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1. Introduction

The paper examines linear control systems of the form

dx

dt
= A1(t)x + F1(t)y + B1(t)u

ε
dy

dt
= A2(t)x + F2(t)y + B2(t)u (1)

x(t0) = x̄, y(t0) = ȳ, u ∈ K.

Here x ∈ Rn, y ∈ Rm and the set K is a fixed set in Rk (the set K is possibly,
but not necessarily, compact). The matrix-valued maps in (1) have the apparent
dimensions; they are assumed to be continuous in the t variable. The coefficient
ε > 0 is thought of as a small parameter. It is therefore clear why the states x
and y are referred to as the slow and, respectively, the fast states. In particular,
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we are interested in the characteristics of the limit behavior of solutions of the
system as ε → 0.

Singularly perturbed control systems in general, and singularly perturbed
linear control systems in particular, have attracted the attention of investigators
for both the mathematical challenges they offer and for the applications. An
account of the theory, examples and applications can be found in Kokotovic,
Khalil and O’Reilly (1999). A detailed analysis of linear systems was carried
out in a series of papers by A.L. Dontchev and V.M. Veliov (1983, 1985a,b). The
approach followed in these references is to analyze the limit characteristics of the
solutions of (1) via the solutions of the, so called, system of order reduction; it
is based on Tikhonov’s approach to singularly perturbed equations. It suggests
that the limit behavior of (1) as ε → 0 is captured when the value ε = 0 is
plugged in (1), namely,

dx

dt
= A1(t)x + F1(t)y + B1(t)u

0 = A2(t)x + F2(t)y + B2(t)u (2)
x(t0) = x̄, u ∈ K.

Thus, the coupled system of differential and algebraic equations should reveal
the limit behavior of the singularly perturbed differential system. The initial
condition for the fast dynamics is absent from (2) since it is assumed that it can
be steered via a boundary layer to any of the solutions of the algebraic equation.
The method is very effective in describing the limit behavior, in particular when
applied to linear systems; but the solutions of (2) do not reveal the whole limit
structure.

Recent studies allow for an analysis of cases where the order reduction
method does not apply. The limit behavior then is captured by a system based
on the notion of limit distributions of control and fast state on the fast time
scale. See Artstein (2000, 2002, 2004c), Artstein and Gaitsgory (1997), Vigod-
ner (1997). The method is an extension of the order reduction method. It is
needed when the fast dynamics does not converge to an equilibrium. In the
linear setting (1) one can also employ weak convergence of solutions in order
to compensate for the lack of convergence on the fast time scale. This is the
approach taken in Dontchev and Veliov (1983, 1985a,b). A more detailed de-
scription is provided by an analysis which incorporates the mentioned limit
distributions. This is what we carry out in this paper.

Expressing the limit dynamics in terms of limit distributions allows us to get
an extension of the bang-bang principle in the singular limit. The bang-bang
principle guarantees that any attainable point can be reached with controls in
the extreme points of the constraint set K. See, e.g., Hermes and LaSalle (1969),
and Olech (1966, 1967) for a refined structure of the extreme trajectories. A
straightforward extension is not captured by the order reduction method; an
extension is, however, possible within the limit distributions framework.
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The paper is organized as follows. The setting is displayed in the next
section, where we also introduce a uniform integrability assumption under which
the results are obtained, and show why it is needed. The general structure of the
limit dynamics is presented in Section 3, followed, in Section 4, by conditions
which guarantee that any trajectory that meets the criteria of a limit dynamics
is indeed generated via such a limit process. The closing section displays our
findings in regard to the attainable set and the bang-bang principle.

2. An underlying assumption

After indicating a pathological behavior of solutions of (1) if arbitrary sequences
of solutions are allowed, we display in this section a uniform integrability as-
sumption on the solutions. The results throughout the paper are obtained under
this assumption.

As customary, a trajectory (xε(·), yε(·), uε(·)) defined on an interval [t0, t1]
with values in Rn × Rm × Rk is called an admissible trajectory of the system
if it constitutes a solution to the differential equations in (1) (notice: in this
terminology the initial conditions in (1) do not play a role). At times we shall
be interested only in the slow part xε(·) of the admissible trajectory. We note
that for prescribed initial conditions, say the conditions x(t0) = x̄ and y(t0) = ȳ
in (1), a control uε(·) which is integrable on bounded intervals determines, for
a fixed ε, a unique admissible trajectory. The following example indicates a
possible pathological behavior in the limit.

Example 2.1 Let x, y and u be scalars where u ∈ [−1, 1], and consider the
system

dx

dt
= y

ε
dy

dt
= u. (3)

Consider also the initial conditions x(0) = 0 and y(0) = 0. A straightforward
calculation reveals that for a fixed ε and a fixed t > 0 any point x in the interval
[− t2

2ε , t2

2ε ] is such that x = xε(t) for some admissible trajectory which satisfies
the initial conditions. The same set is, in fact, reachable when the controls are
subject to be in the set {−1, 1}. In particular, as ε → 0 the limit of the sets
reachable by slow trajectories exhibits a discontinuity, and an instantaneous
jump of the slow state at t = 0+ may occur; this happens in spite of the
boundedness of the control variable.

The instantaneous jumps of the slow variable generated by the singular per-
turbations may be of interest (for an initial study of these see Artstein, 2004a).
In the present paper, however, we restrict our attention to a situation where such
jumps cannot occur. Rather than placing on (1) an assumption, which guaran-
tees the continuity of a limit of the slow variable, we place an assumption on
the choice of controls.



648 Z. ARTSTEIN

Assumption 2.1 Unless stated otherwise we assume: The family of admissible
trajectories is such that (yε(·), uε(·)), when restricted to a bounded interval
[t0, t1], are uniformly integrable (as functions from [t0, t1] into Rm × Rk).

Proposition 2.1 Let (xε(·), yε(·), uε(·)) be a family of admissible trajectories
which satisfy Assumption 2.1 and such that at the initial time t0 the points
xε(t0) belong to a bounded set in Rn. Assume that the trajectories are defined
on an interval [t0, t1]. Then the slow solutions xε(·) are equi-continuous on the
interval. In particular, for any sequence εi → ∞ there is a subsequence, say εj,
such that xεj (·) converges uniformly to a continuous function.

Proof. The proof follows easily from the variation of parameters formula.

Remark 2.1 Note that our underlying assumption is on the trajectories we
examine rather than being an assumption on the system (1). This is a reason-
able restriction a controller who faces a singularly perturbed system with small
yet unknown perturbation would follow, in order to avoid a blow up effect. For
instance, it is easy to see that within the framework of Example 2.1, any conti-
nuous function x(·) which is differentiable almost everywhere, satisfying x(0) = 0
and with an integrable derivative, is a uniform limit of trajectories xε(·) satis-
fying Assumption 2.1; while, as pointed out earlier, the system produces other
limits, even discontinuous ones, of sequences not satisfying the assumption. In
the sequel we recall conditions which guarantee that the assumption is satisfied
whenever the initial conditions (xε(t0), yε(t0)) are in a bounded set.

3. The form of the limit trajectories

In this section we display the general form of a limit, as ε → ∞, of admissible
trajectories of the system (1) under Assumption 2.1. In the next section we
comment on when a trajectory of such a form is indeed a limit of solutions of
the perturbed system.

To this end we recall two notions, as follows.
A Young measure, in general, is a probability measure-valued map from a

domain space into the family of probability measures on another space. In this
paper we utilize Young measures defined on a time interval, say [t0, t1], with
values being probability measures on Rm×Rk, namely the product space of the
fast state and the control space. We denote these Young measures either by µ(·)
or by the bold face character µ. An ordinary trajectory (y(·), u(·)) defined on the
interval can be regarded as a particular case of such Young measure where the
value (y(t), u(t)) is interpreted as a Dirac measure, namely, a measure supported
on singleton. Measurability of Young measures and convergence among Young
measures are determined by the weak convergence of probability measures on
the image space Rm × Rk. A criterion for the convergence of µi(·) to µ0(·) is
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the convergence

∫ t1

t0

∫
Rm×Rk

h(t, y, u)µi(t)(dy×du)dt →
∫ t1

t0

∫
Rm×Rk

h(t, y, u)µ0(t)(dy×du)dt

(4)

for every bounded and continuous real-valued function h(t, y, u). Useful in-
troductions to Young measures theory are Valadier (1994) and Balder (2000).
Integrability of a Young measure µ over the interval [t0, t1] is determined by the
integrability of the t-dependent expression

|µ(t)| =
∫

Rm×Rk

(|y| + |u|)µ(t)(dy × du) (5)

over [t0, t1]. Uniform integrability of a family µi of Young measures is deter-
mined by the uniform integrability of the respective expressions |µi(·)| induced
by (5). It is clear that the integrability and uniform integrability notions for
Young measures extend the corresponding notions for functions. We shall also
use convex sets of probability measures, i.e., referring to the affine structure on
probability measures given by (αµ + (1 − α)ν)(B) = αµ(B) + (1 − α)ν(B).

The distribution of a function, say of γ(·) defined on a time interval [s0, s1],
is the probability measure on the image space determined by

D(γ(·), [s0, s1])(B) =
1

s1 − s0
λ({s : γ(s) ∈ B}), (6)

where λ is the Lebesgue measure on the line. Let γj(·) be a sequence of functions
defined, respectively, on intervals [s0, sj ] with sj → ∞. A limit distribution of
the sequence is a cluster point in the space of probability measures of a sequence
D(γj(·), [s0, sj ]) as j → ∞. A particular case is the individual limit distribution
of a function γ(·) defined on an infinite half line [s0,∞). This is the limit point,
as s → ∞, of D(γ(·), [s0, s]) (if it exists), in the space of probability measures.

In the sequel we utilize limit distributions and individual limit distributions
of functions of the form

(y(·), u(·)) : [0,∞) → Rm × Rk (7)

which solve the linear differential equation

dy

ds
= A2(t)x + F2(t)y(s) + B2(t)u(s), (8)

where the slow time variable t and the slow state variable x are held fixed; notice
that the time variable in (8) is denoted by s. For fixed x and t and a fixed initial
condition y0 we denote by D(x, t, y0) the set of individual limit distributions of
pairs (y(·), u(·)) which solve (8), and for which the limit distribution exists. We
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denote by D(x, t) the union of sets D(x, t, y0) of all individual limit distributions,
with any initial condition y0.

Finally, we introduce the following notations: Let µ be a probability distri-
bution over Rm × Rk. We denote by My(µ) and Mu(µ) the marginals of µ on
the fast state space Rm and, respectively, on the control space Rk. We denote
by E(µ) the expectation of µ (if exists), namely

E(µ) =
∫

Rm×Rk

(y, u)µ(dy × du), (9)

and denote by Ey(µ) and Eu(µ) the projections of E(µ) on Rm and, respectively,
Rk.

Proposition 3.1 Let (xε(·), yε(·), uε(·)) be a family of admissible trajectories
of (1) which satisfies Assumption 2.1 and such that the points xε(t0) belong to a
bounded set in Rn. Assume also that the trajectories are defined on an interval
[t0, t1]. Then for any sequence εi → 0 there is a subsequence, say εj, such that:

(i) The sequence xεj (·) converges uniformly to a continuous function, say to
x0(·),

(ii) The sequence (yεj (·), uεj (·)) converges in the sense of Young measures, say
to the Young measure µ0(·).
For any sequence which satisfies (i) and (ii) the following holds:

(iii) For almost every t in [t0, t1] the value µ0(t) is in the convex hull of the
individual limit distributions in D(x0(t), t),

(iv) The expectation functions Ey(µ0(·)) and Eu(µ0(·)) are actually the weak-
L1 limits of yεj (·) and, respectively, uεj (·); denote these functions by y0(·)
and u0(·). For almost every t the linear equation

0 = A2(t)x0(t) + F2(t)y0(t) + B2(t)u0(t) (10)

is then satisfied, and,

(v) The limit trajectory x0(·) solves the differential equation (here x is a vari-
able)

dx

dt
= A1(t)x + F1(t)y0(t) + B1(t)u0(t). (11)

Proof. Many of the elements of the proof have been established elsewhere, at
times in more generality. Some comparisons and references are given in Remark
3.1 below.

Item (i) is covered by Proposition 2.1. Item (ii) follows from the compactness,
in the space of Young measures, of the family (yε(·), uε(·)), parameterized by
ε. Indeed, the uniform integrability estimate in Assumption 2.1 implies the
tightness of this family when interpreted as a family of Young measure.
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We now verify that any sequence satisfying (i) and (ii) satisfies property (iii).
Denote by γεj (·) = (yεj (·), uεj (·)) the sequence which satisfies (i) and (ii).

Recall that the convergence in the sense of Young measures implies that
for almost every point τ , for large j the distribution of γεj (·) over an interval
[τ − δ, τ + δ], namely, the distribution D(γεj (·), [τ − δ, τ + δ]), is close to µ0(τ)
if δ is small enough. To quantize the claim: We fix such a point τ and for a
given η > 0 we choose a δ > 0 such that for j large enough the distance between
D(γεj (·), [τ − δ, τ + δ]) and µ0(τ) is smaller that η (the distance being measured
by a prescribed metric on the space of probability measures which is compatible
with weak convergence, say, the Prohorov metric).

For the chosen δ we denote the interval [τ − δ, τ + δ] by Iδ. When Iδ is
partitioned into a number of smaller intervals Iδ,l, say l = 1, . . . , r, then for each
εj the distribution D(γεj (·), Iδ) is the average over the index l (weighted by the
lengths of the intervals) of the distributions D(γεj (·), Iδ,l).

Our aim now is to show that if η and further, δ, are small enough, then for
large enough j and appropriately chosen Iδ,l, most (according to the mentioned
weights) of the distributions D(γεj (·), Iδ,l) are all close (again, in the chosen
metric) to the set D(x0(τ), τ). Then their average is close to the convex hull of
D(x0(τ), τ). By letting η → 0, the proof is completed.

To this end we write Iδ,l = [τ1, τ2] and consider the change of variables
s = ε−1

j (t − τ1) on Iδ,l. In the new time scale the interval is, say, [0, s2]. Now
we fix j and compare the fast dynamics γεj (·) given above with the dynamics
obtained by solving the fast equation (8) with the t-parameter fixed at τ and
with the original control function uεj (·). Thus, the control variable coordinate
in the two versions is the same. The original fast trajectory is given by

yεj (σ) = Φεj (σ, 0)yεj (0)+
∫ σ

0

(Φεj (σ, s)(A2(s)xεj (s)+B2(s)uεj (s)))ds, (12)

while in the (8) version the fast trajectory is

y0(s) = eF2(τ)σyεj (0) +
∫ σ

0

eF2(τ)(σ−s)(A2(τ)x0(τ) + B2(τ)uεj (s))ds (13)

where Φεj (σ, s) is the transition matrix associated with the homogeneous part
of the linear equation (notice that the variables are expressed in the fast scale
and that we use the same initial condition in the two versions).

The uniform convergence of the slow trajectories (item (i)) implies that for
δ small enough the values xεj (s) are uniformly close to x0(τ). Together with
the continuity of the functions F2(·), A2(·) and B2(·) it follows that given a
fixed σ0, if δ is small enough, the functions yεj (·) are uniformly close to y0(·),
on intervals Iδ,l of length less than σ0, and for a uniformly integrable family
of control functions uεj (·). This estimate can be applied now to the majority
(according to length) of control functions uεj (·) in any partition Iδ,l of Iδ. This
follows since the fast trajectories γεj (·) are assumed (Assumption 2.1) uniformly
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integrable on Iδ. To sum up, for a given σ0 if δ is small enough and for a given
j the partition Iδ,l is chosen such that the lengths of its intervals (in the s-
variable) are all less than σ0, then for most of the elements in the partition the
distributions of γεj (·) as generated by (12) will be close to those generated by
the equation with fixed coefficients (13).

Since the length of the fixed σ0 is arbitrarily large, it follows (see Artstein,
1999, 2004b) that these distributions are close to the convex hull of D(x0(τ), τ).
As mentioned, this completes the proof (since their average is also close to
the convex hull of D(x0(τ), τ) and so is the average of the approximations
(yεj (·), uεj (·))). This verifies claim (iii).

The first part of claim (iv) follows from the definition of convergence in the
sense of Young measures and Assumption 2.1. The equality almost everywhere
in (10) follows easily when the measure is an individual limit measure. Indeed,
the spatial average with respect to the limit measure of the right hand side of
(8) amounts then to the right hand side of (11), while, since the trajectory does
not converge to infinity, the time average of the dynamics clearly converges to
zero (see, e.g., Artstein, 1999). Claim (v) follows now from standard averaging
arguments. This completes the proof.

Remark 3.1 For the compactness arguments needed in the verification of (i) and
(ii) see Balder (2000), Valadier (1994), and references therein. Property (ii) was
stated and proved in Artstein and Vigodner (1996) within a dynamical systems
setting and under a boundedness assumption. The extension to a general control
system is straightforward, see, e.g., Artstein (1999, 2004b). The novelty in the
present proof is that the result is verified under a uniform integrability, rather
than boundedness, condition. Property (iv) implies, in particular, that the
weak-L1 limits of yεj (·) and, respectively, uεj (·) satisfy (10). This property has
been established directly (for weak-L2 convergence, but the arguments for L1

are essentially the same) by Dontchev and Veliov (1983, 1985a,b). Property (v)
has also been established by Dontchev and Veliov directly for the weak-L2 limit.

The previous result provides a necessary condition for the limit dynamics,
namely, it identifies candidates for being limits, as ε → 0, of admissible (under
Assumption 2.1) triplets (xε(·), yε(·), uε(·)) which solve (1). The analog of our
derivations within the classical order reduction approach would be trajectories
(x0(·), y0(·), u0(·)) which solve equations (1) where 0 replaces ε, namely, satisfy
(2). The latter is then the limit system, namely the system which (supposedly)
determines the limit trajectories (see Kokotovic, Khalil and O’Reilly, 1999).
Motivated by this approach we introduce the following terminology.

Definition 3.1 A pair (x0(·), µ0(·)) is a trajectory of the limit system of (1) if:
(i) x0(·) : [t1, t2] → Rn,

(ii) µ0(·) is an integrable Young measure, mapping [t1, t2] to probability mea-
sures on Rm × Rk,
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(iii) For almost every t in [t0, t1] the value µ0(t) is in the convex hull of the
individual limit distributions in D(x0(t), t), in particular,

(iv) The point-wise expectation function (y0(·), u0(·)) = E(µ0(·)), satisfies
(10), and,

(v) The trajectory x0(·) solves (11).

Notice that we define a trajectory of the limit system without actually defin-
ing the limit system itself. One may regard properties (i) - (v) in the previous
definition as defining the limit system. It is easy to see that a trajectory of the
order reduction (2) is then a particular case.

Motivation 3.1 It is easy to see that in the case the constraint set K is
convex, if (x0(·), µ0(·)) is a trajectory of the limit system of (1) then the map
(x0(·), (y0(·), u0(·))) (namely, where the Young measure is the Dirac measure-
valued map of the expectation functions) is also a trajectory of the limit system.
The latter is then a solution of the coupled differential-algebraic equations (2),
namely, the solution of the order reduction model. Our interest in the general
measure-valued limit (even when K is convex) stems from applications, some
of which are beyond the scope of this paper. Indeed, when solving an optimal
control problem with a linear plant but with a nonlinear cost function, very
often the order reduction equation (2) is not capable of providing a solution,
and the measure-valued limit is the appropriate one. One such example was
analyzed in detail in Artstein (2002).

4. Generation of the limit trajectories

The natural question arises, namely, under what conditions is a trajectory of
the limit system (as given in Definition 3.1) indeed a limit (as εj → 0) of
trajectories of the perturbed equation? The problem arises already within the
order reduction framework. The examples displayed now demonstrate what may
go wrong; they motivate the positive results that follow.

Example 4.1 Lack of stability and controllability gives rise to the following
example:

ε
dy1

dt
= −y1 + u

ε
dy2

dt
= −y1 + u (14)

y1(0) = 0, y2(0) = 0,

where (14) is considered on the time interval [0, 1] and the controls are scalars.
The trajectory (y1(t), y2(t), u(t)) = (t, 0, t) is a solution of the order reduction
system. Yet it is not a limit of solutions of the perturbed equation; indeed,
in the perturbed system the equality y1(t) = y2(t) is satisfied. In (14) the
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initial condition of the system is compatible with the desired limit. A different,
yet similar, problem arises when lack of controllability implies that the initial
condition cannot be driven to the desired limit on the fast time scale.

Example 4.2 Controllability of the unrestricted system would not help if the
controls are restricted, as follows:

ε
dy1

dt
= −y1 + u

ε
dy2

dt
= −y1 + y2 + u (15)

y1(0) = 0, y2(0) = 0,

where (15) is considered again on [0, 1] and the control is restricted to, say, the
positive half line [0,∞). The trajectory (y1(t), y2(t), u(t)) = (t, 0, t) is, again, a
solution of the order reduction system. Yet it cannot be materialized as a limit
trajectory of solutions of the perturbed equation, this although the unrestricted
system is controllable. Indeed, the restriction on u and a simple comparison
argument would show that y2(t) ≥ y1(t).

The preceding examples motivate the following terminology:

Definition 4.1 The trajectory (x0(·), µ0(·)) of the limit system of (1) is said
to be generated by the perturbed system (1) if, for a sequence εj → 0, the
trajectory is the limit in the Young measures sense of admissible trajectories
(xεj (·), yεj (·), uεj (·)) of (1) which satisfy Assumption 2.1.

We now display conditions under which any trajectory of the limit system is
generated by the perturbed system. Within the order reduction approach the
issue is, traditionally, resolved by assuming that the system can be stabilized
around the desired limit point, a property which follows, typically, from con-
trollability. Then each feasible trajectory of the limit system (which consists
of functions solving (10) and (11)) is generated by the perturbed system. See
Kokotovic, Khalil and O’Reilly (1999). The following results extend the argu-
ments to the general setting (but notice that the property of steering which we
assume does not imply the standard notion of controllability).

Proposition 4.1 Let the pair (x0(·), µ0(·)) be a trajectory of the limit system
of (1) on the time interval [t0, t1]. Let My(µ0(t)) be the y-marginal of µ0(t). Let
Sy(µ0(t)) be the support of My(µ0(t)). Suppose that for every t̄ ∈ [t0, t1] there
is an open set O(t̄) such that Sy(µ0(t)) is included in O(t̄) for all t close enough
to t̄. Furthermore, any point y1 in O(t̄) can be steered to any other point, say
y2, in O(t̄) employing the control system

dy

ds
= A2(t̄)x0(t̄) + F2(t̄)y(s) + B2(t̄)u(s) (16)
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along a finite time interval (in the fast time scale) whose length depends only
on the set O(t̄) and the norms |y1| and |y2|. Finally, assume that the initial
condition y0 in (1) can be steered on the fast scale to the set O(t0). Then the
trajectory (x0(·), µ0(·)) of the limit system is generated by the perturbed system
(1).

Proof. The proof is constructive. We verify the claim under the assumption that
µ0(·) is continuous in the weak topology. Otherwise we can either employ the
Lusin’s Theorem and make a reduction to the case of continuity, or, alternatively,
choose the points t̄i below to be appropriate Lebesgue points of the map; we
leave out these details.

Consider now a fixed t̄. The probability measure µ0(t̄) is in the convex hull
of the individual limit distributions in D(x0(t̄), t̄). The properties of O(t̄), in
particular the steering property and the inclusion of Sy(µ0(t)) in O(t̄), imply
that for any y1 ∈ O(t̄) there exists a control function u(·) on [0,∞) which
generates (via (16), i.e, on the fast time scale) µ0(t̄) as an individual limit
distributions in D(x0(t̄), t̄, y1). Moreover, the possibility of steering any initial
point within a bounded set to y1 from any initial point within a finite interval,
implies that except for an initial interval, say [0, s(t̄)], the control function may
be independent of the initial condition y1 provided that the latter is within a
prescribed bounded set, say B(t̄). We choose B(t̄) such that it includes part of
Sy(µ0(t)) in its interior. No confusion should then arise if we ignore the initial
interval, suppress the dependence on y1, and denote the control function by
u(t̄, ·).

Now, for a prescribed estimate η > 0 there is a bound s(η) = s(η, t̄) such that
the distance (say in the Prohorov metric) between µ0(t̄) and the distribution
resulting from applying u(t̄, ·) to (16) along s(η) is less than η. The continuity
of the coefficients in (1) implies that for δ(η) = δ(η, t̄) small enough, if rather
than at (16) the control is applied to

dy

ds
= A2(t(s))x(t(s)) + F2(t(s))y(s) + B2(t(s))u(s) (17)

where t(s) is within a δ(η) neighborhood of t̄, and x(t(s)) is close to x0(t̄), then
the resulting distribution will be, say, 2η-close to µ0(t̄). Equation (17) is the one
generated by applying the change of variables t = τ1 + εjs for an appropriate
choice of τ1 near t̄. We conclude therefore that, given η > 0 and given s(η), if
an interval [τ1, τ2] within the δ(η, t̄) neighborhood of t̄ is identified such that the
length of the interval is related to s(η) by s(η) = εj(τ2−τ1), then with an initial
condition in the prescribed set B(t̄) in O(t̄), an appropriate control function will
generate on this interval a distribution which is close up to 2η from µ0(t̄).

Given η > 0 we choose now a finite partition of [t0, t1], determined by points
t̄i, such that t̄i+1 − t̄i−1 is less that δ(η, t̄) and also that for t̄i−1 ≤ t ≤ t̄i+1

the set Sy(µ0(t)) is included in O(t̄i). Such a partition is possible due to the
compactness of the interval. For εj small enough we partition the interval [t0, t1]
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to subintervals such that if the point t̄i is the one closest to a subinterval, then
the length of this subinterval is εjs(η, t̄i). On each such interval if the initial
condition of the fast dynamics is within B(t̄i) and if the slow variable is within a
small neighborhood of x0(t̄i) then a distribution close to µ0(t̄i) can be generated.
The possibility to have indeed the initial condition within B(t̄) follows from the
continuity assumption on µ0(·). When this is done then a Young measure close
to µ0(·) is obtained. Indeed, for fixed η > 0 when εj → 0 the approximation of
the Young measure by the resulting distributions is of order η. As η → 0 the
desired limit is generated, provided that the process is feasible, namely, provided
that the resulting slow trajectory converges to x0(·).

The feasibility of the process for η → 0 and for εj(η) → 0 follows from
the linearity of the equation of the slow dynamics, which, in turn, implies the
uniqueness of the solution. Indeed (compare with Artstein, 2004c), the Peano
type approximations of the slow dynamics that are obtained in this manner
must converge to a solution of (11). Since for the given initial condition the
only solution of (11) is x0(·), the convergence implies that the slow dynamics
parameters in (17) satisfy the desired estimates. This completes the proof.

Extension 4.1 A generalization to the previous result can be achieved as fol-
lows. Notice that the role of the steering property stated in the proof was to
allow to generate the approximation to the distribution µ0(t̄) starting from any
initial point y1 in a bounded subset of O(t̄). The steering property allows to
do that by steering y1 to a common point from which µ0(t̄) is generated. The
time the steering itself consumes does not affect the approximation in the limit,
this since the steering time is finite, and in particular independent of η, and
hence of s(η), on the fast scale. A generalization can be formulated such that
rather than exact steering within O(t̄) one assumes the possibility to steer y1

to a small neighborhood (small enough to maintain the approximations) of the
aforementioned common point, within a time which may depend on η, and may
not be bounded, as long as the ratio of this steering time to s(η) tends to zero
as η → 0. To work out the details may be tedious, yet the building blocks of
the construction are similar to those presented in the proof of Proposition 4.1.

Example 4.3 We provide an example of the previous generalization, where the
proof can be verified directly. Consider the system (1) with the additional as-
sumption that for each t the matrix F2(t) is stable, namely, has eigenvalues with
negative real part. As mentioned, this is a common assumption within the order
reduction approach and was employed in various generalizations. A thorough
analysis of well posedness under this assumption is provided in Dontchev and
Veliov (1983). Furthermore, assume that the set K of controls u is compact. It
is easy to see then that Assumption 2.1 is satisfied by any family with initial
conditions in a bounded set.

Under these conditions Dontchev and Veliov (1983) have determined the
limit attainable set. In particular, given the fixed slow state x and a fixed



Bang-bang controls in the singular perturbations limit 657

time t, the limit attainable set of the fast variable y is given by

F2(t)−1A2(t)x +
∫ ∞

0

eF2(s)B2(t)Kds (18)

where the integral is interpreted as the Aumann integral of a set-valued map.
For details see Dontchev and Veliov (1983). The displayed formula determines
the closure of the points y in the attainable set in large fast time intervals. It
is easy now to determine the limit distributions generated by the fast equation.
Indeed, these are the distributions generated by trajectories of the form

(y(s), u(s)) =
(

F2(t)−1A2(t)x +
∫ s

0

eF2(σ)B2(t)Kdσ, u(s)
)

(19)

with u(·) any measurable function with values in K. Since the contribution
of the initial condition y1 is decaying, the consequence of the previous results
holds, although the steering within finite fast time may be possible.

Example 4.4 A concrete example of the previous argument is the system (with
scalar variables)

dx

dt
= y1 − y2

ε
dy1

dt
= −y1 + u (20)

ε
dy2

dt
= −2y2 + u

u ∈ [−1, 1],

analyzed in Dontchev and Veliov (1983); the latter reference displays the attain-
able set of the system. The need to examine limit distributions of (20) arose in
Artstein (2002) in connection with an optimization problem, namely, an optimal
distribution is detected, and a scheme for generating it is displayed.

Remark 4.1 As mentioned, within the classical order reduction method the
measure µ0(t) is assumed to be a singleton, around which the fast dynamics can
be stabilized by a linear feedback. The analog of this method in the framework of
this paper would be the ability to stabilize the fast dynamics around a trajectory
(y0(·), u0(·)) (on the fast time scale s ∈ [0,∞)) which generates µ0(t̄). Under
such an assumption the proof of Proposition 4.1 can be made simpler. But
notice that even controllability of the system (16) does not imply the possibility
to stabilize around a given trajectory.

5. The attainable set and bang-bang controls

The celebrated bang-bang principle for linear control systems (verified first in
LaSalle, 1959) asserts, roughly, that any state that can be reached employing
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controls in a compact convex set K, can also be reached using controls restricted
to the extreme points of K. See, e.g., Hermes and LaSalle (1969). A further
major development was carried out by Olech (1966, 1967) where the structure
of these extreme point-valued functions has been revealed. In particular, Olech
showed that an extreme point in the attainable set of the linear system is reached
by a unique, so called, extremal solution; and any other point can be reached
via concatenating at most n (the dimension of the space) extremal solutions.
These principles apply, of course, to the the linear system (1) for each fixed ε.
In this section we examine the structure of the attainable set in the singular
limit of (1) and the extent to which the bang-bang principle is carried over to
the limit.

In what follows we consider the system (1) with the controls constrained to
K, a compact and convex set. (The derivations go through when K = K(t) is
compact-valued, integrally bounded and varies measurably in time. We do not
pursue this possibility here in detail.) We consider the system along a finite
time interval [t0, t1].

In general, one is interested in the attainable set of the coupled slow and
fast dynamics. As was demonstrated in Dontchev and Veliov (1983, 1985a,b),
in a quite general situation the two dynamics can be treated separately. We
comment on this aspect toward the end of the section and treat now the slow
variables in the attainable set. The following is a capturing of the notion of the
attainable set of the slow flow within the limit dynamics displayed in this paper.

Definition 5.1 Given the initial condition x(t0) = x0 we denote by A(x0, t0, t̄)
the set of points x such that x = x(t̄) for some pair (x0(·), µ0(·)) which is a
trajectory of the limit system of (1) satisfying x(t0) = x0 (see Definition 3.1).
Given an integrable real-valued function β = β(·), we denote by Aβ(x0, t0, t̄)
the subset of A(x0, t0, t̄) of points x = x(t̄) obtained as above with the Young
measure satisfying |Ey(µ0(·))| ≤ β(·).

Notice that in the generation of A(x0, t0, t̄) we assume that µ0(·) is integrable
(see (5)), but we do not place a bound on its integral. Furthermore, in the
definition of Aβ(x0, t0, t̄) the integrability bound is assumed on the expectation
of the measure and not on the measure itself.

Proposition 5.1 Any point in A0(x0, t0, t̄) is also generated by a trajectory
of the limit system of the form (x0(·), y(·), u(·)), namely with a Dirac measure-
valued Young measure on the fast state and control spaces.

Proof. As was already noted earlier, in case the constraint set K is convex, if
(x0(·), µ0(·)) is a trajectory of the limit system of (1) then the triplet of point-
valued functions (x0(·), (Ey(µ0(·)), Eu(µ0(·))) is also a trajectory of the limit
system.
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Remark 5.1 In the special case where F2(t) is invertible for each t (this case
is the most common one in the available literature, see Kokotovic, Khalil and
O’Reilly, 1999; Dontchev and Veliov, 1983, 1985a,b), the fast variable in the
triplet is determined by the control. Thus, the attainable set is determined by
the control function in the triplet.

Proposition 5.2 For each x0 and t̄ the set A0(x0, t0, t̄) is convex but may not be
compact. For an integrable β = β(·) the set Aβ(x0, t0, t̄) is convex and compact.

Proof. As pointed out in Proposition 5.1, since K is convex, any point in
A0(x0, t0, t̄) is reached by invoking triplets (x(·), y(·), u(·)) which solve (10) and
(11), and satisfying x(t0) = x0. When applying the argument to a point in
Aβ(x0, t0, t̄) it follows from the definition that the resulting triplet also satisfies
the integral bound β(·). To the resulting triplets we may apply the convexity
arguments; the linearity of the two equations implies that the set of such triplets
is convex. In particular, the attainable set A(x0, t0, t̄), and for any β = β(·)
the set Aβ(x0, t0, t̄), are convex. This verifies the first claim. The second one is
verified by Example 2.1, which is one for which the attainable set, say A0(0, 0, t̄),
is unbounded for any t̄ > 0. Indeed, (x(·), y(·), 0) with x(t) =

∫ t

0
y(s)ds is a

trajectory of the limit system of (3). (Moreover, the conditions of Proposition
4.1 hold and therefore any such trajectory of the limit system is generated as a
limit of solutions of the perturbed system.) It is clear then that any point x can
be attained as x = x(t̄) when t̄ > 0. Finally, for a given integrable real-valued
function β(·) the trajectories of the limit system of the form (x(·), y(·), u(·)),
and such that |y(t)| ≤ β(t), form a compact set in the space of Young measures.
In particular, since the map which maps such a triplet to the value x(t̄) is
continuous, the compactness of Aβ(x0, t0, t̄) follows. This completes the proof.

In view of the preceding considerations, especially Proposition 5.1, the natu-
ral extension of the bang-bang principle to the singularly perturbed framework
would be that any point in the attainable set of the limit system is reached
by the triplet (x0(·), y(·), u(·)) with u(·) taking values in the extreme points of
K, which we denote by extK. Such a result does not hold. Indeed, equation
(10) imposes a state-dependent constraint on the controls which, in turn, may
prohibit bang-bang controls, as the following example demonstrates.

Example 5.1 Consider the system with scalar variables given by

dx

dt
= y

ε
dy

dt
= x + u (21)

x(0) = 0, y(0) = 0,
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where u ∈ K = [−1, 1]. It is clear that x(t̄) = 0 is in the attainable set of the
system; indeed, it is reached when the control u(t) ≡ 0 is chosen. However, as
long as |x(t0)| < 1, the extreme points of the constraint set do not satisfy (10).

The following is the bang-bang result in the singular limit. Notice that we
state it for trajectories of the limit systems obtained under Assumption 2.1, but
we do not assume the steering type assumptions displayed in Section 4.

Proposition 5.3 Let x1 ∈ A(x0, t0, t̄) be obtained as x1 = x0(t̄) with
(x0(·), µ0(·)) being a trajectory of the limit system of (1) which is generated
by the perturbed system and satisfying x(t0) = x0. Then there exists a tra-
jectory, say (x1(·), µ1(·)), of the limit system of (1) generated by the perturbed
system and satisfying x(t1) = x0, such that x1(t̄) = x1 and such that for every
t the marginal Mu(µ1(t)) is supported on the closure of extreme points of K.

Proof. Let (xεj (·), yεj (·), uεj (·)) be the sequence of admissible trajectories which
generates (x0(·), µ0(·)) (according to Definition 4.1). We use now the bang-
bang principle in linear ordinary control systems and deduce that for every εj

there is a trajectory of (1), say (x̄εj (·), ȳεj (·), ūεj (·)), for which x̄εj (0) = x0 and
x̄εj (t̄) = x1, and, in fact, ȳεj (t̄) = yεj (t̄), and such that ūεj (t) takes values
in the extreme points extK of K. Furthermore, since the bang-bang principle
for the perturbed system covers the fast trajectory as well, the argument can
be applied also to any small subinterval, and if this is done successively on
small enough intervals, the uniform integrability of the admissible trajectories
is maintained. The uniform integrability implies that a subsequence converges
in the sense of Young measures, and that the corresponding slow trajectories
converge uniformly, say to (x1(·), µ1(·)). Then, clearly, x1(t̄) = x1. Since the
family ūεj (t) takes values in the extreme points extK of K it follows that the
support of the u-marginal of µ1(·) is in the closure of extK. This completes the
proof.

Remark 5.2 As was pointed out earlier, the arguments go through when, rather
than having a time invariant constraint set, one allows a time varying one, K(t).
Care, however, should be taken when the bang-bang result is verified. The
argument in the preceding proof implies a weaker result. Namely, let E be the
set {(t, u) : t ∈ [t0, t1], u ∈ extK(t)}. Then the support of the u-marginal of
µ1(t) is in the t-section of the closure of E. A more careful argument would
show, however, that the consequence of Proposition 5.3 is valid, namely, the
support of Mu(µ1(t)) is in the closure of extK(t). This follows by applying the
convergence of Young measures on closed subsets of [t0, t1] on which (according
to Lusin’s theorem) the closure of extK(t) is a continuous set-valued map.

The preceding result implies in particular that the bang-bang controls which
generate the terminal state for the perturbed system, converge (in distribution
in the sense of Young measures) to the bang-bang control which generates the
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terminal state in the limit system. A similar result is not valid when one exami-
nes the extremal solutions which generate the terminal state according to Olech’s
theory. The following example illustrates the displayed bang-bang result and
the lack of convergence of Olech’s extremal solutions.

Example 5.2 Consider again the example where x, y and u are scalars, u ∈
[−1, 1], and the system is

dx

dt
= y

ε
dy

dt
= u (22)

x(0) = 0, y(0) = 0.

The point 0 is in the attainable set of the limit system for t̄ = 1. Indeed, it is
reached by employing the control with the constant value 0. It is also reached
by employing the bang-bang control which assigns equal weights to −1 and 1.
It is easy to see that the resulting trajectory of the limit system is generated by
the perturbed equation, as guaranteed by the preceding derivations. For each
fixed ε the state x = 0 at the time 1 can also be reached by switching once
between two extremal trajectories, namely, employing the controls +1 and −1
on, respectively, the two halves of the time interval. This is a particular case
of Olech’s fundamental analysis in Olech (1966, 1967). Following this strategy
for a sequence εj → 0 would not result in a sequence satisfying Assumption 2.1;
rather, a blow up in the limit of the fast dynamics will occur.

We conclude with some comments on the generation of the fast state of the
attainable set of the limit system via bang-bang controls.

Remark 5.3 The fast state variables y attainable by the singularly perturbed
system at a given time t̄ extend beyond the support of the measure My(µ0(t̄)),
namely, the y-marginal part of the trajectory of the limit dynamics. Indeed, on
the fast scale the controller may steer the fast dynamics to a prescribed point
without affecting the slow dynamics. This has ramifications in, say, optimization
problems of the Meyer type, as pointed out and analyzed by Dontchev and Veliov
(1983, 1985a,b). We are interested in the bang-bang facet of the issue. To this
end it is sufficient to note that any attainable point yε(t̄) can be written as

yε(t̄) = Φε(t̄, t̄ − rε)yε(t̄ − rε)

+
∫ t̄

t̄−rε

(Φε(t̄, t̄ − τ)(A2(τ)xε(τ) + B2(τ)uε(τ)))dτ, (23)

with r any fixed number and where Φε(t, τ) is the transition matrix of the
homogeneous part of the perturbed fast dynamics. If one can deduce that
yεj (t̄ − rεj) converges, say to ȳ, then the standard change of time scale to the
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fast scale would yield

y0(t̄) = eF2(t̄)r ȳ +
∫ r

0

eF2(t̄)(r−s)(A2(t̄)x0(t̄) + B2(t̄)u(σ))dσ (24)

for some control function u(σ). In some particular cases Dontchev and Veliov
have found that the convergence sought after indeed occurs. (In case F2(t̄) is
stable the limit as r → ∞ can also be taken, resulting in the closed form (18)
that we copied from Dontchev and Veliov, 1983.) In any case, the form (24)
assures that when the limit is tractable, (e.g., (18) holds), the classical bang-
bang principle can be applied and we may include the fast state part of the
dynamics in the statement concerning bang-bang controls.
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