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1. Introduction

In contrast to the rich literature on numerical methods for optimal control, error
estimates are scarce, and are known only under conditions of coercivity and (cer-
tain) smoothness of the optimal solution (see e.g. Dontchev, Hager and Veliov,
2000 for a brief bibliographic account, and the contributions by Malanowski,
Büskens and Maurer, 1998, and Dontchev and Hager, 2001, addressing the state

1This research was supported by the Austrian Science Foundation under contract No.
P15618-G05.
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constrained case). The coercivity is related to the Legendre-Clebsch second or-
der sufficient condition, which implies also Lipschitz stability of the optimal
solution with respect to perturbations (see Dontchev and Hager, 1993). Suffi-
cient conditions for optimality in the case of non-coercive problems have been
obtained only recently (Osmolovskii, 2000; Agrachev, Stefani and Zezza, 2002;
Noble and Schättler, 2002; Felgenhauer, 2003, 2005; Maurer and Osmolovskii,
2004) and the research in this direction is still in progress.

In general, the high-order sufficient optimality conditions for non-coercive
(bang-bang) problems do not imply Lipschitz stability of the optimal solution.
The study of the sensitivity of the associated Hamiltonian (canonical) system
is burdened by its state-discontinuity. These facts create difficulties for the
sensitivity and the error analysis of bang-bang-type problems. To our knowl-
edge, error estimates for direct discretization schemes are not available in the
literature. In this paper we present such error estimates for Runge-Kutta dis-
cretization of terminal optimal control problems for linear systems. We use an
indirect approach involving three main ingredients: (i) a sensitivity estimate for
convex problems, depending on the convexity index of the objective function
and the constraining set; (ii) estimation of the convexity index of the reachable
set of a linear control system; (iii) estimation of the error in the reachable set
caused by a time-discretization.

The (local) convexity index of a convex set at a given point on its boundary
represents the (local) rate of deviation of the boundary from the tangential
subspaces at the given point (see the next section for the strict definition). Sets
with convexity index everywhere equal to two are known as R-convex sets. This
notion was introduced by Plís (1975) and is deeply studied by Frankowska and
Olech (1980) in connection with the reachable set of linear control systems. A
comprehensive analysis of the R-convexity is presented in Polovinkin (1996). As
shown by �Lojasiewicz (1979), however, for a state dimension bigger than two
and for polyhedral control constraints, the reachable set generically fails to be
R-convex. For this reason in the present paper we introduce the more general
notion of local convexity index, and evaluate constructively the convexity index
of the reachable set of linear systems, which turns out to be finite under rather
general conditions. In this case the convexity index of the reachable set at a
given boundary point is closely related with the multiplicity of the zeros of the
switching function corresponding to this point, therefore – to the sensitivity of
the system.

The estimation in (iii) is taken from Veliov (1997) and only adapted here to
the particular consideration.

The discretization error estimate that we obtain (in terms of the optimal
controls) for the Runge-Kutta discrete approximation is of first order in the
case where the sufficient optimality condition from Felgenhauer (2003) holds,
and of fractional order, in general. The estimation is sharp in several cases.

The paper is organized as follows: issues (i), (ii), and (iii) are presented in
Sections 2, 3, and 4, respectively. Section 5 is devoted to the main result.
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2. Sensitivity of the solution of σ-convex problems

In this section we obtain an estimation of the sensitivity of the solution of the
problem

min
x∈R

g(x) (1)

with respect to a perturbation in the constraining set R ⊂ Rn. The princi-
pal assumption involves appropriate (in the context of the paper) convexity
requirement that will be specified below.

We start with a list of (standard) notations that will be used later on:
Rn (resp. Rr, R) is the Euclidean space with the respective dimension;

| · | and 〈·, ·〉 are the norm and the scalar product;
B is the unit ball in Rn;
∂R is the boundary of the set R ⊂ Rn;
NR(x) is the (external) normal cone to the convex closed set R at x ∈ R;
N1

R(x) = NR(x) ∩ ∂B is the set of all unit normal vectors;
H(X, Y ) is the Hausdorff distance between two compact subsets X, Y ⊂ Rn;
meas(∆) is the Lebesgue measure of ∆ ⊂ R;
∗ means transposition.

Definition 2.1 A set R ⊂ Rn is locally σ-convex at the point x ∈ R if there
exists a constant γ > 0 and a neighborhood Z of x, such that for every y ∈ R∩Z
the ball 0.5(x + y) + γ|x − y|σB is contained in R.

For γ = 0 (and for a closed set R) this is merely the local star-shape property,
which formally corresponds to the case σ = +∞. If the above property is
fulfilled at every point of the set with σ = 2 and with the same γ, then it is
also called “strong convexity”, or R-convexity (see Plís, 1995; Frankowska and
Olech, 1980; Polovinkin, 1996).

Remark 2.1 It is easy to see that it is enough to verify the requirement of
Definition 1 for y ∈ ∂R ∩ Z only.

Definition 2.2 A function g : R �→ R (where R is a convex subset of Rn) is
locally κ-convex at x ∈ R if there exists a constant ρ > 0 and a neighborhood
Z of x, such that for every y ∈ R ∩ Z it holds that g(0.5(x + y)) ≤ 0.5(g(x) +
g(y)) − ρ|x − y|κ.

We shall formally admit also κ = +∞, in which case the last inequality is
required with ρ = 0. For κ = 2 the above notion is introduced by Polyak (1983)
and is called strong convexity.

Proposition 2.1 Let x̂ be the unique solution of (1). Assume that R is compact
and locally σ-convex at x̂ (with σ ∈ [2, +∞]), and that g : Rn �→ R is convex and



970 V.V. VELIOV

(i) locally κ-convex at x̂ (with κ ∈ [2, +∞]); (ii) differentiable with a continuous
derivative in a neighborhood of x̂, satisfying g′(x̂) 
= 0. Assume also that s =
min{κ, σ} < +∞.

Then there exist numbers ε > 0 and c such that for every compact set R̃ ⊂ Rn

with H(R̃, R) ≤ ε and for every minimizer x̃ of g on R̃ it holds that

|x̃ − x̂| ≤ c(H(R̃, R))
1
s . (2)

Remark 2.2 As the proof shows, if s = κ < +∞, then the claim remains true if
just local Lipschitz continuity is required instead of (ii). Moreover, uniqueness
of x̂ follows from the rest of the assumptions if it is required, in addition, that
R is (globally) star-shaped at x̂.

Proof. Let x̃ be a minimizer of g on R̃. Let y ∈ R be such that |y − x̃| =
infx∈R |x − x̃|. The mapping ”set R −→ set of solutions of (1)” is upper semi-
continuous. Since x̂ is the unique solution of (1), one can ensure that x̃ belongs
to an arbitrarily given neighborhood of x̂, by choosing ε > 0 sufficiently small.
Then choosing an appropriate ε > 0 we may assume that the convex hull of x̂,
x̃ and y is contained in the neighborhood Z of x̂ in which the local convexity
and differentiability requirements are fulfilled.

We define

x =
y + x̂

2
− γ

g′(x̂)
|g′(x̂)| |y − x̂|σ .

(In connection with Remark 2.2, notice that if s = κ one can take ρ = 0,
so that g′ does not appear in the considerations below and (ii) is of no use.)
Obviously x ∈ R due to the σ-convexity of R. Then we have (with x̄ denoting
an appropriate point on the segment [y+x̂

2 , x]) that

g(x̂) ≤ g(x) = g

(
y + x̂

2

)
− 〈g′(x̄), γ

g′(x̂)
|g′(x̂)| |y − x̂|σ〉

≤ 1
2
g(y) +

1
2
g(x̂) − ρ|y − x̂|κ − γ|g′(x̂)||y − x̂|σ + γ|g′(x̄) − g′(x̂)||y − x̂|σ.

Since for an appropriate constant c1

|x̄ − x̂| ≤ 1
2
|x̂ − y| + γ|y − x̂|σ ≤ c1|y − x̂|,

we obtain that
1
2

(g(y) − g(x̂)) ≥ ρ|y − x̂|κ + γ|g′(x̂)||y − x̂|σ − γc1Lg′ |y − x̂|σ+1,

where Lg′ is the Lipschitz constant of g′ on Z. Choosing, if necessary, ε > 0
even smaller, we may ensure that γc1Lg′ |y − x̂| ≤ 0.5γ|g′(x̂)|. Hence,

1
2

(g(y) − g(x̂)) ≥ ρ|y − x̂|κ +
1
2
γ|g′(x̂)||y − x̂|σ.
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Hence

c2|y − x̂|s ≤ g(y) − g(x̂),

where c2 = 2ρ + γ|g′(x̂)|. Then we have

c2|y − x̂|s ≤ g(x̃) + LgH(R, R̃) − min
R

g =
(

min
R̃

g − min
R

g

)
+ LgH(R, R̃)

≤ 2LgH(R, R̃),

where Lg is the Lipschitz constant of g in Z. Finally,

|x̂ − x̃| ≤ |x̂ − y| + |y − x̃| ≤
(

2Lg

c2

) 1
s

H(R, R̃)
1
s + H(R, R̃),

which implies the claim of the lemma.

3. σ-convexity of the reachable set

In this section we give sufficient conditions for σ-convexity of the reachable set
of the linear control system

ẋ = A(t)x + B(t)u, x(0) = x0,

u ∈ U, (3)

where x ∈ Rn, U ⊂ Rr. The reachable set of this system on [0, T ] will be
denoted by R. That is, R consists of all end points x(T ) of trajectories of (3)
corresponding to admissible controls u(·) (i.e. measurable functions with values
in U).

Assumption (A1). For a natural number σ̄ ≥ 2 the matrix A : [0, T ] �→ Rn×n

is (σ̄ − 2)-times differentiable, with Lipschitz continuous (σ̄ − 2)-nd derivative;
the matrix B : [0, T ] �→ Rn×r is (σ̄ − 1)-times differentiable with Lipschitz
continuous (σ̄ − 1)-st derivative. The set U is a nondegenerate convex compact
polyhedron in Rr (r ≥ 1), with finite number of vertices.

We denote by V the set of all vertices of U , and by E – the set of all edges1

of U . Moreover, given p ∈ Rn we denote by λ[p](·) the backward solution of the
adjoint equation

λ̇ = −A∗(t)λ, λ(T ) = p. (4)

Following Pontryagin et al. (1962) we denote recursively

B0(t) = B(t), Bk(t) = −A(t)Bk−1(t) + B′
k−1(t), k = 1, . . . , σ̄ − 1.

1The edges will be interpreted either as sets (segments) [u, v], or as vectors v − u. In both
cases u, v ∈ V , and [u, v] is an extreme set of dimension one.
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Assumption (A2). For every t ∈ [0, T ] and for every e ∈ E

rank[B0(t)e, . . . , Bσ̄−1(t)e] = n.

Remark 3.1 Assumption (A2) is known as the General Position Hypothesis
(GPH), Pontryagin et al. (1962). Thanks to the relation

dk

dtk
〈λ[p](·), B(·)e〉 = 〈λ[p](·), Bk(·)e〉, k = 0, . . . , σ̄ − 1,

(GPH) implies that there is a natural number m such that for every x ∈ ∂R
there is a unique control steering x0 to x on [0, T ], it is piece-wise constant with
values in V , and has at most m − 1 switching points2

For l ∈ Rn we define

V (l) = {v ∈ V : 〈l, v〉 = max
u∈U

〈l, u〉},

and
E(l) = {[v, w] ∈ E : v, w ∈ V (l)}.

That is, E(l) consists of all “maximal” edges with respect to the direction l.
Clearly, E(l) = ∅ if V (l) is a singleton.

For x ∈ ∂R we define the number σ(x) as the minimal natural number
σ ∈ {2, . . . , σ̄} for which

σ−1∑
i=1

|〈λ[p](t), Bi(t)e〉| > 0 ∀t ∈ [0, T ], ∀p ∈ N1
R(x), ∀e ∈ E(B∗(t)λ[p](t)). (5)

Assumptions (A1) and (A2), together with the fact that λ[p](t) 
= 0 for every
p ∈ N1

R(x) and t, easily imply that the number σ(x) ≤ σ̄ exists for every x ∈ ∂R.

Proposition 3.1 Assume (A1) and (A2). Then at every point x ∈ ∂R the set
R is locally σ(x)-convex.

The above claim is related to, but essentially stronger, than that of Theo-
rem 3.1 in Veliov (1987a), therefore we present the detailed proof. We still make
use of a result from Veliov (1987a) (estimation (5) in the proof of Theorem 2.1),
which can be reformulated in the following way.

For k ≥ 2 and for an interval [τ1, τ2], denote by Pk([τ1, τ2]; L, β) the set of
all (k − 1)-times continuously differentiable functions l(·) : [τ1, τ2] �→ Rn such
that
(i) l(k−1)(·) is Lipschitz continuous with a Lipschitz constant not bigger than L;
(ii) sup{|l(k−1)(t) : t ∈ [0, T ]} ≤ L;

(iii)
∑k−1

i=0 |l(i)(t)| ≥ β ∀t ∈ [τ1, τ2].

2GPH is not necessary for this strong bang-bang property even in the time-invariant case.
A weaker condition, which is sufficient and necessary, is given in Veliov (1987b).
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Lemma 3.1 For every positive real numbers T, L, β and a natural number k ≥ 2
there exists a constant d = d(T, L, β, k) such that for every interval [τ1, τ2] ⊂
[0, T ], for every l ∈ Pk([τ1, τ2]; L, β) and for every α > 0 it holds that

meas{t ∈ [τ1, τ2] : |l(t)| ≤ α} ≤ dα1/(k−1).

We shall use also the following corollary.

Corollary 3.1 In the conditions of Lemma 3.1, for every [τ1, τ2] ⊂ [0, T ], for
every l ∈ Pk([τ1, τ2]; L, β), and for every measurable subset ∆ ⊂ [τ1, τ2], there is∫

∆

|l(t)| dt ≥ c (meas(∆))k
,

where c = 2−kd−k+1 and d is the constant from Lemma 3.1.

Proof. Take ∆ as in the formulation of the corollary. We shall apply Lemma 3.1
for

α = (2d)−k+1(meas(∆))k−1.

It claims that for the set ∆α = {t ∈ [τ1, τ2] : |l(t)| ≤ α}
meas(∆α) ≤ dα1/(k−1) = 0.5 meas(∆).

We have∫
∆

|l(t)| dt ≥ α

∫
∆\∆α

dt ≥ α(meas(∆) − meas(∆α))

≥ 0.5 α meas(∆) = c (meas(∆))k
.

Proof of Proposition 3.1. For l ∈ Rn denote by E(l) the set of all edges that
are incident to an extremal vertex with respect to the direction l, that is,

E(l) = {e ∈ E : e = [v, w] with v ∈ V (l)}.
First we shall prove that there exist β > 0 and a neighborhood Z of x such that

σ(x)−1∑
i=0

|〈λ[p̃](t), Bi(t)e〉| ≥ β ∀x̃ ∈ ∂R ∩ Z, ∀t ∈ [0, T ], ∀p̃ ∈ N1
R(x̃),

∀e ∈ E(B∗(t)λ[p̃](t)). (6)

If this is not true, then there exist sequences ∂R � xk −→ x, tk, pk ∈ N1
R(xk),

ek ∈ E(B∗(tk)λ[pk](tk)) such that

σ(x)−1∑
i=0

|〈λ[pk](tk), Bi(tk)ek〉| ≤ 1
k

.
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Passing to subsequences we may assume that tk −→ t, pk −→ p, and ek = e
(since E is a finite set). From the continuity of λ and Bi we obtain

σ(x)−1∑
i=0

|〈λ[p](t), Bi(t)e〉| = 0. (7)

Clearly p ∈ N1
R(x) since the mapping y −→ N1

R(y) is upper semi-continuous.
Moreover, e = [v, w] for some v ∈ V (B∗(tk)λ[pk](tk)) and w ∈ V , which implies
v ∈ V (B∗(t)λ[p](t)) due to the upper semi-continuity of the mapping l −→ V (l).
Relation (7) implies that 〈λ[p](t), B(t)(w − v)〉 = 0, hence w ∈ V (B∗(t)λ[p](t)).
Therefore, e ∈ E(B∗(t)λ[p](t)). Then (7) contradicts the definition of σ(x) in
(5), which proves (6).

In order to prove the local σ(x)-convexity of R at x we fix an arbitrary
x̃ ∈ R ∩ Z, x̃ 
= x. According to Remark 2.1 we may assume that x̃ ∈ ∂R.
Denote

x̄ =
x̃ + x

2
.

Let ȳ ∈ ∂R be such that |x̄ − ȳ| = max{α : x̄ + αB ⊂ R}. Denote by u(·),
ũ(·) and v̄(·) admissible controls steering the initial state to x, x̃, and ȳ, respec-
tively. Since all the three points belong to ∂R, according to Remark 3.1 the
corresponding controls are uniquely determined piece-wise constant functions
with values in V , and having at most m− 1 switching points. Clearly, the con-
trol ū = 0.5(ũ+u) steers x0 to x̄. Since ũ 
= u, the function ū does not take only
values in V . Then assumption (A2) (see Remark 3.1) implies that x̄ belongs to
the interior of R. Hence, ȳ 
= x̄, and

p̄ =
ȳ − x̄

|ȳ − x̄| ∈ N1
R(ȳ)

due to the definition of ȳ. Denote ζ(t) = B∗(t)λ[p̄](t), and let Φ(t, τ) be the
fundamental matrix solution of ẋ = A(t)x normalized at t = τ . From the
(Pontryagin) maximum principle we obtain that

〈ζ(t), v̄(t)〉 = max
u∈U

〈ζ(t), u〉 (8)

for almost every t ∈ [0, T ]. We obtain from (8) and the Cauchy formula
∫ T

0

|〈ζ(t), v̄(t) − ū(t)〉| dt =
∫ T

0

〈ζ(t), v̄(t) − ū(t)〉dt

=
∫ T

0

〈B∗(t)Φ∗(T, t)p̄, v̄(t) − ū(t)〉dt

=
∫ T

0

〈p̄, Φ(T, t)B(t)(v̄(t) − ū(t))〉dt =
〈

ȳ − x̄

|ȳ − x̄| , ȳ − x̄

〉
= |ȳ − x̄|. (9)
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Let W (t) be the set of all “best” adjacent vertices to v̄(t) with respect to
the direction ζ(t). That is,

v ∈ W (t) if and only if [v̄(t), v] ∈ E, and 〈ζ(t), v〉 ≥ 〈ζ(t), u〉 ∀u ∈ V \{v̄(t)}.
The mapping W is nonempty compact-valued, and it is easy to check directly
that it is measurable (in fact, W is upper semi-continuous, excluding the points
of discontinuity of v̄(·)). Then it has a measurable selection ṽ.

Denote

∆ = {t ∈ [0, T ] : ũ(t) 
= u(t)}.
Since v̄(·) is piece-wise constant with v̄(t) ∈ V (ζ(t)), and has at most m − 1
switching points, there is an interval [τ1, τ2] ⊂ [0, T ], such that v̄(t) = v̄ is
constant on [τ1, τ2] and meas(∆ ∩ [τ1, τ2]) ≥ meas(∆)/m. Since U has a finite
number of vertices, M , there is a subset ∆0 ⊂ ∆ ∩ [τ1, τ2] such that ṽ(t) = ṽ is
constant on ∆0, and meas ∆0 ≥ meas(∆)/Mm.

By the definition of ṽ(t), for every t ∈ ∆ at least one of the vertices ũ(t) and
u(t) is different from ṽ(t), thus at least one of the inequalities

〈ζ(t), ṽ(t)〉 ≥ 〈ζ(t), u(t)〉, 〈ζ(t), ṽ(t)〉 ≥ 〈ζ(t), ũ(t)〉
is fulfilled. Taking into account also (8) we obtain for t ∈ ∆0

|〈ζ(t), v̄(t) − ū(t)〉| = 〈ζ(t), v̄ − ū(t)〉 = 〈ζ(t), v̄〉 − 1
2
〈ζ(t), u(t)〉 − 1

2
〈ζ(t), ũ(t)〉

≥ 〈ζ(t), v̄〉 − 1
2
〈ζ(t), v̄〉 − 1

2
〈ζ(t), ṽ〉 =

1
2
〈ζ(t), v̄ − ṽ〉 =

1
2
|〈ζ(t), v̄ − ṽ〉|.

Combining this with (9) we obtain

|ȳ − x̄| =
∫ T

0

|〈ζ(t), v̄(t) − ū(t)〉| dt ≥
∫

∆0

|〈ζ(t), v̄(t) − ū(t)〉| dt

≥ 1
2

∫
∆0

|〈ζ(t), v̄ − ṽ〉| dt. (10)

Denote l(t) = 〈ζ(t), v̄ − ṽ〉. According to Remark 3.1

dk

dtk
l(t) = 〈λ[p̄](t), Bk(t)(v̄ − ṽ)〉.

For t ∈ [τ1, τ2] we have v̄ ∈ V (B∗(t)λ[p̄](t)) and ṽ is its adjacent vertex, hence
e = v̄ − ṽ ∈ E(B∗(t)λ[p̄](t)). Then (6) implies that

σ(x)−1∑
i=0

∣∣∣∣∣
dk

dtk
l(t)

∣∣∣∣∣ ≥ β > 0
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on [τ1, τ2]. Then l ∈ Pσ(x)−1([τ1, τ2]; L, β) for an appropriate L. From Corollary
3.1 we obtain that∫

∆0

|l(t)| dt ≥ c (meas ∆0)σ(x)
,

where c = c(T, L, β, σ(x)) is as in Lemma 3.1. Combining this with (10) we
obtain that

|ȳ − x̄| ≥ c (meas ∆0)σ(x) ≥ c

(
meas(∆)

Mm

)σ(x)

= c1(meas(∆))σ(x).

On the other hand, obviously

|x − x̃| ≤ c2‖u − ũ‖L1 ≤ c3 meas(∆),

where c2 and c3 are appropriate constants. From the last two exposed inequal-
ities we obtain the claim of the proposition.

4. The discrete-time problem

Consider the problem

min g(x(1)), (11)

ẋ = A(t)x + B(t)u, x(0) = x0, (12)
u ∈ U, (13)

where A, B, and U satisfy (A1), (A2) from the previous section. Let (û, x̂) be
a solution of the above problem.

Assumption (A3): g : Rn �→ R is differentiable with locally Lipschitz derivative,
and is locally κ-convex at x̂(T ) with κ ∈ [2, +∞); moreover, g′(x̂(T )) 
= 0.

Under the above conditions (û, x̂) is the unique solution, and it has the
bang-bang property described in Remark 3.1.

The discretized version of the above problem will be obtained in the following
way. For a natural number N and h = T/N we fix the uniform mesh tk = kh,
k = 0, . . . , N . On every subinterval [tk, tk+1], and for an arbitrary constant
u(t) ≡ uk ∈ U we apply to (12) a given Runge-Kutta scheme of at least 3-rd
order local consistency. This procedure formally defines a discrete-time control
system of the form

xk+1 = AN (k)xk + BN (k)uk, x0 = x0, k = 0, . . . , N − 1, (14)
uk ∈ U, (15)

where AN (k) and BN (k) are matrices of respective dimensions, which are ex-
plicitly defined if an explicit Runge-Kutta scheme is applied, or involve solving
a linear system of equations, otherwise.
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In general a (q-stage) Runge-Kutta scheme is defined by the so-called Butcher
array

c1 a11 . . . a1q

...
...

...
cq aq1 . . . aqq

b1 . . . bq

(see Butcher, 1987). The following conditions implying 3-rd order local consis-
tency will be assumed further.

Assumption (A4)

(i)
q∑

i=1

bi = 1, (ii)
q∑

i=1

q∑
j=1

biaij =
1
2
, (iii)

q∑
i=1

bici =
1
2
,

(iv) bi ≥ 0, ci ∈ [0, 1]. (16)

For example, for the widely used (especially in optimal control context) Heun
scheme, for which b = (0.5, 0.5), c = (0, 1), a21 = 1, all other aij = 0, one has

AN (k) = I + 0.5h(A(tk) + A(tk+1)) + 0.5h2A(tk+1)2,
BN (k) = 0.5h(B(tk) + B(tk+1)) + 0.5h2A(tk+1)B(tk+1).

The following two lemmas are standard and we skip the proofs.

Lemma 4.1 Assume (A1) and (A4). Then there exist numbers N0 and C, such
that for every N ≥ N0 and for every uk ∈ U , k = 0, . . . , N − 1 it holds that

|xk+1 − x(tk+1)| ≤ Ch2, k = 0, . . . , N,

where {xk+1} is obtained from (14), and x(tk+1) is the value at t = tk+1 of the
solution of (12) which corresponds to the piece-wise constant control defined by
{uk}.

Lemma 4.2 Assume (A1) and (A4). Then given a compact set Λ ⊂ Rn, there
exist numbers N0 and C, such that for every N ≥ N0 and for every λN ∈ Λ it
holds that

|λk − λ(tk)| ≤ Ch2, k = 1, . . . , N,

where the sequence {λk} is generated by the discrete backward dynamics

λk = A∗
N (k)λk+1,

and λ(tk) is the value at t = tk of the backward solution of adjoint equation (4)
which starts from λN at time T .
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The discretized version of problem (11)–(13) is

min g(xN ), subject to (14) and (15). (17)

As an auxiliary step to our main result we consider the control system (12),
(13) in a restrained set of admissible controls, UN , consisting of all function with
values in U , which are constant on each subinterval (tk, tk+1). Denote by R̃N

the reachable set of (12), (13) on [0, T ], in the set UN of admissible controls.
The following result is proven in Veliov (1997):

Lemma 4.3 Under (A1) there exist numbers N0 and C such that for every
N ≥ N0

H(R, R̃N) ≤ Ch2.

Denote by RN the reachable set of (14), (15) at k = N , that is, the set of
all end points xN of trajectories of (14) corresponding to arbitrary selections
uk ∈ U . Due to Lemma 4.1 we obtain in a standard way the following

Lemma 4.4 Under (A1) and (A4) there exist numbers N0 and C such that for
every N ≥ N0

H(R̃N , RN ) ≤ Ch2.

The following proposition combines the last two lemmas:

Proposition 4.1 Let (A1) and (A4) hold. Then there exist numbers N0 and
C such that for every N ≥ N0

H(R, RN) ≤ Ch2.

5. The error estimate

In this section we formulate and prove the main result, which estimates the
difference between the solution (x̂(·), û(·)) of (11)–(13) and an arbitrary solution
(x̂N , ûN) = ((x̂0, . . . , x̂N ), (û0, . . . , ûN−1)) of the discrete-time problem (17).
The proof combines propositions 2.1, 3.1, and 4.1, with the following auxiliary
result. We shall abbreviate σ = σ(x̂(T )), and λ(t) = λ[−g′(x̂(T ))](t).

Lemma 5.1 Assume (A1) and (A2). Then there exists a number c such that
the following is true: For every interval [τ1, τ2] ⊂ [0, T ] in which û(t) = u is
constant, and for every α > 0 there exists a measurable set ∆α ⊂ [τ1, τ2] with

meas(∆α) ≤ cα1/(σ−1), (18)

such that each vector l satisfying

|B∗(τ)λ(τ) − l| < α (19)

for some τ ∈ [τ1, τ2] \ ∆α, verifies V (l) = {u}.
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Proof. Let û(t) = u be constant on [τ1, τ2]. Since −g′(x̂(T )) ∈ N1
R(x̂(T )), it

follows from (6) that

σ−1∑
i=0

|〈λ(t), Bi(t)e〉| ≥ β > 0 ∀t ∈ [0, T ], ∀e ∈ E(B∗(t)λ(t)).

In particular, since u ∈ V (B∗(t)λ(t)) for t ∈ [τ1, τ2], the above inequality holds
for such t with any e = u−v, where v is an adjacent vertex to u. Thus, the func-
tion ξ[v](·) = 〈B∗(·)λ(·), u − v〉 belongs to Pσ([τ1, τ2]; L, β) (for an appropriate
L) and we can apply Lemma 3.1. For the set

∆α(v) = {t ∈ [τ1, τ2] : |ξ[v](t)| ≤ α diam(U)}
(where diam(U) is the diameter of the set U) we have

meas(∆α(v)) ≤ d(α diam(U))1/(σ−1).

Define ∆α = ∪∆α(v), where the union is taken over all vertices v for which
[u, v] ∈ E. Clearly, ∆α satisfies (18) with c = jd(diam(U))1/(σ−1), where j is
the number of vertices as above.

Take an arbitrary l as in the formulation of the lemma. Let τ ∈ [τ1, τ2] \∆α

be a time for which (19) holds, and let v be an arbitrary adjacent vertex to u.
Since τ 
∈ ∆α(v),

〈l, u − v〉 > 〈B∗(τ)λ(τ), u − v〉 − α|u − v| ≥ |ξ[l](t)| − α|u − v|
≥ α diam(U) − α|u − v| ≥ 0.

Since the above strict inequality holds for every adjacent vertex to u, it holds
also for every v ∈ U \ {u}, which means that V (l) = {u}.

In order to compare the solution (x̂(·), û(·)) of (11)–(13) with an arbitrary
solution (x̂N , ûN) of the discrete-time problem (17) we introduce the piece-
wise constant extension ûN(·) of (û0, . . . , ûN−1). As above we use the notation
σ = σ(x̂(T )), and also s = min{σ, κ(x̂(T ))}, where κ(x̂(T )) is the local convexity
index of g at x̂(T ).

Theorem 5.1 Assume (A1)–(A4). Then there exist numbers C and N0 such
that for every N ≥ N0 and for every optimal control ûN of (17) the following
estimation holds:

meas{t ∈ [0, T ] : ûN(t) 
= û(t)} ≤ C
(
h

1
σ−1 + Lg′h

2
s(σ−1)

)
, (20)

where Lg′ is the Lipschitz constant of g′ at x̂(T ).

Proof. Below c1, c2, . . . will be appropriate constants independent of N . As
before, denote λ(t) = λ[−g′(x̂(T ))](t).
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The solution of (17) satisfies the maximum principle

ûk ∈ V

(
1
h

B∗
N (k)λk+1

)
, k = 0, . . .N − 1, (21)

where λk is the solution of

λk = A∗
N (k)λk+1, k = N − 1, . . . , 1, λN = −g′(xN ).

Combining propositions 2.1, 3.1, and 4.1 we obtain that

|x̂N − x̂(T )| ≤ c(H(R, RN ))
1
s ≤ c1h

2
s .

Hence,

|λN − λ(T )| ≤ Lg′c1h
2
s .

Due to Lemma 4.2 and the Lipschitz continuity of the solution of the adjoint
equation (4) on the final condition, we obtain that

|λk+1 − λ(tk+1)| ≤ c2

(
h2 + Lg′h

2
s

)
.

Thanks to condition (16, i) for the scheme, we have | 1hBN (k)−B(tk+1)| ≤ c3h,
thus ∣∣∣∣1

h
B∗

N (k)λk+1 − B∗(tk+1)λ(tk+1)
∣∣∣∣ ≤ c4

(
h + Lg′h

2
s

)
,

Let [τ1, τ2] be a maximal interval in which û(t) is constant and equals some
u (hence, u ∈ V (B∗(t)λ(t)) on [τ1, τ2]). Since λ is Lipschitz continuous, for all
k and t ∈ [tk, tk+1]

∣∣∣∣1
h

B∗
N (k)λk+1 − B∗(t)λ(t)

∣∣∣∣ ≤ c5

(
h + Lg′h

2
s

)
. (22)

Now we shall apply Lemma 5.1 with

α = 2c5

(
h + Lg′h

2
s

)
.

From (18) we obtain an estimation as in (20) for the set ∆α from Lemma 5.1.
Now we shall prove that for all k such that [tk, tk+1] is contained in [τ1, τ2] but
is not contained in ∆α, it holds that uk = u. This implies the claim of the
theorem, since û has only a finite number of jumps, that is, there is only a finite
number of maximal intervals like [τ1, τ2].

Take some k as in the last paragraph. We apply Lemma 5.1 with l =
1
hB∗

N (k)λk+1. By the choice of k, the interval [tk, tk+1] contains some τ 
∈ ∆α.
Due to (22) we have |λk − λ(t)| < α. Then Lemma 5.1 implies V (l) = {u}, and
(21) gives uk = u. The theorem is proven.
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If g is linear, then Lg′ = 0 and the estimation becomes of order h
1

σ−1 .
Clearly, the more interesting case is that of Lg′ > 0. Then the first term in
the right-hand side of (20) can be skipped. The most important case is that of
a (locally) strongly convex function g. In this case s = κ(x̂(T )) = 2 and (20)
reduces again to

meas{t ∈ [0, T ] : ûN(t) 
= û(t)} ≤ Ch
1

σ−1 . (23)

If σ = 2 (which is related to the conditions for structural stability of the opti-
mal control, Felgenhauer, 2003) the estimation is of first order with respect to h,
which obviously cannot be improved for the considered discretization. The esti-
mation (23) seems to be sharp also for any value of σ, since in the case σ > 2 the
sensitivity of the optimal control to perturbations is of non-Lipschitz (Hölder)
type: an arbitrarily small perturbation in the data may create a bifurcation of
“hidden” switching points of multiplicity σ − 1.

Clearly, the number σ = σ(x̂(T )) is not known in advance. Condition (A2),
however, can be verified and the number σ̄ can be found, which can be used in
(23) instead of σ. We mention also that according to the results in Veliov (1987a)
the points x on ∂R for which σ(x) > 2 are situated on a (n − 2)-dimensional
continuous parametric manifold, and in this sense the case σ(x) = 2 is “typical”.

We mention also that in the case σ(x) = 2 the result in Theorem 5.1 can
be improved in a straightforward way: in addition to (23), the set {t ∈ [0, T ] :
ûN (t) 
= û(t)} consists of finite number of intervals (this is clear in advance)
and each interval contains a jump point of û or one of the points 0 and T . That
is, the structure of û is preserved in ûN .

Finally we mention that the results from sections 2 and 3, can be used to
estimate the sensitivity of the optimal control with respect to “‘regular” per-
turbations, hence to extend the results in Felgenhauer (2003) in two directions:
(i) to obtain estimates of the sensitivity; (ii) to treat the case of multiple zeros
of the switching function.
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