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Abstract: In this survey, we recall the formulation of the prob-
lems and give a review of some nontrivial results in the area. Let F =
(F1, ..., Fn) : Rn → Rn be a C1 map and let F ′(x) and Jac F (x) =
det F ′(x) denote the Jacobian matrix and the jacobian of F at
a point x ∈ Rn, respectively. The Global Asymptotic Stability
Problem (GASP) reads as follows: Assume that F (0) = 0 and
at any point x ∈ Rn all eigenvalues of F ′(x) have negative real
parts. Then consider the associated system of differential equations
x′

j(t) = Fj(x1(t), ..., xn(t)), j = 1, ..., n. The question is whether the
solution x(t) = 0 is globally asymptotically stable. If n > 2, then
the answer is negative (even if F is a a polynomial automorphism),
so from now on (GASP) denotes (GASP) restricted to R2. In 1963,
Olech showed that under the (GASP) assumption (i. e., Jac F (x) > 0
and Trace F ′(x) = ∂F1

∂x1
(x) + ∂F2

∂x2
(x) < 0 for any x ∈ R2) the conclu-

sion of (GASP) is equivalent to the injectivity of F . In 1994, Fessler,
and independently Gutierrez, proved the injectivity of F and, due
to the above mentioned Olech’s equivalence, gave the affirmative
answer to the two-dimensional (GASP).

Let K denote R or C, n > 1. The Jacobian Conjecture can be
formulated as follows: If F = (F1, · · · , Fn) : Kn → Kn is a polyno-
mial map with a constant nonzero jacobian, then F is a polynomial
automorphism (i. e. there exists F−1 and F−1 is also a polynomial
map). Although the Jacobian Conjecture is still unsolved even in
the case of n = 2, it is convenient to consider the so called General-
ized Jacobian Conjecture (for short (GJC) ): the Jacobian Conjecture
holds for every n > 1. We give a review of some interesting condi-
tions equivalent to the Jacobian Conjecture, including Meisters and

1The paper contains the invited talk presented at the workshop (dedicated to Professor
Czes�law Olech) held in Banach Center, Warsaw, Aug. 30 - Sept. 3, 2004
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Olech’s result on the existence of a poly-flow solution of the associ-
ated Ważewski equation x′(t) = [F ′(x(t))]−1(a). We also present a
reduction of (GJC) to the case of F of degree 3 and of special forms,
then some partial results, and (JC)’s relations with other problems.

Keywords: global stability problem, Jacobian Conjecture.

1. Global Asymptotic Stability Problem

1.1. Basic facts on stability

Let E be an open subset of Rn and f : E → Rn be a C1 mapping. Consider a
real autonomous system of differential equations

(∗) ẏ = f(y).

We know that solutions of (∗) are uniquely determined by initial conditions. We
recall the definitions.

Definition 1.1 Let y◦(·) denote the solution of (�) satisfying the initial condi-
tion y◦(0) = y◦ and suppose that the solution is defined for all t ≥ 0.

(i) We say that y◦(·) is locally stable when for every ε > 0 there exists δ > 0
such that if ‖ y◦ − y1 ‖< δ then the solution y1(·) of (�) satisfying the initial
condition y1(0) = y1 exists for every t ≥ 0 and ‖ y◦(t) − y1(t) ‖< ε for t ≥ 0.

(ii) We say that a solution y◦(·) is locally asymptotically stable (for short:
LAS) if y◦(·) is locally stable and if there exists r > 0 such that for any solution
y1(·) of (�) satisfying the initial condition y1(0) = y1, ||y1 − y◦|| < r we have
the equality lim

t→∞ ‖ y◦(t) − y1(t) ‖= 0.

(iii) The solution y◦(·) is globally asymptotically stable (for short: GAS)
when it is a LAS solution and any solution y1(·) of (�) exists for all t ≥ 0 and
lim

t→∞ ‖ y◦(t) − y1(t) ‖= 0.

(iv) Let y◦(·) = 0 be a LAS solution of the equation (�). The domain of
attraction of the solution y◦(·) = 0 (or the domain of attraction of the set {0})
is the subset A of E consisting of all points a ∈ E such that the solution y1(·)
of the equation (�) starting at a point a ∈ A exists for every t ≥ 0 and satisfies
the condition y(t) → 0 as t → ∞.

Since E is open and y◦(·) is LAS, then the domain of attraction is also open.
In the sequel we assume (without loss of generality) that F (0) = 0 and y◦ = 0,
so y◦(·) = 0 is a solution of (∗).

Let F = (F1, · · · , Fn) : Rn → Rn be a C1 map and let F ′(x) denote the
Jacobian matrix (i. e. the matrix of the differential of the map F ) at a point x ∈
Rn. Let further Jac F (x) = det F ′(x) be the jacobian of F at a point x ∈ Rn.
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The following Global Asymptotic Stability Problem (GASP) was formulated by
Markus and Yamabe (1960).

(GASP)n. Assume that F (0) = 0 and all eigenvalues of F ′(x) have negative
real parts at any point x ∈ Rn. Then consider the associated autonomous system
of differential equations

ẋ1(t) =F1(x1(t), ..., xn(t)),
ẋ2(t) =F2(x1(t), ..., xn(t)),

...(♦)
ẋn(t) =Fn(x1(t), ..., xn(t)).

The question is whether the solution x(t) = 0 is globally asymptotically stable.
Since all eigenvalues of the Jacobian matrix F ′(0) have negative real parts,

by the Lyapunov theorem each solution of (♦) is LAS. Therefore (GASP) is
equivalent to the statement that every solution x(t) of (♦) tends to the rest
point x = 0 if t tends to ∞.

1.2. Results in (GASP)

Obviously the assumptions of two dimensional (GASP)2 can be written as fol-
lows.

F ∈ C1(R2, R2), F (0, 0) = (0, 0),(0)

Jac F (x) > 0 for any x = (x1, x2) ∈ R
2.(i)

Trace F ′(x) :=
∂F1

∂x1
(x) +

∂F2

∂x2
(x) < 0 for any x ∈ R

2.(ii)

It has been showed that (GASP) has an affirmative solution under some addi-
tional conditions, see e.g. Markus and Yamabe (1960), Olech (1963), Hartman
and Olech (1962), Parthasarathy (1983), Meisters and Olech (1988), Drużkowski
and Tutaj (1992). In 1963 Olech proved the following:

Theorem 1.1 (Olech, 1963) Assume (0), (i), (ii) of (GASP)2 and additionally

∃r > 0 ∃R > 0 : ||x|| ≥ r ⇒ ||F (x)|| ≥ R.(iii)

Then every solution curve x(t) of (♦) approaches (0, 0) as t → ∞.

Olech (1963) formulated the global univalence problem: Do the inequalities
(i) and (ii) imply that the mapping F : R2 → R2 is globally one-to-one? and
showed the following:

Theorem 1.2 (Olech, 1963) The two dimensional (GASP) is equivalent to in-
jectivity of F provided that the assumptions of (GASP)2 are fulfilled.
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The implication that the positive answer to two dimensional (GASP) follows
from the global univalence of F is essential, the converse is not difficult. For
pointing out how subtle the global univalence problem is we recall an example,
where changing the sign of Jac F destroys the global univalence of F .

Example 1.1 (Parthasarathy (1983)) Define an analytic map F : R2 → R2 by
the formula

F (x, y) = (−2ex + 3y2 − 1, yex − y3).

Then one can check that Jac F (x, y)=−2e2x<0 and Trace F ′(x, y)=−ex−3y2<0
for every (x, y) ∈ R2, but F is not injective because F (0, 1) = (0, 0) = F (0,−1).

Although Trace F ′ < 0, the condition Jac F < 0 does not imply injectivity
of F .

Meisters and Olech (1988) proved (using Theorem 1.1) that the answer is
positive if F is a polynomial mapping of R2; therefore (by Theorem 1.2) they
obtained that a polynomial mapping F : R2 → R2 is injective (provided that
the jacobian of F is positive and the trace of differential F ′ is negative). In 1995
(GASP)2 (for C1 maps) was affirmatively solved by R. Fessler and C. Gutierrez
(Fessler, 1995; Gutierrez, 1995) – they presented theirs proofs at the confe-
rence in Trento (Italy) in September 1993. Both authors proved injectivity of
the mapping F and used Olech’s Theorem 1.2 that (GASP)2 is equivalent to
injectivity of the mapping F .

In 1988 the idea of the counterexample to (GASP)n for n ≥ 4 was sketched
in Barabanov (1988), but (GASP)3 was still an open problem. In 1997 Dutch
and Spanish mathematicians gave an explicit polynomial (even polynomial auto-
morphism) counterexample to (GASP)n if n > 2.

Example 1.2 (Cima et al., 1997) Let n ≥ 3, x = (x1, ..., xn) ∈ Rn and let
F = (F1, ..., Fn) : Rn → Rn be given by the formulas

F1(x) = −x1 + x3(x1 + x2x3)2

F2(x) = −x2 − (x1 + x2x3)2

F3(x) = −x3

...
Fn(x) = −xn .

Then F is a counterexample to the Markus-Yamabe Conjecture, namely there
exists a solution x = x(t) of the equation ẋ = F (x) such that x(t) → ∞ if
t → ∞.

Proof. One easily verifies that for all x ∈ Rn all eigenvalues of F ′(x) are equal
to −1. Finally one checks that

x1(t) = 18et, x2(t) = −12e2t, x3(t) = e−t, ..., xn(t) = e−t



Global asymptotic stability problem 751

is a solution of ẋ = F (x) which obviously tends to infinity as t tends to infinity.

1.3. The discrete analogue of the Markus-Yamabe problem

Let F =: Rn → Rn be a C1 map, F (0) = 0 and let the absolute values of all
eigenvalues of F ′(x) be less than r, r < 1, at any point x ∈ R

n. Is the sequence(
k+1
x = F (

k
x) : k ∈ N

)
, starting with

◦
x, bounded for any

◦
x ∈ R

n?
Cima et al. (1997) also give a counterexample to the discrete analogue of

Markus-Yamabe problem when n ≥ 3.

Example 1.3 Let n ≥ 3, x ∈ Rn and let F = (F1, ..., Fn) : Rn → Rn be given
by formulas

F1(t) = 1
2x1 + x3(x1 + x2x3)2

F2(t) = 1
2x2 − (x1 + x2x3)2

F3(t) = 1
2x3

...
Fn(t) = 1

2xn

Then there exists an initial condition
◦
x such that the sequence

k+1
x = F (

k
x), tends

to infinity when k tends to infinity.

Proof. One can check that for all x ∈ Rn the eigenvalues of JF (x) are equal

to 1
2 < 1. Taking

◦
x = (147

32 , −63
32 , 1, 0, ..., 0),

n+1
x = F (

n
x), it is easy to verify by

induction that

n
x = (

147 · 2n

32
,
−63 · 4n

32
,

1
2n

, 0, ..., 0)

which obviously tends to infinity as n → ∞.

Remark 1.1 Note that the mappings on the right hand sides in both examples
are invertible with polynomial inverse, so Olech’s equivalence given in Theorem
1.2 does not hold in higher dimension.

2. The Jacobian Conjecture

2.1. Formulation of the problem and basic facts about polynomial
mappings.

Everyone knows Cramer’s theorem that a linear mapping T : Kn → Kn is
injective (bijective) if and only if JacT (x) = det T 	= 0. If the inverse of a map
f : Kn → Kn exists and is differentiable, then (by the chain rule) the jacobian of
f is different from 0 everywhere. This raises a natural question about the class of
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mappings f : Kn → Kn, n > 1, such that the condition Jac f(x) = constant 	= 0
(or the condition Jac f(x) vanishes nowhere) guarantees injectivity of f .

The answer is negative even for real or complex analytic mappings. As an
example one can take the mapping f(x, y) = (ex cos y, ex sin y), (x, y) ∈ K2. We
have Jac f(x, y) = e2x 	= 0 for any (x, y) ∈ K2.

Because of the above facts we focus our considerations on polynomial map-
pings of Rn or Cn. Remember that the jacobians of polynomial mappings are
polynomials and have complex roots unless they are nonzero constants. Thus
in the complex case of our problem we have to consider only polynomial map-
pings with the constant jacobian. This raises the question for analytic mappings
again because now the assumptions are stronger. The answer for analytic map-
pings, however, is at once negative since the holomorphic (i.e. complex analytic)
mapping f(x, y) = (xe−y , ey) has Jac f = 1 for any (x, y) ∈ C2 and f is not
injective.

Therefore, it is evident that we should concentrate our attention on poly-
nomial mappings of Rn or Cn. Let K denote either C or R. If Fj ∈ K[X1, ..., Xn]
(i. e. Fj is a polynomial in n variables), j = 1, ..., n, then we put F = (F1, . . . , Fn),
Jac F (x) := det[∂Fi

∂xj
(x) : i, j = 1, ..., n], P(Kn) := {F : Kn → Kn}, i.e. P(Kn) is

the set of polynomial transformations of Kn. Now we recall the formulation of
the n-dimensional Jacobian Conjecture for n ≥ 2 (briefly (JC)n)

(JC)n [F ∈ P(Kn), JacF = const 	= 0] ⇒ [F is injective]

and the so called Generalized Jacobian Conjecture, for short (GJC), namely

(GJC) (JC)n holds for every n ≥ 2.

If K = R and Jac F (x) 	= 0 for any x ∈ Rn, then we can also ask about
the injectivity of a polynomial map F and we have the so called Real Jaco-
bian Problem. The answer to this problem was unknown until May ’94 when
Pinchuk (1994) gave an example showing that the Real Jacobian Problem has
a negative answer even in the case of R

2 (so also in the case of R
n, n ≥ 2).

The two dimensional Jacobian Conjecture (JC)2 (with integer coefficients
of polynomials) was formulated by Keller (1939). Note that the Jacobian Con-
jecture is on Smale’s list of ”Mathematical Problems for the Next Century” as
Problem 16 among 18 problems (Smale, 1998).

In the sequel we recall some important properties of polynomial maps.

Theorem 2.1 (Bia�lynicki-Birula and Rosenlicht, 1962; Kurdyka and Rusek,
1988) Every injective polynomial map of Kn is bijective.

Theorem 2.2 (Bass, Connell and Wright, 1982; Winiarski, 1979; Yagzhev,
1980) Every injective polynomial map F of Cn is a polynomial automorphism,
i.e. the inverse F−1 exists and is a polynomial mapping.
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Remember that the above theorem is not true in the real case even if n=1 and
the jacobian of a polynomial mapping F is everywhere different from zero, e. g.
F (x) = x + x3 : R → R is bijective, but F is not a polynomial automorphism.
If F is a polynomial automorphism, then it is possible to give a sharp estimate
for the degree of its inverse, namely

Theorem 2.3 (Bass, Connell and Wright, 1982; Rusek and Winiarski, 1984) If
F is a polynomial automorphism of Kn, then

deg F−1 ≤ (deg F )n−1

and the above estimation is sharp.

Finally we recall a theorem about the number of points in the fibre of a
polynomial mapping whose jacobian is different from zero everywhere.

Proposition 2.1 (Drużkowski, 1991; Drużkowski and Tutaj, 1992) Let F =
(F1, ..., Fn) : Kn → Kn be a polynomial map such that Jac F (x) 	= 0 for every
x ∈ Kn. Then for every b ∈ Kn the equation F (x) = b has only isolated solutions
and

#{x ∈ K
n : F (x) = b} ≤ deg F1 · ... · deg Fn.

If K = C, then this inequality is the well known Bezout inequality. Note
that the assumption Jac F (x) 	= 0 for every x ∈ Kn is essential because of the
following

Example 2.1 Let a dominating polynomial mapping F : R
3 → R

3 be given by
the formula

F (x, y, z) = [ (x − 1)2(x − 2)2(x − 3)2(x − 4)2(x − 5)2+
(y + 1)2(y + 2)2(y + 3)2(y + 4)2(y + 5)2, z(y + 1), z].

Then the equation F (x, y, z) = (0, 0, 0) has only isolated solutions in R3, but

#{(x, y, z) ∈ R3 : F (x, y, z) = (0, 0, 0)} = 25
> deg F1 · deg F2 · deg F3 = 20.

Because of Pinchuk’s example it is interesting to recall certain partial results
on the injectivity of real maps. Besides Meisters’ and Olech’s result just men-
tioned in connection with (GASP)2, we recall another result of theirs on global
univalence in two dimensions.

Theorem 2.4 (Meisters and Olech, 1990) Let F = (f, g) : R2 → R2 be a C1

map with non-vanishing jacobian, let w ∈ R2 and let Aw denote the convex hull
of the set{dxF (w) : x ∈ R2}. The map F is injective provided that there exist
two linearly independent vectors u, v ∈ R2 such that neither 0 ∈ Au nor 0 ∈ Av.
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N. V. Chau gave an elegant improvement of the above result in the polyno-
mial case.

Theorem 2.5 (Chau, 1993) Let F = (f, g) : R
2 → R

2 be a polynomial map
with non-vanishing jacobian. If there exists a vector v ∈ R2 and C > 0 such
that

(0, 0) /∈ convex hull of {dxF (v) : x ∈ R
2, ||x|| > C},

then F is injective.

As an immediate consequence of the above theorem we have the following

Corollary 2.1 If a polynomial map F =(f, g) : R2 → R2 has the property that
Jac F and at least one of the four partial derivatives ∂f

∂x , ∂f
∂y , ∂g

∂x , ∂g
∂y never

vanishes on R2, then F is injective.

2.2. Equivalent formulations of the Jacobian Conjecture

One can check that due to Lefschetz Principle our formulation of the Jacobian
Conjecture for C covers the case of the Jacobian Conjecture formulated for any
field k of characteristic zero, see Bass, Connell and Wright (1982), Drużkowski,
(1991), van den Essen (2000). Note that up to this time the Jacobian Conjecture
remains unsolved even if n = 2.

Since F ∈ P(Cn) can be treated as F̂ ∈ P(R2n) and Jac F̂ (x, y) = |Jac F (x+
i y)|2, it is evident that

(JC)2n for R[X1, ..., X2n] =⇒ (JC)n for C[X1, ..., Xn],

so ”the real (GJC)” implies ”the complex (GJC)”. But we even do not know if

? real (JC)n =⇒ complex (JC)n .

In 1987 Meisters and Olech gave an equivalent differential formulation of the
Jacobian Conjecture and their result began a series of papers with other con-
ditions of differential type (Stein, 1989; Krasiński and Spodzieja, 1991; Tutaj-
Gasińska, 1996).

Theorem 2.6 (Meisters and Olech, 1987) Let F be a polynomial map of R
n and

Jac F = const 	= 0. Consider the following autonomous system of differential
equations (the associated Ważewski equation)

ẋ(t) = [F ′(x)]−1(a), x(0) = x0

with an arbitrary initial value x0 ∈ Rn and an arbitrary vector parameter a ∈ Rn

and denote by φ(·, x0, a) the solution of the above differential equation. Then F
is a polynomial automorphism if and only if the solution φ(·, x0, a) is a poly-flow,
i.e. φ(t, x0, a) is polynomial in both x0 and t.
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Now we present another equivalent formulation of the Jacobian Conjecture.
Let En denote the ring of entire functions on Cn (i.e. holomorphic and defined
on the whole C

n), let Fj ∈ En for j = 1, ..., n and let F = (F1, ..., Fn) be a
fixed entire mapping of Cn (we write F ∈ En). We endow the space En with
the standard topology of uniform convergence on compact subsets of Cn. We
define the linear differential operators

∂

∂Fi
: En � g → Jac (F1, ..., Fi−1, g, Fi+1, ..., Fn) ∈ En, i = 1, ..., n.

If we take F ∈ P(Cn), then ∂
∂Fi

are derivations of the ring C[X1, ..., Xn],
j = 1, ..., n. Stein (1989) formulated the following two dimensional differential
Analytic Jacobian Conjecture

(AJC)2 [F ∈ E2 and Jac F = 1] ⇒ [
∂

∂F1
(E2) is dense in E2]

and proved that (AJC)2 is equivalent to (JC)2 provided that F is a polynomial
mapping. Krasiński and Spodzieja (1991) formulated a natural generalization
of (AJC)2 to the n-dimensional case

[F ∈ En, Jac F = 1] ⇒ [
∂

∂Fi
(En) is dense in En, i = 1, ..., n − 1]

and showed that it is equivalent to (JC)n.
We end this section with a folk result, namely a topological formulation of

the Jacobian Conjecture.

Remark 2.1 Let F ∈ P(Cn), Jac F = 1 and δ(F ) := {(x, y) ∈ C
n × C

n :
F (x) = F (y)}. Then

F is injective ⇐⇒ δ(F ) is connected.

Proof. Assume that δ(F ) is connected (in Zariski or Euclidean topology of Cn).
Then δ(F ) is a smooth algebraic manifold and, due to a classical theorem, δ(F )
is a smooth irreducible algebraic set. Evidently the diagonal ∆ = {(x, y) ∈
C

n ×C
n : x = y} ⊂ δ(F ) and dim ∆ = dim δ(F ) = n. Since δ(F ) is irreducible,

we get the equality: δ(F ) = ∆, i. e. F is injective. The converse is obvious.

2.3. The Jacobian Conjecture and the Dixmier Conjecture

The derivations ∂
∂Fi

are used to relate the Jacobian Conjecture to the Dixmier
Conjecture about the Weyl algebra. Let k denote a field of characteristic 0.

Definition 2.1 The n-th Weyl algebra over a field k is the k-subalgebra Wn =
Wn(X1, ..., Xn) of k-linear endomorphisms of the ring of polynomials k[X1, ..., Xn]
generated by the multiplication maps f.

f. : k[X1, ..., Xn] � g → fg ∈ k[X1, ..., Xn], f ∈ k[X1, ..., Xn]

and the k-derivations ∂
∂Xi

on k[X1, ..., Xn], i = 1, ..., n.
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We also write Wn = k[X1, ..., Xn, ∂1, ..., ∂n], where ∂i := ∂
∂Xi

, i = 1, ..., n.
One easily verifies the commutator relations

[∂i, Xj ] = δi,j , [∂i, ∂j ] = 0, [Xi, Xj ] = 0 for all i, j.

Due to the above equations every element P ∈ Wn can be written uniquely as
a finite sum of the form

P =
∑

|α|≤m

aα∂α

where ∂α := ∂α1
1 ...∂αn

n , aα = aα1,...,αn(X1, ..., Xn) ∈ k[X1, ..., Xn], m ∈ N and
α ∈ Nn, |α| = α1 + ... + αn. One can easily show the following

Proposition 2.2 Wn is a simple ring, i.e. every two-sided ideal in Wn is either
zero or the whole ring.

Corollary 2.2 Any non-zero k-endomorphism of Wn is injective.

Proof. If h be a nontrivial k-endomorphism of Wn, then ker h 	= Wn. Since Wn

is a simple ring it follows that kerh = 0, so every k-endomorphism of Wn is
injective.

The question what about epimorphism is the subject of the following Dixmier
Conjecture (for short (DC) ):

(DC)n Every k-endomorphism of Wn is an epimorphism (i. e. is an isomor-
phism).

In fact only (DC)1 was formulated by Dixmier (1968) and (DC)n is still
unsolved for n ≥ 1. We show that the Jacobian Conjecture follows from the
Dixmier Conjecture.

Theorem 2.7 (DC)n implies (JC)n.

Proof. Let F := (F1, ..., Fn) ∈ k[X1, ..., Xn]n satisfy det JF = 1 and let

∂

∂Fi
: k[X1, ..., Xn] � g → Jac (F1, ..., Fi−1, g, Fi+1, ..., Fn) ∈ k[X1, ..., Xn]

for i = 1, ..., n. Then it is known (and not difficult to verify) that

(1)
∂Fj

∂Fi
= δij for i, j = 1, ..., n,

(2)
[

∂

∂Fi
,

∂

∂Fj

]
= 0 for i, j = 1, ..., n,

(3)
∂

∂F1
, ...,

∂

∂Fn
is a commutative k[X1, ..., Xn]-basis of the k[X1, ..., Xn]-

module Derkk[X1, ..., Xn] of k-derivations of k[X1, ..., Xn].
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We define a k-endomorphism h of Wn by

h(Xi) := Fi and h(∂i) :=
∂

∂Fi
, i = 1, ..., n.

Evidently
∂

∂Fi
=

n∑
j=1

bj
i (X1, ..., Xn)∂j , i = 1, ..., n. Since, by our hypothesis, the

endomorphism h is surjective, then there exists Pj ∈ Wn such that Xj = h(Pj)
for some Pj =

∑
aj

α(X1, ..., Xn)∂α ∈ Wn, thus
Xj =

∑
aj

α(h(X1), ..., h(Xn) )h(∂)α =
∑

aj
α(F1, ..., Fn)

(
∂

∂F

)α
.

Applying the operator Xj . to the element 1 ∈ k[X1, ..., Xn] we get Xj =
Xj .1 = aj

0(F ) ∈ k[F ], since ∂
∂Fi

(1) = 0 for all i = 1, ..., n. Consequently
k[X1, ..., Xn] ⊂ k[F ] ⊂ k[X1, ..., Xn], hence F is invertible and (JC)n holds.

In March 2004 Belov (2004) announced that he and Kontsevich proved the
implication (JC)2n ⇒ (DC)n. If it is true, then we have the following

Remark 2.2 (GJC) is equivalent to the Generalized Dixmier Conjecture, i.e.
(DC)n holds for any n ≥ 1.

2.4. Reduction of the degree in (GJC)

We recall the reduction theorems that are used in the investigation of (GJC).

Theorem 2.8 (Yagzhev, 1980; Bass, Connell and Wright, 1982; Drużkowski,
1983) If we consider the Generalized Jacobian Conjecture, then it is sufficient
to consider, for every n > 1, only polynomial mappings of the so-called cubic
homogeneous form F = I + H, where I denotes the identity, H = (H1, ..., Hn)
and Hj : Kn → K is a cubic homogeneous polynomial of the degree 3 or Hj = 0,
j = 1, ..., n.

If the degree of F is less than 3, then the injectivity follows easily, see, e.g.,
Drużkowski (1991).

Theorem 2.9 If F = (F1, ..., Fn) ∈ P(Kn) is a quadratic map, i. e. deg F :=
max{deg Fj : j = 1, ..., n} ≤ 2 and Jac F (x) 	= 0 for any x ∈ Kn, then F is
injective.

As a consequence of Pinchuk’s example and Theorem 2.9 we get

Remark 2.3 It is impossible to reduce every F ∈ P(Kn) to a quadratic map F̂ ∈
P(KN), N ≥ n, preserving injectivity and everywhere non-vanishing jacobian.

It is easy to check that the cubic homogeneous form (Yagzhev’s form) is
invariant under the action of the full linear group GLn(K), i. e. if F has a
cubic homogeneous form and L ∈ GLn(K), then L ◦ F ◦ L−1 has also a cubic
homogeneous form. We have the following
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Proposition 2.3 ((Bass, Connell and Wright, 1982; Drużkowski, 1983) Let
F = I + H have a cubic homogeneous form. Then

Jac F = 1 ⇔ ∀x ∈ K
n H ′(x) is a nilpotent matrix.

Note that H ′(x) = 3H̃(x, x, ·), where H̃ denotes the unique symmetric
three-linear mapping such that H̃(x, x, x) = H(x). Hence, if Jac (I + H) = 1,
then by Proposition 2.3 the matrix

Hx := H̃(x, x, ·) =
1
3
H ′(x) is nilpotent.

Therefore, for every x ∈ Kn, there exists the index of nilpotency of the ma-
trix Hx, i.e. there exists a natural number p(x) such that Hx

p(x) = 0 and
Hx

p(x)−1 	= 0. It is evident, that 1 ≤ p(x) ≤ 1 + rank Hx ≤ n for every x ∈ Kn.
We define the index of nilpotency of the mapping F = I + H to be the number

ind F := sup{p(x) ∈ N : Hx
p(x) = 0, Hx

p(x)−1 	= 0, x ∈ K
n}.

Now we present a theorem which allows us to reduce the verification of the
Generalized Jacobian Conjecture to the investigation of polynomial mappings
of the so called cubic linear form.

Theorem 2.10 ((Drużkowski, 1983, 1993, 2001)) In order to verify (GJC) it is
sufficient to check it only for polynomial mappings F = (F1, ..., Fn) of the cubic
linear form, i.e.

(CLF) F (x) =

⎛
⎜⎜⎜⎝

x1 + (a1x)3

x2 + (a2x)3
...

xn + (anx)3

⎞
⎟⎟⎟⎠ ,

where aj = (a1
j , ..., a

n
j ) ∈ Kn, ajx := a1

jx1 + ... + an
j xn, j = 1, ..., n, x ∈ Kn.

Without loss of generality we can assume that the matrix A := [ai
j : i, j =

1, ..., n] of (CLF) has one of the following properties

(i) ∃c ∈ K
n, A = Ac :=

⎡
⎣ (a1c)2a1

1 ... (a1c)2an
1

... ... ...
(anc)2a1

n ... (anc)2an
n

⎤
⎦ , ind A = ind F

or
(ii) A2 = 0.

Now we recall a theorem which summarizes a few partial results on the
Generalized Jacobian Conjecture.
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Theorem 2.11 ((Drużkowski, 1983, 1993; Drużkowski and Rusek, 1985)) For
arbitrary n > 1 the following holds:

If a polynomial map F = (F1, ..., Fn) : K
n → K

n with Jac F = 1 has a cubic
linear form and if

rank A < 3 or corank A < 3 or ind F = 1, 2, 3, n,

then F is a polynomial automorphism.

Meisters (1994) has begun classifying matrices which define the cubic linear
polynomial mapping with constant jacobian and Hubbers (1998) has continued
this research. Using the result of Hubbers (1998) we get that (JC) is true for F
of a cubic linear form if rank A < 5. Hence for polynomial mappings having a
cubic linear form (JC) is true if n < 8.

2.5. Symmetric reduction.

It is possible to reduce (GJC) to Yagzhev’s form with symmetric Jacobian ma-
trix F ′(x) for any x ∈ Cn. Let x = (x1, ..., xn), v = (v1, ..., vn). Let F be a
polynomial mapping of the cubic homogeneous form

F (X) = (X1 + H1, ..., Xn + Hn) : K
n → K

n,

where Hj is a cubic homogeneous polynomial of degree 3 or Hj = 0, j = 1, ..., n
and Jac F = 1. Take

g(v, x) = v1F1(x) + ... + vnFn(x)

and define G ∈ P(K2n) by the formula

G(v, x) := ∇g(v, x) := (
∂g

∂v1
, ...,

∂g

∂vn
,

∂g

∂x1
, ...,

∂g

∂xn
).

One easily verifies that

G(v, x) = (F1(x), ..., Fn(x),
n∑

k=1

vk
∂Fk

∂x1
, ...,

n∑
k=1

vk
∂Fk

∂xn
)

= (F (x), (F ′(x))T v ).

Obviously G is injective if and only if F is. We calculate

G′(v, x) =
[

0 F ′(x)
[F ′(x))]T [F ′′(x)]T (v, ·)

]
.

By Laplace theorem Jac G = (Jac F )2. Note that [F ′′(x)]T (v, ·) is symmetric
n × n matrix, hence G′(v, x) is symmetric 2n × 2n matrix and

G′(0, 0) =
[
0 I
I 0

]
,
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where I is the n × n identity matrix. Thus there exists an orthogonal matrix
M such that

M ◦ G′(0, 0) ◦ M t = E,

where

E =
[−I 0

0 I

]
.

The mapping P (y) := M ◦ G ◦ MT (y) is of the form Ey + H̆(y), where H̆ ∈
P(K2n) is a cubic homogenous with symmetric Jacobian matrix. If we take
complex dilation

J =
[
iI 0
0 I

]

and put Q(y) := J ◦P ◦J(y), then Q(y) = y + Ĥ(y) where Ĥ is a complex cubic
homogenous with symmetric Jacobian matrix. It is obvious that Jac F = Jac Q
and F is injective if and only if Q is injective. The trick with a polynomial
g(v, x) was probably a folk result, we adopted it from Meng (2003) where the
sketch of the reduction to the complex symmetric case is also given.

In this way we show the following

Theorem 2.12 It is sufficient in (GJC) to consider only polynomial mappings
of the form F (x) = x+ Ĥ(x) : Cn → Cn, where Ĥ : Cn → Cn is a cubic homo-
geneous polynomial mapping of the degree 3 and Ĥ ′(x) is a complex symmetric
nilpotent matrix for any x ∈ Cn (n > 1).

Added in proof. I would like to thank the referees for careful reading the
manuscript, pointing out misprints and language mistakes and bringing my
attention to de Bondt and van den Essen (2003) where the reduction of (GJC)
to the complex symmetric case has also been proved.
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