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Abstract: In the theory of optimization an essential role is
played by the differentiability of convex functions. In this paper
we shall try to extend the results concerning differentiability to a
larger class of functions called strongly α(·)-paraconvex.

Let (X, ‖.‖) be a real Banach space. Let f(x) be a real valued
strongly α(·)-paraconvex function defined on an open convex subset
Ω ⊂ X , i.e.

f
(
tx+(1− t)y

) ≤ tf(x)+(1− t)f(y)+C min[t, (1− t)]α(‖x−y‖).
Then there is a set of the first Baire category AF ⊂ Ω such that the
function f(·) is Fréchet differentiable at every point x0 ∈ Ω \ AF .

Keywords: α(·)-paraconvex functions, Fréchet differentiabi-
lity.

1. The α(·)-paraconvex and strongly α(·)-paraconvex
functions

Let (X, ‖.‖) be a real Banach space. Let f(x) be a real valued convex continuous
function defined on an open convex subset Ω ⊂ X , i.e.

f
(
tx + (1 − t)y

) ≤ tf(x) + (1 − t)f(y). (1)

We recall that a set B ⊂ Ω of second Baire category is called residual if its
complement Ω \ B is of the first Baire category. Mazur (1933) proved that if
X is separable, then there is a residual subset AG such that on the set AG the
function f is Gateaux differentiable. Asplund (1968) showed that if additionally
in the dual space X∗ there exists an equivalent locally uniformly rotund norm,
then there is a residual subset AF such that on the set AF the function f is
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Fréchet differentiable. The spaces X such that for the dual space X∗ there exists
an equivalent locally uniformly rotund norm are now called Asplund spaces. It
can be shown that each reflexive space and spaces having separable duals are
Asplund spaces. Even more, a space X is an Asplund space if and only if each
its separable subspace X0 ⊂ X has a separable dual (Phelps, 1989).

Let α(t) be a nondecreasing function mapping the interval [0, +∞) into the
interval [0, +∞] such that

lim
t↓0

α(t)
t

= 0. (2)

Let, as before, (X, ‖.‖) be a real Banach space. Let f(x) be a real valued
continuous function defined on an open convex subset Ω ⊂ X . We say that the
function f(·) is α(·)-paraconvex if there is a constant C > 0 such that for all
x, y ∈ Ω and 0 ≤ t ≤ 1

f
(
tx + (1 − t)y

) ≤ tf(x) + (1 − t)f(y) + Cα(‖x − y‖). (3)

For α(t) = t2 this definition was introduced in Rolewicz (1979a) and the
t2-paraconvex functions were called simply paraconvex functions. In Rolewicz
(1979b) the notion was extended to the case α(t) = tγ , 1 ≤ γ ≤ 2, and the
tγ-paraconvex functions were called γ-paraconvex functions.

We say that the function f(·) is strongly α(·)-paraconvex if there is a constant
C1 > 0 such that for all x, y ∈ Ω and 0 ≤ t ≤ 1

f
(
tx + (1 − t)y

) ≤ tf(x) + (1 − t)f(y) + C1 min[t, (1 − t)]α(‖x − y‖). (4)

Of course every function f(·) strongly α(·)-paraconvex is also α(·)-paraconvex.
The converse is not true and the conditions warranting the fact that each α(·)-
paraconvex is strongly α(·)-paraconvex can be found in Rolewicz (2000). In
particular each tγ-paraconvex function, 1 < γ ≤ 2, is strongly tγ-paraconvex.

If

lim
t↓0

α(t)
t2

= 0, (5)

then an α(·)-paraconvex function is convex. If

lim sup
t↓0

α(t)
t2

< ∞, (6)

then an α(·)-paraconvex function is a difference of a convex and a quadratic
function (Rolewicz, 1980). If

lim
t↓0

α(t)
t2

= +∞, (7)

then the class of α(·)-paraconvex functions is larger.
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The notion of α(·)-paraconvex functions can be treated as a uniformization
of the notion of approximate convex functions introduced in the papers of Luc,
Ngai and Théra (1999, 2000). We recall that a real-valued function f(·) defined
on a convex set Ω ⊂ X is called approximate convex if for arbitrary x0 ∈ Ω
and ε > 0 there is δ = δ(ε, x0) such that for x, y such that ‖x − x0‖ < δ and
‖y − x0‖ < δ we have

f
(
tx + (1 − t)y

) ≤ tf(x) + (1 − t)f(y) + ε min[t, (1 − t)]‖x − y‖. (8)

We say that a real-valued function f(·) defined on a convex set Ω ⊂ X is called
uniformly approximate convex if for arbitrary ε > 0 there is δ = δ(ε) such that
for x, y such that ‖x − y‖ < δ and (8) holds.

Proposition 1.1 (Rolewicz, 2001b) Let (X, ‖.‖) be a real Banach space. Let
f(x) be a real valued continuous function defined on an open convex subset
Ω ⊂ X. Then it is uniformly approximate convex if and only if there is α(·)
satisfying (2) such that f(·) is α(·)-paraconvex.

We shall recall now the different notions of directional derivatives.

By the Dini derivative of a continuous function f(x) at a point x0 in a
direction h we mean the number

dDf
∣∣
x0

(h) = lim inf
t↓0

u→h

f(x0 + tu) − f(x0)
t

, (9)

where the lower limit in formula (9) is taken with respect to any sequence {tn}
of positive numbers tending to 0 and to any sequence {un} tending to h.

By the lower directional derivative of a continuous function f(x) at a point
x0 in a direction h we mean the number

dldf
∣∣
x0

(h) = lim inf
t↓0

f(x0 + th) − f(x0)
t

. (10)

By the upper directional derivative of a continuous function f(x) at a point
x0 in a direction h we mean the number

dudf
∣∣
x0

(h) = lim sup
t↓0

f(x0 + th) − f(x0)
t

. (11)

If the lower directional derivative is equal to the upper directional derivative
we shall call it simply directional derivative.

By the Clarke derivative of the function f(x) at a point x0 in a direction h
we mean the number

dClf
∣∣
x0

(h) = lim sup
t↓0

x→x0

f(x + th) − f(x)
t

, (12)
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where the upper limit in formula (12) is taken with respect to any sequence
{tn} of positive numbers tending to 0 and to any sequence {xn} of elements
belonging to the domain of the function f(x) (i.e., such that |f(xn)| < +∞)
tending to x0.

It is easy to see that always

dDf
∣∣
x0

(h) ≤ dldf
∣∣
x0

(h) ≤ dudf
∣∣
x0

(h) ≤ dClf
∣∣
x0

(h). (13)

In the case of strongly α(·)-paraconvex functions defined on open convex sets
we have equality. The proof is based on the following

Proposition 1.2 (Rolewicz, 2000) Let Ω be an open convex set in a Banach
space X. Let f(·) be a strongly α(·)-paraconvex function. Then it is a locally
Lipschitz function.

Basing on Proposition 1.2 we can prove:

Theorem 1.1 (Rolewicz, 2001) Let Ω be an open convex set in a Banach space
X. Let f(·) be a strongly α(·)-paraconvex function. Then

dDf
∣∣
x0

(h) = dldf
∣∣
x0

(h) = dupf
∣∣
x0

(h) = dClf
∣∣
x0

(h). (14)

The aim of this paper is to show

Theorem 1.2 (Rolewicz, 2005) Let Ω be an open convex set of an Asplund space
X. Let f(·) be a continuous strongly α(·)-paraconvex function. Then there is
a residual set AF ⊂ Ω such that the function f(·) is Fréchet differentiable at
every point x0 ∈ AF .

At the moment I do not know anything about the possibility of replacing the
assumption of strong α(·)-paraconvexity by α(·)-paraconvexity.

2. Uniform approximative subdifferentiability

For the case of convex functions the proof of theorem similar to Theorem 1.2
consists of two parts
(a) a convex function has a subgradient at each point,

(b) if a function has a subgradient at each point, then there is a residual set
AF ⊂ Ω such that the function f(·) is Fréchet differentiable at every point
x0 ∈ AF .

In the classical situation condition (a) is so trivial, that it is not observed at
all. But now we are in a different situation. It is necessary to define ”subgradi-
ents” and to show a strongly α(·)-paraconvex function has a ”subgradient” at
each point. Moreover the corresponding ”subdifferentiability” ought to warrant
the step (b).
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The natural candidate is so the called approximate subgradient introduced
by Ioffe and Mordukhovich (see Ioffe, 1984, 1986, 1989, 1990, 2000; Mor-
dukhovich, 1976, 1980, 1988). Namely a linear functional x∗(·) ∈ X∗ will be
called an approximate subgradient of the function f(x) at a point x if

lim inf
h→0

(
f(x + h) − f(x)

) − x∗(h)
‖h‖ ≥ 0. (15)

The set of all approximative subgradients of the function f(·) at a point x shall
be called approximate subdifferential of the function f at the point x and we
shall denote it as in the classical case by ∂f

∣∣
x
.

Of course ∂f
∣∣
(·) is a multifunction mapping a domain of ∂f

∣∣
(·) into 2X∗

.

If for all x ∈ Ω ∂f
∣∣
x

�= ∅ we say that the function f(·) is approximate
subdifferentiable.

Unfortunately, till now we are not able to show that an approximate sub-
differentiable function f(·) is Fréchet differentiable on a residual set. However,
the uniformization of the notion of approximate subdifferentiability has the
requested property.

Observe that (15) holds if and only if there is a non-negative non-decreasing
function βx(·) defined on the interval [0, +∞) and such that lim

u↓0
βx(u) = 0 and

(
f(x + h) − f(0)

) − x∗(h)
‖h‖ ≥ −βx(‖h‖). (16)

Indeed, the function

βx(s)) = sup
{h:‖h‖≤s}

∣∣∣
(
f(x + h) − f(x)

) − x∗(h)
‖h‖

∣∣∣ (17)

has the requested property.
Putting αx(u) = uβx(u) we can rewrite (16) in the form

f(x + h) − f(x) ≥ x∗(h) − αx(‖h‖). (18)

Unfortunately βx(·) (and thus αx(·)) can be different in each point and we are
not able to use this definition for the problem of differentiation on a residual
set. Thus there is an idea of a uniformization of this notion.

Let α(t) be a nondecreasing function mapping the interval [0, +∞) into the
interval [0, +∞] such that

lim
t↓0

α(t)
t

= 0. (2)

Let f(·) be a real-valued function defined on an open set Ω of a Banach space
X . Let x ∈ X . A linear functional x∗ ∈ X∗ such that

f(x + h) − f(x) ≥ x∗(h) − α(‖h‖) (19)
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is called a uniform approximate subgradient of the function f(·) at x with the
modulus α(·) (or briefly α(·)-subgradient of the function f(·) at x). The set of all
α(·)-subgradients of the function f(·) at x will be called the α(·)-subdifferential
of the function f(·) at x and it will be denoted by ∂αf

∣∣
x
.

We say that a function f(x) is α(·)-subdifferentiable if ∂αf
∣∣
x
�= ∅ for all

x ∈ Ω.

Proposition 2.1 (Rolewicz, 2001) Let Ω be an open convex set in a Ba-
nach space X. Let f(·) be a strongly α(·)-paraconvex function. Then its α(·)-
subdifferential is equal to the Clarke subdifferential.

Since by Proposition 1.2 the function f(·), considered in the Proposition
2.1, is locally Lipschitz and locally Lipschitz functions have non-empty Clarke
subdifferentials at each point, we get:

Corollary 2.1 ((Rolewicz, 2001)) Let Ω be an open convex set in a Banach
space X. Let f(·) be a strongly α(·)-paraconvex function. Then it is α(·)-
subdifferentiable.

In a similar way we can consider a uniform Fréchet gradient. Namely we say
that x∗ ∈ X∗ is an α(·)-gradient of the function f(·) at x if

|f(x + h) − f(x) − x∗(h)| ≤ α(‖h‖). (20)

By linearity of x∗ and property (2) of α(·) the α(·)-gradient is unique.
We say that a function f(x) is α(·)-differentiable if it has α(·)-gradient for

all x ∈ Ω.

3. The α(·)-differentiability of strongly α(·)-paraconvex
functions

At the beginning of this section we shall show:

Theorem 3.1 (Rolewicz, 2002) Let Ω be an open convex set in a separable
Banach space X. Let f(·) be an α(·)-subdifferentiable function defined on Ω.
Suppose that the dual space X∗ is separable. Then there is a residual set D ⊂ Ω
such that the function f(·) is Fréchet differentiable at every point x0 ∈ D.
Moreover, on D the Fréchet gradient is continuous in the norm in conjugate
space X∗.

The proof is based on several notions. The first one is the notion of α(·)-
monotonicity of multifunctions.

Let, as before, α(t) be a function mapping the interval [0, +∞) into the
interval [0, +∞] such that α(0) = 0 and such that

lim
t↓0

α(t)
t

= 0. (2)
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We say that a multifunction Γ mapping X into X∗ is α(·)-monotone if for
all x∗ ∈ Γ(x), y∗ ∈ Γ(y) we have

[y∗ − x∗](y − x) + α(‖x − y‖) ≥ 0. (21)

In particular case α(t) ≡ 0 we obtain the classical definition of monotone multi-
functions. The notion of α(·)-monotonicity can be considered as a uniformiza-
tion of submonotonicity introduced by Springarn (1981, 1981-2).

In the case when α(t) = tγ we obtain the definition of a γ-monotone multi-
functions introduced by Jourani (1996).

It is obvious that, if a function f(x) is α(·)-subdifferentiable, then its α(·)-
subdifferential ∂αf

∣∣
x

considered as a multifunction of x is 2α(·)-monotone.
Indeed, take arbitrary x, y ∈ X . Let x∗ ∈ ∂αf

∣∣
x
, y∗ ∈ ∂αf

∣∣
y
. By definition

f(y) − f(x) ≥ x∗(y − x) − α(‖y − x‖) (22)

and

f(x) − f(y) ≥ y∗(x − y) − α(‖y − x‖). (23)

Adding (22) and (23) we finally obtain

0 ≥ [x∗ − y∗](y − x) − 2α(‖x − y‖). (24)

Thus

0 ≤ [x∗ − y∗](x − y) + 2α(‖x − y‖). (24’)

Following Preiss and Zajiček (1984) we denote for any x∗ ∈ X∗, 0 < β < 1,
x ∈ X,

K(x∗, β, x) = {y ∈ X : x∗(y − x) ≥ β‖x∗‖‖y − x‖}. (25)

The set K(x∗, β, x) will be called an β-cone with vertex at x and direction x∗.

Now we shall extend a little this definition. Namely, let � > 0 the set

K(x∗, β, x, �) = K(x∗, β, x) ∩ {y : ‖x − y‖ < �}

will be called an (β, �)-cone with vertex at x and direction x∗. It is obvious that
the set K(x∗, β, x) has a nonempty interior and, even more,

x ∈ IntK(x∗, β, x, �). (26)

Observe that just from the definition it follows that if β1 < β2, then

K(x∗, β1, x, �) ⊃ K(x∗, β2, x, �).
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We recall that M ⊂ X is said to be β-cone meagre if for every x ∈ M and
arbitrary ε > 0 there are z ∈ X, ‖x − z‖ < ε and x∗ ∈ X∗ such that

M ∩ Int K(x∗, β, z) = ∅ (27)

(Preiss and Zajiček, 1984).
Similarly, a set M ⊂ X is said to be (β, �)-cone meagre if for every x ∈ M

and arbitrary ε > 0 there are z ∈ X, ‖x − z‖ < ε and x∗ ∈ X∗ such that

M ∩ Int K(x∗, β, z, �) = ∅. (28)

The arbitrariness of ε and (28) implies that an (β, �)-cone meagre set M is
nowhere dense.

We recall that a set M ⊂ X is called angle-small if it can be represented as
a union of a countable number of β-cone meagre sets Mn,

M =
∞⋃

n=1

Mn. (29)

We say that M ⊂ X is weakly angle-small if it can be represented as a union
of a countable number of (β, �n)-cone meagre sets Mn,

M =
∞⋃

n=1

Mn (30)

for certain β > 0.
Of course, every weakly angle-small set M is of the first Baire category.

Adapting the method of Preiss and Zajiček (1984) we obtain:

Theorem 3.2 Let (X, ‖ · ‖) be a Banach space. Let Ω ⊂ X be a convex set
with non-empty interior. Assume that X∗ is separable. Let a multifunction Γ
mapping X into 2X∗

be α(·)-monotone and such that dom Γ = Ω (i.e., Γ(x) �= ∅
for all x ∈ Ω). Then there exists a weakly angle-small set A such that Γ is
single-valued and continuous on the set Ω \ A.

Proof. It is sufficient to show that the set

A = {x ∈ X : lim
δ→0

diam Γ(B(x, δ)) > 0}, (31)

where diam denotes the diameter of the set, is weakly angle-small. Of course,
we can represent the set A as a union of sets

An = {x ∈ X : lim
δ→0

diam Γ(B(x, δ)) >
1
n
}. (32)

Let {x∗
m} be a dense sequence in the space X∗. Let

An,m = {x ∈ An : dist(x∗
m, Γ(x)) <

β

4n
}, (33)
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where, as usual we denote dist(x∗
m, Γ(x)) = inf{‖x∗

m − x∗‖ : x∗ ∈ Γ(x)}. By the
density of the sequence {x∗

m} in X∗

∞⋃

m=1

An,m = An.

We will show that the sets An,m are (β, �)-meagre for sufficiently small �.

Indeed, suppose that x ∈ An,m. Let ε be an arbitrary positive number. Since
x ∈ An, by (32), the are 0 < δ < ε and z1, z2 ∈ Ω, x∗

1 ∈ Γ(z1), x∗
2 ∈ Γ(z2) such

that d(z1, x) < δ, d(z2, x) < δ and

‖x∗
1 − x∗

2‖ >
1
n

. (34)

Thus by the triangle inequality, for every x∗ ∈ Γ(x) either ‖x∗
1 − x∗‖ > 1

2n or
‖x∗

2 − x∗‖ > 1
2n . By the definition of An,m, we can find x∗

x ∈ Γ(x) such that
‖x∗

x − x∗
m‖ < β

4n . Therefore choosing as z either z1 or z2, we can say that there
are points z ∈ X and x∗

z ∈ Γ(z) such that d(z, x) < δ and

‖x∗
z − x∗

m‖ ≥ ‖x∗
z − x∗

x‖ − ‖x∗
x − x∗

m‖ >
1
2n

− β

4n
>

1
4n

. (35)

Since (2) there is �n such that

1
2n

− β

4n
− 1

β
sup

0<t<�n

α(t)
t

>
1
4n

. (36)

We shall show that

An,m ∩ K(x∗
z − x∗

m, β, z) ∩ {y : ‖z − y‖ < �n} = ∅.
Indeed, suppose that y ∈ K(x∗

z − x∗
m, β, z). This means that

[x∗
z − x∗

m](y − z) ≥ β‖x∗
z − x∗

m‖‖y − z‖.
Suppose that x∗

y ∈ Γ(y). Since Γ is α(·)-monotone by definition we have

[x∗
y − x∗

z ](y − z) ≥ −α(‖y − z‖).
Adding this two inequalities we get

[x∗
y − x∗

m](y − z) ≥ β‖x∗
z − x∗

m‖‖y − z‖ − α(‖y − z‖).
and if additionally ‖y − z‖ < �n we have by (36)

[x∗
y − x∗

m](y − z) ≥ β‖x∗
z − x∗

m‖‖y − z‖ − α(‖y − z‖)

≥ β
( 1
2n

− β

4n

)‖y − z‖ − α(‖y − z‖) ≥ β
( 1
2n

− β

4n
− 1

β

α(‖y − z‖)
‖y − z‖

)‖y − z‖

>
β

4n
‖y − z‖.
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This implies that

‖x∗
y − x∗

m‖ >
β

4n

and by the definition of An,m, y �∈ An,m. Thus

An,m ∩ K(x∗
z − x∗

m, β, z) ∩ {y : ‖z − y‖ < �n} = ∅
and the set An,m is (β, �n)-meagre. Therefore the set A is weakly angle-small.

Since the subdifferential ∂αf
∣∣
x

of an α(·)-subdifferentiable function is a
2α(·)-monotone multifunction of x, we immediately obtain:

Corollary 3.1 Let (X, ‖ · ‖) be a Banach space. Let Ω ⊂ X be a convex set
with non-empty interior. Assume that X∗ is separable. Let f(x) be an α(·)-
subdifferentiable function defined on Ω. Then there is a weakly angle-small set
A such that on the set Ω \ A the α(·)-subdifferential ∂αf

∣∣
x

is single-valued and
continuous.

Since the weakly angle-small sets are always of the first Baire category we
immediately obtain:
Corollary 3.2 Let (X, ‖ · ‖) be a Banach space. Let Ω ⊂ X be a convex set
with non-empty interior. Assume that X∗ is separable. Let f(x) be an α(·)-
subdifferentiable function defined on Ω. Then there is a residual set D ⊂ Ω
such that on the set of D the α(·)-subdifferential ∂αf

∣∣
x

is single-valued and
continuous.
Proof of Theorem 3.1. Recall that, if at a point x0 the Clarke subgradient
� = ∂Clf |x0 is unique, than this gradient is a Gateaux differential. Indeed, let
h be fixed. By simplicity we denote f̃(t) = f(x0 + th)− f(x0)− t�(h). The fact
that at a point x0 the Clarke subgradient � = ∂Clf |x0 is unique is nothing else
than the fact that

lim sup
t→0

x→x0

f̃(x + th) − f̃(x)
t

= 0. (37)

Suppose that the function f̃(·) is not differentiable at 0. It means that there
are a > 0 and a sequence {tn} tending to 0 such that

f̃(tn) ≤ −a|tn|. (38)

Replacing eventually f̃(t) by f̃(−t) we can assume without loss of generality,
that tn > 0. Let xn = tnh. Obviously 0 = xn − tnh and by (38)

lim inf
tn→0
xn→0

f̃(0) − f̃(xn)
tn

≥ a, (39)

which contradicts (37).
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Thus by the classical theorem that a continuous Gateaux differential is a
Fréchet differential from Corollaries 3.1 and 3.2 we trivially obtain Theorem
3.1.

Now we shall show how to extend Theorem 3.1 to the case when X is a non-
separable Asplund space. The proof (Rolewicz, 2005) is similar as the proof
that X is an Asplund space if and only if each of its separable subspaces is an
Asplund space.

Proposition 3.1 Let (X, ‖ · ‖) be a real Banach space. Let f(·) be a function
defined on an open convex subset Ω ⊂ X. Suppose that x∗ is an approximate
subgradient of the function f(·) in x ∈ Ω. Then x∗ is the Fréchet gradient of
the function f(·) at the point x if and only if for arbitrary ε > 0 there is δ > 0
such that

f(x + ty) + f(x − ty) − 2f(x)
t

< ε (40)

for all y ∈ X such that ‖y‖ = 1 and 0 < t < δ.

If f(·) is strongly α(·)-paraconvex we can replace the request that (40) holds
by t small enough by the fact that such t exists and we obtain:

Proposition 3.2 Let (X, ‖ · ‖) be a real Banach space. Let f(·) be a strongly
α(·)-paraconvex function defined on an open convex subset Ω ⊂ X. Then the
function f(·) is Fréchet differentiable at a point x ∈ Ω if and only if for arbitrary
ε > 0 there is tε > 0 such that

f(x + tεy) + f(x − tεy) − 2f(x)
tε

< ε (41)

for all y ∈ X such that ‖y‖ = 1.

As a consequence we get that the set G (possibly empty) of points x ∈ Ω
where the function f(·) is Fréchet differentiable is a Gδ set. Therefore, if the
set G of points x ∈ Ω where the function f(·) is Fréchet differentiable is dense
in Ω, then it is a residual set.

Now, suppose that f(·) is a strongly α(·)-paraconvex function defined on
an open convex subset Ω ⊂ X and that the set G of points x ∈ Ω where the
function f(·) is Fréchet differentiable is not dense in Ω. Using the construction
given in the proof that X is an Asplund space if and only if each its separable
subspaces is an Asplund space, we can show that there is a separable subspace
E ⊂ X such that the points of Fréchet differentiability of the restriction of the
function f(·) to Ω ∩ E, f |Ω∩E, is not dense in Ω ∩ E.

This fact together with Theorem 3.1 gives Theorem 1.2.
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4. Extensions to metric spaces

The results of Section 3 can be extended to metric spaces. In fact, I ought to say
that at the beginning the results were formulated in this more general setting.

Let X be a metric space. Let Φ be an arbitrary family of functions defined
on X and having values in the extended real line R̄ = R ∪ {−∞} ∪ {+∞}. Let
f(·) be a real-valued function defined on X . Similarly as in the classical case, a
function φ(·) ∈ Φ will be called a Φ-subgradient of the function f(·) at a point
x0 if

f(x) − f(x0) ≥ φ(x) − φ(x0) (42)

for all x ∈ X. The set of all Φ-subgradients of the function f(·) at a point x0

shall be called the Φ-subdifferential of the function f at the point x0 and we
shall denote it by ∂Φf

∣∣
x0

.
Of course ∂Φf

∣∣
(·) is a multifunction mapping X into 2Φ. It is not too difficult

to observe that this multifunction is cyclic monotone, i.e. for arbitrary n and
x0, x1, ..., xn = x0 ∈ X and φxi ∈ ∂Φf

∣∣
xi

, i = 0, 1, 2, ..., n, we have

n∑

i=1

[φxi−1(xi−1) − φxi−1(xi)] ≥ 0. (43)

We shall say that a function f(·) mapping a metric space (X, dX) into R is
Fréchet Φ-differentiable at a point x0 if there is a function φ ∈ Φ such that

lim
x→x0

|[f(x) − f(x0)] − [φ(x) − φ(x0)]|
dX(x, x0)

= 0. (44)

The function φ will be called a Fréchet Φ-gradient of the function f(·) at the
point x0. The set of all Fréchet Φ-gradients of the function f(·) at the point
x0 is called Fréchet Φ-differential of the function f(·) at the point x0 and it is
denoted by ∂F

Φ f
∣∣
x0

.

Under proper assumptions we can obtain an extension of the famous Asplund
theorem to the case of metric spaces. The assumptions are as follow:

(a) Φ is an additive group,
(sL) Φ is a set of Lipschitz functions. Moreover the space Φ

/
R

is separable in
the Lipschitz norm ‖φ‖L,

(wm) the family Φ has the weak k-monotonicity property, 0 < k ≤ 1, i.e. for all
x ∈ X , φ ∈ Φ and t > 0, there is a y ∈ X such that 0 < dX(x, y) < t and

|φ(y) − φ(x)| ≥ k‖φ‖LdX(y, x). (45)

Theorem 4.1 (Rolewicz, 2002) Let X be a metric space. Let Φ be a family
of Lipschitz functions satisfying assumptions (a), (sL) and (wm). Let a multi-
function Γ mapping X into 2Φ be monotone and such that dom Γ = X (i.e.,
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Γ(x) �= ∅ for all x ∈ X). Then there exists a residual set Ω such that Γ is
single-valued and continuous (i.e. simultaneously lower semi-continuous and
upper semi-continuous) at each point of Ω.

Recall that in the case of normed spaces Gateaux differentiability of a convex
continuous functions f(·) at a point x is equivalent to the fact that the sub-
differential ∂f

∣∣
x

consists of one point only. Moreover the continuity of Gateaux
differentials in the norm operator topology implies that these differentials are
the Fréchet differentials. Similarly we have an extension of this fact to metric
spaces (Rolewicz, 1995, 1996). As a consequence we get:

Theorem 4.2 (Rolewicz, 2002) Let X be a metric space, which is of the second
Baire category on itself (in particular, let X be a complete metric space). Let Φ
be a family of Lipschitz functions satisfying assumptions (a), (sL) and (wm). Let
f(·) be a continuous Φ-subdifferentiable function. Then there is a residual set
Ω such that the function f(·) is Fréchet Φ-differentiable at every point x0 ∈ Ω.
Moreover, on Ω the Fréchet Φ-gradient is unique and it is continuous in the
metric dL.
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