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1. Introduction

We prove here a new necessary optimality condition for optimal control problems
with variable end-time and measurable dependence of data on time. This is
actually not one but a family of necessary conditions, each one associated with
an extension of the optimal trajectory beyond the optimal time. This family
includes the earlier necessary condition of Clarke and Vinter which is associated
with some special extension (naturally connected with the maximum principle),
as is explicit in the proof given by Vinter (2005). It has to be emphasized
that scanning through all possible extensions may give more information. An
illustrative example will be given in the next section.

In the problem we consider, the dynamics is described by a differential in-
clusion. Existence theorems for differential inclusions therefore play a crucial
role in the proof. These are the classical Filippov existence theorem (Filippov,
1967) and its extension to unbounded differential inclusion recently given by
Ioffe (2005). The other main instrument of the proof is the “optimality alter-
native” - a general principle whose embryonic version was used already in Ioffe

1The research was supported in part by the US-Israel Binational Fund under the grant
2000157
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(1997) and later in Vinter (2000) to prove necessary conditions for fixed end-
time problems. In the proof here it is used twice, each time in a different way,
once through reduction to a fixed-time problem depending on a parameter.

The technical machinery is standard for modern non-smooth analysis. We
refer to Rockafellar and Wets (1998) for all necessary details. Here we just note
that ∂ always means the limiting subdifferential in IRn and N(S, ·) and D∗G(·)
stand for the associated normal cone and coderivative.

2. Statement of the problem and the main result

We shall consider the following problem:

(P)
minimize ϕ(T, x(T )),
s.t. ẋ ∈ F (t, x) a.e. on [0, T ];

(T, x(T )) ∈ S, x(0) = x0.

Here S ⊂ IR+ × IRn, x0 ∈ IRn is a fixed point and F is a set-valued mapping
from IR+ × IRn into IRn. Thus, the variables in the problem are pairs (T, x(·)),
where T > 0 and x(·) is an absolutely continuous IRn-valued function defined
on [0, T ].

In what follows we fix some admissible (T , x(·)) and assume the following
about the data of the problem:

(A1) ϕ satisfies the Lipschitz condition near (T , x(T )) and S is a closed set;
(A2) there are: (a) an open set O ⊂ IR × IRn containing the graph of x(·),

(b) a function r(t) ≥ 0 defined and summable on the projection of O to the
t-axis and (c) β > 0 such that for any N ≥ 0

F (t, x) ⊂ F (t, x′)+(r(t)+βN)‖x−x′‖B, whenever (t, x) ∈ O, (t, x′) ∈ O.

(A3) There are a constant K > 0 and a neighborhood U ⊂ IR × IRn of
(T , x(T )) such that the sets F (t, x) are uniformly bounded for (t, x) ∈ U and

F (t, x) ⊂ F (t, x′) + K‖x − x′‖B, whenever (t, x) ∈ U , (t, x′) ∈ U .

As follows from (A2) in view of the main theorem of Ioffe (2005) it is possible
to extend x(t) as a solution to the differential inclusion beyond T . ((A3) allows
to use a slightly stronger Fillippov’s existence theorem (see e.g. Aubin, Cellina,
1984; Filippov, 1967). However, certain statements in this paper rely solely
on (A2) and do not depend on (A3).) To avoid confusion, we would like once
again emphasize that by “extension of a solution of the differential inclusion”
we always mean a solution of the inclusion which coincides with the original
solution on its domain.

Finally, let

H(t, x, p) = sup
u∈F (t,x)

〈p, u〉

be the Hamiltonian of the system.



On necessary conditions in variable end-time optimal control problems 807

Theorem 2.1 Assume (A1)-(A2). If (T , x(·)) solves the problem, then for any
subflow Φ of the inclusion containing x(·) there are a p(·) ∈ W 1,∞ λ ≥ 0 and
µ ∈ IR such that the following relations are satisfied

(a) λ + ‖p(·)‖ > 0;
(b) (0,−p(T )) ∈ λ∂ϕ((T , x(T ))) + N(S, (T , x(T ))) + Q(T , x(T ))(−p(T ));
(c) ṗ(t) ∈ conv {w : (w, p(t)) ∈ N(Graph F (t, ·), (x(t), ẋ(t)))} a.e. on [0, T ];
(d) 〈p(t), ẋ(t)〉 = H(t, x(t), p(t)), a.e. on [0, T ].
Moreover, in the normal case (when no p(·)) satisfying (a)-(d) with λ = 0

may exist), the conclusion of the theorem holds only under (A1) and (A2).

Here D∗y(T )(·) stands for the coderivative of y(·), associated with the limit-
ing proximal subdifferential (see e.g. Rockafellar and Wets, 1998).

Remark 2.1 The Clarke-Vinter condition (Clarke and Vinter, 1989; Vinter,
2000) differs from Theorem 2.1 at one point: instead of the second part of (b),
they claim that

0 ∈ µ + ess
t→T

H(t, x(T ), p(T ))

where the set on the right is the set of essential values (see the definition in the
next section) of the function H(·, x(T ), p(T )) at T . 1 The following example
shows that the condition of Theorem 2.1 is stronger.

Consider first a fixed time autonomous problem

minimize ϕ(x(1)),
s.t. ẋ ∈ F (x) a.e. on [0, 1];

x(1) ∈ S, x(0) = x0,

with a Lipschitz bounded-valued F . Let x(·) be a solution. We assume that the
problem is normal at x(·) which means that the collection P of p(·) satisfying
the conditions (c) and (d) of the theorem (with T replaced by 1) along with

−p(1) ∈ ∂ϕ(x(1)) + N(S, x(1));

is bounded. Assume also that inf{‖p(1)‖ : p(·) ∈ P} = β > 0.
As F does not depend on t, for any q the Hamiltonian H is continuous and

its essential value at any point is unique and equal to its value at the point. Set
α = inf{H(x(T ), p(T )) : p(·) ∈ P}. Take a ξ < min{α, 0} and consider the
problem

minimize ϕ(x(T )) + ξT,
s.t. ẋ ∈ F (t, x) a.e. on [0, T ];

x(T ) ∈ S, x(0) = x0

1As we have already mentioned, this condition corresponds to a specific choice of the
continuation y(t), namely such that 〈p(T ), ẏ(t)〉 well approximates H(t, x(T ), p(T )) near T .
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with the same ϕ(x) and F (t, x) equal to F (x) for t ≤ 1 and for t > 1 defined as
follows:

F (t, x) = r| sin 1
t − 1

|B,

where r > |ξ|/β. Then for any p(·) ∈ P we have (for t > 1): H(t, x(1), p(1)) =
r‖p(1)‖| sin( 1

t−1 )| which means that

ess
t→1

H(t, x(1), p(1)) ⊃ [0, βr]

and therefore (1, x(·)) satisfies the necessary condition of Clarke-Vinter.
On the other hand, let y(t) be the extension of x(·) identically equal to x(1)

for t > 1. Then y(t) is Lipschitz, so by the well known scalarization formula,
D∗y(T )(q) is equal to the (limiting proximal) subdifferential of 〈q, y(t)〉 at T . If
p(·) ∈ P , then in view of the condition (d)

〈p(t), y(t)〉 =
∫ t

0

H(x(s), p(s))ds + const,

if t ≤ 1 and 〈p(T ), y(t)〉 = const if t > 1 according to the definition of y. It
follows that the subdifferential of the function t → −〈p(T ), y(t)〉 at T lies within
conv {−p(T ), 0}.

If the condition (b) of the theorem was satisfied at y, then we would have
µ = ξ and −ξ ∈ conv {−p(T ), 0} which does not hold as by definition −ξ >
max{0,−α} ≥ max{0,−p(T )}.
Remark 2.2 Condition (A3) introduced in Clarke and Vinter (1989), although
indispensable in the proof of the “singular part” of Theorem 2.1, looks somewhat
artificial in combination with (A2). It seems natural to ask what kind of a result
can be obtained if this condition is dropped. It turns out that a certain result can
be obtained which, however, is less precise than Theorem 2.1 because instead of
a single continuation of a single trajectory, we have to deal with some “subflows”
of the differential inclusion.

Let us agree to call a set-valued mapping Φ(t, s, x) into IRn (0 ≤ t ≤ s ≤ T )
a subflow of the inclusion F (t, x) if

(i) for any t the graph of Φ(t, ·, ·) is closed;
(ii) if z ∈ Φ(τ, s, x), then there is a solution x(t) of the inclusion such that

x(τ) = x and x(s) = z;
(iii) Φ(t, t, x) = {x} and if 0 < t < τ < s ≤ T , then

Φ(t, s, x) =
⋃

u∈Φ(t,τ,x)

Φ(τ, s, u).

A trivial example of a subflow is the set-valued mapping generated by all
solutions of the differential inclusion. The existence theorem of Ioffe (2005)
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allows for construction of the nontrivial subflows as follows: take any solution
x(t) defined e.g. on [0, T ]. Then by the theorem (under (A2)) there is an ε > 0
such that for any t ∈ [0, T ] and any x with ‖x − x(t)‖ ≤ ε there is a solution
ut(·) defined on [t, T ] and satisfying

u(t) = x,

∫ T

t

‖u̇(s) − ẋ(s)‖ds ≤ N

∫ T

t

d(ẋ(s), F (s, x(s) + x − x(t)))ds

with the constant N depending only on ε. Take all such solutions and set

Φ(t, s, x) = {u : ∃ ut(·), ut(t) = x, ut(s) = u} .

Given a solution x(t) of the differential inclusion defined on [0, T ], we say
that the subflow Φ contains x(·) if x(s) ∈ Φ(t, s, x(t)) for all 0 ≤ t ≤ s ≤ T .
Finally, set G(s, x) = Φ(t, s, x) and Q(s, x(·))(p) = lim supt→s D∗G(s, x(t))(p).

Theorem 2.2 Assume (A1)-(A2). If (T , x(·)) solves the problem, then for any
subflow Φ of the inclusion containing x(·) there are a p(·) ∈ W 1,∞ λ ≥ 0 and
µ ∈ IR such that the following relations are satisfied

(a) λ + ‖p(·)‖ > 0;
(b) (0,−p(T )) ∈ λ∂ϕ((T , x(T ))) + N(S, (T , x(T ))) + Q(T , x(T ))(−p(T ));
(c) ṗ(t) ∈ conv {w : (w, p(t)) ∈ N(Graph F (t, ·)(x(t), ẋ(t)))} a.e. on [0, T ];
(d) 〈p(t), ẋ(t)〉 = H(t, x(t), p(t)), a.e. on [0, T ].

We omit the proof of Theorem 2.2 as it follows the same pattern as the proof
of Theorem 2.1 and is actually even simpler in certain respects.

3. An auxiliary problem

As in Ioffe (1997) we start with a generalized Bolza problem:

(BP) minimize J(T, x(T )) = l(T, x(·)) +
∫ T

0

L(t, x(t), ẋ(t))dt, x(0) = x0

in which the length of the time interval is not fixed. But first we consider
another problem with integration over a fixed time interval, namely:

(BPP) minimize l(a, x(1)) +
∫ 1

0

L(t, x(t), ẋ(t))dt, x(0) = x0,

which differs from the standard formulation by the presence of a parameter a
in the terminal part of the functional. Here x(·) is of the same kind as above,
absolutely continuous with values in IRn and a ∈ IRm. About the components
of the problem we assume the following (see Ioffe, 1997; Vinter, 2000):

(A4) l(a, x) is l.s.c., with values in (−∞,∞] and l(a, x(1)) finite;
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(A5) there is an ε > 0 such that whenever x(t) is continuous and satisfies
‖x(t) − x(t)‖ < ε, the value L(t, x(t), y) is finite for all y and for each y the
function t → L(t, x(t), y) is measurable;

(A6) for any N there are a summable k(t) and c(t) such that the inequalities

L(t, x, y) − L(t, x′, y) ≤ k(t)‖x − x′‖, L(t, x, y) ≥ c(t)

hold almost everywhere on (0, 1) whenever ‖x − x(t)‖ < ε, ‖x′ − x(t)‖ < ε and
‖y‖ ≤ N .

Proposition 3.1 Suppose that (a, x(·)) furnishes a local minimum in (BPP)
(with respect to the norm topology of IRm × W 1,1) and that (A4)-(A6) hold.
Then there is a p(·) ∈ W 1,1 such that following three relations are satisfied:

(a) ṗ(t) ∈ conv
{
w : (w, p(t)) ∈ ∂L(t, x(t), ẋ(t))

}
a.e. in t;

(b) L(t, x(t), u) ≥ L(t, x(t), ẋ(t)) + 〈p(t), u − ẋ∗(t)〉 for all u, a.e. in t;
(c) (0,−p(1)) ∈ ∂l(a, x).

The proof is straightforward: we treat a as, say the value at zero of an
additional state variable, say x0(t) and apply the necessary optimality condition
for the standard generalized Bolza problem (Ioffe and Rockafellar, 1996; Vinter,
2000) to the following problem:

minimize m(z(0), z(1)) +
∫ 1

0

M(t, z(t), ż(t))dt,

where z(t) = (x0(t), x(t)), m(z(0), z(1)) = l(x0(0), x(1)) and M(t, z, ż) =
L(t, x, ẋ).

We can now state and prove a first order necessary optimality condition for
(BP). To begin with, we have to explain in which sense we shall understand local
minimum in this problem. We shall fix a certain sufficiently big time interval,
say (0, 1) and assume that the integrand L is defined on [0, 1]×IRn×IRn. If now
x(t) is an absolutely continuous function defined on [0, T ] with T < 1, we extend
x(t) to [0, 1] by setting x(t) = x(T ) for t > T . The distance between (T, x(·))
and (T ′, x′(·)) will now be measured by the IR × W 1,1-norm of the difference
(T − T ′, x(·) − x′(·)), that is, it is equal to

|T − T ′| +
∫ 1

0

‖ẋ(t) − ẋ′(t)‖dt.

We denote by X the collection of all pairs (T, x(·)), where 0 ≤ T ≤ 1, x(·)
is absolutely continuous, equal to x0 at zero and constant on [T, 1]. With the
above defined distance, X is a complete metric space. We can now reformulate
our problem as the problem of minimizing J on X .
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Let f(t) be a summable real-valued function and

F (T ) =
∫ T

a

f(t)dt.

Elementary arguments show that

∂F (T ) ⊂ ess
t→T

f(t). (1)

Proposition 3.2 Assume that
– l(T, x) satisfies the Lipschitz condition near (T , x(T ));
– L(t, x, u) satisfies (A5)-(A6) with x(·) replaced by y(·);
– L(t, y(t), ẏ(t)) is essentially bounded near T .

Suppose (T , x(·)) furnishes a local minimum in (BP). Then for any absolutely
continuous extension y(t) of x(t) beyond T there are a p(·) ∈ W 1,∞ and a µ ∈ IR
such that following three relations are satisfied:

(a) ṗ(t) ∈ conv
{
w : (w, p(t)) ∈ ∂L(t, x(t), ẋ(t))

}
a.e. in (0, T );

(b) L(t, x(t), u) ≥ L(t, x(t), ẋ(t)) + 〈p(t), u− ẋ∗(t)〉 for all u, a.e. in (0, T );
(c) (µ,−p(T ) ∈ ∂l(T , x(T )); 0 ∈ µ+D∗y(T )(−p(T ))+ ess

t→T
L(t, x(t), ẋ(t)).

Proof. Fix a certain absolutely continuous extension y(t) of x(t) from [0, T ] to
all of [0, 1] (not necessarily constant). For any τ ∈ [0, T ] we define the mapping

Gτ (T ) = y(T ) − y(τ) =
∫ T

τ

ẏ(t)dt

from R into IRn and set G = GT . Finally, let us recall that the interval of
essential values of a function f(t) at T is defined as (see Vinter, 2000)

ess
t→T

f(t) = [ess − lim inf
t→T

f(t), ess − lim sup
t→T

f(t)].

Observe that G differs from y by a constant and therefore coderivatives of G
and y coincide.

For any positive τ < T , let A(τ) be the collection of pairs (T, x(·)) such that
T > τ and ẋ(t) = ẏ(t) for t ∈ (τ, T ). For (T, x(·)) ∈ A(τ)

J(T, x(·)) =l(T, x(τ) + Gτ (T )) +
∫ τ

0

L(t, x(t), ẋ(t))dt

+
∫ T

τ

L(t, x(τ) + y(t) − y(τ), ẏ(t))dt.

By (A6)
∫ T

τ

L(t, x(τ)+y(t)−y(τ), ẏ(t)) ≤
∫ T

τ

L(t, y(t), ẏ(t))dt+K(T−τ)‖x(τ)−x(τ)‖,
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where K =
∫ T

τ
k(t)dt (of course x(τ) = y(τ)) with the equality if (T, x(·)) =

(T , x(·))
Set

ϕ(T, x) = l(T, x + Gτ (T )) +
∫ T

τ

L(t, y(t), ẏ(t))dt + (T − τ)‖x − x(τ)‖.

Then

I(T, x(·)) = ϕ(T, x(τ)) +
∫ τ

0

L(t, x(t), ẋ(t))dt

attains at (T , x(·)) a local minimum in IR×W 1,1(0, τ). The problem of minimiz-
ing I on IR×W 1,1(0, τ) is the Bolza problem on fixed interval with a parameter
T , that is a problem of the type considered in Proposition 3.1. It is clear that
all assumptions of the proposition are satisfied in our case (moreover ϕ is even
a continuous function), so the proposition can be applied. It follows that there
is a summable pτ (t) on [0, τ ] such that

ṗτ (t) ∈ conv
{
w : (w, pτ (t)) ∈ ∂L(t, x(t), ẋ(t))

}
a.e. in(0, τ), (2)

(0,−pτ(τ)) ∈ ∂ϕ(T , x(τ)). (3)

and the condition (b) of the proposition (with p(·) replaced by pτ (·) is satisfied
for all almost t ∈ (0, τ).

The function ϕ is the sum of three continuous terms two of which satisfy
the Lipchitz condition (the integral term thanks to the essential boundedness
assumption). Therefore the limiting subdifferential of ϕ is a subset of the sum
of limiting subdifferentials of the terms in the same point. The subdifferential
of the integral term is estimated by the essential value of the integrand (as was
mentioned prior the statement of the proposition). The subdifferential of the
first term at (T , x(τ)) by the standard chain rule of the subdifferential calculus
belongs to the set of all (λ, q) ∈ IR × IRn such that λ ∈ µ + D∗Gτ (T )(q)
and (µ, q) ∈ ∂l(T , x(T )). Thus by (3) we have to conclude that there is a
(µτ , qτ ) ∈ ∂l(T, x(τ)) such that

0 ∈ µτ +D∗G(T )(qτ )+ ess
t→T

L(t, x(t), ẋ(t)); −pτ(τ) ∈ qτ +K|T − τ |B. (4)

If we extend pτ (·) to the entire (0, T ) by pτ (t) = pτ (τ) for t > τ , then
these extensions form a weakly precompact set in in W 1,1(0, T ) (due to the
Lipschitz property (A6)), so we may assume that, when τ → T they converge
to some p(t) for which we get from (2) using the standard argument (see Ioffe
and Rockafellar,1996) the inclusion

ṗ(t) ∈ conv
{
w : (w, p(t)) ∈ ∂L(t, x(t), ẋ(t))

}
a.e. in (0, T )

which is (a). Finally, as l satisfies the Lipschitz condition, the set of (µτ , qτ ) is
bounded and we get (c) as a consequence of (4). As to (b), it is straightforward.
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4. Proof of the main theorem

As was mentioned in Section 2, there is a solution y(t) of the differential inclusion
defined on a certain longer segment [0, T̃ ] with T̃ > T and coinciding with x(t)
on [0, T ]. Without loss of generality we may assume that T̃ = 1. Of course, there
maybe many such extensions. We shall fix one throughout the proof assuming
that the graph of the extension is also contained in O. Then the standard
transformation w → ẋ(t) + w allows to rewrite (A2) as follows:

(A′
2) there are: an ε > 0, a function r(t) ≥ 0 (other than in (A3) but still

summable) on [0, 1] and a β > 0 such that for any N ≥ 0 and almost every
t ∈ [0, 1]

F (t, x)
⋂

B(ẏ(t), N) ⊂ F (t, x′)+ (r(t)+βN)‖x−x′‖B, if ‖x− y(t)‖ < ε .

Step 1: Optimality alternative. Consider an abstract minimization problem

minimize f(x), s.t. x ∈ M ⊂ X,

where X is the domain (metric) space, M is the constraint set and f is the cost
function.

Theorem 4.1 (Optimality alternative) Suppose that (X, d) is a metric space,
x ∈ M and f satisfies the Lipschitz condition near x. Let further Φ(x) be a
nonnegative extended-real-valued function equal to zero at x. Suppose finally
that x is a local solution of the problem. Then the following alternative holds:

– either there is a λ > 0 such that the function λf + Φ attains an uncondi-
tional minimum at x;

– or there is a sequence (xn) converging to x such that Φ(xn) < n−1d(xn, M).
In particular, if X is complete, M is closed and Φ is lower semicontinuous,
then there is a sequence (zn) converging to x such that zn �∈ M and each of the
function Φ(x) + n−1d(x, zn) attains an absolute minimum at zn.

Proof. Indeed, either there are a neighborhood of x and R > 0 such that
RΦ(x) ≥ d(x, M) for all x of the neighborhood, or there is a sequence (xn)
converging to x with 2nΦ(xn) < d(xn, M). In the first case, as f is Lipschitz
(e.g. with constant L), we can choose for any x close to x a u ∈ M such that,
say d(x, u) ≤ 2d(x, M). Then

f(x) ≥ f(u) − Ld(x, u) ≥ f(x) − 2LRΦ(x).

In the second case, if X is complete, M is closed and Φ l.s.c., we apply
Ekeland’s variational principle to the function Φ(x). As it is nonnegative, we
have Φ(xn) ≤ inf Φ + (2n)−1d(xn, M), so Ekeland’s principle guarantees the
existence of (zn) such that d(xn, zn) ≤ d(xn.M)/2 and Φ(x)+n−1d(x, zn) attains
an absolute minimum at zn.
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Step 2: Problems without end-point constraints. We first apply the
optimality alternative to the problem

(P1)
minimize l(T, x(T )),
s.t. ẋ ∈ F (t, x) a.e. on [0, T ];

x(0) = x0

in which the end-point constraint (T, x(T )) ∈ S is absent.
As the domain metric space we take the same X that was introduced in

the preceding section. The set M of admissible elements consists of elements
(T, x(·)) of X whose second components are solutions to the differential inclusion
on [0, T ] with the initial condition x(0) = x0. We define the perturbation
function Φ(t, x(·)) as follows:

Φ(T, x(·)) =
∫ T

0

d(ẋ(t), F (t, x(t)))dt

Here d(x, Q) stands for the distance from x to Q.
Let (T, w(·)) ∈ M. It follows from the main theorem of Ioffe (2005) and

(A′
2) that for (T, x(·)) ∈ X such that the max0≤t≤T ‖x(t) − y(t)‖ is sufficiently

small

d((T, x(·)),M) ≤ R

∫ T

0

d(ẋ(t), F (t, x(t)))dt

with constant R not depending on x(·). This means (see the proof of the opti-
mality alternative) that only the regular case may take place if we take

Φ(T, x(·)) =
∫ T

0

d(ẋ(t), F (t, x(t)))dt.

In other words, if (T , x(·)) is a local minimum in the problem, then there is a
λ > 0 such that (T , x(·)) gives an unconditional local minimum to

λl(T, x(T )) +
∫ T

0

d(ẋ(t), F (t, x(t)))dt.

Thus we get a Bolza problem of the same type as (BP) as considered in the
preceding section with the function d(ẋ(t), F (t, x(t)) playing the role of the
integrand L.

This means that we can apply Proposition 3.2 to get necessary optimality
condition in the problem. So let y(t) be any absolutely continuous extension
of x(t) beyond T , and let p(·) and µ be the corresponding multipliers. As the
subdifferential of the distance function to a set at a point of the set belongs to
the normal cone to the set at the point, the part (a) of the proposition implies
that

ṗ(t) ∈ conv
{
w : (w, p(t)) ∈ N(GraphF (t, ·), (x(t), ẋ(t)))

}
a.e. in (0, T ).
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The Weierstrass condition (b) for L being the distance function to F (t, x)
leads to

〈p(t), ẋ(t)〉 = H(t, x(t), p(t)), a.e. on [0, T ].

Finally, the last condition (c) of Proposition 3.2 gives

(µ,−p(T ) ∈ ∂l(T , x(T )); 0 ∈ µ + D∗G(T )(−p(T ))

as the integrand is identical to zero along x(t).
This proves the theorem for problems without end-point constraints.

Step 3: General case. Here we shall apply the optimality alternative in a
different way. As the domain space X we shall consider the collection of all pairs
(T, x(·)) such that x(t) is a solution to the differential inclusion defined on [0, T ]
and starting from (0, x0). In other words, the domain space now is precisely
the collection of admissible elements at the previous step. The metric in X is
the same as above (induced from X ), so X is a complete metric space. As to
the admissible set, it now consists of all elements of X satisfying the terminal
condition (T, x(T )) ∈ S.

We apply optimality alternative with

Φ(T, x(·)) = d((T, x(T )), S).

It follows that
– either there is a λ > 0 such that (T , x(·)) is an unconditional local minimum

on X of

λϕ(T, x(T )) + d((T, x(T ), S)

(regular case),
– or there is a sequence (Tk, xk(·)) converging to (T , x(·)) and not admissible

in the problem and a sequence (εk) of positive numbers converging to zero such
that for any n the function

Φn(T, x(·)) = d((T, x(T )), S) + εn(|T − Tk| +
∫ T

0

|ẋ(t) − ẋk(t)|dt)

attains on X its absolute minimum at (Tk, xk(·)) (singular case).
In the regular case (T , x(·)) is a local solution of (P1) with l(t, x) = λϕ(t, x)+

d((t, x), S). As this function satisfies the Lipschitz condition near (T , x(T )), the
result of Step 2 applies and immediately leads to the the proof of the theorem.

The singular case is more complicated, and is actually the only case in which
the boundedness condition (A3) must be put at work. By the extension theorem
for differential inclusions for any k there is an extension yk(t) of xk(t) beyond
Tk satisfying the differential inclusion and

∫ t

Tk

‖ẏk(s) − ẏ(s)‖ds ≤ R

∫ t

Tk

d(ẏ(s), F (s, xk(Tk) + y(s) − y(Tk))ds
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with R not depending on k.
It is now possible to apply the result of Step 2 to each of the problems

(Pk) minimize d((T, x(t)), S) + εk

∫ T

0

‖ẋ(t) − ẏk(t)‖dt,

s.t. ẋ ∈ F (t, x), a.e.; x(0) = x0.

(The additional integral term, certainly, does not cause any additional problem.)
It follows that for any k there are µk ∈ IR and pk(·) ∈ W 1,∞ and qk(·) ∈ L∞

(both on [0, Tk]) such that ‖qk(·)‖∞ ≤ 1 and
(α) (µ,−pk(Tk)) ∈ ∂d(·, S)(Tk, x(Tk)), 0 ∈ µk + D∗yk(Tk)(−pk(Tk));
(β) ṗk(t) ∈ conv

{
w : (w, pk(t) − εkqk(t)) ∈ N(GraphF (t, ·), (xk(t), ẋk(t)))

+{0} × εkB
}

a.e. in (0, Tk).
(γ) 〈pk(t), ẋk(t)〉 = H(t, xk(t), pk(t)), a.e. on [0, Tk].
Since (Tk, xk(·)) is not admissible in (P), (Tk, xk(Tk)) �∈ S (as a (Tkxk(·)) ∈

X). This means that |µk| + ‖pk(Tk)‖ = 1.
On the other hand, since xk(·) converges uniformly to x(·) on every segment

[0, τ ], τ < T and Tk → T , it follows from (A2) that ‖ṗk(·)‖ ≤ r(t) almost
everywhere if k is sufficiently large. Standard arguments (e.g. Ioffe, 1967; Vinter,
2000) now prove the existence of a limiting pair (µ, p(·)) to which (µk, pk(·))
converge, the latter weakly in W 1,1 on every [0, τ ], τ < T and the limiting
(µ, p(·)) satisfies the relations (a), (c) and (d) and the first part of (b).

To prove that the second relation in (b) also holds, we first note that, thanks
to (A3), yk(t) satisfies the Lipschitz condition in a neighborhood of T with
constant, not depending on k. In this case, again applying the scalarization
formula of Ioffe (1984, Proposition 8), we get

D∗yk(t)(p) = ∂〈p, yk(·)〉(T ).

Fix a τ < T . Then Tk > τ for sufficiently large k. For t ≤ Tk we have by (γ),
setting αk(τ) = 〈pk(Tk), yk(τ)〉:

〈pk(Tk), yk(t)〉 = αk(τ) +
∫ t

0

〈pk(Tk), ẋk(s)〉ds

= αk(τ) +
∫ t

0

〈pk(Tk) − pk(s), ẋk(s)〉ds +
∫ t

0

H(s, xk(s), pk(s))ds.

Since ẋk(t) are uniformly bounded in a neighborhood of T and pk(·) are uni-
formly continuous and converge to p(·), this equality implies that for any ε > 0
there is a τ such that the derivative of 〈pk(Tk), yk(t)〉 at any t ∈ (τ, Tk) (if it
exists) differs from H(t, x(t), p(T )) = 〈p(T , y(t) − y(τ))〉 by less than ε.

On the other hand as follows from Theorem 1 of Ioffe (2005) (and its proof)
and (A3), there is an N not depending on k for t > Tk

‖ẏk(t) − ẏ(t)‖ ≤ N

∫ t

Tk

d(ẏ(s), F (s, y(s) + xk(Tk) − y(Tk)))ds.
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(Here we set y(t) = x(t) for t < T .)
This shows that for any ε > 0, we can choose a positive δ such that the

derivatives of yk(t) and y(t) differ by less than ε if k is sufficiently large also if
Tk < t < T + δ. It is now an easy matter to conclude, that the coderivatives
D∗yk(Tk)(−pk(Tk)) Hausdorff converge to D∗y(T )(−p(T )).
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