The partial derivatives of W w.r.t. τβ are given by

∂Wα

∂τβ
=

∂

∂τβ
σi(t)|t=τα

= Bi(τα)Tρβ(τα) (60)

for α 	= β (see (56)), and

∂Wα

∂τα
= Bi(τα)T ρα(τα) + σ̇i(τα). (61)

The following lemma provides important information for interpreting the New-
ton step (57) and assessing convergence properties of the resulting iteration.

Lemma 7.1 The Newton update (57) for Σ = (τα) is equivalent to a Newton
step for minimizing φ(Σ) = k(x(1,Σ)) in (41), i.e.

∇2
Σφ(Σn) · ∆Σ = −∇Σφ(Σ), Σn+1 = Σn + ∆Σ. (62)

If, in particular, ∇2
Σφ(Σ) is positive definite then ∂W/∂Σ is regular at Σ.

Proof. The structure of the system (58), (59) allows for a solution representation
in the form

ηβ(t,Σ) = −χ(t, τβ)Ψ(t,Σ)Φ(τβ ,Σ)TBj(τβ)
[
uI

j

]β
,

ρβ(t,Σ) = Φ(t,Σ)Ψ(1,Σ)T∇2
xk(x(1,Σ))ηβ(1,Σ)

+ Φ(t,Σ)
∫ 1

t

Ψ(s,Σ)T∇2
x(pT f)[s] · ηβ(s,Σ) ds ,
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see also (47). Inserting the last terms into (60) we obtain

∂

∂τβ
σi(t,Σ)|t=τα

= Bi(τα)Tρβ(τα)

= Bi(τα)T Φ(τα)Ψ(1)T∇2
xk(x(1,Σ)) ηβ(1,Σ)

+Bi(τα)T Φ(τα)
∫ 1

τα

Ψ(s)T∇2
x(pT f)[s] · ηβ(s) ds

= − 1[
uI

i

]α ηα(1)T∇2
xk(x(1,Σ))ηβ(1)

− 1[
uI

i

]α

∫ 1

t(α,β)

ηα(s)∇2
x(pT f)[s] · ηβ(s) ds.

Remembering further that, due to (51),

− [
uI

i

]α
σ̇i(τα) = qα

and using the structure for ∇2
Σφ given in (50), it follows that

[
uI

i

]α ∂Wα

∂τβ
= − ∂2

∂τα∂τβ
φ(Σ) ∀ α, β. (63)

The last relation shows that the Jacobian of W and the Hessian matrix of φ
differ only by a diagonal matrix factor with nonzero entries so that ∂W/∂Σ is
regular if and only if ∇2φ is a regular matrix.

Consider next the right hand side of the iteration (57): In analogy to (48),
for Wα we obtain

Wα(Σ) = σi(τα,Σ) = − 1[
uI

i

]α
∂

∂τα
φ(Σ). (64)

Combining (64) and (63), the equivalence of iteration (57) and the Newton step
for minimizing φ(Σ) follows.

Corollary 7.1 Let Σ0 ∈ RL corresponding to (x0, u0) be such that ∇2
Σφ(Σ0) is

positive definite. If uI = u0(0), and Σ = Σ1 ∈ RL is sufficiently close to Σ0 then
the Newton sequence {Σn} from (57) starting in Σ1 converges quadratically in
RL, and the corresponding (xn, un) = (x(·,Σn), u(·,Σn)) converge in L∞ × L1

to (x0, u0): ∃ c > 0 such that

‖xn+1 − x0‖∞ + ‖un+1 − u0‖1 ≤ c ‖un − u0‖2
1 . (65)

Proof. Under the smoothness assumptions on the data of (P), ∇2
Σφ depends Lip-

schitz continuously on Σ. Thus, locally the Newton methods (57), respectively
(62) converge quadratically in RL.
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In the next step, we show the estimate (65). To this aim consider the norms

‖v‖1 =
∫ 1

0

| v(t) | dt, ‖v‖(1) =
∫ 1

0

| v(t) |1 dt

where | · | stands for the Euclidean norm, and | · |1 for the l1 norm in Rm.
For functions v ∈ L∞ these two norms are obviously equivalent with ‖v‖1 ≤
‖v‖(1) ≤

√
m‖v‖1.

Let Σn be sufficiently close to Σ0. Then,

‖un − u0‖(1) =
∫ 1

0

|un(t) − u0(t) |1 dt =
m∑

i=1

∫ 1

0

|un
i (t) − u0

i (t) | dt

= 2
m∑

i=1

l(i)∑
r=1

∣∣ τn
ir − τ0

ir

∣∣ = 2
∣∣ Σn − Σ0

∣∣
1
.

The quadratic convergence property of {Σn} thus yields the relation

‖un+1 − u0‖1 ≤ c
(‖un − u0‖(1)

)2 ≤ mc
(‖un − u0‖1

)2

for some c > 0 independent of n, so that the convergence of xn = x(·,Σn) in
L∞ and the estimate (65) follow directly from Lemma 4.1.

The close relation between the matrices ∇2φ and ∂W/∂Σ on the one hand
and the sensitivity differentials ηΣ = ∂x/∂Σ, ρΣ = ∂p/∂Σ on the other hand
may be further utilized for an optimality test for stationary solutions Σ of (41).
The test procedure consists of the following steps:
Suppose Σ ∈ RL be given and enumerated in a way that the elements in Σ =
(ταk

)k=1,...,L are monotonically ordered in the whole, i.e.

(τα0 =) 0 < τα1 ≤ τα2 ≤ . . . ≤ ταL < 1 (= ταL+1).

In a forward-process, for u = u(t,Σ) defined by (53) solve the system

ẋ(t) = f(t, x(t)) + B(t)u(t,Σ), x(0) = a,

and, successively for β = α1, . . . , αL, t ≥ τβ ,

η̇β(t) = −∇xf(t, x(t))ηβ(t), ηβ(τβ) = −Bj(τβ)
[
uI

i

]β
.

In the second stage, for k = L, . . . , 0 solve backwards on each [ταk
, ταk+1 ]

ṗ(t) = −∇xf(t, x(t))T p(t), p(1) = ∇xk(x(1)),
ρ̇β(t) = −∇xf(t,Σ)Tρβ(t) − ∇2

x

(
p(t,Σ)T f(t, x(t,Σ))

)
ηβ(t),

ρβ(1) = ∇2
xk(x(1,Σ)) · ηβ(1), β = αL, . . . , αk+1.
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Due to (63), successively the second derivatives of φ are obtained and may be
assembled to principal minors of ∇2φ taken in the reverse order

(∇2φ
)(k)

=
(
(∇2φ)αiαj

)
i,j≥k

,

(∇2φ)αβ = − [
uI

i

]α [
Bi(τα)T ρβ(τα) + δαβ σ̇i(τα)

]
.

Here δαβ stands for the Kronecker symbol, and the slope σ̇ of the switching
function has the representation

σ̇i(t) = Ḃi(t)T p(t) + Bi(t)T ṗ(t) =
(
Ḃi(t) −∇xf(t, x(t))Bi(t)

)T

p(t).

If the determinants of all principal minors above are positive, then the Hessian
∇2

Σφ is positive definite, i.e. Σ0 is a strict minimizer for (41).

Conclusion: As it was shown in Agrachev, Stefani and Zezza (2002) for the
case of simple switches, the Strong Second-Order Optimality Condition for the
auxiliary problem (41) combined with the bang-bang regularity Assumptions
2.1 and 2.2, are sufficient conditions for the strong local optimality of (x0, u0).
It should be noticed that the technique used in Osmolovskii (2000), Osmolovskii
and Lempio (2002) (and also Milyutin and Osmolovskii, 1998) to our knowledge
has led to widely equivalent statements. Thus, the considerations of the last
two sections give reason to the hypotheses that the mentioned optimality criteria
should also apply in case when the optimal control has multiple switches.
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