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Abstract: We study nonlinear control systems in the plane,
affine with respect to control. We introduce two sets of feedback
equivariants forming a phase portrait PP and a parameterized phase
portrait PPP of the system. The phase portrait PP consists of an
equilibrium set E, a critical set C (parameterized, for PPP), an op-
timality index, a canonical foliation and a drift direction. We show
that under weak generic assumptions the phase portraits determine,
locally, the feedback and orbital feedback equivalence class of a sys-
tem. The basic role is played by the critical set C and the critical
vector field on C. We also study local classification problems for
systems and their families.

Keywords: control system, family of control systems, invari-
ants, phase portrait, critical trajectories, feedback equivalence, bi-
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1. Introduction

The phase portrait of a dynamical system allows to understand the most impor-
tant features of the system. It gives a practical method of analysis of dynamical
systems in the plane. Can a similar notion be defined and used for control
systems?
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For optimal control problems in the plane this was already done in the book
of Pontriagin, Boltianskii, Gamkrelidze and Mishchenko and is still a subject
of intensive research (see Baitmann, 1978a, 1978b; Boscain and Piccoli, 2004;
Bressan and Piccoli, 1998; Sussmann, 1987a, 1987b). In all those works one
draws optimal synthesis or optimal trajectories, subject to specified constraints
on the control and specified objective function. Even if the objective function
is canonical (time), still the optimal portrait (synthesis) depends heavily on the
constraints and can be very complicated (compare Sussmann, 1987a, 1987b;
Bressan and Piccoli, 1998; Boscain and Piccoli, 2004). A qualitative analy-
sis of planar systems with constraints which was partially independent of the
optimality point of view was proposed in Davydov (1998, 1994).

In this paper we consider smooth planar control systems

Σ : ż = f(z) + ug(z), z ∈ X ⊂ R2, u ∈ R,

where z = (z1, z2) is the state, u is the control, X ⊂ R2 is an open subset,
and f and g are C∞-smooth vector fields on X . There are no specified control
constraints. The aim is to understand the structure of systems Σ without intro-
ducing a particular optimality problem. Instead, we use the natural feedback
equivalence of systems (which preserves the set of trajectories). Our aim is to
define a phase portrait of a system so that the following holds:

If two systems have the same phase portraits then they are feedback equiva-
lent.

When the above statement holds, knowing the phase portrait allows one
to analyze all feedback invariant properties of the system (like local or global
controllability, stabilizability, time-maximal and time-minimal trajectories etc).
The phase portrait that we propose will consists of the equilibrium set E, the
critical set C (which is formed, roughly, by time-critical curves), the phase
portrait of g, called the canonical foliation (or the foliation of fast trajectories),
the discriminant set D, the optimality index τ (indicating if the curve is time-
maximal or time-minimal) and a drift direction.

Our analysis is performed in the domain where g does not vanish and we use
smooth feedback and orbital feedback equivalence. A topological classification of
generic degenerations around points where g vanishes has recently been obtained
by Rupniewski (2005).

The set of equilibria, the set of (time) critical trajectories, and the optimality
index appear in several problems concerning control-affine planar systems. In
constructing the time-optimal synthesis on R2 for a system ẋ = f(x)+ug(x) with
constraints |u| ≤ 1, both the equilibria set and the critical set play an important
role, see Baitmann (1978a, 1978b), Boscain and Piccoli, (2004), Bressan and
Piccoli (1998), Sussmann (1987a, 1987b). In this case the set of fast trajectories
is not significant. In studying generic controllability problems and singularities
of the boundary of the reachable set for such systems (Davydov, 1994, 1998)
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the equilibrium set is important, while the other two invariants do not appear.
Instead, the main role is played by two vector fields X+ and X−, X± = f ± g
and by two foliations of oriented orbits of these vector fields, called limiting
directions (Davydov, 1994). In that case the problem is reduced to a local
classification of two generic, oriented foliations.

Our aim is somewhat different: using information about specific trajectories
(stationary, time-optimal, fast) encoded in the phase portrait we want to deter-
mine the system and, as a consequence, all its trajectories. It turns out that,
indeed, the phase portrait determines uniquely generic systems (up to orbital
feedback equivalence) and the parameterized phase portrait (we add the canon-
ical parametrization on time-optimal trajectories) determines (up to feedback
or orbital feedback) all systems from even a much bigger class.

The paper is organized as follows. We define feedback and orbital feedback
transformations in Section 2. Then we introduce in Section 3 basic notions of
the paper: phase portrait and parameterized phase portrait. Those notions
lead to main results of the paper: for the phase portrait in Section 5 and for
parameterized phase portrait in Section 6 (for systems) and in Section 7 (for
families). We also recall a classification of generic systems in Section 4 and of
generic families in Section 8, and their bifurcations in Section 9. In Appendix,
we give a result on equivalence of deformations of functions on which our proofs
are based.

2. Feedback and orbital feedback equivalence

Together with Σ, consider another smooth system

Σ̃ : ˙̃z = f̃(z̃) + ũg̃(z̃)

on X̃ ⊂ R2. We call Σ and Σ̃ feedback equivalent if there is a C∞-smooth
diffeomorphism (φ, ψ) : X × R → X̃ × R, called feedback transformation, which
is affine with respect to u, i.e., of the form

z̃ = φ(z), u = ψ−1(z, ũ) = α(z) + β(z)ũ,

and which brings Σ into Σ̃. The resulted transformation of the dynamics is

Γ : f̃ = φ∗(f + αg), g̃ = φ∗(βg),

where α and β are C∞-smooth functions of z, with β(z) �= 0, and ψ−1 stands
for the inverse of ψ with respect to u. Here for any vector field f and a diffeo-
morphism z̃ = φ(z) we denote (φ∗f)(z̃) = dφ(z) · f(z), with z = φ−1(z̃). The
transformation Γ will be shortly denoted Γ = (φ, α, β).

If φ is a local diffeomorphism, φ(z0) = z̃0 and the above identity holds locally
around z̃0, then Σ and Σ̃ are called locally feedback equivalent at z0 and z̃0.
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An orbital feedback transformation Γorb = (φ, α, β, h) contains additionally
a positive valued C∞-smooth function h on X which changes the time scale of
the system according to

dt

dτ
= h(z).

Thus, by definition, Γorb brings Σ into Σ̃ with f̃ = φ∗(hf + hαg) and g̃ =
φ∗(hβg). We can incorporate the action of h on g by choosing α̃ = hα and
β̃ = hβ and the transformation formula becomes

Γorb : f̃ = φ∗(hf + α̃g), g̃ = φ∗(β̃g).

Throughout the paper we assume that h is positive valued and constant on the
trajectories of g, i.e.,

Lgh = 0,

where Lg denotes the directional (Lie) derivative along g

Definition 2.1 Systems Σ and Σ̃ are called feedback equivalent (resp. locally
feedback equivalent) if one can be transformed into the other via a global (resp.
local) feedback transformation Γ. They are called orbitally feedback equivalent
(resp. locally orbitally feedback equivalent) if one can be transformed into the
other via a global (resp. local) orbital feedback transformation Γorb, where h
satisfies Lgh = 0, h > 0.

The feedback equivalence preserves the set of all trajectories of the system
(understood as time-parameterized curves) reparameterizing that set with re-
spect to controls. The orbital feedback equivalence also preserves the set of
all trajectories (also reparameterizing that set with respect to controls) but
changes the time-parameterization of trajectories. Due to the condition on h,
which satisfies Lgh = 0, the orbital feedback equivalence does not change the
basic properties of the system, as we shall see later.

3. Fundamental equivariants and phase portrait

Consider

Σ : ż = f(z) + ug(z), z ∈ X ⊂ R2, u ∈ R,

where z = (z1, z2). In these coordinates we identify the vector fields f =
f1∂/∂z1 + f2∂/∂z2 and g = g1∂/∂z1 + g2∂/∂z2 with the column vectors f =
(f1, f2)T and g = (g1, g2)T . We introduce the functions

e = det(f, g),
c = det([g, f ], g),
d = Lgc.
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Here Lgc = ∂c
∂z1

g1 + ∂c
∂z2

g2 denotes the derivative of c along g and [g, f ] is the
Lie bracket of g and f , with the i-th component [g, f ]i =

∑
j(

∂fi

∂zj
gj − ∂gi

∂zj
fj).

The four following objects play a crucial role in analyzing planar systems Σ.
We define the sets

E = {z ∈ X : e(z) = 0},
C = {z ∈ X : c(z) = 0},
D = {z ∈ X : c(z) = d(z) = 0},

called, respectively, the equilibrium set, the critical set and the discriminant set.
Finally, we define the foliation of fast trajectories or the canonical foliation as
the set G of phase curves (unparameterized trajectories) of the vector field g.
Away from stationary points of g (nonstationary points of g will also be called
control-regular points), G consists of regular curves in X .

On the critical set C we define the optimality index

τ(z) = sgn (e d)(z), z ∈ C.

Note that τ encodes the subset (E ∪D) ∩ C in C, namely (E ∪D) ∩ C = {z ∈
C : τ(z) = 0}.

Given Σ and a point z �∈ E, the set of trajectories of g near z (that is, the set
of leaves of the canonical foliation G) can be parameterized by a 1-dimensional
parameter with values in an interval. We define the transversal drift direction of
Σ at z, denoted DD(z), as one of the two possible orientations of this interval,
the one given by the vector f(z). The drift direction DD(z) defines an order
on the set of local trajectories of g, in a neighborhood of z. This order shows
that passage between different trajectories of g is possible (in a neighborhood
of z �∈ E) ”in one direction” only, the direction defined by the vector f(z).

Definition 3.1 The phase portrait of Σ is the 6-tuple PP = (E,C,G, D, τ,DD).

The first three members of the phase portrait are basic, the remaining three
play auxiliary role. What is perhaps surprising is that the critical set C is the
most powerful invariant (equivariant) in PP.

We interpret the components of PP below. The set E is the set of points
p which can be made equilibrium points, with a suitable feedback control u
so that f̃(z) = f(z) + u(z)g(z) = 0. The critical set C consists of points at
which the motion transversal to the trajectories of g admits its critical velo-
city, in particular, locally minimal or locally maximal velocity (we shall explain
this below). Both, E and C are, generically, curves. The set D consists of
those points where the critical set C either degenerates or it is tangent to the
canonical foliation G. Finally, the leaves Sα of the canonical foliation G are
exactly those 1-dimensional submanifolds of the state space X , which can be
arbitrarily closely approximated by trajectories of Σ (with large controls) and,
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moreover, the system can follow them approximately in both directions in Sα,
with arbitrarily large speed.

The optimality index τ = sgn (e d) defines three categories of points on C

C0 = {z ∈ C : τ(z) = 0 }, C+ = {z ∈ C : τ(z) > 0 },
C− = {z ∈ C : τ(z) < 0 }

and the partition C = C0∪C+ ∪C− determines τ . Note that C0 = C ∩ (E ∪D).
We shall see later that C+ and C− consist of time-maximal and time-minimal
curves, respectively.

The just defined objects are particularly simple for the following prenormal
form Σpre. If g(z) �= 0, then there exist local coordinates (x, y) around z such
that g = ∂/∂y. The system equations become ẋ = f1(x, y), ẏ = f2(x, y) + u.
Applying the feedback transformation u �→ u− f2(x, y) we obtain the following
proposition, stated here for further reference.

Proposition 3.1 If g(z) �= 0, then Σ is locally feedback equivalent at p to the
prenormal form

Spre : ẋ = f1(x, y), ẏ = u.

For the system Σpre the condition Lgh = 0 means that h is a function of the
variable x, only. We also have f = (f1, 0)T , g = (0, 1)T , [g, f ] = (∂f1/∂y, 0)T ,
and

e = f1, c =
∂f1
∂y

, d =
∂2f1
∂y2

.

Thus

E = {f1 = 0}, C = { ∂f1
∂y

= 0 }, D = { ∂2f1
∂2y

= 0 }.

and the canonical foliation is given by

G = {Sα}α∈R, where Sα = {x = α = const}.
Finally,

τ(x, y) = sgn
(
f1
∂2f1
∂y2

)
(x, y), (x, y) ∈ C.

The velocity ẋ = f1(x, y) can be identified with the velocity transversal to
the leaves of G. This means that C consists of the points where the motion
transversal to the trajectories of g admits its critical velocity. This interpretation
is the starting point for an approach to the feedback classification problem
based on its relations with the time-optimal control problem (see Bonnard, 1991,
Jakubczyk, 1998). If ∂2f1/∂y

2(x, y) �= 0 then the curve C = {∂f1/∂y(x, y) = 0}
has, locally, a parametrization y = ϕ(x). The velocity ẋ = f1(x, y) of x is locally
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minimal or locally maximal, as a function of y, when (x, y) lies on the critical
curve C = {y = ϕ(x)}. Maximality or minimality depends on the sign of
∂2f1/∂y

2 and, actually, the curve y = ϕ(x) is time-minimal if τ(x, y) < 0 and
time-maximal if τ(x, y) > 0. This shows that:

C+ consists of locally time-maximal and C− of locally time-minimal trajec-
tories of Σ.

We have shown this for a system Σpre. The same holds for a general system
Σ since C and τ are invariant, by the proposition below.

Proposition 3.2 If Σ and Σ̃ are feedback equivalent, under the feedback trans-
formation Γ = (φ, α, β), then

Ẽ = φ(E), C̃ = φ(C), D̃ = φ(D), G̃ = φ(G), and τ = τ̃ ◦ φ on C.

The same holds if Σ and Σ̃ are orbitally feedback equivalent. In particular, the
phase portrait does not change under the transformation Γorb = (id, α, β, h) and
it is transformed by φ, when Γorb = (φ, α, β, h).

The above property of E, C, G and of the ideals (e), (c) is called equivariance
or, by abuse of language, invariance. Thus E, C, G are said to be equivariant
or, by abuse of language, invariant with respect to feedback equivalence.

Note that from the invariance of C and τ we also get C̃+ = φ(C+) and
C̃− = φ(C−).

Recall that the Lie bracket has two basic properties:

[φ∗f, φ∗g] = φ∗[f, g],
[a f, b g] = ab [f, g] + aLfb g − bLga f,

where φ is a diffeomorphism, f , g are vector fields, and a, b are smooth functions.
Using the second property we see that if f̃ = hf + αg and g̃ = βg, then the
condition Lgh = 0 implies

[f̃ , g̃] = hβ[f, g] + ϕg,

where ϕ = hLf(β) + αLg(β) − βLg(α).

Proof of Proposition 3.2. Recall that the sets E, C, D are defined as zeros of
the functions e = det (f, g), c = det ([g, f ], g), d = Lgc. Replacing f and g by
the equivalent pair f̃ = hf + gα, g̃ = β g gives [f̃ , g̃] = hβ[f, g] mod g and thus
changes e, c, and d for

ẽ = hβ e, c̃ = hβ2c, d̃ = hβ3d+ cβLg(hβ2),

respectively. Thus, the ideals I(e), I(c), and I(c, d) generated, respectively,
by e, c, and by c and d, do not change under the orbital feedback trans-
formation Γorb = (id, α, β, h). It follows from the property of Lie bracket
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[φ−1
∗ g, φ−1

∗ f ] = φ−1
∗ [g, f ] that under the transformation Γorb = (φ, α, β, h), the

ideals are transformed by the coordinate change φ. Thus E, C and D (being
the zero level sets of e, c, and of c and d) are also transformed by the coordinate
change φ and so they satisfy the relations stated in the proposition. Finally,
under Γorb = (id, α, β, h) we have on C = C̃:

τ̃ = sgn (ẽ d̃) = sgn (h2β4ed) = sgn (ed) = sgn τ

and the transformation Γorb = (φ, α, β, h) gives τ = τ̃ ◦ φ on C.

The phase portrait determines basic qualitative properties of the system, like
controllability and stabilizability, and will be used for defining bifurcations in
Section 9. We will show in Section 5 that the phase portrait determines locally
the system up to orbital equivalence. Analogous results for feedback equivalence
and for families of systems will be given in the consecutive sections.

4. Feedback classification of generic systems

In order to set the stage for further considerations we recall generic local clas-
sification results (Jakubczyk and Respondek, 1990).

For functions h1, h2 we denote their Jacobian j(h1, h2) = det (∂hi/∂zj). We
introduce the following conditions at a point p ∈ X

(GS1) (e, c, j(e, c))(p) �= (0, 0, 0)
(GS2) (c, d, j(c, d))(p) �= (0, 0, 0)

Below, by ∗ we denote arbitrary nonzero numbers.

Theorem 4.1 A smooth system Σ, at any point p at which g(p) �= 0 and (GS1),
(GS2) hold, is locally feedback equivalent to one of the following systems at
0 ∈ R2:

(O) ẋ = y + 1, ẏ = v, iff (e, c) = (∗, ∗) at p;

(E) ẋ = y, ẏ = v, iff (e, c) = (0, ∗) at p;

(C)± ẋ = y2 ± 1, ẏ = v, iff (e, c, d) = (∗, 0, ∗) at p;

(EC)λ ẋ = y2 + λx, ẏ = v, iff (e, c, j(e, c)) = (0, 0, ∗) at p;

(CG)a ẋ = y3 + xy + a(x), ẏ = v, iff (e, c, d, j(c, d)) = (∗, 0, 0, ∗) at p,

where λ �= 0 and a(0) �= 0. The same holds for orbital feedback equivalence, with
the last two normal forms replaced, respectively, by

(EC)± ẋ = y2 ± x, ẏ = v;

(CG)± ẋ = y3 + xy ± 1, ẏ = v.
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The phase portraits of the canonical systems are illustrated in Figs. 1,2.
Vertical lines represent the canonical foliation and arrows indicate the drift
direction.

The proof of the first part is given in Jakubczyk and Respondek (1990). The
second part (orbital equivalence) can be deduced from the first one. The above
Theorem gives a local classification of generic systems (i.e., satisfying (GS1)
and (GS2) at any p ∈ X). Arbitrary analytic, control-affine systems were also
classified (Jakubczyk and Respondek, 1991, see also Respondek, 1998).

Above, the constant λ ∈ R is invariant, namely, it is the eigenvalue of the
uncontrollable mode of the linear approximation of Σ at p. The smooth function
a(x) has the following interesting invariance property: two systems of the form
(CGa), given by y3 + xy + a(x) and y3 + xy + ã(x), respectively, are equivalent
if and only if

a(x) = ã(x) for x ≤ 0.

We interpret the numerical invariant λ and the functional invariant a(x) in
terms of critical trajectories in Section 6 (compare Jakubczyk and Respondek,
1990, and Zhitomirskii, 1985).

Remark 4.1 If we drop the condition (GS1), then a smooth system Σ, under
the condition (GS2) only (which remains generic), is locally feedback equivalent,
around any control-regular point, to one of the following systems at 0 ∈ R2:
(O), (E), (C)±, (CG)a (with an arbitrary a(x)), or

(EC)a ẋ = y2 + a(x), ẏ = v, iff (e, c, d) = (0, 0, 	) at p

(with a(0) = 0). If there exists a positive integer k such that a(k)(0) �= 0,
then by applying an additional feedback transformation we can normalize a(x)
as a(x) = ±xk + λx2k−1, where λ ∈ R (or as a(x) = ±xk in the case of orbital
feedback).

Figure 1. Normal form (O), normal form (E), normal form (C)±
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Figure 2. Normal form (EC)λ, λ > 0, normal form (CG)±, a(0) > 0

5. Phase portrait and orbital feedback equivalence

In this section we will show that locally the phase portrait PP determines
generic systems up to orbital feedback equivalence. We will use the genericity
conditions (GS1), (GS2) (Section 4). Theorem 4.1 and Proposition 3.2 imply
the following result:

Theorem 5.1 The following conditions are equivalent for two smooth systems
Σ and Σ̃ satisfying (GS1) and (GS2) around points p, p̃ such that g(p) �= 0,
g̃(p̃) �= 0.

(i) The systems Σ and Σ̃ are locally orbitally feedback equivalent at p and p̃,
respectively.

(ii) There exists a local diffeomorphism φ, such that φ(p) = p̃, transforming
the phase portrait PP of Σ into the phase portrait P̃P of Σ̃.

(iii) There exists a local homeomorphism φ, such that φ(p) = p̃, transforming
the phase portrait PP of Σ into the phase portrait P̃P of Σ̃.

Proof. (i)⇒(ii) Assume Σ and Σ̃ be orbitally feedback equivalent via Γorb =
(φ, α, β, h). Then, by Proposition 3.2, the diffeomorphism φ maps E into Ẽ, C
into C̃, τ into τ̃ , G into G̃. It is clear that φ maps DD into D̃D.

Obviously, (ii)⇒(iii) and in the remaining part of the proof we will show
that (iii)⇒(i). Consider two systems Σ and Σ̃ and suppose that their respective
phase portraits PP and P̃P are equivalent via a homeomorphism. Without loss
of generality, we can assume that Σ and Σ̃, satisfying (GS1) and (GS2), are
represented by two of the normal forms (O), (E), (C)±, (EC)±, (CG)± listed
in Theorem 4.1. Thus it is enough to compare, case by case, all pairs of the
list in order to exclude the possibility that they are represented by two different
normal forms. This exercise is done below, for completeness.

1st case. Σ is given by (O) so E = ∅ and C = ∅ while Σ̃ is given by one
of the remaining normal forms but for all of them either E or C is nonempty.
Hence a homeomorphism φ conjugating the phase portraits PP of Σ and P̃P
of Σ̃ cannot exist.
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2nd case. Σ is given by (E) so E is nonempty and the only other normal forms
with a nonempty E are (EC)±. We have, however, C = ∅ for (E) but C �= ∅ for
(EC)± thus contradicting the existence of a conjugating homeomorphism.

3rd case. Σ is given by (C)+ or by (C)−, so C �= ∅ and E = ∅. The only
other normal form with an empty E and a nonempty C is (CG)±. For (C)+, we
have C = C+ (and C− = ∅) so there does not exit a homeomorphism φ which
would conjugate it with (C)− (for which, C = C− and C+ = ∅). To prove that
Σ̃ cannot be of the form (CG)±, either, notice that for the latter each leaf of
G intersects the curve C either twice or not at all (and only one leaf intersects
C just one time) while for (C+) and (C−) each leaf of G intersects C one time.
Thus a homeomorphism conjugating phase portraits cannot exist.

4th case. Σ is given by (EC)+ or by (EC)−, which are the only forms such
that both C and E are nonempty. In both cases E = {y2±x = 0} is a parabola
and C = {y = 0} is a line. They intersect at 0 ∈ R2. The critical line C has
a distinguished part C∗ the points of which lie ”between the arms of E” (the
points in C that are intersected by those trajectories of g which also intersect
E). On the C∗ the drift directions DD(z), represented by f(z), point toward 0,
in the case (EC)−, and away of 0 in the case (EC)+. Thus (EC)+ and (EC)−

cannot be equivalent.

5th case. Σ is given by (CG)+ or by (CG)− and hence E = ∅ while C �= ∅.
The only other normal forms with an empty E and nonempty C are (C)±, which
were excluded in case 3, so we can assume that Σ is given by (CG)+ and Σ̃ by
(CG)−. In these two cases the critical curve is the parabola C = {x+ 3y2 = 0}.
However, the two phase portraits can not be equivalent since the drift direction
at 0 ∈ R2 points ”inward the parabola C”, in the case (CG)−, and outward the
parabola C, in the case (CG)+. Here, ”inside of C” is defined as the set of those
points z which lie inside segments of trajectories of g meeting C.

6. Parameterized phase portraits

If we use feedback equivalence, instead of orbital feedback equivalence, the phase
portraits do not distinguish all locally nonequivalent generic systems. This fol-
lows from Theorem 4.1 and the remarks which follow it. Namely, all systems in
the normal form (CG)a, with a(0) > 0, are locally orbitally feedback equivalent
(and have equivalent phase portraits), while they are not locally feedback equi-
valent if a(x) �≡ ã(x), x ≤ 0. We shall add an additional ingredient to the phase
portrait (a critical vector field on C \D) so that, for generic systems, the new
portrait distinguishes nonequivalent systems under local feedback equivalence.

Consider the subset Creg = C \D of C. Since Lgc �= 0 at all points of Creg,
this set is a submanifold (curve) transversal to the trajectories of g (the leaves of
G). The connected components Cj of Creg are regular curves transversal to G.
Thus, there exists a unique control uj = uj(z), defined on Cj and C∞-smooth
on Cj , such that the vector field f crit

j (z) = f(z) + uj(z)g(z) is tangent to Cj .
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In this way we obtain a vector field f crit on Creg which will be called critical
vector field of Σ.

Recall that the optimality index τ = sgn (e d) defines three categories of
points on C: C0 = {τ = 0}, C+ = {τ > 0}, C− = {τ < 0}. Here C0 =
C∩(E∪D) while C+ and C− consist of locally time-maximal and time-minimal
curves, respectively. The curves C+ and C− are canonically parameterized by
f crit, as time-maximal and time-minimal trajectories of Σ, since f crit is nonzero
on C+ ∪ C−. On the other hand, f crit vanishes on Creg ∩ E.

Definition 6.1 We define the parameterized phase portrait of Σ as the collec-
tion PPP = (E,C,G, D, τ, f crit,DD), where f crit is the critical vector field on
C \D.

Example 6.1 To illustrate the notion of critical vector field, we consider the
normal form (EC)λ in Theorem 4.1, where Σ : ẋ = y2 + λx, ẏ = v. We have
f1(x, y) = y2 +λx and hence E = {y2 +λx = 0}, C = {y = 0} and the foliation
G, given by {x = const}, is transversal to C at its every point, that is D = ∅.
We have the critical vector field on C:

f crit = λx
∂

∂x
.

The function d = 2 and thus τ(x, y) = sgn (2(y2 + λx)) = sgn λx for (x, y) ∈
C = {y = 0}. Assume λ > 0. Then the critical vector field parameterizes
C+ = {y = 0, x > 0} as the time-maximal trajectory, and C− = {y = 0, x < 0}
as the time-minimizing trajectory. For λ < 0 the situation is opposite.

Definition 6.2 We say that the parameterized phase portraits PPP of Σ and
P̃PP of Σ̃ are locally equivalent at p and p̃ if there exits a local diffeomorphism
φ : X → X̃, such that φ(p) = p̃, which transforms PPP into P̃PP. Similarly,
PPP and P̃PP are called locally orbitally equivalent at p and p̃ if there exist a
local diffeomorphism φ : X → X̃, φ(p) = p̃, and a positive valued function h on
C \ D (having a smooth extension to a neighborhood of p such that Lgh = 0)
which transform PPP into P̃PP.

Above the elements E, C, D, G and τ are transformed by (φ, h) according
to the formulas in Proposition 3.2. The critical vector field is transformed via
the formula φ∗(h f crit) = f̃ crit.

Let grad c := ( ∂c
∂z1

, ∂c
∂z2

). We impose the following conditions on the system
Σ.

(AS1) grad c(p) �= 0 at each point p ∈ C.

(AS2) D is nowhere dense in C.

Note that the condition (GS2) from Section 4 implies (AS1) and (AS2).
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Theorem 6.1 Let Σ and Σ̃ satisfy the conditions (AS1) and (AS2) around
points p and p̃ such that g(p) �= 0, g̃(p̃) �= 0, respectively. Then Σ and Σ̃ are
locally feedback equivalent (resp., locally orbitally feedback equivalent) at p and
p̃ if and only if their parameterized phase portraits PPP and P̃PP are locally
equivalent (resp., locally orbitally equivalent) at p and p̃.

Proof. Assume that Σ and Σ̃ are locally feedback equivalent via Γ = (φ, α, β)
(resp. locally orbitally feedback equivalent via Γ = (φ, α, β, h)). From Proposi-
tion 3.2 it follows that feedback equivalent or orbital feedback equivalent systems
have equivalent E, C, G, D, τ , and DD. Recall that the critical vector field
f crit on C \D is defined in a unique invariant way and thus it is mapped into
f̃ crit on C̃ \ D̃ via φ∗ (resp. via φ∗ and h).

Now we will show that local equivalence of parameterized phase portraits
implies local feedback equivalence of systems. We will consider the case of orbital
feedback equivalence at the end of the proof. Consider two systems Σ and Σ̃
and assume that they both satisfy (AS1), (AS2) and that their parameterized
phase portraits PPP and P̃PP are locally equivalent via a diffeomorphism φ.

It is easy to see that if p �∈ C and p̃ �∈ C̃, then Σ and Σ̃ are locally feed-
back linearizable and thus locally feedback equivalent to one of the first two
canonical forms in Theorem 4.1 (depending on whether or not p and p̃ are in
the equilibrium set E and Ẽ, respectively). We have φ(E) = Ẽ and thus Σ and
Σ̃ are locally feedback equivalent. We can restrict further considerations to the
case where p ∈ C and p̃ ∈ C̃.

Local equivalence of the portraits PPP and P̃PP means that there exists
a local diffeomorphism φ which identifies the points p with p̃ and makes the
local phase portraits PPP and P̃PP coincide. Let us transform Σ by the
diffeomorphism φ. After applying φ to Σ we have p̃ = p and g(p) �= 0 �= g̃(p) and
the vector fields g and g̃ define the same canonical foliations G = G̃. Thus, we
can apply another diffeomorphism, the same diffeomorphism to both systems,
which rectifies g and g̃ so that g = g2∂/∂y, g̃ = g̃2∂/∂y. Now the feedback
transformations u �→ (g2)−1(u−f2) applied to Σ and ũ �→ (g̃2)−1(u− f̃2) applied
to Σ̃ (not changing the phase portraits) bring the systems into the pre-normal
forms

Σpre : ẋ = f1(x, y), ẏ = u,

Σ̃pre : ẋ = f̃1(x, y), ẏ = u,

respectively, whose phase portraits PPP and P̃PP coincide.
We will prove that equality of the portraits PPP and P̃PP implies that the

functions

F0(y, w) := f1(x, y), F1(y, w) := f̃1(x, y),

with the identification x = w, satisfy the assumptions of Theorem 10.1 in Ap-
pendix. The local feedback equivalence of Σ and Σ̃ will follow from this theorem.
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We use notations from Appendix. Denote E = E(Σpre), C = C(Σpre), and
D = D(Σpre) and, similarly, Ẽ = Ẽ(Σ̃pre), C̃ = C̃(Σ̃pre), and D̃ = D̃(D̃pre).
For Σpre we have:

E = {(x, y) : f1(x, y) = 0}, C = {(x, y) :
∂f1
∂y

(x, y) = 0}.

D = {(x, y) :
∂f1
∂y

(x, y) = 0,
∂2f1
∂y2

(x, y) = 0}

and analogously for Σ̃pre. Thus E = Z(f1) is the set of zeros of f1, C = C(f1)
is the critical set of f1, and D = D(f1) is the discriminant. The conditions
(AS1),(AS2) yield the conditions (A1) and (A2) in Appendix, for F (y, w) =
f1(w, y) and F (y, w) = f̃1(w, y).

Since the parameterized phase portraits are equal, we have C = C̃ and the
assumption (i) in Theorem 10.1 is satisfied. The assumption (ii) is satisfied,
too. Namely, we also have D = D̃, C \ D = C̃ \ D̃ and f crit = f̃ crit. Each
connected component Cj of C \ D is of the form Cj = C̃j = {y − yj(x) = 0},
where yj is a smooth function. The equality of critical vector fields means that
f1(x, yj(x)) = f̃1(x, yj(x)) on Cj . It follows that the critical values for f1 and
f̃1 coincide on C \D. Since D is nowhere dense in C, f1(x, y(x)) and f̃1(x, y(x))
coincide everywhere on C. This means that the assumption (ii) in Theorem
10.1 is satisfied.

The assumption (iii) is also satisfied. Let us first assume that E ∩ C is
nowhere dense in C, for Σ and Σ̃. In this case the set C+ ∪ C− is dense in C.
On this set the optimality index τ is nonzero. The fact that on C+∪C− we have
τ = τ̃ means that sgn (f1∂2f1/∂

2y) = sgn (f̃1∂2f̃1/∂
2y). Since f crit = f̃ crit �=

0, we have that f1 and f̃1 coincide on the critical curves. Thus sgn ∂2f1/∂
2y

and sgn ∂2f̃1/∂
2y are the same on C \ (E ∪D) = C̃ \ (Ẽ ∪ D̃). This means that

s1 = s2 on C+ ∪C− = C \ (D∪E). By continuity and nowhere density of E∩C
in C we get s1 = s2 on C+ ∪ C− = C \D = C \ D. Thus (iii) is satisfied.

Assume now that E ∩ C has a nonempty interior in C. Consider a point
z ∈ E ∩ C \D. We claim that the drift direction DD determines sgn ∂2f1/∂

2y
at such point. Namely, since z ∈ E ∩ C and z �∈ D, we have f1(z) = 0 and
(Lg(c))(z) �= 0. Thus the transversal drift direction is the same on both sides
of the curve C, when we traverse it along a trajectory of g passing through z.
If this drift direction points in the direction of growing x then ∂2f1/∂

2y(z) is
positive and s1(z) = 1. If the drift direction on both sides of C points in the
direction of decreasing x, we have s1(z) = −1. The same happens for the second
system. We have established that s1 = s2 at all points in C \D = C \ D. Thus
(iii) is satisfied in this case, too.

Now we can apply Theorem 10.1. We can find a local diffeomorphism (x̃, ỹ) =
(x, ψ(x, y)) such that f1(x, y) = f̃1(x, ψ(x, y)). This diffeomorphism, completed
with a suitable feedback, transforms Σ into Σ̃ and shows their local feedback
equivalence.
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The proof of the case of orbital equivalence is the same except for the begin-
ning: we rescale the system Σ by dt/dτ = h(z), where Lgh = 0, and then the
parameterized phase portraits of the rescaled system and of Σ̃ are equivalent by
a diffeomorphism so we can apply the already proved part of the theorem.

Note that the drift direction DD is used in the above proof only in the case
when E ∩ C has a nonempty interior in C. This proves the following

Corollary 6.1 Theorem 6.1 holds with the drift direction DD removed from
PPP, if we additionally assume that E ∩C is nowhere dense in C.

Clearly, E ∩C is nowhere dense in C for all systems satisfying (GS1)-(GS2)
but actually even for all systems satisfying (GS2) only (except for those equiva-
lent to ẋ = y2 + a(x), ẏ = v, with a vanishing on a set with nonempty interior).

In the above proof, equality of the equilibrium sets E and Ẽ was used only
in the case p �∈ C. The equivalence was established in the cases p �∈ C and
p̃ �∈ C without using the equilibrium set (the set E ∩ C was used but it can be
recovered as the set of points where f crit vanishes). This implies the following
”surprising”

Corollary 6.2 If p ∈ C and p̃ ∈ C̃, then Theorem 6.1 remains true after
withdrawing the equilibrium set from the parameterized phase portrait.

The above theorem applies, for instance, to the class of systems satisfying at
p ∈ X the conditions: e = 0, c = 0, d �= 0, j(e, c) = 0 but there exists an integer
k such that (Lk

V e)(p) �= 0, where V = [g, [g, f ]]. It follows that any such system
is orbitally feedback equivalent to the form ẋ = y2 ± xk, ẏ = v and, moreover,
any two such forms are orbitally equivalent if and only if their parameterized
phase portraits PPP coincide. In particular, the systems ẋ = y2 + x2, ẏ = v
and ẋ = y2 + x4, ẏ = v are not orbitally feedback equivalent because their
critical vector fields x2 ∂

∂x and x4 ∂
∂x on C = {y = 0} are not equivalent via a

diffeomorphism and smooth time-rescaling. The phase portraits PP and P̃P
of the systems coincide because they define the same drift directions DD. So,
indeed, the phase portrait PP contains less information than the parameterized
phase portrait PPP.

Example 6.2 Consider the normal form (CG)a on R2 of the classification The-
orem 4.1, given by ẋ = y3 + xy + a(x), ẏ = v and assume a(x) > 0. We have
C = {3y2 + x = 0} and the foliation G, given by {x = const}, is transversal to
C at its every point, except for (0, 0) ∈ R2, thus D = {(0, 0)}. Since d = 6y, the
two components of C (transversal to G) are thus C+ = {3y2 + x = 0, y > 0}
and C− = {3y2 + x = 0, y < 0}. On C+ and C− we have the critical vector
fields given by the same formula:

f crit
± =

(
y3 + xy + a(x)

)
(
∂

∂x
− 1

6y
∂

∂y
).
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Factoring R2 through the foliation G, given by {x = const}, yields a one-
dimensional manifold X̂ (which can be identified with R equipped with the co-
ordinate x). We denote by X̂crit the subset of X̂ consisting of those leaves of
G whose intersection with C is nonempty and transversal. On X̂crit = {x < 0}
we have two critical vector fields, obtained by plugging y = ±(−x/3)1/2 in f crit±
and projecting on x (we denote k = 2 · 3−3/2):

f̂ crit
+ =

(
a(x) + k(−x)3/2

) ∂
∂x
, and f̂ crit

− =
(
a(x) − k(−x)3/2

) ∂
∂x
.

7. Phase portraits and families of systems

Consider a 1-parameter family of systems on X ⊂ R2

Σf : ż = f(z, ε) + g(z, ε)u, (1)

where u ∈ R and ε ∈ I, an open interval. Here f(z, ε) = fε(z) and g(z, ε) = gε(z)
are families of vector fields on X , parameterized by ε and C∞-smooth with
respect to (z, ε).

Consider a C∞ local invertible transformations X × R × I → X̃ × R × Ĩ of
the form

Γf :
z̃ = φ(z, ε) = φε(z)
ũ = ψ(z, u, ε) = ψε(z, u)
ε̃ = η(ε),

where ψ(z, · , ε) is affine with respect to u, i.e.,

u = ψ−1(z, ũ, ε) = α(z, ε) + β(z, ε)ũ,

with α(z, ε) = αε(z) and β(z, ε) = βε(z) smooth with respect to (z, ε) and ψ−1

standing for the inverse of ψ with respect to u. Invertibility of Γf at (z0, ε0)
means that dφε0(z0) is of rank 2 and β(z0, ε0) �= 0, η′(ε0) �= 0 (obviously, this
invertibility is global with respect to u).

Definition 7.1 We call two 1-parameter families of systems Σf and Σ̃f locally
feedback equivalent (or, simply, equivalent) at (z0, ε0) and (z̃0, ẽ0) if there exists
a local, invertible at (z0, ε0), C∞-transformation Γf = (φ, ψ, η) : X × R × I →
X̃ × R × Ĩ transforming Σf into Σ̃f , that is,

f̃ε̃ = φε∗(fε + αεgε), g̃ε̃ = φε∗(βεgε),

and such that (φ, η)(z0, ε0) = (z̃0, ε̃0). Similarly, the families Σf and Σ̃f are
called locally orbitally feedback equivalent (or orbitally equivalent) at (z0, ε0)
and (z̃0, ẽ0) if there exists a local, invertible at (z0, ε0), C∞-transformation Γf
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and a positive valued function h = h(z, ε) = hε(z) satisfying Lgεhε = 0, which
gives

f̃ε̃ = φε∗(hεfε + αεgε), g̃ε̃ = φε∗(βεgε),

where ε̃ = η(ε). Above, φε∗ = (φε)∗ stands, for any ε ∈ I, for the tangent map
of φε.

The parameterized phase portrait PPP for the family Σf can be defined as
the family of parameterized phase portraits PPPε of the systems

Σε : ż = fε(z) + gε(z)u,

with ε ∈ I.
We make this definition more precise. Define the functions e, c, and d for

the family Σf by the same formulas as for a single system Σ in Section 3. Now
they are functions of (z, ε) ∈ X × I. With the help of these functions we define
E = {e = 0}, C = {c = 0}, and D = {d = 0}. These are subsets of X × I.
The corresponding subsets of X given by a fixed value of ε are denoted Eε, Cε,
and Dε. These are the corresponding equilibrium, critical and discriminant sets
defined by the system Σε. The optimality index τ = sgn (e d) is defined on C
and τε(z) = τ(z, ε) is well defined for z ∈ Cε.

The canonical foliation Gε is defined as the canonical foliation of the system
Σε. The collection of the foliations Gε, ε ∈ I, is, by definition, the canonical
foliation of the family Σf and is denoted by G. It is well defined away of points
(z, ε) such that g(z, ε) = 0. Alternatively, we can understand G as the foliation
in X × I, with each leaf contained in a surface ε = const. In the same way
we define the drift direction DD for Σf as the collection of the drift directions
DDε of the systems Σε. It is immediate to observe that Proposition 3.2 holds
for families Σf (with ε̃ = η(ε)).

Finally, we recall that each system Σε has a well defined critical vector field
f crit

ε on the curve (the set of curves) Cε \Dε and the collection of critical vector
fields f crit

ε , ε ∈ I, defines a critical vector field f crit on C \D.
Now we see that the parameterized phase portrait PPP=(E,C,G, τ,DD,f crit)

of the family Σf is well defined and consists of analogous objects as in the case
of a single system.

Definition 7.2 We say that two phase portraits PPP of Σf and P̃PP of Σ̃f

are locally equivalent (respectively, locally orbitally equivalent) at p0 = (z0, ε0)
and p̃0 = (z̃0, ε̃0) if there is a local diffeomorphism (φ, η) : X × I → X̃ × Ĩ
(resp. a diffeomorphism (φ, η) and a time rescaling h on C \ D), such that
φ(z0, ε0) = z̃0, η(ε0) = ε̃0, which transforms PPP into P̃PP. Here η is assumed
to be a function of ε ∈ Ĩ, only, and h is positive valued on C \D, having smooth,
positive extension to a neighborhood of (z0, ε0) such that Lgh = 0.
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In this definition, the transformation (φ, η), as well as (φ, η, h), transform
the elements of PPP according to the formulas

Ẽ = φ(E), C̃ = φ(C), D̃ = φ(D), G̃ = φ(G), τ = τ̃ ◦ (φ, η).

The critical vector field is transformed via

φε∗f crit
ε = f̃ crit

ε̃ (resp. φε∗(hf crit
ε ) = f̃ crit

ε̃ ),

with ε̃ = η(ε).
Note that the feedback transformation Γf = (φ, α, β) (resp. Γf = (φ, α, β, h))

transforms the elements of PPP exactly via the above formulas (this is Propo-
sition 3.2 generalized to the case of families), that is, PPP does not change if
we reparameterize the control via u = α+ βv.

Denote Grad c = ( ∂c
∂z1

, ∂c
∂z2

, ∂c
∂ε ). We impose the following conditions on Σf :

(AF1) Grad c(p) �= 0 at each point p = (z, ε) ∈ C.

(AF2) D is nowhere dense in C.

Notice that the condition (GF2), stated in Section 8, implies (AF1) and
(AF2).

Theorem 7.1 Suppose Σf and Σ̃f fulfil the conditions (AF1), (AF2) at points
p0 = (z0, ε0) and p̃0 = (z̃0, ε̃0), respectively, and g(p0) �= 0, g̃(p̃0) �= 0. Then
they are locally feedback equivalent (resp., locally orbitally feedback equivalent)
at p0 and p̃0 if and only if their parameterized phase portraits PPP and P̃PP
are locally equivalent (resp., locally orbitally equivalent) at p0 and p̃0.

Proof. The proof follows the same line as that of Theorem 6.1. As we have
mentioned, Proposition 3.2 holds for families, which proves necessity.

In order to prove sufficiency, consider two families Σf and Σ̃f with equivalent
phase portraits. Analogously as in the proof of Theorem 6.1, we can bring them
to the prenormal forms

Σf
pre : ẋ = f1(x, y, ε), ẏ = u,

Σ̃f
pre : ẋ = f̃1(x, y, ε), ẏ = u,

respectively, whose phase portraits PPP and P̃PP coincide. The case when C
and C̃ are empty is easy since in this case ∂f1/∂y �= 0 and the systems can be
linearized to the normal form ẋ = y+1 or ẋ = y, depending if the equilibrium set
E is empty or not. Therefore, we can assume that (z0, ε0) ∈ C and (z̃0, ε̃0) ∈ C̃.

We have to prove that equality of the portraits PPP and P̃PP implies that
the functions

F0(y, w) := f1(x, y, ε), F1(y, w) := f̃1(x, y, ε),
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with the identification (x, ε) = w, satisfy the assumptions of Theorem 10.1,
Appendix. Clearly, C = C(f1) is the critical set of f1 and D = D(f1) is the
discriminant. We see that the conditions (AF1), (AF2) imply (A1), (A2), for
the functions F0 = f1 and F1 = f̃1.

The remaining part of the proof follows exactly the same line as that of The-
orem 6.1. Namely, it can be verified that equality of the parameterized phase
portraits of Σf

pre and Σ̃f
pre implies that the assumptions (i), (ii) and (iii) of

Theorem 10.1 are satisfied. We leave this verification to the reader. Apply-
ing Theorem 10.1 we see that there exists a function ỹ = ψ(x, y, ε) such that
f1(x, y, ε) = f̃1(x, ψ(x, y, ε), ε). This gives a transformation of Σf

pre into Σ̃f
pre

and establishes local feedback equivalence of Σf
pre and Σ̃f

pre (after applying a
suitable feedback). The case of orbital equivalence is analogous.

8. Orbital classification of families

In this section we will present a simplified version of a local classification theorem
for generic families of systems Σf , obtained by the authors in Jakubczyk and
Respondek (2005).

For three functions hi = hi(z1, z2, z3), i = 1, 2, 3, we denote

j(h1, h2) = det
{
∂hi

∂zj

}
i,j=1,2

, J(h1, h2, h3) = det
{
∂hi

∂zj

}
i,j=1,2,3

.

We will identify z3 = ε. For h = h(z1, z2, ε) we denote gradh = (∂h/∂z1, ∂h/∂z2)
and Gradh = (∂h/∂z1, ∂h/∂z2, ∂h/∂ε).

Put c0 = e, c1 = c and, inductively, ci+1 = Lgc
i. Define dmod = d −

(c5/7c4)c1. We will use the following conditions at p = (z, ε):

(GF1) J (e, c) := (e, c, j(e, c), J(e, c, j(e, c))) �= (0, 0, 0, 0)
(GF2) J (c, d) := (c, d, j(c, d), J(c, d, j(c, d))) �= (0, 0, 0, 0)
(GF3) (e, c, d, grad c) �= (0, 0, 0, 0)
(GF4) (c, d, Lgd, graddmod) �= (0, 0, 0, 0).

Note that (GF1) and (GF2) can be viewed as a generalization of (GS1)-(GS2)
to the case of families. Below, by ∗ we will denote arbitrary nonzero numbers.

Theorem 8.1 Consider a family Σf satisfying (GF1)-(GF4) at p = (z0, ε0)
such that g(z0, ε0) �= 0. Then Σf is orbitally feedback equivalent to one of the
following canonical forms at 0 ∈ R2 and ε = 0. (Below the second equation is
always ẏ = v. In the rightmost column we list the conditions, satisfied at p,
which characterize the equivalence class.)



838 B. JAKUBCZYK, W. RESPONDEK

(O) ẋ = y + 1, (e, c) = (∗, ∗) ;

(E) ẋ = y, (e, c) = (0, ∗) ;

(C) ẋ = τy2 + 1, (e, c, d) = (∗, 0, ∗) ;

(EC) ẋ = y2 + γx, (e, c, j(e, c)) = (0, 0, ∗) ;

(CG) ẋ = δy3 + xy + 1, (e, c, d, j(c, d)) = (∗, 0, 0, ∗) ;

(Ebif ) ẋ = σey
2 + x2 − ε, J (e, c) = (0, 0, 0, ∗), d = ∗ ;

(Cbif ) ẋ = σcy
3 + (x2 − ε)y + 1, J (c, d) = (0, 0, 0, ∗),

(e, Lgd) = (∗, ∗) ;

(EGbif ) ẋ = y3 + (x− ε)y + γx, J (e, c) = (0, 0, 0, ∗),
(d, j(c, d)) = (0, ∗) ;

(CGbif ) ẋ = y4 + (θx− ε)y2 + xy + a(x, ε), J (c, d) = (0, 0, 0, ∗),
(e, Lgd, L

2
gd) = (∗, 0, ∗),

graddmod = ∗ .

Above a is a smooth function of (x, ε) satisfying a(0, 0) �= 0 and sgna(0, 0) = κ.
The integers τ , γ, δ, σe, σc, θ, and κ take values ±1 and are orbitally feedback
invariant.

Notice that the above Theorem gives a local classification of generic families
of systems. Indeed, families satisfying (GF1)-(GF4) at any p = (z, ε) ∈ X × I
are generic, that is, form a countable intersection of open and dense subsets
in the C∞ Whitney topology of the space of all pairs (f, g) of parameterized
vector fields defined on X × I (see Hirsch, 1976, for properties of the Whitney
topology). This is proved in Jakubczyk and Respondek (2005) by showing that
(GF1)-(GF4) are equivalent to a set of conditions (G1)-(G6) that are generic.

Proof. The above classification theorem can be deduced from Theorem 3.3 in
Jakubczyk and Respondek (2005), Section 3.2, by showing that any system satis-
fying the assumptions of the above theorem fulfils the corresponding conditions
of the classification given in Theorem 3.3. We show this below. In particular,
we prove that the conditions characterizing each equivalence class are the same
in the theorem above and in Theorem 3.3 mentioned above. We will denote the
partial derivatives of h = h(x, y, ε) by hx, hy, hε. Our calculations are done for
Σ in the prenormal form Σpre and then c = ey and d = cy = eyy.

Assume that (GF1) holds with e(p) �=0 at p. Then (GF2) satisfied means one
of the conditions c= ∗, (c, d) = (0, ∗), (c, d, j(c, d)) = (0, 0, ∗), or (c, d, j(c, d)) =
(0, 0, 0) and J(c, d, j(c, d)) = ∗. The first three cases lead, respectively, to the
conditions characterizing the normal forms (O), (C), and (CG) (in both classi-
fication theorems). So we consider the case c= d= j(c, d) = 0 at p. Note that
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j(c, d))=cxdy−cydx. Since cy(p)=d(p) = 0, we have j(c, d)(p)=cx(p)·dy(p) = 0.
If cx(p=0, then cε is the only possible nonzero partial derivative of c at p. We
also have jy(c, d)(p)=(cxydy − cyydx)(p)=(cxycyy − cyycxy)(p)=0, which gives

J(c, d, j(c, d))(p) = cε(p) · dy(p) · hess (c)(p) �= 0,

where hess (c) = cxxcyy − c2xy and hess (c)(p) = jx(c, d)(p). This yields the
conditions describing the form (Cbif ). If cx(p) �= 0, then cyy(p) = dy(p) =
Lgd(p) = 0 which, together with the condition cy(p) = d(p) = 0, yield

J(c, d, j(c, d))(p) = cx(p) · dyy(p) · (cxdε − dxcε)(p) �= 0,

which, in particular, implies independence of Grad c(p) and Grad d(p) (denoted
in Jakubczyk and Respondek, 2005) by Dc(p) and Dd(p), respectively). Since
we are in the case c = d = Lgd = 0 at p, the assumption (GF4) says that
graddmod(p) �= 0. This forms the set of conditions describing (CGbif ) in both
classification theorems.

Now we consider (GF1) with e(p) = 0. If at p, c = ∗ or (c, j(e, c)) = (0, ∗),
then the family is respectively equivalent to (E) or (EC). So we consider the
case e = c = j(e, c) = 0 at p. Since ey(p) = c(p) = 0, we have j(e, c)(p) =
ex(p) · d(p) = 0. If ex(p) = 0, then putting c = ey yields

J(e, c, j(e, c))(p) = −eε(p) · d(p) · hess (e)(p) �= 0,

which gives the conditions describing the form (Ebif ). If ex(p) �= 0, then d(p) =
0 and hence

J(e, c, j(e, c))(p) = ex(p) · dy(p) · (εxcε − cxeε)(p) �= 0.

Since in our case (e, c, d)(p) = (0, 0, 0), the assumption (GF3) implies that
grad c(p) �= 0. By cy(p) = d(p) = 0, we get cx(p) �= 0. This shows that the
family is equivalent to (EGbif ).

It can be noticed that without the assumption on dmod, we have to replace
the normal form (CGbif ) by ẋ = y4 + a2(x, ε)y2 + xy + a0(x, ε), ẏ = v, where
(∂a2/∂ε)(0, 0) �= 0, a0(0, 0) �= 0. If we drop also the assumption (GF1), then
we have to replace in all normal forms (except (O)) the zero order terms with
respect to y by arbitrary functions a(x, ε).

9. Bifurcations of generic families

Observe that if a family satisfies the conditions (GS1)-(GS2) (given in Section
4), then by an appropriate orbital feedback it is equivalent to one of the five
top normal forms of Theorem 8.1 which do not depend on the parameter ε. In
the four remaining forms, however, the elements of the phase portrait change
qualitatively if the parameter varies: the family bifurcates! In what follows we
will formalize this notion.
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For a subset Ω ⊂ X × I and a fixed parameter ε ∈ I = (a, b), we denote
Ωε = {z ∈ X : (z, ε) ∈ Ω}. Assume 0 ∈ I. We denote by Σε the system
obtained from a family Σf by fixing the value of the parameter at ε. We will
say that the family Σf does not bifurcate, locally at (z0, ε0) = (z0, 0), if there
exits a neighborhood Ω ⊂ X × I of (z0, 0) and a family of homeomorphisms
χε : Ωε → Ω0, continuous with respect to (z, ε), such that for Σε restricted to
Ωε we have

χε(Eε) = E0, χε(Cε) = C0, and χε(Gε) = G0,

for all ε ∈ I close enough to 0. Otherwise we say that Σf bifurcates locally or
has a local bifurcation at (z, ε) = (z0, 0).

Analogous definition applies to bifurcations at arbitrary (z0, ε0). Strictly
speaking, in our definition we should say that the triple (Eε, Cε,Gε) bifurcates or
that Σf bifurcates with respect to (Eε, Cε,Gε). The same definition will be used
for any subset of the triplet (Eε, Cε,Gε). In particular, we define bifurcations of
the equilibrium set Eε, of the critical set Cε, and of the pairs (Eε, Cε), (Eε,Gε),
and (Cε,Gε). We say that two (local) bifurcations of Σε and Σ̃ε are locally
equivalent if there is a local, smooth, invertible transformation (φ(z, ε), η(ε))
which transforms the triple (Eε, Cε,Gε) into the triple (Ẽε̃, C̃ε̃, G̃ε̃).

An analysis of the classification Theorem 8.1 leads to the following conclu-
sions. If a family Σf is equivalent to one of the first five normal forms, which do
not depend on ε, then clearly it does not bifurcate. If the family is equivalent
to the normal form (Ebif ), then it undergoes an E-bifurcation which can be
of two types: a birth of equilibria or a cross of equilibria (see Figs. 3 and 4
below). If the family is equivalent to the normal form (Cbif ), then it undergoes
a C-bifurcation which can be of two types: a birth or a cross of the critical
curve (see Figs. 5 and 6 below). If the family is equivalent to the normal form
(CGbif ), then it undergoes a CG-bifurcation (see Fig. 7 below). If the family
is equivalent to the normal form (EGbif ), then it undergoes a EG-bifurcation
which is also a EC-bifurcation-bifurcation (see Fig. 7 below). The above list
exhausts all bifurcations of generic families of systems (which are defined as
families satisfying the conditions (GF1)-(GF4)) at control-regular points. This
result is proved in Jakubczyk and Respondek (2005), where all generic bifurca-
tions are discussed in detail. For a classification of bifurcations at points where
g vanishes see Rupniewski (2005).

Notice that in our definition of bifurcations we require that a family of home-
omorphism χε conjugates the triple (Eε, Cε,Gε) of fundamental equivariants of
the system Σε to that of the nominal system Σ0. Another possibility would be
to consider the whole phase portrait PP and to require (in order that a family
does not bifurcate) that χε transforms the phase portrait PPε of Σε into the
phase portrait PP0 of Σ0. In general, such a definition would lead to more
non equivalent bifurcations distinguished by discrete equivariants of the phase
portrait: the optimality index τ and the drift direction DD.
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Figure 8. EG-bifurcation, γ = 1

If we consider the bifurcations of the whole phase portrait PP (and not
only of the triple of fundamental equivariants), then the E- and C-bifurcations
remain the same. The CG-bifurcation splits, however, into four nonequivalent
ones corresponding to various signs of θ and κ which give different drift directions
and different optimality properties of the critical curves.

Also the EG-bifurcation splits into two non equivalent ones if we consider
bifurcations of the whole phase portrait. It is the richest bifurcation so we will
give some comments on it. The pair (E,G) bifurcates because the number of
points of the intersection of E with the leaves of G changes when the parameter
ε varies. Also the pair (E,C) bifurcates for an analogous reason. Now if we con-
sider the bifurcations of the whole phase portrait PP (and not only of the triple
of fundamental equivariants), then this bifurcation splits into two nonequivalent
ones corresponding to various signs of γ. To see this, observe that the transfor-
mation y �→ −y conjugates the triples (Eε, Cε,Gε) of the fundamental invariants
of the form (EGbif ) for γ = 1 and γ = −1. Moreover, this transformation conju-
gates the optimality indices τ of both normal forms (proving that they have the
same optimality properties) but it fails to conjugate their drift directions DD.
This illustrate the role of the latter in distinguishing nonequivalent systems and
nonequivalent bifurcations.



Phase portraits of planar control-affine systems 843

10. Appendix: Equivalence of deformations

We will prove a theorem establishing equivalence of smooth functions, with
parameters, whose critical points and values coincide (for a more general result,
see Jakubczyk, 2005). The result is used in proving Theorems 6.1 and 7.1.

Consider a smooth function F (y, w) of y ∈ R and w ∈ Rr, defined in a
neighborhood of (0, 0) ∈ R×Rr. The variables w = (w1, . . . , wr) can be treated
as parameters and F as a deformation of the function f(y) = F (y, 0). We denote
w0 = y and w̃ = (w0, w1, . . . , wr).

Two such functions (deformations) F0 and F1 will be called strongly equiv-
alent if there exists a local diffeomorphism χ, preserving (0, 0), of the form

(ỹ, w̃) = χ(y, w) = (ψ(y, w), w) (	)

such that

F1(ψ(y, w), w) = F0(y, w)

holds in a neighborhood of (0, 0). Denote

F ′ = ∂F/∂y and F ′′ = ∂2F/∂y2.

We define the critical set and the discriminant set of F as

C = C(F ) = { (y, w) : F ′(y, w) = 0 },
D = D(F ) = { (y, w) : F ′(y, w) = F ′′(y, w) = 0 }.

Let IF = I(F ′) denote the ideal generated by F ′, in the ring C∞
0 (Rr+1,R) of

smooth function germs at 0. Then C = {F ′ = 0 } and C is the set of zeros of
IF (more precisely, we take a representant of the set germ C). At the points
(y, w) ∈ C \ D we define the signature

sF (y, w) = sgnF ′′(y, w).

We say that an ideal I = I(f) of functions (or function germs) of w̃, genera-
ted by f , is structurally smooth if ( ∂f

∂w0
, . . . , ∂f

∂wr
)(w̃) �= 0 for any w̃ such that

f(w̃) = 0. This implies that the set of zeros {f = 0} is a smooth hypersurface.
Below we take f = F ′ .

We shall assume that:
(A1) I(F ′) is structurally smooth.
(A2) D is nowhere dense in C.

Denote Ci = C(Fi), Di = D(Fi), and si = sFi , for i = 0, 1.

Theorem 10.1 Two local functions F0 and F1 which satisfy (A1) and (A2),
and such that C0 and C1 contain the point 0 ∈ Rr+1 are strongly equivalent if
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the following conditions hold:

(i) C0 = C1 =: C,
(ii) F0|C = F1|C .
(iii) s0 = s1 on C \ (D1 ∪ D2).

Proof. Consider the family of functions

Ft(y, w) = (1 − t)F0(y, w) + tF1(y, w), t ∈ [0, 1].

Denote Ct = C(Ft). We shall prove a stronger result, namely we shall find a
family of diffeomorphisms (y, w) �→ (ψt(y, w), w) satisfying

Ft(ψt(y, w), w) = F0(y, w).

Differentiating this equality with respect to t and denoting χt(y, w) = (ψt(y, w), w)
gives

∂Ft

∂t
◦ χt +

(
∂Ft

∂y
Xt

)
◦ χt = 0,

where Xt is a local family of functions on Rr+1 defined by the equality

∂ψt

∂t
(y, w) = Xt(ψt(y, w), w).

We obtain the homotopy equation

F ′
t Xt = −∂Ft

∂t
. (HE)

Conversely, if we find a smooth family of functions Xt which satisfies the
homotopy equation (HE) and such that Xt|C = 0, then the family of diffeo-
morphisms χt = (ψt, φt), φt = id, where ψt is determined by Xt via the above
differential equation and the condition χ0 = id, establishes equivalence of Ft

and F0 around 0 ∈ Rr+1. (Condition Xt|C = 0 implies that Xt(0) = 0, since
0 ∈ C, and guarantees that χt(0) = 0.)

In order to solve (HE), we first show that the assumptions (i) and (iii) imply

(i)′ Ct = C0 =: C, t ∈ [0, 1].

We shall use the obvious property that if two smooth function germs f, g :
(Rm, 0) → R have the same zeros and the ideals I(f) and I(g) are structurally
smooth then there is a smooth, nonvanishing function germ h such that f = hg.

Using this property together with (A1) and (i) we get

F ′
1 = HF ′

0,
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for a smooth, nonvanishing function germ H . By (A2), arbitrarily close to
(0, 0) there exist points (y, w) ∈ C0 = C which do not belong to D0 ∪ D1.
Differentiating the above equality with respect to y at such points we get
F ′′

1 (y, w) = (HF ′′
0 )(y, w). It follows from (iii) that at such points, F ′′

1 and F ′′
0

are of the same sign and thus H(y, w) > 0. By continuity we get H(0, 0) ≥ 0
and, since H is nonvanishing, H(0, 0) > 0. We can write

F ′
t = (1 − t)F ′

0 + tF ′
1 = HtF

′
0,

where Ht = (1+ t(H−1)). Since H(0, 0) > 0, we have Ht(0, 0) > 0 for t ∈ [0, 1].
Thus Ht does not vanish near the origin and so C(Ft) = C0, which shows (i)’.

The following condition is an immediate consequence of (i)’, (ii), and the
definition of Ft:

(ii)′ Ft|C = F0|C .

Now we will show that (HE) is solvable. The condition (ii)’ implies that
(Ft − F0)|C = 0 and so ∂Ft

∂t |C = 0, for t ∈ [0, 1]. The structural smoothness of
the ideal I(F ′

0) together with the equality F ′
t = HtF

′
0, with Ht nonvanishing,

imply that, for some function germ Gt,

∂Ft

∂t
= Gt F

′
t .

Thus it is enough to take X1
t = −Gt and the equation (HE) is solved.

It remains to show that X1
t |C = 0 (then Xt(0, 0) = 0 and χ(0, 0) = (0, 0)).

Let us differentiate the equation (HE) with respect to y. We get

F ′′
t Xt + F ′

t

∂Xt

∂y
= −∂

2Ft

∂t∂y
. (♦)

The second term vanishes on C since (∂Ft/∂y)|C = F ′
t |C = 0, by (i)’. Differen-

tiating this equality with respect to t we get (∂2Ft/∂y∂t)|C = 0. Thus the right
hand side of (♦) also vanishes on C. Since F ′′

t �= 0 on C \ D and D is nowhere
dense in C, by (A2), we get Xt|C = 0. Theorem 10.1 is proved.
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