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Abstract: In this article we focus on the global well-posedness of
the differential equation utt−∆u+|u|kj′(ut) = |u|p−1

u in Ω×(0, T ),
where j′ denotes the derivative of a C1 convex and real valued func-
tion j. The interaction between degenerate damping and a source
term constitutes the main challenge of the problem. Problems with
non-degenerate damping (k = 0) have been studied in the literature
(Georgiev and Todorova, 1994; Levine and Serrin, 1997; Vitillaro,
2003). Thus the degeneracy of monotonicity is the main novelty
of this work. Depending on the level of interaction between the
source and the damping we characterize the domain of the parame-
ters p,m, k, n (see below) for which one obtains existence, regularity
or finite time blow up of solutions. More specifically, when p ≤ m+k
global existence of generalized solutions in H1 × L2 is proved. For
p > m + k, solutions blow up in a finite time. Higher energy solu-
tions are studied as well. For H2 ×H1 initial data we obtain both
local and global solutions with the same regularity. Higher energy
solutions are also proved to be unique.

Keywords: wave equations, damping and source terms, weak
solutions, sub-differential, blow-up of solutions, energy estimates.

1. Introduction

Let j(s) be a C1 convex, real valued function defined on R and let j′ denotes the
derivative of j. The following assumptions are imposed throughout the paper.
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Assumption 1.1 There exist positive constants c, c0, c1, c2 such that ∀s, v ∈ R:
1. j(s) ≥ c|s|m+1, |j′(s)| ≤ c0|s|m + c1
2. (j′(s) − j′(v))(s − v) ≥ c2|s− v|m+1.

Let Ω be a bounded domain in R
n with a smooth boundary Γ. We consider

the following initial-boundary value problem:

utt − ∆u+ |u|kj′(ut) = |u|p−1
u, in Ω × (0, T ) ≡ QT ,

u(x, 0) = u0(x) ∈ H1
0 (Ω), ut(x, 0) = u1(x) ∈ L2(Ω), (1)

u = 0, on Γ × (0, T ),

where the problem is studied for positive k,m, p and such that: k ≤ n
n−2 ,

p + 1 < 2n
n−2 , if n ≥ 3. This paper is concerned with the long-time behavior

of solutions to the initial-boundary value problem (1). Of central interest is
the relationship of the source and damping terms to the behavior of solutions.
Interestingly, the partial differential equation in (1) is a special case of the
prototype evolution equation

utt − ∆u+ R(x, t, u, ut) = F(x, u), (2)

where in (2) the nonlinearities satisfy the structural conditions:

vR(x, t, u, v)≥0, R(x, t, u, 0)=F(x, 0)=0, and F(x, u)∼ |u|p−1
u for large |u| .

Various special cases of (2) arise in quantum field theory and some important
mechanical applications. See for example Jörgens (1961) and Segal (1963).

A benchmark equation, which is a special case of (1), is the following well-
known polynomially damped wave equation studied extensively in the literature
(see for instance Pitts and Rammaha, 2002; Rammaha and Strei, 2002):

utt − ∆u+ |u|k |ut|m−1
ut = |u|p−1

u, in Ω × (0, T ),

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω, (3)
u(x, t) = 0 on Γ × (0, T ) .

Indeed, by taking j(s) = 1
m+1 |s|m+1 we easily verify that Assumption 1.1 is

satisfied. It is also easy to see in this case that problem (1) is equivalent to
(3). It is worth noting here that when the damping term |u|k |ut|m−1

ut is
absent, the source term |u|p−1

u drives the solution of (3) to blow-up in finite
time, Glassey (1973), Levine (1974), Payne and Sattinger (1981), Tsutsami
(1972). In addition, if the source term |u|p−1

u is removed from the equation,
then damping terms of various forms are known to yield existence of global
solutions, (see Agre and Rammaha, 2001; Barbu, 1976; Ang and Dinh, 1988;
Haraux, 1981). However, when both damping and source terms are present
in the equation, then the analysis of their interaction and their influence on
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the global behavior of solutions becomes more difficult. We refer the reader
to Georgiev and Todorova (1994), Levine, Park and Serrin (1997), Pitts and
Rammaha (2002), Rammaha and Strei (2002), Serrin, Todorova and Vitillaro
(2003), Todorowa (1998), and the references therein.

It should be noted that if k = 0 and p = 0 then equation (1) can be treated
via the theory of monotone operators and the full well-posedness of strong solu-
tions (in the terminology of monotone operator theory) is now classical, Barbu
(1976). In addition, with k = 0, the presence of a locally Lipschitz source term
from H1(Ω) into L2(Ω) does not affect the arguments for establishing the exis-
tence of local solutions via perturbation theory of monotone operators. More-
over, if p ≤ m then one can derive the necessary a priori bounds that guarantee
that every local solution is indeed global in time, Georgiev and Todorova (1994),
Levine and Serrin (1997), Pitts and Rammaha (2002).

The situation, however is different when the damping term is degenerate.
From the applications point of view degenerate problems of this type arise quite
often in specific physical contexts: for example when the friction is modulated
by the strains. However, from the mathematical point of view this leads to
degeneracy of the monotonicity argument. In fact, when k > 0, (3) is no longer
a locally Lipschitz perturbation of a monotone problem (even in the case when
p ≤ n

n−2 , i.e., the source term is a locally Lipschitz function from H1(Ω) into
L2(Ω)). Thus, the monotone operator theory does not apply. This fact combined
with a potential strong growth of the damping term (particularly acute when
m > 1) makes the problem interesting and the analysis more subtle.

One of the fundamental issues that one has to deal with is a correct definition
of a solution and its relation to the equation. The problem with degenerate
damping has been first addressed in Levine and Serrin (1997), where global
nonexistence of solutions was shown for the case k + m < p under several
other restrictions imposed on the parameters n, k,m, p. However, Levine and
Serrin (1997) provide only negative results (blow up of solutions in a finite
time) without any assurance that a relevant local solutions does indeed exist.
In fact, proving existence of solutions in the degenerate case turned out to be
the main issue. The techniques previously developed for monotone and non-
degenerate models are no longer applicable. For this reason, the global non-
existence result in Levine and Serrin (1997) has attracted considerable attention
to the problem. It became clear that in order to justify fully the meaning of the
global nonexistence, one must prove local existence of solutions. In fact, the first
result in this direction is given in the recent paper, Pitts and Rammaha (2002),
where the case of sub-linear damping, i.e., m < 1 is treated. For this case Pitts
and Rammaha (2002) established local and global (when m+ k ≥ p) existence
and uniqueness. In addition, the blow up of solutions (when m + k < p) is
also proved in Pitts and Rammaha (2002) for the relevant class of solutions.
While the case m < 1 has been fully understood, nothing was known until
recently about the most challenging super-linear damping m ≥ 1. Clearly, the
techniques used for the sub-linear case in Pitts and Rammaha (2002) and based
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on Schauder’s fixed point theorem can no longer be applied.
It is the main goal of this paper to address the issue of local and global

existence for the super-linear case. It turns out that in order to deal with the
problem one needs to introduce a suitable concept of solutions that is based
on variational inequalities. As a consequence, a natural setting of the problem
is within the realm of multi-valued analysis. The recent manuscript, Barbu,
Lasiecka and Rammaha (2005), provides a detailed study of this problem in
a more general framework of nonlinear damping given by a sub-differential ∂j
of a convex function that is not necessarily smooth. In this paper we restrict
our attention to differentiable convex functions j(s). In that case a more di-
rect analysis can be provided and additional regularity properties of solutions
can be established. Thus, the main goal of the present short manuscript is to
highlight some of the results given in Barbu, Lasiecka and Rammaha (2005)
and to explain, in a more direct framework, the basic ideas and concepts used
for the proof of the well-posedness for the degenerate model. In addition, we
complement the study in Barbu, Lasiecka and Rammaha (2005) by addressing
the issue of uniqueness of solutions.

In order to proceed with the presentation of our results we shall introduce the
appropriate definitions of solutions. First, we give the definition of a generalized
solution, which satisfies a certain variational inequality. In discussing finite en-
ergy solutions (i.e., (u, ut) ∈ H1(Ω)×L2(Ω)) we shall impose another restriction
on the parameters p,m, k :

p ≤ max{p
∗

2
,
p∗m+ k

m+ 1
}; p∗ ≡ 2n

n− 2
. (4)

Remark 1.1 We note here that the range of values of the parameter p is beyond
what is required for the source term to be a locally Lipschitz function from H1(Ω)
into L2(Ω)), as typically assumed in the literature, Pitts and Rammaha (2002),
and even in the monotone non-degenerate case, Georgiev and Todorova (1994).

Definition 1.1 A function u ∈ Cw([0, T ], H1
0 (Ω)) ∩ C1

w([0, T ], L2(Ω)) with
|u|kj(ut) ∈ L1(Ω×(0, T )) and under the condition (4) is said to be a generalized
solution to (1) if and only if for all 0 < t ≤ T the following inequality holds:
∫ t

0

∫
Ω

(utvt−∇u∇v)dxdt+ 1
2

∫
Ω

[u2
t (t)+|∇u(t)|2]dx+

∫ t

0

∫
Ω

|u|k[j(ut) − j(v)]dxdt

≤
∫ t

0

∫
Ω

|u|p−1u(ut−v)dxdt+
1
2

∫
Ω

[u2
1 + |∇u0|2 − 2u1v(0)]dx (5)

for all functions v satisfying

v ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0(Ω)) ∩ L∞(Ω × (0, T )), v(t) = 0.

• We note here that, if u is a generalized solution to (1), then u satisfies
|u|kj′(ut) ∈ Lr(Qt) where r = p∗(m+1)

k+p∗m > 1 and |u|p|ut| ∈ L1(Qt).
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• It should be noted here that Definition 1.1 is a proper extension of the no-
tion of classical solutions. Indeed, if u is a sufficiently smooth generalized
solution, then u satisfies the classical definition of “weak” solution. To see
this it suffices to take in Definition 1.1 the test function v(t) = ut(t)+ψ(t),
where ψ ∈ H1,1(Qt) ∩ L∞(Qt). Integration by parts and accounting for
cancellation of terms yields classical variational definition of weak solu-
tions given by equality:

∫ t

0

∫
Ω

(−utvt + ∇u∇v)dxdt +
∫

Ω

u1v(0)dx +
∫ t

0

∫
Ω

|u|kj′(ut)vdxdt

=
∫ t

0

∫
Ω

|u|p−1uvdxdt, (6)

for all v satisfying v ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0(Ω)), v(t) = 0.

It should be noted here that the above definition is equivalent to

�u = −|u|kj′(ut) + |u|p−1u, a.e. (x, t) ∈ Ω × (0, T ),

where � ≡ d2

dt2
− ∆ is understood in the sense of distributions.

The following notation will be used in the sequel:

|u|s,Ω ≡ |u|Hs(Ω) and ‖u‖p ≡ ‖u‖Lp(Ω) ,

whereHs(Ω) and Lp(Ω) stands for the classical Sobolev spaces and the Lebesgue
spaces, respectively. Also, we let A : L2(Ω) → L2(Ω), where A = −∆ with its
domain D(A) = H2(Ω) ∩H1

0 (Ω).

Our main result, which establishes local and global existence of generalized
solutions, reads as follows:

Theorem 1.1 Generalized solutions. Under Assumption 1.1 and condition
(4), there exists a local generalized solution to (1) defined on (0, T0) for some
T0 > 0. If, in addition, p ≤ k + m, then the said generalized solution is global
and T0 may be taken arbitrarily large.

Remark 1.2 If k = 0, then the variational inequality in (1.1) becomes equality
and the solution u is unique and satisfies the equation in the sense of (1) with
j(ut) ∈ L1(Qt), ut ∈ Lm+1(Qt). It should be pointed out that the main difficulty
of the problem under consideration in Theorem 1.1 is the fact that the damping
term is not monotone and degenerate (k > 0). This difficulty goes away when
k = 0. As shown later (see Remark 3.1), the proof of Theorem 1.1 simplifies
drastically when k = 0 and our arguments lead to stronger conclusions. In
particular, the strong monotonicity allows us to replace inequalities by equali-
ties. Thus, for k = 0 one obtains the existence theory which is consistent with
the literature and provides an extension to a larger “supercritical” set for the
parameter p, namely, p ≥ n

n−2 (see Georgiev and Todorova (1994) for details).
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The next Theorem addresses the issue of propagation of regularity. This
means that more regular data produce more regular solutions. In fact, the
result below states that this is always the case locally (i.e., for sufficiently small
times). However, in the special case when the parameter p is below the critical
value k +m, then the propagation of regularity is a global phenomenon.

Theorem 1.2 Strong solutions. With the validity of Assumption 1.1, further
assume that n < 5 and

k ≥ 1, 2 ≤ p <
4

n− 2
+ 1, m+ 1 <

n

n− 2
, k +m <

4
n− 2

+ 1. (7)

Then, for every initial data satisfying u0 ∈ H2(Ω) ∩H1
0 (Ω), u1 ∈ H1

0 (Ω), there
exists T0 > 0 such that (1) has a unique local solution u with the regularity
that u ∈ C([0, T ], H2(Ω))∩C1([0, T ], H1(Ω)), for some T ≤ T0 where T0 may be
finite. The said solution depends continuously on the initial data, with respect
to finite energy norm. In addition, if we assume that p ≤ k + m, p ≤ p∗

2 , and
either k = 0 or else k

p∗ + m
2 ≤ 1

2 , then regular solutions are global and T0 can
be taken arbitrarily large.

Finally, we address the issue of a strong source (large values of p when
p > k+m) which may lead to a finite-time blow up of solutions. Here, our results
are inspired by Georgiev and Todorova (1994), where the question of finite
time blow up in the presence of damping in wave equations has been addressed
first and solved optimally. The arguments of Georgiev and Todorova (1994)
were later generalized to a larger class of damped hyperbolic like dynamics,
Levine and Serrin (1997), and more recently adapted in Pitts and Rammaha
(2002) in order to treat blow-up of solutions in the degenerate case with k > 0,
j(s) = |s|m+1. An adaptation of the arguments in Pitts and Rammaha (2002)
(for details see Barbu, Lasiecka and Rammaha, 2005) leads to the following blow
up result:

Theorem 1.3 Assume the validity of Assumption 1.1 with c1 = 0 and p > k+m.
In addition, assume that E0(0) < 0, where E0(0) is the initial energy given by

E0(0) =
1
2

(
|u1|20,Ω +

∣∣∣A1/2u0

∣∣∣2
0,Ω

)
− 1
p+ 1

‖u0‖p+1
Lp+1(Ω) .

Then, weak solutions to (1) blow up in a finite time.

Remark 1.3 The global existence result obtained in Theorem 1.1 is optimal.
Indeed, in view of Theorem 1.3 the range of parameters p ≤ k+m is the largest
possible in order to obtain globality of solutions.

We conclude the introduction with few words about the methods used for
the proofs. Our method of the proof of the main result in Theorem 1.1 relies
on the following:
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We first establish the a priori bound for the damping-source problem under the
assumption that p ≤ k + m. This a priori bound in Section 2 allows us to
construct a multi-valued fixed point argument. In order to show an existence of
a fixed point, one must establish two facts:

(i) First, the solvability of the problem for a fixed argument (see equation (24)).
This is accomplished by applying an appropriate Faedo-Galerkin method.

(ii) Second, the upper semi-continuity of the nonlinear map F (see Section 3).
For this part, our argument is based on subtle approximations by weakly lower
semi-continuous functions. As usual in this type of problems, reconstruction of
a weak limit is the main technical issue and core of the argument.

2. A priori bounds - local and global

We shall show that all generalized solutions admit an a priori bound in the
topology specified by the Definition 1.1. In addition, this a priori bound is
global (i.e., it holds on [0, T ] for any T > 0) provided p ≤ k +m.

Lemma 2.1 Let u be a generalized solution of problem (1) with the assumption
that p ≤ k + m. Then for all initial data u0 ∈ H1

0 (Ω), u1 ∈ L2(Ω) and all
T > 0, we have the inequality

|u(t)|1,Ω + |ut(t)|0,Ω +
∫ t

0

∫
Ω

|u|kj(ut)dxdτ ≤ CT (|u0|1,Ω, |u1|0,Ω), (8)

for all t ∈ [0, T ]. If p > k +m and condition (4) is valid, then the bound in (8)
holds for 0 ≤ t ≤ T ≤ T0 for some T0 > 0, where T0 may be finite and depends
on the H1 × L2 norm of the initial data.

Proof. Define the following energy functions:

E(t) ≡ 1
2

(|∇u(t)|20,Ω + |ut(t)|20,Ω

)
and E1(t) ≡ E(t) +

1
p+ 1

∫
Ω

|u(t)|p+1dx.

By the Sobolev embedding theorem along with restriction p + 1 ≤ p∗, one
has

∫
Ω |u|p+1dx ≤ C(|u|1,Ω) along with the obvious bounds

E(t) ≤ E1(t) ≤ C(E(t)), (9)

where C(s) denotes throughout the proof a real valued function which is bounded
for bounded values of s.

By applying Definition 1.1 with v = 0, we obtain

E(t) +
∫ t

0

∫
Ω

|u|kj(ut)dxdτ ≤
∫ t

0

∫
Ω

|u|p|ut|dxdτ + E(0). (10)
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By adding the term
∫ t

0

∫
Ω
|u|p−1uutdxdτ = 1

p+1

∫
Ω

(|u|p+1 − |u0|p+1
)
dx to both

sides of inequality (10) we obtain

E1(t) +
∫ t

0

∫
Ω

|u|kj(ut)dxdτ ≤ 2
∫ t

0

∫
Ω

|u|p|ut|dxdτ + E1(0). (11)

For Qt ≡ Ω × (0, t), we define

QA ≡ {(x, s) ∈ Qt, |u(x, s)| > 1} and QB ≡ {(x, s) ∈ Qt, |u(x, s)| ≤ 1}.
Then, it follows from (11) that

E1(t)+
∫

Qt

|u|kj(ut)dQt ≤ E1(0)+2
∫

QA

|u|p|ut|dQA+2
∫

QB

|u|p|ut|dQB. (12)

We estimate the integrals on the right hand side of (12) as follows:∫
QB

|u|p|ut|dQB ≤ ρ |QB| + Cρ

∫
QB

|ut|2dQB

≤ ρ |Qt| + Cρ

∫ t

0

E(s)ds, (13)

where ρ > 0 is a sufficiently small value that will be chosen later. Also, here
and later |Qt| denotes the Lebesgue measure of Qt. In order to estimate the
other integral over QA we choose r = p−m

m+1 , q = m+1
m , q̄ = m+ 1. If r ≤ 0, the

application of Young’s inequality gives∫
QA

|u|p|ut|dQA ≤ Cε

∫
Qt

|u|p+1dQt + ε

∫
QA

|ut|m+1dQA

≤ Cε

∫
Qt

|u|p+1dQt + ε

∫
Qt

|u|k|ut|m+1dQt, (14)

where ε > 0 will be chosen later. On the other hand if r > 0, then we modify
the argument as follows:

∫
QA

|u|p|ut|dQA ≤
(∫

QA

|u|q(p−r)dQA

) 1
q

(∫
QA

|u|rq̄|ut|q̄dQA

) 1
q̄

=
(∫

QA

|u|p+1dQA

) 1
q

(∫
QA

|u|p−m|ut|m+1dQA

) 1
m+1

. (15)

We shall first deal with the case when p ≤ m+k. By applying Young’s inequality
and exploiting the assumption that p−m ≤ k, we obtain∫

QA

|u|p|ut|dQA ≤ Cε

∫
QA

|u|p+1dQA + ε

∫
QA

|u|p−m|ut|m+1dQA

≤ Cε

∫
Qt

|u|p+1dQt + ε

∫
Qt

|u|k|ut|m+1dQt. (16)
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Thus, in both cases we have∫
Qt

|u|p|ut|dQt ≤ ρ |Qt| + Cρ

∫ t

0

E(s)ds

+ ε

∫
Qt

|u|k|ut|m+1dQt + Cε

∫
Qt

|u|p+1dQt, (17)

where the constants ρ, ε > 0 can be taken arbitrary small. By combining in-
equalities (12) and (17), we obtain

E1(t) +
∫

Qt

|u|kj(ut)dQt ≤ E1(0) + ε

∫
Qt

|u|k|ut|m+1dQt

+ ρ |Qt| + (Cρ + Cε)
∫ t

0

E1(s)ds. (18)

By taking ε sufficiently small and keeping in mind (9) along with the coercivity
in Assumption 1.1, we obtain

E1(t) + cε

∫
Qt

|u|kj(ut)dQt ≤ E1(0) + ρ |QT | + C

∫ t

0

E1(s)ds, (19)

for some cε > 0. Now, by Gronwall’s inequality it follows that

E1(t) ≤ (E1(0) + ρ |Qt|) eCt. (20)

Finally, (20) leads to E1(t)+
∫

Qt
|u|kj(ut) ≤ CT (E0(0) + ρ |Qt|) , where the last

inequality is valid for all t ≤ T and T is being arbitrary as long as p ≤ k+m. If
p > k +m, then the above bound holds locally for sufficiently small T . Indeed,
by using Hölder’s and Young’s inequalities, we have instead of (13)-(16) the
following estimate:∫

Qt

|u|p|ut|dQt ≤ ε

∫
Qt

|u|k|ut|m+1dQt + Cε

∫
Qt

|u| p(m+1)−k
m dQt

≤ ε

∫
Qt

|u|k|ut|m+1dQt + Cε

∫ t

0

|u|
p(m+1)−k

m

1,Ω dt, (21)

whenever p(m+1)−k
m ≤ p∗. If, instead, p ≤ p∗

2 then the argument is direct.
In both cases a standard continuity argument yields the bound in (8) for a
sufficiently small T > 0.

3. Kakutani fixed point argument - the proof
of Theorem 1.1

Let w ∈ C(0, T ;Lq(Ω)) be a given element where throughout this section the
parameter q satisfies

max{2k, p+ 1,min{2p, p(m+ 1) − k

m
}} < q < p∗. (22)
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We shall consider the following variational inequality:

Find u ∈ Cw([0, T ], H1
0 (Ω)) ∩C1

w([0, T ], L2(Ω)), with
∫ T

0

∫
Ω |w|kj(ut)dxdt <∞,

such that for all 0 < t ≤ T the following inequality holds:
∫ t

0

∫
Ω

(ut vt −∇u∇v)dxdt +
1
2

∫
Ω

[u2
t (t) + |∇u(t)|2]dx

+
∫ t

0

∫
Ω

|w|k[j(ut) − j(v)]dxdt

≤
∫ t

0

∫
Ω

|w|p−1w(ut − v)dxdt +
1
2

∫
Ω

[u2
1 + |∇u0|2 + 2u1v(0)]dx (23)

for all functions v ∈ H1(0, t;L2(Ω)) ∩ L2(0, t;H1
0 (Ω)) ∩ L∞(Qt), v(t) = 0. For

a given argument w ∈ C(0, T ;Lq(Ω)) we consider the multi-valued mapping

F : C(0, T ;Lq(Ω)) → C(0, T ;Lq(Ω)),

where the action of F is defined by u ∈ Fw iff u is a solution to (3).
In the next subsections we shall prove that the mapping F is a well defined
multi-valued mapping on C(0, T ;Lq(Ω)), i.e., Range F (w) is nonempty for each
w ∈ C(0, T ;Lq(Ω)). In order to establish Theorem 1.1, it suffices to show that F
has a fixed point. We accomplish this, by using Kakutani-type Theorem, Zeidler
(1986), and the a priori bound established in Lemma 2.1. However, we first need
to prove the following facts: F (K) is convex and compact in C(0, T ;Lq(Ω)),
where K is being a suitably chosen (large) ball in C(0, T ;Lq(Ω)) whose radius
depends on the initial data. The second requirement of Kakutani’s theorem is
the upper semi-continuity of F . Due to the compactness of F (K), proving the
upper semi-continuity of F amounts to showing the following statement:
for a given sequence wn → w in C(0, T ;Lq(Ω)), and un → u in C(0, T ;Lq(Ω))
where un ∈ F (wn), we have u ∈ F (w). Indeed, this is equivalent to the fact
that the graph of F is closed in C([0, T ];Lq(Ω)) × C([0, T ];Lq(Ω)).

3.1. Well-posedness of the map F

For a given function w ∈ C(0, T ;Lq(Ω)), we consider the equation

utt − ∆u+ |w|kj′(ut) = |w|p−1w, (24)

whose variational formulation is the following:

find u ∈ C([0, T ], H1
0 (Ω)) ∩ C1

w([0, T ], L2(Ω)), utt ∈ L2(0, T ;H−1(Ω)) such that
the following identity holds
∫ t

0

∫
Ω

[uttv + ∇u∇v]dxdt+
∫ t

0

∫
Ω

|w|kj′(ut)vdxdt =
∫ t

0

∫
Ω

|w|p−1wvdxdt

(25)
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with u(0) = u0, ut(0) = u1 and test functions

v ∈ Cw([0, T ]; H1
0 (Ω) ∩ L(m+1) q

q−k
(Ω)).

The main results in this subsection are the following:

Lemma 3.1 Assume the validity of Assumption 1.1 and condition (22). Then,
there exists a unique solution u to the variational identity (25) such that u ∈
C(0, T ;H1

0 (Ω)) ∩ C1(0, T ;L2(Ω)) and the following bound holds for all t ≤ T :

|u(t)|21,Ω + |ut(t)|20,Ω +
∫

Qt

|w|k|ut|m+1dQt

≤ CT

(|u0|1,Ω, |u1|0,Ω, |w|C([0,T ];Lq(Ω))

)
. (26)

In addition, the following energy identity holds:

1
2

(|∇u(t)|20,Ω + |ut(t)|20,Ω

)
+

∫
Qt

|w|kj′(ut)utdQt =

1
2

(|∇u(0)|20,Ω + |ut(0)|20,Ω

)
+

∫
Qt

|w|p−1wutdQt. (27)

Corollary 3.1 For each w ∈ C([0, T ], Lq(Ω)), F (w) �= ∅. Moreover,
C([0, T ], Lq(Ω)) ⊂ Dom F .

Proof. We consider a standard Galerkin approximation scheme to the solution
of (25) based on the eigenfunctions {ek}∞k=1 of the operator A = −� with zero
boundary condition on ∂Ω. That is, we let un(t) =

∑n
k=1 un,k(t)ek where un(t)

satisfies

(untt, v)Ω + (∇un,∇v)Ω + (|w|kj′(unt), v)Ω = (|w|p−1w, v)Ω
(un(0), v)Ω = (u0, v)Ω, (unt(0), v)Ω = (u1, v)Ω (28)

for all v ∈ Vn := the linear span of {e1, ..., en}, and for convenience, we use
(., .)Ω to denote the standard L2(Ω)–inner product.

By standard nonlinear ordinary differential equations theory one obtains the
existence of a global solution to (28) with the following a priori bounds which
are uniform in n:

1
2

(|∇un(t)|20,Ω + |unt(t)|20,Ω

)
+

∫
Qt

|w|kj′(unt)untdQt =

1
2

(|∇un(0)|20,Ω + |unt(0)|20,Ω

)
+

∫
Qt

|w|p−1wuntdQt. (29)

By using the restrictions imposed on the parameter q, we obtain the estimates:
∫

Qt

|w|p|unt|dQt ≤ ε

∫
Qt

|unt|m+1|w|kdQt + Cε

∫ t

0

|w|
p(m+1)−k

m

Lq(Ω) dt (30)
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when p(m+1)−k
m ≤ q, and

∫
Qt

|w|p|unt|dQt ≤ ε

∫
Qt

|unt|2dQt + Cε

∫ t

0

|w|2p
Lq(Ω)dt (31)

when 2p ≤ q. Thus, it follows from (30), (31) and (3.1) that

|un(t)|21,Ω + |unt(t)|20,Ω +
∫

Qt

|w|kj(unt)dQt

≤ CT

(|u0|1,Ω, |u1|0,Ω, |w|C([0,T ];Lq(Ω))

)
. (32)

By using the coercivity condition in Assumption 1.1, we obtain

|un(t)|21,Ω + |unt(t)|20,Ω +
∫

QT

|w|k|unt|m+1dQT

≤ CT

(|u0|1,Ω, |u1|0,Ω, |w|C([0,T ];Lq(Ω))

)
. (33)

Hence, there exists a subsequence of {un}, which we still denote by {un}, that
satisfies

(un, unt) → (u, ut) weakly∗ in L∞(0, T ;H1(Ω) × L2(Ω)) (34)

Now, consider two solutions un and ul, where without loss of generality we
assume l ≥ n. Denote Unl ≡ un − ul. Then, it follows from (25) that Unl

satisfies variational equality

(Unltt, v)Ω + (∇Unl,∇v)Ω + (|w|kj′(unt) − j′(ult), v)Ω = 0
(Unl(0), v)Ω = (un0 − ul0, v)Ω, (unlt(0), v)Ω = (u1n − u1l, v)Ω, (35)

for all v ∈ Vn. By setting v = Unlt in (3.1) and by using the strong conver-
gence of the approximations to the initial data, one easily obtains the following
convergence result

|Unlt(t)|20,Ω + |Unl(t)|21,Ω +
∫ t

0

|w|k (j′(unt) − j′(ult), Unlt)Ω ds→ 0, (36)

as n, l → ∞. Now from (36) and the strong coercivity assumption, we conclude

|Unlt(t)|20,Ω + |Unl(t)|21,Ω +
∫ t

0

∫
Ω

|w|k|Unlt|m+1dxds → 0, (37)

as n, l → ∞. From (37) we infer the strong convergence

|w| k
m+1unt → η in Lm+1(QT ), as n→ ∞, (38)

for some η ∈ Lm+1(QT ). Moreover, we have

(un, utn) → (u, ut) strongly in L∞(0, T ;H1
0 (Ω) × L2(Ω)). (39)
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We remark here that the above strong convergence allows us to reconstruct the
limit function η. Indeed, η = |w| k

m+1ut. Thus,

|w| k
m+1unt → |w| k

m+1ut strongly in Lm+1(QT ), as n→ ∞. (40)

Equivalently,
∫

QT

|w|k|utn − ut|m+1dQT → 0, as n→ ∞.

In particular, as n→ ∞ (passing to a subsequence if necessary)

|w| k
m+1unt → |w| k

m+1ut point-wise almost everywhere x, t ∈ QT . (41)

Now in order to pass to the limit in the nonlinear term, we shall prove

|w| km
m+1 j′(unt) → |w| km

m+1 j′(ut) weakly in Lm+1
m

(QT ), as n→ ∞. (42)

To see this, we recall the a priori bound in (3.1), which implies

∫
QT

[
|w| km

m+1 |unt|m
]m+1

m

dQT =
∫

QT

|w|k|unt|m+1dQT ≤ CT .

Also, the growth condition imposed on j′(s) yields

∫
QT

[
|w| km

m+1 |j′(unt)|
] m+1

m

dQT ≤MT ,

for some constant MT > 0. Hence, by passing to a subsequence if necessary,
one has

|w| km
m+1 |unt|m → l weakly in Lm+1

m
(QT )

and

|w| km
m+1 j′(unt) → J weakly in Lm+1

m
(QT ).

By appealing to the almost everywhere point-wise convergence in (41) and
continuity of j′(s), we can identify the limits l and J . Indeed,

l = |w| km
m+1um

t , J = |w| km
m+1 j′(ut).

Therefore, we have

|w| km
m+1 |unt|m → |w| km

m+1 |ut|m weakly in Lm+1
m

(QT ) (43)
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and

|w| km
m+1 j′(unt) → |w| km

m+1 j′(ut) weakly in Lm+1
m

(QT ), (44)

as desired in (42).
From the weak convergence in (42) and the strong convergence in (40) we

infer that∫
Qt

|w|kj′(unt)untdQt →
∫

Qt

|w|kj′(ut)utdQt. (45)

Indeed, to see (45) we write
∫

Qt

|w|kj′(utn)untdQt =
∫

Qt

|w| km
m+1 j′(unt)|w| k

m+1untdQt,

and thus (45) follows easily from (42), (40) and duality.
Our next step is to establish the following convergence:

∫
Qt

|w|k|unt|m+1dxds →
∫

Qt

|w|k|ut|m+1dxds. (46)

Indeed, (46) becomes clear after writing

|w|k|unt|m+1 = |w| km
m+1 |unt|m−1unt|w| k

m+1unt, := g(zn)zn (47)

where we have used the notation

zn ≡ |w| k
m+1unt, g(zn) ≡ |zn|m−1

zn.

Let z = |w| k
m+1 ut. Then, we note that (40) and (43) yield

zn → z strongly in Lm+1(QT ); g(zn) → g(z) weakly in Lm+1
m

(QT ). (48)

Therefore, (46) follows easily from (47), the convergence in (48) and duality. By
applying the convergence in (46) to inequality (3.1) and keeping in mind weak
lower semi-continuity of the norm, we obtain

|u(t)|21,Ω+|ut(t)|20,Ω+
∫

Qt

|w|k|ut|m+1dQt≤CT

(|u0|1,Ω, |u1|0,Ω, |w|C(0,T ;Lq(Ω))

)
,

(49)
which establishes (26).

We shall prove next that
∫

Qt

|w|p−1wuntdQt →
∫

Qt

|w|p−1wutdQt. (50)
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When 2p ≤ q the above is just a consequence of the L2–weak convergence of
unt and the fact that |w|p ∈ L2(Qt). Otherwise, if p(m+1)−k

m ≤ q, then∫
Qt

||w|p−1w(unt − ut)|dQt ≤
∫

Qt

|w|p|unt − ut|dQt

≤ ε

∫ t

0

‖w‖
p(m+1)−k

m

Lq(Ω) dt+ ε|Qt| + Cε

∫
Qt

|w|k|unt − ut|m+1dQt. (51)

By (40) we conclude that the last term above converges to zero as n→ ∞. Thus
letting ε → 0, we obtain the desired conclusion in (50). By using (39), (45),
(50) and the energy identity in (3.1), we obtain the energy identity (3.1).

Our final step is the passage to the limit in the variational form of the
equation. By taking first a test function v as smooth as necessary we obtain
(|w|kj′(unt), v

)
QT

=
(
|w| km

m+1 j′(unt), |w| k
m+1 v

)
QT

→
(
|w| km

m+1 j′(ut), |w| k
m+1 v

)
QT

,

(52)

as long as v|w| k
m+1 ∈ Lm+1(QT ). Indeed, the latter holds for v ∈ Lq(m+1)/(q−k),

as desired. The passage to the limit in the linear terms is standard, and thus it
is omitted.

As to compactness and convexity of F , these properties are now straightforward
and follow from variational inequality (3) applied with v = 0. In fact, the
following result is easily obtained (see Barbu, Lasiecka and Rammaha, 2005, for
full details).

Lemma 3.2 F (K) is compact and F (w) is convex for every w ∈ K.

3.2. Upper semi-continuity of F

Before proving the upper semi-continuity of the mapping F , we shall prove the
following Proposition which is central to the argument.

Proposition 3.1 Let unt be any sequence which converges weakly in L2(QT ) to
a function ut. Let wn → w in C([0, T ];Lq(Ω)), where q satisfies (22). Further
assume that

∥∥|wn|k|unt|m+1
∥∥

L1(QT )
≤ M uniformly in n. Then, we have the

following:∫
Qt

|w|kj(ut)dQt ≤ lim inf
n→∞

∫
Qt

|wn|kj(unt)dQt,

∫
Qt

|wn|p−1wn(unt − v)dQt →
∫

Qt

|w|p−1w(ut − v)dQt, as n→ ∞, (53)
∫

Qt

|wn|kj(v)dQt →
∫

Qt

|w|kj(v)dQt, as n→ ∞,

for all v ∈ L∞(Qt).
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Proof. The second part of Proposition 3.1, in the case when p ≤ q
2 , follows

directly from the strong convergence

|wn|p−1wn → |w|p−1w in L2(Qt)

and the weak convergence

unt → ut weakly in L2(Qt).

If, instead, p(m+ 1) − k < qm (see condition (22)) we have:

w
k

m+1
n unt → w

k
m+1ut weakly in Lm+1(QT ),

|wn|p−1− k
m+1wn → |w|p−1− k

m+1w strongly in Lm+1
m

(QT ). (54)

Indeed, the second assertion follows from the strong convergence of wn in
Lq(QT ) and the restriction (p − k

m+1 )m+1
m ≤ q, implied by (22). As for the

second statement in (3.2), we notice first that by the assumption imposed in
Proposition 3.1, then |wn| k

m+1unt is uniformly bounded in Lm+1(QT ). Hence,
|wn| k

m+1unt → η weakly in Lm+1(QT ). On the other hand, by using the weak

convergence of unt in L2(QT ) and the strong convergence w
k

m+1
n → w

k
m+1 in

L2(QT ) (note that by (22) k
m+1 <

q
2 ) we obtain

|wn| k
m+1unt → |w| k

m+1ut weakly in L1(QT ).

This allows us to identify η with η = w
k

m+1ut, as desired. Having established
(3.2) the rest of the argument is straightforward. It suffices to write∫

Qt

|wn|p−1wnuntdQt =
∫

Qt

(
|wn| k

m+1unt

)(
|wn|p−1− k

m+1wn

)
dQt, (55)

where the first bracket in the right hand side of (55) converges weakly in
Lm+1(Qt), and the second bracket converges strongly in Lm+1

m
(Qt). This com-

pletes the proof of convergence∫
Qt

|wn|p−1wnuntdQt →
∫

Qt

|w|p−1wutdQt,

and hence the second convergence in (3.1) follows. The third part in the Propo-
sition is straightforward and it follows from the strong convergence of wn in
L 2

k
(QT ), which is implied by the assumption k ≤ q. To complete the proof of

Proposition 3.1 we need to prove the first part. To accomplish this, we introduce
the following approximation (truncation) of j:

jN (s) ≡

⎧⎪⎨
⎪⎩

j(s), |s| ≤ N
j(N) + ∂j(N)(s−N), s > N

j(−N) + ∂j(−N)(s+N), s < −N.
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It is easy to see that for each N , JN is convex, continuous, and satisfies

jN (s) ≤ j(s)
jN (s) → j(s), as N → ∞, for all s ∈ R. (56)

Moreover, j′N (s) = j′(s), for all s ∈ [−N,N ], j′N (s) = j′(N), for all s ≥ N and
j′N (s) = j′(−N), for all s ≤ −N . Hence, for all v ∈ L2(Qt), we have

jN (v) ∈ L2(Qt), j′N (v) ∈ L∞(Qt). (57)

In what follows we shall assume, without loss of generality, that j ≥ 0. Then,
from (56) we infer that for each fixed N

lim inf
n→∞

∫
Qt

|wn|kj(unt)dxdt ≥ lim inf
n→∞

∫
Qt

|wn|kjN (unt)dxdt. (58)

From convexity of j it follows that

jN (v) ≤ jN (unt(t, x)) + j′N (v)(v − unt(t, x)); for all v ∈ R. (59)

By recalling (57), it follows from (59) that∫
Qt

|wn|k [jN (v) − j′N (v)(v − unt)] dxdt ≤
∫

Qt

|wn|kjN (unt)dxdt, (60)

for all v ∈ L2(Qt), and from (56) one has∫
Qt

|wn|k [jN (v) − j′N (v)(v − unt)] dxdt ≤
∫

Qt

|wn|kj(unt)dxdt, (61)

for all v ∈ L2(Qt). By noting that

|wn|kunt → |w|kut weakly in Lr(Qt), for some r > 1, as n→ ∞; and∫
Qt

|wn|kjN (v)dxdt →
∫

Qt

|w|kjN (v)dxdt, as n→ ∞, (62)

and by recalling the fact that ∂jN (v) ∈ L∞(Qt), we obtain∫
Qt

|w|k [jN (v) − j′N (v)(v − ut)] dxdt ≤ lim inf
n→∞

∫
Qt

|wn|kj(unt)dxdt, (63)

for all v ∈ L2(Qt). By taking v = ut ∈ L2(Qt), (63) yields∫
Qt

|w|kjN (ut)dxdt ≤ lim inf
n→∞

∫
Qt

|wn|kj(unt)dxdt. (64)

Since jN (ut) → j(ut) almost everywhere in Qt as N → ∞, and jN (s) is non-
negative for each N , we are in a position to apply Fatou’s Lemma and able to
conclude that∫

Qt

|w|kj(ut)dxdt ≤ lim inf
n→∞

∫
Qt

|wn|kj(unt)dxdt. (65)
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Hence, the first part in Proposition 3.1 follows immediately, which completes
the proof.

We are now in a position to prove the upper semi-continuity of the map-
ping F . Specifically, we have the following Lemma.

Lemma 3.3 Let wn → w in C([0, T ];Lq(Ω)). Let un ∈ F (wn) be such that
un → u in C([0, T ];Lq(Ω)). Then, u ∈ F (w).

Proof. Since un ∈ F (wn), then from the definition of the mapping F we have
the following a priori bounds:

|un(t)|1,Ω + |unt(t)|0,Ω ≤ C(|w|C([0,T ];Lq(Ω)), |u0|1.Ω, |u1|0,Ω)∫
QT

|wn|kj(unt)dQT ≤ C(|w|C([0,T ];Lq(Ω)), |u0|1.Ω, |u1|0,Ω). (66)

Therefore, by passing to a subsequence if necessary we have

(un, unt) → (u, ut) weakly∗ in L∞(0, T ;L2(Ω) ×H1(Ω)). (67)

By Simon’s compactness criterion and recalling that q < 2n
n−2 we conclude that

un → u, strongly in C([0, T ];Lq(Ω)). (68)

Therefore, the proof of the Lemma will be completed if we show that u ∈ F (w).
In order to do so, we recall the variational definition of the mapping F given in
(3). Since un ∈ F (wn), we have

∫ t

0

∫
Ω

(unt vt −∇un∇v)dxdt +
1
2

∫
Ω

[|unt(t)|2 + |∇un(t)|2]dx

+
∫ t

0

∫
Ω

|wn|k[j(unt) − j(v)]dxdt

≤
∫ t

0

∫
Ω

|wn|p−1wn(unt − v)dxdt +
1
2

∫
Ω

[u2
1 + |∇u0|2 + 2u1v(0)]dx, (69)

for all test functions v ∈ H1(0, t;L2(Ω)) ∩ L2(0, t;H1
0 (Ω)) ∩ L∞(Qt), v(t) = 0.

Our goal is to pass to the limit in inequality (3.2). Indeed, by using the results of
Proposition 3.1 and the weak lower semi-continuity of the energy function E(t),
we can easily pass to the limit in inequality (3.2) to obtain that u satisfies the
variational inequality (3). Moreover, since we also have the a priori regularity
(see (67))

u ∈ Cw([0, T ];H1(Ω)) ∩ C1
w([0, T ];L2(Ω))

we may apply (3) with v = 0 to obtain
∫

QT
|w|kj(ut)dQT < ∞. Therefore,

u ∈ F (w) as desired.
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3.3. Proof of Theorem 1.1

Proof. Since F (K) is compact, F is upper semi-continuous (Lemma 3.3), F (w)
is convex, and the a priori bound holds in Lemma 2.1 (in the case p > k + m
the time T may be finite), then by applying standard truncation device for the
mapping F we are in a position to apply Kakutani’s Theorem. Indeed, let R be
large enough so that for any u ∈ γF (u), where 0 < γ < 1, we have

|u|C([0,T ];Lq(Ω)) < R. (70)

Indeed, R can be determined by using the a priori bound Lemma 2.1 and the
Sobolev embedding H1(Ω) ↪→ Lq(Ω). We choose K to be a ball of radius R in
C([0, T ];Lq(Ω)) centered at the origin. Specifically, we set K ≡ BC(Lq)(0, R),
where C(Lq) ≡ C([0, T ];Lq(Ω)). Next, we define the truncated mapping FR as
follows:

yR ∈ FR(w) iff

⎧⎪⎨
⎪⎩

yR = y, y ∈ F (w) ∩BC(Lq)(0, R)

R
|y|C(Lq)

y, y ∈ F (w), |y|C(Lq) > R.
(71)

Thus, FR(C(Lq)) ⊂ K and FR satisfies all assumptions of Kakutani’s Theorem
(see Zeidler, 1986, Theorem 9B, page 452). Therefore, FR has a fixed point,
i.e., there exists u ∈ C([0, T ];Lq(Ω)) such that u ∈ FR(u). At this end, we note
that we have two possibilities. Either u ∈ F (u) or else u ∈ γF (u), where γ =

R
|y|C(Lq)

< 1 for some y ∈ F (u), |y|C(Lq) > R. However, the latter case cannot

occur since if it did, then we would have |u|C(Lq) = R. But this contradicts the
a priori bound |u|C(Lq) < R. Thus, we would have u ∈ F (u) as desired.

Remark 3.1 In the special case when k = 0 the argument is much simpler and
the conclusions obtained are stronger than what has been stated in Proposition
3.1. Indeed, if k = 0, then the strong monotonicity condition imposed on j′

allows us to prove the strong convergence: unt → ut in Lm+1(Qt), where un

satisfies equation (28). This follows from (37) after setting k = 0. Having
obtained the strong convergence unt → ut in Lm+1(Qt), we likewise obtain the
strong convergence: j(unt) → j(ut) in L1(Qt). Based on the strong convergence
of j(unt) we can pass to the limit in equation (28) proving that u = F (w), where
F (w) is defined by the variational equality and not inequality. In addition, the
uniqueness of solutions is a direct consequence of monotonicity.

3.4. Theorem 1.2 and uniqueness of solutions

Theorem 1.1 provides existence of generalized solutions under very general as-
sumptions assumed in the parameters p,m, k, n. However, this theorem does
not provide any uniqueness statement (in the degenerate case k > 0) for this
large class of solutions. There are two classes of degenerate problems where
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uniqueness of solutions is available: the sub-linear case m ≤ 1 and the case
of higher energy solutions. The proof of uniqueness of solutions along with
continuous dependence on initial conditions - for the strictly sub-linear case
(m < 1) - is given in Pitts and Rammaha (2002). The critical sub-linear case
m = 1 has been treated in Barbu, Lasiecka and Rammaha (2005). In this latter
case, uniqueness of solutions has been proved in Barbu, Lasiecka and Rammaha
(2005) but without the continuous dependence on initial conditions (in the finite
energy norm). As for higher energy solutions, the existence of strong solutions
requires additional restrictions imposed on the parameters p,m. Indeed, under
the assumption (7) Barbu, Lasiecka and Rammaha (2005) provide a proof of
local existence of higher energy H2(Ω) ×H1(Ω) solutions. When p ≤ k +m it
is also shown there that solutions are global. The proof of existence of higher
energy solutions in Barbu, Lasiecka and Rammaha (2005) is technical and in-
volves rather special fixed point argument along with a barrier method used for
quasilinear hyperbolic equations in Lasiecka and Ong (1999). It turns out that
higher energy solutions are also unique. In fact, the uniqueness result holds for
the same domain of parameters as local existence. This result is proved below.

Lemma 3.4 Local solutions given in Theorem 1.2 are unique. Moreover, the
solutions depend continuously on the initial data in the topology of finite energy
space i.e. H1(Ω) × L2(Ω).

Proof. Let u1 and u2 denote two possible local solutions given by Theorem 1.2
and originating at the same initial condition. Our aim is to show that ũ ≡ u1−u2

is equal identically to zero. Since the solutions are a-priori inH2(Ω)×H1(Ω) one
can justify application of energy method applied to the equation obtained for ũ.
By exploiting the convexity of j and denoting Ẽ(t) =

∫
Ω[|ũt|2 + |∇ũ|2]dx, one

obtains the following inequality satisfied for 0 ≤ t < Tm where Tm is maximal
time of existence:

Ẽ(t) ≤ C

∫ t

0

∫
Ω

ũt[(|u1|k − |u2|k)j′(u2t) + (|u1|p − |u2|p)]dxdt. (72)

The main task is in estimating the two nonlinear terms on the right hand side
of (72). This is done by exploiting growth condition in Assumption 1.1 along
with multiple applications of Hölder’s and interpolation inequalities.

∫
Ω

ũt[(|u1|k − |u2|k)∂j(u2t)dx

≤ C|ũt|0,Ω|ũ|L 2n
n−2

[
∫

Ω

[|u1|n(k−1) + |u2|n(k−1)]|u2t|mndx]
1
n . (73)

Since n < 5, we have H2(Ω) ⊂ Lr(Ω), 1 ≤ r <∞, we are in a position to apply
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Hölder’s inequality to the second term in (73) with r → ∞. This gives∫
Ω

[|u1|n(k−1) + |u2|n(k−1)]|u2t|mndx

≤ C[
∫

Ω

[|u1|n(k−1)r + |u2|n(k−1)r]dx]
1
r [

∫
Ω

|u2t|mnr̄dx]
1
r̄

≤ C[|u1|n(k−1)
2,Ω + |u2|n(k−1)

2,Ω ]|u2t|mn
Lmnr̄

. (74)

Since r̄ → 1 and condition (7) implies

m+ 1 <
n

n− 2
=⇒ m <

2
n− 2

=⇒ mn <
2n
n− 2

= p∗;

then by selecting an appropriate large r we obtain mnr̄ ≤ p∗. The Sobolev
embedding at the critical level along with (74) then imply∫

Ω

[|u1|n(k−1) + |u2|n(k−1)]|u2t|mndx ≤ C[|u1|n(k−1)
2,Ω + |u2|n(k−1)

2,Ω ]|u2t|mn
1,Ω.

(75)

As for the second nonlinear term in (72) we have∫
Ω

|ũt|[|u1|p − |u2|p]dx

≤ C|ũt|0,Ω[
∫

Ω

|ũ| 2n
n−2 dx]

n−2
2n (

∫
Ω

[|u1|n(p−1) + |u2|n(p−1)]dx)
1
n

≤ C|ũt|0,Ω|ũ|Lp∗ (|u1|p−1
Ln(p−1)

+ |u2|p−1
Ln(p−1)

)

≤ C|ũt|0,Ω|ũ|1,Ω(|u1|p−1
2,Ω + |u2|p−1

2,Ω ), (76)

where in the last step we have used the Sobolev embeddings:

H1(Ω) ⊂ Lp∗(Ω) = L 2n
n−2

(Ω), and H2(Ω) ⊂ Ln(p−1)(Ω).

Combining (72), (73, (75) and (76) one has for 0 ≤ t < Tm

Ẽ(t) ≤ C

∫ t

0

|ũt|0,Ω|ũ|1,Ω[|u1|n(k−1)
2,Ω + |u2|n(k−1)

2,Ω ]|u2t|m1,Ωdt. (77)

Since ui ∈ H2(Ω), uit ∈ H1(Ω) for i = 1, 2, the above inequality implies the
desired conclusion via standard Gronwall’s inequality.
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