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Abstract: In his famous paper “Fuzzy Sets as a Basis for a
Theory of Possibility” (Zadeh, 1978) Professor Lofti Zadeh intro-
duced the notion of possibility distribution πX and the concept of
possibility measure. He defined in the paper the possibility distrib-
ution function to be numerically equal to the membership function
(πX = µF ). In this paper Professor Zadeh draws the special atten-
tion of the reader to the fact that: “ . . . there is a fundamental
difference between probability and possibility”. To explain this dif-
ference he had given a special example illustrating the difference,
which then was cited by many authors of books on Fuzzy Set The-
ory and gained great importance for understanding the notion of
possibility. In the paper the author presents his doubts as to this
important example, explains why it is incorrect and gives a correct
version of the example based on the notion of possibility distribution
of Dubois and Prade.

Keywords: fuzzy systems, fuzzy arithmetic, possibility, prob-
ability

1. Introduction

The example of Professor Zadeh‘s, explaining the difference between possibility
and probability given in Zadeh (1978) has contents as below.

“To illustrate the difference between probability and possibility by a simple
example, consider the statement ‘Hans ate X eggs for breakfast’, with X taking
values in U = {1, 2, 3, 4, . . .}. We may associate a possibility distribution with
X by interpreting πX(u) as the degree of ease with which Hans can eat u eggs.
We may also associate a probability distribution with X by interpreting pX(u)
as the probability of Hans eating u eggs for breakfast. Assuming that we employ
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Table 1. The possibility and probability distributions associated with X

 u 1 2 3 4 5 6 7 8

��X(u) 1 1 1 1 0.8 0.6 0.4 0.2

 pX(u) 0.1 0.8 0.1 0 0 0 0 0

some explicit or implicit criterion for assessing the degree with which Hans can
eat u eggs for breakfast, the values of πX(u) and pX(u) might be as shown in
Table 1.

We observe that, whereas the possibility that Hans may eat three eggs for
breakfast is 1, the probability that he may do so might be quite small, e.g., 0.1.
Thus, a high degree of possibility does not imply a high degree of probability,
nor does a low degree of probability imply a low degree of possibility. However,
if an event is impossible, it is bound to be improbable.”

This example of Professor Zadeh, illustrating and explaining the difference
between possibility and probability is universally cited by many authors of books
and other publications on Fuzzy Set Theory. It is of a very great importance for
the way we understand the notion of possibility. Sometimes, in the publications,
the role of eggs is played by cups of tea or coffee. The example of Professor Zadeh
is quoted by e.g. H.J. Zimmermann in his known and many times republished
book “Fuzzy Set Theory And Its Applications” (Zimmermann, 1996), where it
is labeled an “impressive example”. The example is also cited in the known
book of Driankov, Hellendoorn and Reinfrank (1993), and in at least two books
of Polish authors. Professor Zadeh’s example seems to the present author to be
not correct and his doubts will be presented below.

In Zadeh (1978) Professor Zadeh introduced certain notation: “Let X be a
variable which takes values in a universe of discourse U , with the generic element
of U denoted by u and X = u signifying that X is assigned the value u, u ∈ U .”

Fig. 1 shows the probability distribution of the event “Hans eats u eggs for
breakfast” and the possibility distribution understood as “the degree of ease
with which Hans can eat u eggs” resulting from Table 1 given by Professor
Zadeh.

2. Remarks of the author

The probability distribution pX(u) in Fig. 1 refers to the probability of the
event “Hans eats u eggs for breakfast” and more precisely “Hans eats u eggs for
breakfast according to his appetite”. In this event Hans does not force him to
eat more than he wants to eat. Let the variable determining the egg number,
which Hans eats for breakfast be denoted as u1 and its universe of discourse
as U1. As can be concluded from Fig. 1 Hans does not eat more than three
eggs for breakfast and therefore the universe of discourse can be assumed as
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Figure 1. Probability distribution pX(u) of the event “Hans eats u eggs for
breakfast” and possibility distribution πX(u) of “the degree of ease with which
Hans can eat u eggs”
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Figure 2. Probability distribution pX(u1) of the egg number, which Hans eats
for breakfast according to his appetite
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U1 = {0, 1, 2, 3, 4}, Fig. 2 (the universe was broadened to show elements having
probability equal to 0).

The possibility distribution πX(u) in Fig. 1 refers to the variable “number of
eggs which Hans can eat independently of his appetite”. It is another variable
than the variable u1 referring to the probability distribution pX(u1) and there-
fore it will be denoted u2. If Hans eats with appetite maximally three eggs, then
to eat eight eggs (Fig. 1) he eats the successive eggs with smaller and smaller
appetite. In particular, to consume the last eggs he must strongly force himself.
Let us notice in Fig. 1 that Hans is not able to eat nine eggs.

The variable u2 (number of eggs which Hans can (is able to) eat) has a
different universe of discourse U2 than the variable u1, Fig. 3.

0         1          2         3         4          5         6          7         8         9         10       11      X

�X(u2) – possibilit y distribution
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0.6

0.4

1.0

0.8

�X(u2)

                              variable                                     u2

universe of discourse    U2

Figure 3. Possibility distribution πX(u2) of the number of eggs which Hans can
(is able to) eat, even when he must force him to eat the eggs

The fact that the both variables u1 and u2 are expressed by the “egg number”
does not mean that they are identical variables, similarly as the fact that income
and costs of a firm are expressed in e.g. Euro does not mean that income and
costs is the same.

Remark 2.1 The variable u1 (number of eggs which Hans ate for breakfast)
associated with the probability distribution pX(u1) is a different variable from
the variable u2 (number of eggs which Hans can (is able to) eat) associated
with the possibility distribution πX(u2). Both variables describe different events
and have different universes of discourse. Therefore the comparison made by
Professor Zadeh seems not correct. A correct comparison of probability and
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possibility should refer to the same and identical variable, e.g. to u1 (number
of eggs, which Hans ate for breakfast) or to u2 (number of eggs that Hans
can (is able to) eat for breakfast). For one and the same variable a probability
distribution pX(u) and a possibility distribution πX(u) should be determined and
a comparison of both distributions should be made.

Remark 2.2 The example of Professor Zadeh suggests that possibility distri-
bution is connected with the word “can” occurring in description of the event
represented by variable X. This leads the reader into error and is not true be-
cause possibility distribution can be determined for variables representing any
event and not only containing in their description the word can or a similar
expression. It will be shown below that possibility distribution can be determined
for the variable “egg number, which Hans ate for breakfast (according to his
appetite)” which does not contain the word can.

Remark 2.3 The example of Professor Zadeh does not show that possibility dis-
tribution should be used as mathematical description of the event (X = u) only
then, when measurements of variable X are inaccurate (uncertain) and when
they are of special character – when they are nested measurements (Dubois,
1988; Klir, 1988; Zimmermann, 1996). If measurements of variable X are pre-
cise (e.g. egg number eaten by Hans for breakfast can be very easily exactly
measured), then possibility distribution must not be used as mathematical de-
scription of the event (X = u) because it is a poor information (an example will
prove this statement). If measurements of X are precise we may use other, more
informatively valuable forms of mathematical description like, e.g., probability
distributions.

Remark 2.4 In his example Professor Zadeh did not show that possibility dis-
tribution should always be used together with its dual counterpart, with necessity
distribution. Only both distributions constitute the complete mathematical de-
scription of the event occurrence. Description with only possibility distribution
is incomplete.

3. Short reminder of the scientific concepts of possibility,

necessity and probability

There exist various interpretations of the notion possibility. Examples of the
interpretations can be found, e.g., in Borgelt and Kruse (2003), Ruspini (1990),
Spohn (1990), Spott (1997). In this paper we will use the interpretation of very
well known specialists of fuzzy sets: D. Dubois, H. Prade, G. Klir, which can
be found in Dubois and Prade (1988, 1993, 1994, 2002), Dubois et al. (2004),
Klir and Folgert (1988). This interpretation seems to be dominating and the
most approved one and has been published many times between 1988 and 2004
in scientific journals. It allows for determining a possibility distribution from
measurements. This interpretation will be shortly explained below.
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Let us denote by U the domain of the variable X , by A an event A ⊆ U , by
π(u) the possibility distribution π(u) = Π({u}), where π is a mapping of U into
[0, 1]. When the set U is finite, every possibility measure Π can be defined in
terms of its values on singletons of U (Dubois and Prade, 1988), formula (1):

∀A, Π(A) = sup{π(u) | u ∈ A} (1)

where Π(A) is a possibility measure of occurrence of the event A ⊆ U . The
notion of possibility Π(A) of the event A occurrence and the connected notion
of necessity N(A) of the event occurrence can be used only when focal elements
Ei of a body of evidence (F , m) are nested, which means that the focal elements
satisfy the condition E1 ⊂ E2 ⊂ · · · ⊂ Ep, (Klir and Folgert,1988). Necessity
measure N(A) of an event A as a dual measure in relation to possibility measure
can be calculated with formula (2) (Klir and Folgert, 1988):

N(A) = 1 − Π(Ā),

N(A) = inf{1 − π(u) | u /∈ A}, (2)

where Ā is the complement of A.
Π(A) = 1 means that A is fully possible. The dual measures of possibility

Π(A) and necessity N(A) are connected by relations (3), (Dubois and Prade,
1988):

∀A ⊆ U, N(A) > 0 ⇒ Π(A) = 1

Π(A) < 1 ⇒ N(A) = 0

Π(A) ≥ N(A)

N(A) + N(Ā) ≤ 1

Π(A) + Π(Ā) ≥ 1. (3)

As it results from formulas (1)-(3) to calculate the possibility measure Π(A)
or the necessity measure N(A) of the event A occurrence the possibility distri-
bution π(u) is necessary. The possibility distribution can be determined with
formula (4), (Dubois and Prade, 1988):

∀u, π(u) =















p
∑

j=i

m(Ej) if u ∈ Ei ,

0 if u ∈ U − Ep ,

(4)

where m(Ej) are probability masses carried by the nested subsets E1, E2, . . . ,
Ep of the universe U (presumed finite) satisfying conditions (5):

p
∑

i=1

m(Ei) = 1

∀i, m(Ei) > 0

(5)
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“The probability mass m(Ei) can be interpreted as a global allocation of
probability to the whole set of elementary events making up Ei, without specify-
ing how this mass is distributed over elementary events themselves” (Dubois and
Prade, 1988). Let us denote the measurement (observation data) by {Ik | k =
1, . . . , q}. Each measurement Ik is assigned uniquely to the smallest

reference set Ei capable of including it. The probability masses can be
calculated with formula (6):

∀i, m(Ei) =
1

q
[ number of measurements assigned to Ei ]. (6)

If we have the possibility distribution π(u) then we can determine the prob-
ability distribution p(u) according to the method described below (after Dubois
and Prade, 1988). Given a possibility measure in the form of nested focal ele-
ments with probability weightings, we may seek to approximate to it by means
of probability measure, by interpreting each focal element Ei as a conditional
probability P (·|Ei) uniformly distributed over Ei. The atom of probability as-
sociated with the element u ∈ U (finite) is then:

∀u, p(u) =

P
∑

i=1

(u |Ei) m(Ei) =
∑

u∈Ei

m(Ei)

|Ei|
, (7)

where |Ei| is the number of elements in Ei. We have therefore made a choice
(which could be considered somewhat arbitrary) of one probability measure in
the class of all those that satisfy the inequalities (8):

∀A, N(A) ≤ P (A) ≤ Π(A). (8)

The probability atoms {p(ui) | i = 1, . . . , n} can be calculated directly from
the possibility distribution {π(ui) | i = 1, . . . , n}:

p(ui) =
n

∑

j=i

1

j
{π(uj) − π(uj+1)} , (9)

where π(u1) = 1 ≥ π(u2) ≥ · · · ≥ π(un+1) = 0, and un+1 is a dummy element
(U has n elements). It can readily be seen that (9) defines a one-to-one cor-
respondence between the distributions p and π. The inverse of this formula is
(10):

π(ui) =

n
∑

j=i

min(p(ui), p(uj)) (10)

4. Example illustrating the difference between possibility

and probability of an event

In Professor Zadeh’s example the difference between possibility and probability
of the event occurrence is explained on example of the event “Hans ate X eggs
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for breakfast”. Probability distribution of this event is given in Table 1 and
in Fig. 2. In order to clearly explain the difference between probability and
possibility of the event occurrence the way how the probability distribution
pX(u) and the possibility distribution πX(u) is determined should be shown
and compared.

4.1. The way to determine the probability distribution pX(u) of the

event “Hans ate X eggs for breakfast”

To determine this distribution the information, e.g. from Hans’ mother, about
the number of eggs, which Hans ate for breakfast, is necessary. Let us assume
we have the information as given below:

a) For 1 of all 10 observed breakfasts Hans ate 1 egg.
b) For 8 of the 10 observed breakfasts Hans ate 2 eggs.
c) For 1 of the 10 observed breakfasts Hans ate 3 eggs.

On the basis of the above information we can calculate probability of par-
ticular events, formula (11) and Fig 4.

pX(u = 1) = 0.1

pX(u = 2) = 0.8 (11)

pX(u = 3) = 0.1

0         1          2         3         4          5         6         X

pX(u) – probabilit y distribution

0.1

0.2

0.6

0.4

1.0

0.8

pX(u)

       u

U

Figure 4. Probability distribution pX(u) of the event “Hans ate X eggs for
breakfast”
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Remark 4.1 In the example a very small number of 10 observations was as-
sumed, which does not satisfy the requirements of the probability theory. How-
ever, the author assumed such small number explain easier the problem.

Remark 4.2 The evidence information delivered by Hans’ mother is precise and
refers to each separate number 1, 2, 3 of eggs.

Remark 4.3 There exists only one probability distribution pX(u) resulting from
the evidence information a), b), c) delivered by the mother.

4.2. The way to determine the possibility distribution πX(u) of the

event “Hans ate X eggs for breakfast”

Let us assume that we did not obtain from Hans’ mother as precise information
as a), b), c) from Section 4.1, but a less precise information as follows:

A) It is certain that for 8 of all 10 observed breakfasts Hans ate 2 eggs.
(Remark: the above information does not exclude the possibility that
Hans ate 2 eggs for 9 or even for all 10 breakfasts.)

B) It is certain that for all 10 observed breakfasts the number of eggs eaten
by Hans was in the interval 1 – 3. (Remark: the above information does
not necessarily mean that Hans certainly ate for at least 1 breakfast 1 or
3 eggs. It is further possible that Hans could eat e.g. 2 eggs for all 10
observed breakfasts.)

Information “A” defines the focal element E1 = {2}. 8 measurements (ob-
servations) Ik from the full measurement set {Ik | k = 1, . . . , 10} are uniquely as-
signed to this element. Information “B” defines the focal element E2 = {1, 2, 3}
to which are assigned all 10 measurements Ik of the egg number. Now, with for-
mula (6) the probability masses m(Ei) associated with particular focal elements
Ei can be calculated:

m(E1) = 8/10 = 0.8

m(E2) = (10 − 8)/10 = 0.2

m(E1) + m(E2) = 1.

(12)

Probability mass m(Ei+1) means the probability increase of the event (X =
u)-occurrence caused by extension of the interval of possible values of the vari-
able u of the focal element Ei+1 in relation to the focal element Ei nested in
it. Fig. 5 shows the focal elements Ei resulting from information “A” and “B”
delivered by Hans’ mother.
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0                     1                    2                     3                     4                 X

       u

U

egg number

E2

E1

m(E2) = 0.2

10 measurements
m(E1) = 0.8

8 measurements

Figure 5. Nested focal elements Ei and probability masses m(Ei) associated
with them, which create the body for evidence for the problem of the number
for eggs eaten by Hans for breakfasts

With formula (4) the possibilities πX(u) of the event “Hans ate X eggs for
breakfast” or (X = u) can now be calculated:

π(u = 1) =

2
∑

j=2

m(Ej) = m(E2) = 0.2

π(u = 2) =

2
∑

j=1

m(Ej) = m(E1) + m(E2) = 0.8 + 0.2 = 1

π(u = 3) =
2

∑

j=2

m(Ej) = m(E2) = 0.2 . (13)

Fig. 6 presents the obtained possibility distribution πX(u).
Let us consider now what is the meaning of the sentence: “Possibility of the

event ‘Hans ate 1 egg for breakfast’ equals 0.2”. From information “A” we know
that Hans ate at least for 8 from 10 breakfasts two eggs. From information “B”
we know that for all 10 breakfasts the egg number did not go outside the interval
1-3. So, we can conclude that number of breakfasts, for which Hans ate only 1
egg could be at most 2, but it could also be 1 or 0. The same refers to 3 eggs.
There exist 6 possible distributions of the number of breakfasts for which Hans
ate u eggs, Fig. 7.

Because information “A” and “B” delivered by Hans’ mother is not precise
we do not know which of all possible distributions a-f, Fig. 7, really occurred.
Each distribution of the number of breakfasts for which Hans ate (X = u) eggs
generates one specific probability distribution pXi(u), Fig. 8.

Let us notice that the greatest possible probability that Hans ate 1 egg for
breakfast results from the distribution pX1(u) in Fig. 8a and is just equal to
0.2. It also means that the possibility of occurrence of the event (u = 1)
equals πX(1) = 0.2.
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       u

U

egg number

�X(u)

0.2

1.0

�X(u)

Figure 6. Possibility distribution πX(u) of the occurrence of event (X = u):
“Hans ate X eggs for breakfast”
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breakfast
number

1         2         3    X , uf)

breakfast
number

       2         8         0
        1        9         0

       1         8         1

       0       10         0
       0         9         1

       0        8         2

Figure 7. Possible distributions of the number of breakfasts, for which Hans ate
(X = u) eggs
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Figure 8. Six feasible probability distributions pXi(u) of the event (X = u) –
“Hans ate X eggs for breakfast” resulting from the inexact information “A” and
“B” delivered by Hans’ mother

The greatest possible probability that Hans ate two eggs for breakfast results
from the probability distribution pX4(u) in Fig. 8d and it equals 1. It means
that the possibility of the event‘s (u = 2) occurrence is equal πX(2) = 1. The
greatest possible probability of the event “Hans ate 3 eggs for breakfast” results
from the probability distribution pX6(u) in Fig. 8f and is equal 0.2. It means
that the possibility of the event‘s (u = 3) occurrence equals πX(3) = 0.2.

The smallest possible probability that Hans ate one egg for breakfast pX(u =
1) = 0 corresponds to the probability distributions pX1(u), pX2(u), and pX3(u)
in Figs. 8d, e, f. It means that the necessity of the event‘s (u = 1) oc-

currence η(u = 1) = 0 (this event could not take place). The smallest
possible probability of the event “Hans ate two eggs for breakfast” equals
pX(u = 2) = 0.8 (according to the information “A” Hans ate at least for 8
of all 10 breakfasts 2 eggs). It results from the probability distributions pX1(u),
pX3(u), and pX6(u) in Figs. 8a, c, f. This means that the necessity of the event‘s
(u = 2) occurrence equals ηX(u = 2) = 0.8. In the case of the event “Hans ate
three eggs for breakfast” the smallest possible probability pX(u = 3) = 0 results
from the probability distributions pX1(u), pX2(u), pX4(u) in Figs. 8a, b, d. It
means that the necessity of this event equals ηX(3) = 0. All the particular
distributions are presented in Fig. 9.

The necessity distribution ηX(u) of the event occurrence in the considered
simple example with only 3 possible values of the variable u (u = 1, 2, 3) and
with only 10 measurements Ik (10 breakfasts) was easy to determine without
the use of mathematical formulas. In more complicated problems we may apply
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0                     1                    2                     3                                          X , u

       u

U
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             i = 1,...,6
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0.9
0.8

Figure 9. Possibility distribution πX(u), probability distributions pXi(u),
i = 1 ÷ 6, and necessity distribution ηX(u) of the event “Hans ate X eggs for
breakfast”

formula (2):

N(A) = 1 − Π(Ā)

N(A) = inf{1 − π(u) | u /∈ A}

For A = {1}: N({1}) = 1-1 = 0.

For A = {2}: N({2}) = 1-0.2 = 0.8.

For A = {3}: N({3}) = 1-1 = 0.

The above calculations, carried out with the formula (2) confirm the results
of necessity evaluation made on the basis of all possible probability distributions
pXi(u) of the event “Hans ate X eggs for breakfast”. Because in the considered
problem several (6) different probability distributions are possible, an “average”
distribution pXaver(u) of probability can be determined on the basis of analysis
of probability values for particular values of the variable u in Figs. 8a,b,c,d,e,f.

pXaver(u = 1) =
1

6
(0.2 + 0.1 + 0.1 + 0 + 0 + 0) = 0.067

pXaver(u = 2) =
1

6
(0.8 + 0.9 + 0.8 + 1.0 + 0.9 + 0.8) = 0.866

pXaver(u = 3) =
1

6
(0 + 0 + 0.1 + 0 + 0.1 + 0.2) = 0.067. (14)
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In practical tasks we have to do with much more complicated problems, in
which we are not able to determine all possible probability distributions pXi(u).
Therefore, in order to determine the “average” possibility distribution we may
use formula (9) which uses for this purpose the possibility distribution πX(u)
of the event:

pXaver(ui) =

n
∑

j=i

1

j
{π(uj) − π(uj+1)}.

Particular possible values of the variable u are ordered here according to
formula (9): u1 = 2, u2 = 1, u3 = 3. Calculations are given below.

pXaver(u1 = 2) =
3

∑

j=1

1

j
{πX(uj) − πX(uj+1)}

=
1

1
(1 − 0.2) +

1

2
(0.2 − 0.2) +

1

3
(0.2 − 0) = 0.866

pXaver(u2 = 1) =
3

∑

j=2

1

j
{πX(uj) − πX(uj+1)}

=
1

2
(0.2 − 0.2) +

1

3
(0.2 − 0) = 0.067

pXaver(u3 = 3) =

3
∑

j=3

1

j
{πX(uj) − πX(uj+1)}

=
1

3
(0.2 − 0) = 0.067. (15)

It turns out that the “average” probability distributions pXaver(u) of the
event “Hans ate X eggs for breakfast” given by two formulas (14) and (15) are
identical ones. Fig. 10 shows the possibility distribution πX(u), the “average”
probability distribution pXaver(u), and the necessity distribution ηX(u) of the
event.

Using the “average” probability distribution pXaver(u) seems necessary in
more complicated practical problems. However, in the case of a so simple ex-
ample as the one analyzed in this chapter, where all the feasible probability
distributions pXi(u) are known, the problem can be investigated very precisely.
The number of feasible probability distributions pXi(u) equals 6, see Fig. 8.
Analysis of the distributions allows us to discover that the probability value
pX(u = 1) = 0.2 occurs in only one out of all 6 distributions: in pX1(u). It
means that probability p(pX(u = 1) = 0.2) of occurrence of the probabil-

ity value pX(u = 1) = 0.2 is equal 1/6.
Next, the probability value pX(u = 1) = 0.1 occurs in two out of all 6

probability distributions, in pX2(u) and pX3(u). The probability p(pX(u =
1) = 0.1) of occurrence of the probability value pX(u = 1) = 0.1 is therefore
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Figure 10. Possibility distribution πX(u), the “average” probability distribution
pXaver(u), and necessity distribution ηX(u) of the event “Hans ate X eggs for
breakfast”

equal 2/6. The probability value pX(u = 1) = 0 occurs in three out of all 6
probability distributions, in pX4(u = 1), pX5(u = 1) and in pX6(u = 1). It
means that probability p(pX(u = 1) = 0) of occurrence of the probability value
pX(u = 1) = 0 equals 3/6.

In a similar manner we may calculate the probability of occurrence of proba-
bility values of Hans eating two eggs: p(pX(u=2)), and three eggs: p(pX(u=3).
Probability distributions of probability values for particular events (u = 1),
(u = 2) and (u = 3) are presented in Fig. 11.

Let us notice in Fig. 11 that probability of occurrence of the maximum
probability value pX(u = i) = πX(u = i), that is, of the probability value, which
is equal to the possibility of the event (u = i) is for all values i = 1, 2, 3 the
smallest one and equal to 1/6, while the probability of the necessity ηX(u = i)
is for all i the greatest one and equal to 3/6.

When we use the possibility πX(u) and the necessity ηX(u) we have to do
with a little strange notion of probability of occurrence of probability value of
the event (X = u) which causes that the possibility distribution is no longer
2-dimensional but becomes a 3-dimensional distribution. For the analyzed
“Hans/eggs”-problem this distribution is shown in Fig. 12.

In the case of fuzzy sets there are known and used the type 2-fuzzy sets
(Zimmermann, 1996), for which the membership values in a set are the type
1-fuzzy sets. Similarly, in the investigated “Hans/eggs”-problem we have to
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Figure 11. Possibility distributions p(pX(u = i)), i = 1, 2, 3 of occurrence of
probability value pX(u = i) = 0.1 or 0.2 or 0.3 of the event “Hans ate X
eggs for breakfast” resulting from 6 possible probability distributions pXi(u)
presented in Fig. 8
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Figure 12. Three-dimensional probability distribution of the event (X = u):
“Hans ate X eggs for breakfast”, i.e. the probability distribution p(pX(u)) of
occurrence of the probability value pX(u) of the event (X = u)

do with type 2-probability in which the probability value pX(u) of the event
(X = u) is the type 1-probability. Because determining type 2-probability
distributions is rather difficult, in practical applications we have to use the
simplified, “average” type 1-probability distributions pXaver(u).

5. Conclusions

If evidence information about the problem is given in the form of nested focal
elements E1 ⊆ E2 ⊆ . . . Ep then the event (X = u) cannot be directly described
with only one probability distribution pX(u) because the uncertainty of the
evidence information (uncertainty of measurements) causes that not one but
many probability distributions pXi(u) are possible. Then, for each possible
event (X = u) its possibility πX(u) can be determined. This possibility is the
greatest possible probability of the event (X = u) resulting from only one of
many possible probability distributions pXi(u). Because probability that such
specific distribution pXi(u) really took place in the considered problem equals
1/m, where m is number of all possible distributions pXi(u) and is usually very
large, the value of 1/m is usually very small. In the simple “Hans/eggs”-example
this probability equals 1/6. But when the variable X is continuous, the number
of all possible distributions is infinitely large and the probability of occurrence of
one specific distribution is infinitely small. It means that the possibility πX(u)
refers to a very little probable case, to the extreme case. Therefore the

informative value of possibility πX(u) of the event‘s (X = u) occurrence
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is small. The possibility should be used as an additional information but not
as the main information about the problem under consideration.

A similar conclusion refers to the necessity ηX(u) of the event occurrence.
The necessity informs us about the minimal but certain probability value of the
event occurrence. When we know values of the possibility πX(u) and of the
necessity ηX(u) then we can be certain that the event (X = u) occurs with
probability at least equal to the necessity but not exceeding the possibility. The
use in the solution of real problems of the measures of possibility and necessity
of an event occurrence corresponds, respectively, to the extremely optimistic
and to the extremely pessimistic approach to the problem. Both approaches are
extreme and mostly of small practical value.

The possibility that Hans will for all successive 1000 breakfasts eat always
two eggs equals 1. But probability of such a sequence of events is small and
equals only 1/6 (6 probability distributions in the problem are possible). Basing
the problem solution on probability is more practical. The probability that Hans
will eat two eggs for breakfast equals 0.866 (Fig. 10) and is much higher than
1/6. Using it, we can hope that Hans for 866 out of 1000 breakfasts will eat two
eggs. It is much more certain and valuable information than possibility.

The above conclusions have a very great meaning for identification of mem-
bership functions of fuzzy sets and for fuzzy arithmetics. If fuzzy numbers which
represent real variables like, e.g., approximate income and costs of a firm (e.g.
about 7 million Euro and about 5 million Euro) were identified as possibilistic
fuzzy numbers then the calculated value of profit = income - costs, being fuzzy
number about 2 million Euro, will also have the character of possibility distribu-
tion πX(profit) and will inform us about some extreme events, whose occurrence
is possible but very little probable. The use of the possibilistic fuzzy numbers
results in calculation paradoxes and produces too fuzzified results. The present
author showed in Piegat (2003) that in subtraction of fuzzy numbers an insen-
sitivity of the subtraction result on numbers successively subtracted from the
minuend occurs. Therefore the author proposes in fuzzy arithmetic the applica-
tion of probabilistic fuzzy numbers instead of the possibilistic ones and instead
of the possibilistic extension principle of Zadeh or Klir (Klir, 1997), the use of
the cardinality extension principle (Piegat, 2003). This principle gives results
of greater informative value, which are more suitable for practical applications.
If a fuzzy number is of possibilistic character, then it is recommended (using
formula (9)) to calculate the probability distribution corresponding to the pos-
sibility distribution and next to normalize it to interval [0, 1]. In this way we get
a probabilistic fuzzy number for which the cardinality extension principle can
be used in calculations. The transformation of the possibilistic fuzzy number
about 2 (eggs), referring to the “Hans/eggs”- example, into a probabilistic fuzzy
number about 2 (eggs) is shown in Fig. 13.

Arithmetic operations on probabilistic fuzzy numbers with the use of car-
dinality extension principle give results, which radically differ from the results
achieved with possibilistic fuzzy numbers, calculated with the possibilistic ex-
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Figure 13. Example of transformation of the possibilistic fuzzy number about 2
(eggs) – (a) into the probabilistic fuzzy number about 2 (eggs) – (c)

tension principle of Zadeh or Klir (Klir, 1997). These results are also more
suitable for practice.
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