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Abstract: We discuss the evolution of the Pontryagin maximum
principle, focusing primarily on the hypotheses required for its va-
lidity. We proceed to describe briefly a unifying result giving rise to
both classical and new versions, a recent theorem of the author giv-
ing necessary conditions for optimal control problems formulated in
terms of differential inclusions. We conclude with a new application
of this result for the case in which mixed constraints on the state and
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is limited to differentiable data, thereby avoiding mention of gener-
alized gradients or normal cones, except in the technical section on
differential inclusions.
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1. Three maximum principles

1.1. The classical maximum principle

Our purpose in this introductory section is to discuss the celebrated maximum
principle of Pontryagin and some of its variants. We begin in a setting which is
essentially the one in which it was first developed, in the fixed-time case. The
dynamics on the (prescribed) interval [0, T ] are given by

ẋ(t) = f(t, x(t), u(t)) a.e.,

1Presented at the Banach Center Workshop in honor of Czes�law Olech, 2004.
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where the measurable function u, the control, takes its values in a given set U .
We also require that the state x satisfy certain boundary conditions: (x(0), x(T ))∈
S. Subject to these constraints, the problem is to choose (x, u) so as to minimize
a cost �(x(0), x(T )), and the issue is to give a set of necessary conditions that
a solution (x∗, u∗) must satisfy. It is enough that the solution be local in some
sense with respect to the x variable; we shall be more precise on this point later.

We assume that Dxf exists and, together with f , is continuous in (t, x, u);
we also assume that S admits (outward) ‘normal vectors’ in some sense (for
example, we may take S to be a C1 manifold with or without boundary). The
classical maximum principle then says:

Theorem 1.1 Let the optimal control u∗ be essentially bounded. Then there is
an arc p and a scalar λ0 equal to 0 or 1 which satisfy the adjoint equation

−ṗ(t) = Dx {〈p(t), f(t, ·, u∗(t))〉} (x∗(t)) a.e.,

the maximum condition

〈p(t), f(t, x∗(t), u)〉 ≤ 〈p(t), f(t, x∗(t), u∗(t))〉 ∀u ∈ U a.e.,

the transversality condition:

(p(0),−p(T )) − λ0∇�(x∗(0), x∗(T )) is normal to S at the point (x∗(0), x∗(T )),

and nontriviality:

λ0 + ‖p‖∞ �= 0.

The maximum principle has been and remains an important tool in the many
areas in which optimal control plays a role. It is natural to seek to extend its
applicability, for example by reducing the hypotheses under which it can be
derived, or extending the type of problem to which it applies. There have been
very many advances of this type in the last fifty years; we refer for example
to Clarke (2005), Hestenes (1966), Ioffe and Tikhomirov (1974), Milyutin and
Osmolovski (1998), Pontryagin et al. (1962), Vinter (2000), Warga (1972) for
references, but of course the list could be much longer.

Some of the advances referred to are of the type that weakens the regularity
requirements on the underlying data, sometimes to the point of not positing
differentiability in x. In such cases, the derivatives that appear in the adjoint
equation and the transversality condition are replaced by some generalized deriv-
ative.

One approach along these lines, initiated by Clarke in the early 1970’s, may
be called the ‘nonsmooth analysis’ approach; other contributors to its develop-
ment include Ioffe, Loewen, Mordukhovich, Rockafellar, and Vinter. The recent
monograph, Clarke (2005), gives the state of the art with respect to this school
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of thought, and discusses various aspects of the theory at more length than is
possible here.

Because generalized derivatives and normal cones appear in the statements
of results obtained through the nonsmooth analysis approach, they may be
somewhat difficult to absorb for those unfamiliar with such notions. And the
presence of these constructs may sometimes obscure the fact that the underlying
methodology makes new advances even in situations in which smoothness is
present. For that reason, we hereby ban all generalized derivatives and normal
cones from the discussion, except for Section 2, where the very nature of the
(differential inclusion) problem leaves us no alternative, and in the proof in
Section 3.

We proceed in the remainder of this introductory section to give two illus-
trative extensions of the classical maximum principle. In Section 2 we briefly
discuss new necessary conditions for differential inclusions (taken from Clarke,
2005) which serve as a general template by means of which all other results in
this paper can be derived. In the final section we illustrate the versatility of
this result by using it to deduce the maximum principle in the case of state-
dependent control constraints.

1.2. A solution-specific maximum principle

Consider again the optimal control problem described above, but let us replace
the classical assumptions on the data by the following:

Hypotheses for Theorem 1.2

1. f is Lebesgue×Borel measurable in t and (x, u);
2. f is continuously differentiable with respect to x;
3. For some ε > 0, for t a.e. and u ∈ U , we have

k(t, u) := sup
|x−x∗(t)|<ε

‖Dxf(t, x, u)‖ < +∞;

4. k(t, u∗(t)) is summable.
Our second maximum principle is

Theorem 1.2 Under these hypotheses, any solution (x∗, u∗) satisfies the con-
clusions of Theorem 1.1.

It is easy to see that the hypotheses of Theorem 1.2 (Clarke, 1976) are
weaker than those of the classical setting (Theorem 1.1). (And they apply with
Dx replaced by a generalized gradient, but we have agreed not to mention that.)
On the other hand, it may be felt that there is a somewhat ad hoc nature to the
hypotheses, since the solution (x∗, u∗) is mentioned in their formulation. But
we remark that this was already a feature (albeit a discrete one) of the classical
result: the first sentence in the statement of Theorem 1.1 could be rephrased as
requiring the existence of a constant M such that |u∗(t)| ≤ M a.e.
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In fact, the conclusions of Theorem 1.1 are false if the assumption that
u∗ ∈ L∞ is not made, as shown by Clarke and Vinter (1984). It turns out
that some assumption of an ad hoc nature must be made after the fact, or
else an a priori structural assumption about the data of the problem. (For
example, in Theorem 1.1, one could add to the hypotheses on the data that
U be bounded.) The formulation of structural assumptions (on Lagrangians)
guaranteeing regularity (and hence validity of the necessary conditions) in the
calculus of variations is a well-known enterprise since the work of Tonelli. It
appears to be rare in an optimal control setting. Our next maximum principle
illustrates recent progress in this direction, by means of a growth assumption
on f .

1.3. A structural hypothesis

We continue to consider the same optimal control problem, but we modify the
hypotheses as follows. We retain (1)(2) of Hypotheses 1.2, but replace (3)(4) by
the following growth condition (that makes no explicit reference to the solution):
for any bounded set X of x-values, there exist a constant c and a summable
function d(t) such that

‖Dxf(t, x, u)‖ ≤ c|f(t, x, u)| + d(t) ∀x ∈ X, u ∈ U, t a.e.

The following is a special case of Theorem 5.2.1 in Clarke (2005). Note that we
do not require the optimal control to be bounded.

Theorem 1.3 Under these hypotheses, any solution (x∗, u∗) satisfies the con-
clusions of Theorem 1.1.

We have emphasized here the distinction between ‘solution-specific’ neces-
sary conditions (Theorem 1.2) and the type that depend instead on a structural
hypothesis (Theorem 1.3). But the results of Clarke (2005) have a number of
other features (aside from nondifferentiability) that extend the classical maxi-
mum principle in a variety of directions, namely:

• It is possible to consider the problem in a novel ‘stratified’ way by means
of a ‘radius function’ R(t). This means that both the hypotheses and the
optimality need only hold for states x satisfying |ẋ(t) − ẋ∗(t)| ≤ R(t).
(R need be neither small nor large; the theorems above correspond to the
choice R ≡ +∞.) Then the maximum condition is asserted only relative
to the given radius (the other necessary conditions are unchanged).

• The theorem holds when x is merely a local minimum in the following
weak sense: relative to those x for which

|x(0) − x∗(0)| + ‖ẋ − ẋ∗‖L1 < ε

(that is, a local W 1,1 minimum).
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• It is possible to allow an integral term in the cost functional at a new level
of generality. In fact, the hypotheses that are required on the cost inte-
grand are so minimal that one obtains new results even for the (smooth)
basic problem in the calculus of variations.

• The results apply to so-called ‘generalized control systems’, in which the
control dynamics are given by a parametrized family of vector fields.

We stress, however, that all these situations are treated as special cases of
a single basic differential inclusion problem, together with its three necessary
conditions for optimality. (This is also the case for the problem with mixed
state/control constraints that we treat in Section 3.) These optimality condi-
tions are recognizable as analogues of the Euler, Weierstrass and transversality
conditions. In the next section we describe them briefly. But we must introduce
some basic concepts in nonsmooth analysis.

2. A maximum principle for inclusions

Normal cones and subdifferentials

Although the proof of the theorem below requires nonsmooth analysis in infinite-
dimensional (Hilbert) spaces as well as some proximal calculus, the statement
itself requires only certain constructs on R

n, to which we limit ourselves here.
We refer to Clarke et al. (1998) for more on nonsmooth analysis.

Given a nonempty closed subset S of R
n and a point x in S, we say that

ζ ∈ R
n is a proximal normal (vector) to S at x if there exists σ ≥ 0 such that

〈ζ, x′ − x〉 ≤ σ ‖x′ − x‖2 ∀x′ ∈ S.

(This is the proximal normal inequality.) The set (convex cone) of such ζ, which
always contains 0, is denoted NP

S (x) and referred to as the proximal normal cone.
Given a lower semicontinuous function f : X → R∪ {+∞} and a point x in

the effective domain of f , that is, the set

dom f := {x′ ∈ R
n : f(x′) < +∞} ,

we say that ζ is a proximal subgradient of f at x if there exists σ ≥ 0 such that

f(x′) − f(x) + σ ‖x′ − x‖2 ≥ 〈ζ, x′ − x〉

for all x′ in a neighborhood of x. The set of such ζ, which may be empty, is
denoted ∂P f(x) and referred to as the proximal subdifferential.

The limiting normal cone NL
S (x) to S at x is obtained by applying a sequen-

tial closure operation to NP
S :

NL
S (x) :=

{
lim ζi : ζi ∈ NP

S (xi), xi → x, xi ∈ S
}

.



714 F. CLARKE

A similar procedure defines the limiting subdifferential :

∂Lf(x) := {lim ζi : ζi ∈ ∂P f(xi), xi → x, f(xi) → f(x)} .

It can be shown that ζ belongs to ∂P f(x) iff the vector (ζ,−1) belongs to
NP

epi f (x, f(x)), where epi f , the epigraph of f , is the set

epi f := {(x, r) ∈ X × R : f(x) ≤ r} .

A similar characterization holds for ∂Lf(x).

The differential inclusion problem

We are given a multifunction F mapping [0, T ] × R
n to the subsets of R

n. It
is assumed that F is L × B measurable and that for each t the graph G(t) of
the multifunction F (t, ·) is closed. A trajectory x of F refers to an absolutely
continuous function satisfying

ẋ(t) ∈ F (t, x(t)) a.e.

We consider the problem P of minimizing �(x(0), x(T )) over the trajectories x
of F satisfying the boundary constraints (x(0), x(T )) ∈ S. It is assumed that �
is locally Lipschitz and that S is closed.

Let R be a measurable function on [0, T ] with values in (0, +∞] (the radius
function). We are given an arc x∗ feasible for P which is a local W 1,1 minimum
of radius R in the following sense: for some ε > 0, for every other feasible arc x
satisfying

|ẋ(t) − ẋ∗(t)| ≤ R(t) a.e.,
∫ T

0

|ẋ(t) − ẋ∗(t)| dt ≤ ε, ‖x − x∗‖∞ ≤ ε,

one has �(x(0), x(T )) ≥ �(x∗(0), x∗(T )).

The bounded slope condition

We denote by T ε∗ the tube of radius ε around x∗:

T ε
∗ := {(t, x) : 0 ≤ t ≤ T, |x − x∗(t)| < ε}.

We say that F satisfies the bounded slope condition near x∗ if, for some ε > 0,
there exist a constant c and a summable function d such that for almost every
t, for all (t, x) ∈ T ε

∗ and (x, v) ∈ G(t), for all (α, β) ∈ NP
G(t)(x, v), one has

|α| ≤ (c |v| + d(t)) |β|.
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The necessary conditions

Theorem 2.1 If F satisfies the bounded slope condition near x∗, then there
exist an arc p and a number λ0 in {0, 1} satisfying the nontriviality condition

λ0 + ‖p‖∞ �= 0.

and the transversality condition:

(p(0),−p(T )) ∈ ∂Lλ0�(x∗(0), x∗(T )) + NL
S (x∗(0), x∗(T )),

and such that p satisfies the Euler (or adjoint) inclusion:

ṗ(t) ∈ co
{

ω : (ω, p(t)) ∈ NL
G(t)(x∗(t), ẋ∗(t))

}
a.e. t ∈ [0, T ]

as well as the Weierstrass condition of radius R:

〈p(t), v〉 ≤ 〈p(t), ẋ∗(t)〉 ∀v ∈ F (t, x∗(t)) ∩ B(ẋ∗(t), R(t)), a.e. t ∈ [0, T ].

If the above holds for a sequence of radius functions Ri (with ε, c and d possibly
depending on i) for which

lim inf
i→∞

Ri(t) = +∞ a.e.

then the conclusions hold for an arc p which satisfies the global Weierstrass
condition:

〈p(t), v〉 ≤ 〈p(t), ẋ∗(t)〉 ∀v ∈ F (t, x∗(t)), a.e. t ∈ [0, T ].

We remark that the above is the ‘global structural version’ of a family of
such results proven in Clarke (2005). Note that through the use of a sequence
Ri as above, we are able to assert the global necessary conditions (that is, of
infinite radius) even when x∗ is only known to be a minimum for every finite
radius. The fact that this latter property does not in itself imply that x∗ is a
minimum of infinite radius is related to the well-known Lavrentiev phenomenon.

The role of the bounded slope condition is to guarantee a ‘pseudo-Lipschitz’
property (introduced in this connection in Clarke, 1976) near any given solution,
a property which can also be posited on a ‘solution-specific’ basis.

Theorem 2.1 represents a highly evolved version of the original maximum
principle. (It is perhaps the adjoint equation that has mutated the most.) The
striking thing about the theorem, not evident at a glance, is how the hypotheses
turn out to be sufficiently weak and general, and the conclusions sufficiently
strong so as to apply to a variety of situations and yield state of the art necessary
conditions for them. A number of examples are developed in Clarke (2005); the
next section gives another.
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3. A problem with mixed constraints

Optimal control problems in which the admissible control values depend expli-
citly on the current value of the state are fundamentally different from those
discussed in Section 1. They have traditionally been considered an important
test problem in evaluating the scope of a given theory of necessary conditions. In
this section we show how a general problem of this type can be treated directly
from Theorem 2.1 of the previous section.

We consider on the interval [0, T ] the dynamics

ẋ(t) = f(t, x(t), u(t), v(t)) a.e.,

where now the control variable has two components u and v which are treated
somewhat differently. We impose the mixed state/control constraints

g(t, x(t), u(t), v(t)) ≤ 0, h(t, x(t), u(t), v(t)) = 0, v(t) ∈ V (t) a.e.,

and the boundary conditions

(x(0), x(T )) ∈ S,

where the sets S and V (t) (t a.e.) are closed. All the variables above belong to
certain Euclidean spaces, and the functions f, g, h are vector-valued. Problems
of this type seem to have been considered first by Dubovitskĭı and Milyutin
(1981); see also Dmitruk (1993).

We denote by C(t, x) the set of admissible control values corresponding to
(t, x): those points (u, v) satisfying the conditions

g(t, x, u, v) ≤ 0, h(t, x, u, v) = 0, v ∈ V (t).

We are given an admissible triple (x∗, u∗, v∗) for the problem and a positive ε.
We denote by T ε

∗ the tube of radius ε around x∗:

T ε
∗ := {(t, x) : 0 ≤ t ≤ T, |x − x∗(t)| < ε}.

We suppose that the set

C := {(t, x, u, v) : (t, x) ∈ T ε
∗ , (u, v) ∈ C(t, x)}

is bounded, and that on some neighborhood of C the functions f, g, and h have
derivatives in x and u which, together with the functions themselves, are con-
tinuous in (t, x, u, v). We also posit the L× B (Lebesgue×Borel) measurability
(see Clarke, 1983) of the multifunction V (·).

The following constraint qualification is assumed to hold along x∗:
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For any t ∈ [0, T ] and (u, v) ∈ C(t, x∗(t)), the only pair (γ, λ) satis-
fying the relations

Du{〈γ, g〉 + 〈λ, h〉}(t, x∗(t), u, v) = 0
〈γ, g(t, x∗(t), u, v)〉 = 0, γ ≥ 0

is γ = 0 and λ = 0.

The problem consists of minimizing �(x(0), x(T )) over the admissible state
/control functions (x, u, v), where � is continuously differentiable.

Theorem 3.1 Let (x∗, u∗, v∗) be a solution of the problem relative to the tube
T ε
∗ . Then there exists an arc p, bounded measurable functions γ ≥ 0 a.e. and

λ, and a scalar λ0 equal to 0 or 1 which satisfy the complementary slackness
condition:

〈γ(t), g(t, x∗(t), u∗(t), v∗(t))〉 = 0 a.e.,

the maximum condition:

〈p(t), f(t, x∗(t), u′, v′)〉 ≤
〈p(t), f(t, x∗(t), u∗(t), v∗(t))〉 ∀ (u′, v′) ∈ C(t, x∗(t)) a.e.,

the adjoint equation:

−ṗ(t) = Dx {〈p, f〉 + 〈γ, g〉+ 〈λ, h〉} (t, x∗(t), u∗(t), v∗(t)) a.e.,

the transversality condition:

(p(0),−p(T ))− λ0∇�(x∗(0), x∗(T )) ∈ NL
S (x∗(0), x∗(T )),

and nontriviality:

λ0 + ‖p‖∞ �= 0.

Proof. We require the following fact:

Lemma 3.1 There exists M > 0 and ε′ > 0 with the following property: given
any (t, x) ∈ T ε′

∗ and (u, v) ∈ C(t, x), together with any pair (γ, λ) satisfying

γ ≥ 0, 〈γ, g(t, x, u, v)〉 = 0,

then one has

|(γ, λ)| ≤ M |Du{〈γ, g〉 + 〈λ, h〉}(t, x, u, v)| .
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We omit the simple proof, based for example on assuming the contrary
and obtaining a contradiction of the constraint qualification. Without loss of
generality, we assume that the ε′ of the Lemma equals the original ε.

We now consider the optimal control of a system governed by the differential
inclusion

(ẋ(t), ẏ(t)) ∈ F (t, x(t), y(t)) a.e.,

where y is a scalar variable and F (t, x, y) is given by

{(f(t, x, u, v), θ|u − u∗(t)|2 + θ|v − v∗(t)|2) : (u, v) ∈ C(t, x)}.

Here θ is a fixed parameter in (0, 1); in the last step of the proof it will tend
to zero. Its presence here serves to single out the particular controls u∗ and v∗
that generate x∗ (in general they are not unique).

We observe that the arc (x∗(t), 0) solves (locally uniquely) the auxiliary
problem of minimizing �(x(0, x(T ))+y(T ) over the trajectories (x, y) of F which
satisfy the boundary conditions

(x(0), x(T )) ∈ S, y(0) = 0.

The aim is to apply Theorem 2.1 to this context, so in this proof we must allow
normal cones to enter.

It is easy to see that F satisfies the basic hypotheses of the preceding section
(graph closedness and measurability); we proceed now to verify that a strong
form of the bounded slope condition holds. That is, we demonstrate the exis-
tence of a constant c such that for any (t, x) ∈ T ε

∗ , whenever (α, µ, β, ν) is a
proximal normal to G(t) at a point

(x, y, f(t, x, u, v), r), with r = θ
[
|u − u∗(t)|2 + |v − v∗(t)|2

]
,

the following inequality holds:

|(α, µ)| ≤ c|(β, ν)|. (∗)

Let K be a bound for the set C, and also for all derivatives in (x, u) evaluated
on that set. The definition of proximal normal tells us that as a function of
(x′, u′, v′), the quantity

〈α, x′〉 + µy′ + 〈β, f(t, x′, u′, v′)〉
+ νθ

[
|u′ − u∗(t)|2 + |v′ − v∗(t)|2

]
− Q(x′, u′, v′)

is maximized relative to the constraints

g(t, x′, u′, v′) ≤ 0, h(t, x′, u′, v′) = 0, v′ ∈ V (t)
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at the point (x, u, v), where Q is a quadratic-like term whose derivative vanishes
at that point. Note first that this gives µ = 0 (which is to be expected since F
has no dependence on y).

We fix v′ = v and apply the Lagrange multiplier rule (see, for example,
Clarke et al., 1998) to the reduced (x′, u′) optimization problem. We derive the
existence of multipliers γ ≥ 0 and λ such that 〈γ, g(t, x, u, v)〉 = 0 and

α + 〈β, Dxf(t, x, u, v)〉=−〈γ, Dxg(t, x, u, v)〉 − 〈λ, Dxh(t, x, u, v)〉
〈β, Duf(t, x, u, v)〉 + 2νθ(u − u∗(t))=−〈γ, Dug(t, x, u, v)〉 − 〈λ, Duh(t, x, u, v)〉 .

(The constraint qualification, as given by Lemma 3.1, implies that these neces-
sary conditions have the given ‘normal’ form.)

The second of these equations, combined with Lemma 3.1, implies

|(γ, λ)| ≤ M | 〈β, Duf(t, x, u, v)〉 + 2νθ(u − u∗(t))|.

This in turn, when combined with the first equation, yields (∗) for an appropriate
value of c depending only on M and K.

The characterization of proximal normal vectors just derived leads to one
for certain limiting normals:

Lemma 3.2 Let (α(t), µ(t), β(t), ν(t)) be measurable and belong to NL
G(t)(x∗(t), 0,

ẋ∗(t), 0) a.e. Then µ = 0 a.e. and there exist measurable functions γ(t) ≥ 0 and
λ(t) with

|(γ(t), λ(t))| ≤ 4KM(|ν(t)| + |β(t)|) a.e.

such that one has

−α(t) = Dx {〈β, f〉 + 〈γ, g〉 + 〈λ, h〉} (t, x∗(t), u∗(t), v∗(t)) a.e.

To see this, we recall that by definition, for fixed t a.e., (α, µ, β, ν) is the
limit of points (αi, µi, βi, νi) which are proximal normals to G(t) at points
(xi, yi, f(t, xi, ui, vi), ri) converging to (x∗(t), 0, ẋ∗(t), 0). Then the µi are zero,
as we have seen, and since r→0, it follows that (ui, vi) converges to (u∗(t), v∗(t)).
(This is where θ > 0 is invoked.) Then passing to the limit in the proximal nor-
mal characterization obtained previously implies that −α(t) has a representation
of the given type. Standard measurable selection theorems (see, for example,
Clarke et al., 1998) show that the functions γ and λ can be defined measurably.

We turn now to the application of Theorem 2.1 (with R ≡ +∞), which
implies the existence of an arc (p, q) and a nonnegative scalar λ0 such that
λ0+‖(p, q)‖∞ �= 0, and such that the Euler inclusion, the Weierstrass condition,
and the transversality condition are satisfied (for the auxiliary problem). We
proceed now to interpret those three conclusions in the present context.

First, the transversality condition gives

(p(0),−p(T ))− λ0∇�(x∗(0), x∗(T )) ∈ NL
S (x∗(0), x∗(T )), q(T ) = −λ0.
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The Euler inclusion implies that q is constant (see Lemma 3.2), so that in fact
q is identically −λ0. It follows that λ0 + ‖p‖∞ �= 0; by scaling we can take
λ0 + ‖p‖∞ = 1.

The following result builds upon Lemma 3.2 and allows us to interpret the
Euler inclusion.

Lemma 3.3 There exist measurable functions γ(t) ≥ 0 and λ(t) with

|(γ(t), λ(t))| ≤ 4KM(λ0 + |p(t)|) a.e.

such that one has

−ṗ(t) = Dx {〈p, f〉 + 〈γ, g〉+ 〈λ, h〉} (t, x∗(t), u∗(t), v∗(t)) a.e.

To see this, it suffices to observe that almost everywhere, the Euler inclusion
gives ṗ(t) as a convex combination of points αj such that (αj , 0, p(t),−λ0) is a
limiting normal to G(t) at (x∗(t), 0, ẋ∗(t), 0). But then the result follows from
Lemma 3.2.

Finally, we observe that the Weierstrass condition is equivalent to the as-
sertion that almost everywhere the maximum over C(t, x∗(t)) of the following
function of (u, v):

〈p(t), f(t, x∗(t), u, v)〉 − λ0θ
[
|u − u∗(t)|2 + |v − v∗(t)|2

]

is attained at (u∗(t), v∗(t)).
Note that all the required assertions of the theorem would now hold if θ were

zero. The final step in the proof is a sequencing argument to arrive at this.
We consider the above for a sequence of θi decreasing to 0, letting the asso-

ciated data be denoted pi, γi, λi, λ
i
0. A routine use of Gronwall’s Lemma (based

upon the bound for |ṗi(t)| furnished by Lemma 3.3) shows that the pi are equi-
Lipschitz. We may suppose that the sequence converges uniformly to a limit p,
and that λi

0 converges to λ0; then we have ‖p‖∞ + λ0 = 1. (We can normalize
at the end to obtain λ0 equal to 0 or 1.) The limiting transversality and Weier-
strass conditions are the ones affirmed in the statement of the theorem, so only
the adjoint equation needs verifying.

The functions (γi, λi) are bounded in L∞ (Lemma 3.2), and can be assumed
to converge weak* to a limit (γ, λ). Since this convergence preserves linear
equalities and inequalities, we see that the limiting data have all the required
properties, and the proof is complete.

Remarks

The proof. Note that the proof is essentially a direct appeal to Theorem 2.1.
For the most part it consists of interpreting the normal cones that are involved.
The device which makes unique the optimal control is a familiar one in deal-
ing with inclusions, as is the sequential compactness argument for the adjoint
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inclusion. Other familiar devices (see Clarke, 1983, and Chapter 5 of Clarke,
2005) would be involved in extending the result to cover nonsmooth data, or in
reducing the continuity or boundedness requirements, or in considering variable
time problems. We remark that a more general type of constraint qualification
could also be used above, one in which normal cones to the graph of V intervene.
The extension to unilateral (or pure) state constraints, ruled out here by the
constraint qualification, can also be envisaged (but then the adjoint variable is
of bounded variation, see Clarke, 1983) as can a ‘hybrid’ form similar to the one
described in Chapter 5 of Clarke (2005) in which a cost integral of very general
nature is admitted.

Transversality. We have violated our ban against normal cones in the state-
ment of the Theorem, as regards transversality. To compensate, let us remark
that if S is described by a system of equalities and inequalities in terms of
smooth functions, then the limiting normal vectors can be written as linear
combinations of the derivatives of those functions (see Clarke et al., 1998), thus
eliminating the explicit reference to a normal cone. Classically, transversality
conditions have often been expressed in this ‘Lagrange multiplier form’.

Type of minimum. We have assumed in the Theorem that x∗ is a strong
local minimum for the problem, but the proof is unchanged if it is supposed
instead that we have a local W 1,1 minimum as defined earlier, since that is
adequate in order to invoke the differential inclusion results. In a similar vein,
when the case of unbounded controls is considered, the notion of ‘Pontryagin
minimum’ can be treated by introducing a radius function.
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