
Control and Cybernetics

vol. 34 (2005) No. 2

Control zeros and maximum-accuracy/maximum-speed
control of LTI MIMO discrete-time systems

by

Krzysztof J. Latawiec

Department of Electrical Engineering and Automatic Control
Technical University of Opole

ul. Sosnkowskiego 31, 45-233 Opole, Poland
e-mail: lata@po.opole.pl

Abstract: Based on new definitions of “control zeros” and min-
imum phase property for possibly nonsquare LTI MIMO discrete-
time systems, generalizations of perfect regulation and perfect fil-
tering are presented both for polynomial matrix and state space
models. Consequently, general equivalence results are announced for
multi-step and single-step optimal controls as well as for maximum-
accuracy and maximum-speed controls for LTI MIMO discrete-time
systems. The latter is made visible after the introduction of a new
category of time-optimal control, namely infimum-time control. The
equivalence conditions refer to the system’s right-invertibility and
the (newly-defined) minimum phase behavior, which demonstrates
the usefulness of the new approach to zeros of multivariable systems.
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1. Introduction

Both in robust control (Chen, Lin, Liu, 2002; Hermann, Spurgeon, Edwards,
2001; Kaczorek, 1999; Latawiec, 1998; Latawiec, Rojek, 2000; Liu, Chen, Lin,
2001; Middleton, 1991; Newman, 1990; Pao, Franklin, 1993; Seron, Braslavsky,
Goodwin, 1997; Yaniv, Gutman, Chepovetsky, 1999) and, in particular, high-
accuracy control (Åström, Wittenmark, 1989; Borisson, 1979; Chen, Lin, Liu,
2000, 2002; Clements, Anderson, 1978; Davison, 1983; Francis; 1979; Glizer,
1999; Kaczorek, 1999; Kimura, 1981; Kwakernaak, Sivan, 1972; Latawiec, 1978;
Latawiec, Bańka, Tokarzewski, 1999; Latawiec, Hunek, 2002; Latawiec, Hunek,
Łukaniszyn, 2004; Latawiec et al., 2003, Latawiec, Korytowski, Bańka, 2001;
Latawiec, Korytowski, Rojek, 2001; Latawiec, Rojek, 2000; Lin et al., 1996; Liu,
Chen, Lin, 2001; Marro, Prattichizzo, Zatoni, 2002; Middleton, 1991; Middle-
ton, Braslavsky, 2000; Oloomi, Sawan, 1997; Saberi, Sanutti, 1987; Scherzinger,
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Davison, 1985) of linear multivariable systems, the problem of performance lim-
itation (Goodwin, Seron, 1997; Havre, Skogestad, 2001; Middleton, 1991; Seron,
Braslavsky, Goodwin, 1997; Yaniv, Gutman, Chepovetsky, 1999) is inevitably
related to the minimum/nonminimum phase behavior of a system under con-
trol, that is to the notion of zeros of multivariable systems (Kaczorek, 1999;
Latawiec, 1998; Latawiec, Bańka, Tokarzewski, 1999; Tokarzewski, 2002).

The elusive concept of zeros for nonsquare MIMO systems has raised polemics
and discussions (Latawiec, 1998; Latawiec, Bańka, Tokarzewski, 1999), leading
to some misinterpretations in design of both high-accuracy and robust con-
trollers. The reason was an unclear notion of the minimum/nonminimum phase
property for such systems. In fact, nonsquare systems generically (or “com-
monly”, or “typically”, or “almost always”) have no transmission zeros and yet
they may exhibit the nonminimum phase behavior (Latawiec, 1998; Latawiec,
Bańka, Tokarzewski, 1999; Latawiec, Hunek, 2002; Latawiec, Hunek, Łukaniszyn,
2004; Latawiec et al., 2003). Confusingly, some authors happened to consider
control problems for nonsquare minimum/nonminimum phase systems, relat-
ing the property to transmission/invariant zeros (Davison, 1983; Francis, 1979),
which has been shown incorrect, in general (Latawiec, 1998; Latawiec, Bańka,
Tokarzewski, 1999; Latawiec, Hunek, 2002; Latawiec, Hunek, Łukaniszyn, 2004;
Latawiec et al., 2003).

A new concept of “control zeros”, followed by a general redefinition of min-
imum/nonminimum phase systems, has been presented to fill the gap for non-
square systems under perfect/output-zeroing/inverse-model/minimum-variance
control (Latawiec, 1998; Latawiec, Bańka, Tokarzewski, 1999; Latawiec, Hunek,
2002; Latawiec, Hunek, Łukaniszyn, 2004; Latawiec et al., 2003). The concept
has been utilized in the development of a new, simple but robust, multivari-
able predictive control strategy for nonminimum phase systems (Latawiec, 1998;
Latawiec, Rojek, 2000). However, the new results, related to the new definitions
of control zeros and minimum phase systems, appear not to be well known to the
control community. Papers are still published, in which the classical, improper,
transmission/invariant-zeros-based definition of minimum phase systems is em-
ployed to analyze and design control systems for nonsquare plants (Chen, Lin,
Liu, 2002; Goldsmith, 2002; Havre, Skogestad, 2001; Hermann, Spurgeon, Ed-
wards, 2001; Jeong, Choi, 2002; Liu, Chen, Lin, 2001; Saberi, Han, Stoorvogel,
2002). In spite of a very elegant, general mathematical framework presented in
those papers, their results are unfortunately valid for square plants only.

This paper makes yet another attempt at rectifying some important issues
related to (finite) multivariable zeros and minimum phase systems, with obvious
implications to maximum-accuracy and maximum-speed controls for nonsquare
discrete-time systems. The new results are presented in as simple way as pos-
sible in order to make them available to control engineers as well. As a matter
of fact, the minimum/nonminimum phase behavior is essential when designing
(e.g.) process control systems for (not only) nonsquare plants and yet so many
sophisticated control designers cannot avoid the trap related to the misdefined
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minimum phase property. And control problems for nonsquare plants have in-
creasingly been approached in e.g. control engineering practice, to mention only
a few early 2002 editions of CEP (Bolek, Sasiadek, Wiszniewski, 2002; Leskens,
Van Kessel, Van den Hof, 2002; Stenlund, Medvedev, 2002; Zhu, Butoyi, 2002).

In this paper, extending the results of Latawiec, Korytowski, Bańka (2001)
and Latawiec, Korytowski, Rojek (2001), it is shown that the new definitions of
control zeros and minimum phase systems contribute to nonsquare-system gen-
eralization of the familiar concepts of perfect regulation and perfect filtering.
Consequently, the definitions conduce to formulation of new, general equiva-
lence results on multi-step and single-step controls for LTI MIMO discrete-time
systems. After the introduction of the notion of infimum-time control, it is
also demonstrated how maximum-accuracy and maximum-speed controls can
be equivalent to each other. All the equivalence results, in addition to the
two definitions, are new contributions to the analysis and synthesis of control
systems for nonsquare LTI MIMO discrete-time systems.

The remainder of the paper is organized as follows. The new definitions of
control zeros and minimum/nonminimum phase systems, relevant to the per-
fect regulation problems considered, are recalled in Section 2. In Section 3, the
maximum-accuracy control issues are discussed for systems governed by a poly-
nomial matrix model. The zero-related perfect regulation and output zeroing
problems are also considered in Section 4 for state space-modeled systems, and a
general equivalence result for multi-step and single-step linear optimal controls
is given. A dual, perfect filtering problem is briefly generalized in Section 5. In
Section 6, a new category of time-optimal control, namely infimum-time control,
is introduced and the equivalence results on maximum-accuracy and maximum-
speed controls are given for systems modeled both by matrix polynomial and
state space descriptions. New results of the paper are summarized in conclusions
of Section 7.

2. Control zeros and nonminimum phase systems

Based on the output zeroing problem, which appears to be more general than
the transmission blocking one (Latawiec, 1998; Latawiec, Bańka, Tokarzewski,
1999), a new definition of control zeros for possibly nonsquare MIMO systems
has been introduced and the minimum/nonminimum phase property has been
redefined in Latawiec (1998) and Latawiec, Bańka, Tokarzewski (1999). Here we
present a slightly modified, more formally justified definition of control zeros.
For clarity, we refer to the specific case of full normal rank transfer-function
matrices. A general, non-full normal rank case has been considered in Latawiec
(1998) and Latawiec, Bańka, Tokarzewski (1999).

Denote by Rp×r(z) the set of all p × r matrices with entries in the field
R(z) of rational functions in the complex variable z with real coefficients and
let Rp×r[z] be the set of all p × r matrices with entries in the ring R[z] of
polynomials in z with real coefficients. Also denote by Γ the set of all rec-
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tangular, full normal rank matrices whose elements are rational functions in z
with real coefficients. Consider an LTI discrete-time nu-input ny-output sys-
tem governed by the transfer-function matrix G ∈ Rny×nu(z) of full normal
rank ny ≤ nu, having the left coprime matrix fraction description (MFD) form
A−1(z)B(z) = z−dA−1(z−1)B(z−1), with A ∈ Rny×ny [z], B ∈ Rny×nu [z] and
d being the time delay.

“Symmetrical” considerations can be made for the transfer-function matrix
G of full normal rank nu ≤ ny, having its right coprime MFD (Latawiec, 1998;
Latawiec, Bańka, Tokarzewski, 1999), but the related issues are not relevant to
the perfect regulation problems considered. For every ny × nu matrix G ∈ Γ,
its inverse is defined as an nu × ny matrix G+ ∈ Γ, where G+ is (any) right
or left inverse of G, to be denoted by GR and GL, respectively. Of particular
importance is the case to follow when G+ is the (unique) T -minimum norm
right inverse or T -least squares left inverse, to be denoted by GR1

0 = zdBR1

0 A =
zdBT (BBT )−1A and GL1

0 = zdABL1

0 = zdA(BT B)−1BT , respectively.
Another important case to follow is when G+ is the (unique) inverse GR2

0 =
zdBR2

0 A = zd{I + (b0)
R
0 [B − b0]}

−1(b0)
R
0 A or GL2

0 = zdABL2

0 = zdA{I +
(b0)

L
0 [B − b0]}

−1(b0)
L
0 , where (b0)

R
0 and (b0)

L
0 are respectively the minimum

norm right and least squares left inverses of b0, the leading coefficient (matrix)
of B(z−1). In the sequel, we exploit the specific case of right-invertible systems,
which is relevant to the perfect regulation problem considered.

Definition 2.1 Let an nu-input ny-output LTI discrete-time system be de-
scribed by the transfer-function matrix G ∈ Γ of full normal rank ny ≤ nu,
having the left coprime MFD form A−1(z)B(z) = z−dA−1(z−1)B(z−1), with
A ∈ Rny×ny [z], B ∈ Rny×nu [z] and d being the time delay. Let c be a function
Γ → Γ such that c(G) = GR = zdBRA is a specific right inverse of G, for every
G ∈ Γ. The c-inverse system is defined as the system with the transfer-function
matrix c(G). In particular, the c-inverse system involving either the GR1

0 or
GR2

0 inverses of G will be called the c0-inverse system.

Remark 2.1 Depending on the context, the original system described by the full
normal rank transfer-function matrix G ∈ Γ will be referred to as c-invertible
or c0-invertible, the latter being related to its c0-inverse system.

Definition 2.2 The complex number ζ is called a control zero of the LTI
discrete-time system described by the full normal rank transfer-function matrix
G ∈ Γ iff ζ is a pole of the transfer-function matrix c(G) of the c0-inverse system.

Remark 2.2 The new definition of control zeros is embedded in the concept
of output-zeroing/inverse-model/minimum-variance/perfect control (Latawiec,
1998; Latawiec, Bańka, Tokarzewski, 1999), the stability of which is related to
the properties of a (generalized) inverse of G(z). (It is interesting to note that
operating with minimum norm right or least squares left inverses, involving
conjugate transposes and associated with output transform zeroing control, has
been conjectured to end up with transmission zeros, Latawiec et al., 2003).
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Definition 2.3 (Latawiec, 1998; Latawiec, Bańka, Tokarzewski, 1999; Lataw-
iec, Hunek, 2002; Hunek, 2003) An LTI system described by the full normal
rank transfer-function matrix is called minimum phase iff its c0-inverse system
is asymptotically stable; otherwise the system is called nonminimum phase.

Remark 2.3 It is obvious that the notion of a c-inverse system is nonunique for
nonsquare systems. Of a plethora of c-inverse systems available, including those
related to “squaring” the original system down, we distinguish such zeros which
are associated with a c0-inverse system of full dimensions nu × ny (otherwise
some input(s) or output(s) could be removed). The interest in c0-inverse systems
is additionally justified by the following

Example 2.1 Consider a nonsquare discrete-time system y(t) + a1y(t − 1) +
a2y(t − 2) = b0u(t − 1) + b1u(t − 2) + b2u(t − 3), with the polynomial matrix
B(q−1) = b0 + b1q

−1 + b2q
−2 being right-invertible, where q−1 is the backward

shift operator. Equating the 1-step output predictor to zero (or, in general, to
an output reference) we obtain

b0u(t) + b1u(t − 1) + b2u(t − 2) − a1y(t) − a2y(t − 1) = 0 (E1)

On the one hand, equation (E1) immediately leads to the perfect regulation (or,
in the stochastic case, minimum variance regulation) law

u(t) = (b0 + b1q
−1 + b2q

−2)R[a1y(t) + a2y(t − 1)] (E2)

But on the other hand, assuming that b0 is of full rank, equation (E1) can be
given the alternative form u(t) = (b0)

R[yref (t + 1) − b1u(t − 1) − b2u(t − 2) +
a1y(t) + a2y(t − 1)], which can be rewritten as

u(t) = [I + (b0)
R(b1q

−1 + b2q
−2)]−1(b0)

R[a1y(t) + a2y(t − 1)] (E3)

Although both control laws (E2) and (E3) are derived from the same predictor as
in (E1), it is rather surprising that these laws are different in general and this is
because BR1(q−1) = (b0+b1q

−1+b2q
−2)R 6= [I+(b0)

R(b1q
−1+b2q

−2)]−1(b0)
R =

BR2(q−1), in general. The difference results from the specific properties of right
inverses for polynomial matrices.

Since the two control laws can clearly be considered time-domain equations,
our interest in the BR1

0 (q−1) and BR2

0 (q−1) inverses, including regular rather
than conjugate transposes, is obvious. The control zeros related to equation
(E2) and generated by the inverse BR1

0 (q−1) are the “classical” control zeros
introduced in Latawiec (1998), Latawiec, Bańka, Tokarzewski (1999), which
will be referred to as type 1 control zeros. Another control zeros, related to
equation (E3) and different in general from type 1 control zeros, are generated
by the inverse BR2

0 (q−1) and called type 2 control zeros. Type 2 control zeros
have been demonstrated to have more attractive properties than their type 1
counterparts; see Latawiec, Hunek, Łukaniszyn (2004) for numerical calculations
of both types of control zeros for specific minimum phase and nonminimum
phase systems (having no transmission zeros!).
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The following two theorems provide means for calculation of control zeros
type 1 and type 2.

Theorem 2.1 (Latawiec, 1998; Latawiec, Bańka, Tokarzewski, 1999). Con-
sider an LTI discrete-time system governed by the transfer-function matrix G ∈
Rny×nu(z) of full normal rank ny ≤ nu, having the left coprime MFD form
A−1(z)B(z) = z−dA−1(z−1)B(z−1), with A ∈ Rny×ny [z], B ∈ Rny×nu [z] and
d being the time delay. Let its co-inverse system involve the T -minimum norm
right inverse GR1

0 ∈ Rnu×ny(z) and let {βi, i = 1, . . . , M} be the set of all
square submatrices of dimension ny of the polynomial matrix B(z−1) (or B(z)),
with M = nu!/[ny!(nu − ny)!]. Then the system is minimum phase if all zeros

of
∑M

i=1 [det(βi)]
2, that is all type 1 control zeros, lie inside the unit disc.

A dual result can be obtained for ny ≥ nu and a system described by the
right coprime MFD form (Latawiec, 1998; Latawiec, Bańka, Tokarzewski, 1999).

Theorem 2.2 Consider an LTI discrete-time system governed by the transfer-
function matrix G ∈ Rny×nu(z) of full normal rank ny ≤ nu, having the left
coprime MFD form A−1(z)B(z) = z−dA−1(z−1)B(z−1), with A ∈ Rny×ny [z],
B ∈ Rny×nu [z] and d being the time delay. Let its co-inverse system involve the
right inverse GR2

0 ∈ Rnu×ny(z). Then the system is minimum phase if all zeros
of det{I + (b0)

R
0 [B(z−1) − b0]} = 0, that is all type 2 control zeros, lie inside

the unit disc.

Proof will follow immediately from the perfect regulation stability result of the
next section.

The above output zeroing control-related definitions present a (nonsquare)
MIMO system generalization of those holding for SISO systems. Specifically,
control zeros of both type 1 and type 2 for square invertible MIMO (including
SISO) systems coincide with transmission zeros. Moreover, transmission zeros,
if any, of nonsquare co-invertible systems make a subset of control zeros of
both type 1 (Latawiec, 1998; Latawiec, Bańka, Tokarzewski, 1999) and type 2
(Latawiec, Hunek, Łukaniszyn, 2004).

Remark 2.4 The above definitions can be easily extended to include a state
space model and its possible decoupling zeros, in addition to control zeros.
Redefining (new, say c-)invariant zeros as those including control zeros and de-
coupling zeros, the whole analysis to follow could be repeated for the state space
description, with so defined invariant zeros substituted for control zeros. We will
continue with control zeros (and controllable and observable systems) however,
as the aforementioned controversies on multivariable zeros concern transmission
zeros exclusively (decoupling zeros are free from any misinterpretations).
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3. Output zeroing control for matrix polynomial-modeled
systems

Consider an nu-input ny-output LTI discrete-time system governed by the ma-
trix polynomial model (being a special case of the ARX model)

A(q−1)y(t) = q−dB(q−1)u(t) (1)

where A ∈ Rny×ny [z], with A(0) = I, and B ∈ Rny×nu [z] are left-coprime, with
A(z) = znA(z−1) and B(z) = zmB(z−1), and n and m are the orders of the
respective matrix polynomials. Unless necessary, we will not distinguish between
A(z−1) and A(z), nor between B(z−1) and B(z), especially that A−1(z)B(z) =
zm−nA−1(z−1)B(z−1) = G(z), with n − m = d.

Theorem 3.1 Let an LTI system be described by the model (1), with A ∈
Rny×ny [z] and B ∈ Rny×nu [z] being left-coprime. Then the minimum-norm reg-

ulation (MNR) law, minimizing the (single-step) performance index ‖y(t + d)‖
2

=
yT (t + d)y(t + d), is of the form

u(t) = −[F (q−1)B(q−1)]#H(q−1)y(t) (2)

where t ∈ {0, 1, 2, . . . , }, (.)# is a generalized inverse of (.) and the appro-
priate polynomial matrices F ∈ Rny×ny [z] and H ∈ Rny×ny [z] (of order d-1
and n-1, respectively) are computed from the matrix polynomial identity I =
F (z−1)A(z−1) + z−dH(z−1).

Proof. Premultiplying both sides of equation (1) by F (q−1) and using the above
polynomial identity one can easily arrive at the familiar output predictor y(t +
d) = Hy(t)+FBu(t) (which is precisely the same here as the deterministic part
of the output predictor for the stochastic square MIMO case, Borisson, 1979,
Latawiec, 1998). The result follows (asymptotically) from the minimization of
the performance index.

Remark 3.1 Notice that MNR is a special case of minimum variance control
(MVC). Also note that the MNR and zero-reference (white-noise) MVC laws
are identical. Of course, MNR (or, for stochastic systems, MVC) provides the
maximum achievable accuracy to the control system. Notice that, in general,
the minimum value of the performance index under the control law (2) does
not have to necessarily be zero. The result below provides the condition under
which the performance index under the control law (2) can reach its absolute
minimum of zero.

Corollary 3.1 (Latawiec, 1998) Let an LTI system be described by the model
(1), with A ∈ Rny×ny [z] and B ∈ Rny×nu [z] being left-coprime. Assume that
the MNR law (2) stabilizes the control system. Then MNR provides output-
zeroing control (OZC), i.e. y(t + d)=0, if rank R[z] B(z) = ny ≤ nu, that is if
B(z) is right-invertible.
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Remark 3.2 Note that the right-invertibility condition on B(z) is only suffi-
cient. In fact, zeroing of y(t + d) may also occur in a “nongeneric” case of the
range of H contained in the range of FB.

Remark 3.3 Note that OZC provides an upper bound for the maximum achiev-
able accuracy of MNR, or the zero control inaccuracy. This is usually referred
to as perfect regulation.

Taking account of the right-invertibility condition, the OZC/perfect regula-
tion law will thus be recalled in the form

u(t) = −BR(q−1)F−1(q−1)H(q−1)y(t) (3)

with a special attention paid to the right inverses BR1

0 (q−1) and BR2

0 (q−1),
generating control zeros type 1 and type 2, respectively.

Remark 3.4 It is interesting to note that

[F (q−1)B(q−1)]R2

0 = {I + (b0)
R
0 [F (q−1)B(q−1) − b0]}

−1(b0)
R
0

= BR2

0 (q−1)F−1(q−1).

This property copies the “classical” one:

[F (q−1)B(q−1)]R1

0 = BR1

0 (q−1)F−1(q−1).

(Note: The leading coefficient of F (q−1) is the identity matrix.)

Let us now examine the issue of stability of the OZC/perfect regulation
system.

Theorem 3.2 (Latawiec, 1998). Let an LTI system be described by the model (1),
with A ∈ Rny×ny [z] and B ∈ Rny×nu [z] being left coprime, and rank R[z] B(z) =
ny ≤ nu. Then the OZC/perfect regulation law (3) (identical with the zero-
reference MVC one) is asymptotically stable iff B(z) is stably (right-)invertible,
i.e. iff the system is minimum phase.

Remark 3.5 The minimum phase property must be understood precisely in the
sense of the new Definition 2.3 (and, generically, not any other, in particular
not the specific definition based on transmission zeros (Davison, 1983; Fran-
cis, 1979). In fact, control zeros lying outside or on the unit circle can make
the OZC/MVC/perfect regulation system unstable (Latawiec, 1998; Latawiec,
Bańka, Tokarzewski, 1999).

Remark 3.6 For example, a two-input single-output c0-invertible system de-
scribed by the transfer function matrix [z − 2 z − 1]/(z − 3)(2z − 5) has no
transmission zeros but 1) is nonminimum phase and so 2) its OZC/perfect reg-
ulation (3) (or in the stochastic case, minimum variance control) is unstable
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under both BR1

0 (q−1) and BR2

0 (q−1), which can be easily induced from its con-
trol zeros type 1 equal to 1.5±0.5i or control zeros type 2 equal to 0.75±1.3229i.
Latawiec, Hunek, Łukaniszyn (2004) present less obvious examples, with more
favorable properties of type 2 control zeros indicated.

Remark 3.7 Notice that the above perfect regulation conditions, as well as
the forthcoming ones for the state space description, are independent of the
structure of infinite zeros. In fact, output zeroing controller or perfect regulator
has, in general, nothing to do with a high-gain controller. Well, except for the
case when a system is (“close” to) nonminimum phase, precisely in the sense of
our Definition 2.3.

4. Perfect regulation/output zeroing control of state space
systems

Consider the problem of minimization of the (multi-step) control performance
index

Jρ(xo, u) =

∞
∑

t=0

[‖y(t + 1)‖
2

+ ρ ‖u(t)‖
2
] ρ > 0 (4)

subject to

x(t + 1) = Ax(t) + Bu(t), x(0) = x0 (5a)

y(t) = Cx(t) (5b)

where u(t) ∈ Rnu , y(t) ∈ Rny , x(t) ∈ Rn and A, B, C are the parameter
matrices of appropriate dimensions. To skip over possible trivial solutions we
assume that xo and A are nonzero.

Let the system be controllable and observable and let the control sequence
u ∈ U, where U is the class of bounded controls for which

i. lim
t↑∞

x(t) = 0 (6a)

ii.
∞
∑

t=0

‖u(t)‖
2

< ∞ (6b)

The familiar optimal control law is

u(t) = −(ρI + BT SB)−1BT SAx(t) (7)

where S = ST ≥ 0 is a solution to the algebraic matrix Riccati equation

S = R + AT SA − AT SB(ρI + BT SB)−1BT SA (8)

with R = CT C.
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Remark 4.1 For due comparison of matrix polynomial and state space descrip-
tions, controllability and observability of a system is assumed throughout the
paper. In this way we limit ourselves to the consideration of control zeros only.
Of course, it would suffice for state space-modeled systems to be assumed sta-
bilizable and detectable, in which case decoupling zeros would be additionally
involved. However, it would not take us any further (compare Remark 2.3).

The so-called “cheap” optimal control (Bikdash, 1993; Francis, 1979; Glizer;
1999; Latawiec, 1998; Marro, Prattichizzo, Zatoni, 2002; Oloomi, Sawan, 1997;
Saberi, Sanuti, 1987; Scherzinger, Davison, 1985) is obtained as ρ ↓ 0 and is
a particular case of singular optimal control (Clements, Anderson, 1978; Sil-
verman, 1981). Such a type of optimal control plays a role in cases where
unweighted controls are admissible (and stable, of course). There appears to
be two main problems that are of practical interest when exploiting the cheap
optimal control: 1) when is it possible for the control performance index (4)
to go to zero (perfect regulation), and 2) when is a perfect regulation system
asymptotically stable. Here we present new general solutions to these problems,
apparently associated with the issue of the control zeros.

The state-space perfect regulation problem for linear continuous-time sys-
tems has been first solved by Kwakernaak and Sivan (1972) and generalized by
Francis (1979). Later elegant contributions of Kimura (1981), Scherzinger and
Davison (1985), Lin et al. (1996) and Chen, Liu, Lin (2000), just like that of
Francis (1979), have all been unfortunately related to the improper definition of
minimum phase systems based on transmission/invariant zeros (Davison, 1983;
Francis, 1979). Therefore, their results are valid for square systems only. A
state-space approach based on the new definition of the minimum/nonminimum
phase property is presented below to solve the problem in a general way for pos-
sibly nonsquare discrete-time systems.

Lemma 4.1 A sufficient condition for the performance index (4) to go to its
absolute minimum as ρ ↓ 0, that is

lim
ρ↓0

min
u

Jρ(xo, u) = J0(xo) (9)

is the existence a certain control sequence u ∈ U.

Proof. Recall that the minimal value of the performance index is nonincreasing
with decreasing ρ (compare Clements, Anderson, 1978, Silverman, 1976) so
that the absolute minimum (whether zero or not) of the cost functional can be
obtained as ρ ↓ 0. Now, as ρ ↓ 0 the second term of the right-hand side of (4)
vanishes if u ∈ U.

Lemma 4.2 (limiting solution to the matrix Riccati equation, Latawiec, 1998;
Latawiec, Korytowski, Rojek, 2001). Let CB be right-invertible. Then the lim-
iting solution to (8) as ρ ↓ 0 is So = R.
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Remark 4.2 It is essential that employing the generalized inverse concept in
the perfect regulation problem enables putting in the limit ρ = 0 (not only for
SISO systems where the regular inverse of bT Sob exists, except for trivial cases).

Lemmas 4.1 and 4.2 lead to the following

Theorem 4.1 Consider a system described by equations (5) to be controlled
according to the performance index (4). Jρ(xo, u) tends to 0 as ρ ↓ 0 for every
xo under the feedback control law

u(t) = −(CB)#CAx(t) (10)

if the control sequence u ∈ U and (CB) is right-invertible.

Proof. From Lemmas 4.1 and 4.2 it follows that, under u ∈ U, a much simpler
task of zeroing the output of a system (while maintaining the system stable)
can now be equivalently considered instead of the LQ-oriented perfect regu-
lation problem (Clements, Anderson, 1978; Silverman, 1976). Now, pursuing
the zero value of the cost functional as ρ ↓ 0 we demand that y(t + 1) =
CAx(t) + CBu(t) = 0. The best (minimum norm least squares) approximate
solution for u(t) is derived as in (10), which drives the output y(t + 1) = [I −
CB(CB)#]CAx(t) to zero if CB is right-invertible, i.e. if rank (CB) = ny ≤ nu.

Remark 4.3 Note that the right-invertibility condition is only sufficient. In fact,
canceling y(t+1) may also independently occur in some “nongeneric” cases, e.g.
if the range of CA is contained in the range of CB; but this range condition
is not necessary because of the behavior of x(t) which might be stuck on a low
dimensional subspace.

Corollary 4.1 Perfect regulation can generically be achieved if nu ≥ ny.

Proof. Immediate.

We will further refer to the state space-formulated perfect regulation law

u(t) = −(CB)RCAx(t) . (11)

Remark 4.4 As ρ ↓ 0, the solution So = R, along with the associated CB
right-invertibility condition, converts the multi-step (MS) optimal control law
(7) directly to (10), which minimizes the single-step (SS) control performance
index ‖y(t + 1)‖

2, or zeroes the output according to the requirement y(t + 1) =
CAx(t) + CBu(t) = 0. Thus, under the (stabilizing) control law (11) we have
lim
ρ↓0

min
u

∑∞

t=0 [‖y(t + 1)‖
2

+ ρ ‖u(t)‖
2
] = min

u
‖y(t + 1)‖

2
= 0.

Corollary 4.2 Let the matrix polynomial model (1) be obtained from the state
space description (5) of a system. Then the (stabilizing) perfect regulation laws
(3) and (11) are equivalent.
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Proof. Referring to the transfer function matrix G = C(zI−A)−1B = z−1C(I−
z−1A)−1 of a state space-described system, the model (5) can be rewritten in
the form of equation (1), with A(q−1) = det(I − q−1A), B(q−1) = C adj(I −
q−1A)B and d=1. Recalling that the considered perfect regulation laws are
designed to satisfy the output zeroing requirement y(t + 1) = H(q−1)y(t) +
F (q−1)B(q−1)u(t) = 0 = CAx(t) + CBu(t), the result follows.

The problem of when is a perfect regulation system asymptotically stable
will be approached using the transfer-function matrix representation.

Theorem 4.2 Let the irreducible transfer-function matrix C(zI−A)−1B = G ∈
Rny×nu(z) of a system (5) be of full normal rank ny ≤ nu. Then Jρ(xo,u) tends
to 0 as ρ ↓0 (or ρ=0) for every xo under the control law (11) and the control
system is asymptotically stable iff the system under control is minimum phase.

Proof. By virtue of Theorems 3.2 and 4.1 and Corollary 4.2 we can state that
the requirement on Jρ(xo,u) to tend to 0 as ρ ↓0 for every xo is equivalent to
the existence of a stable right-inverse of G(z) (or B(z)), which occurs, in view
of Definition 2.3, for minimum phase systems only. Now it suffices to note that
the control law (11), with G(z) stably right-invertible, belongs to the set U and
the result follows.

Remark 4.5 Again, the minimum phase condition must be understood precisely
in the sense of Definition 2.3 (and, generically, not any other), with the imme-
diate relationship to control zeros (and, generically, not any other multivariable
zeros).

Remark 4.6 Alternatively, when the input (11) is applied to equation (5a), the
solution takes the form x(t) = {[I−B(CB)RC]A}txo, t = 1, 2, . . ., and equation
(11) assumes the form u(t) = −(CB)RCA{[I − B(CB)RC]A}txo. Thus, u(t)
defined by (11) satisfies equation (6a) if and only if the matrix [I−B(CB)RC]A
has all its eigenvalues inside the unit disc, the condition to be commented in
final remarks.

Remark 4.7 Possible “nongeneric” solutions for both state-space and transfer
function approaches, omitting the right-invertibility condition, have not so far
been taken into account, leading to less general results than the above presented.
In addition, making use of an improper definition of the minimum phase prop-
erty, based on transmission rather than control zeros, has made all the previous
results valid in the particular, square-system cases only.

The above results lead immediately to the following important

Theorem 4.3 (equivalence of multi-step and single-step optimal controls, Lataw-
iec, 1998, Latawiec, Tokarzewski, Bańka, 1999). Let a system be described by
the state space model (5) and assume that the considered MS and SS control
systems are asymptotically stable. Then the limiting MS linear optimal control
law (7) and the SS one of equation (10) are equivalent if rank (CB) = ny ≤ nu.
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Remark 4.8 Note that the above condition is only sufficient and it covers the
generic cases only.

Remark 4.9 The equivalence of the limiting MS and SS controls is no longer
valid if CB is not right-invertible (generically, again), i.e. for 1) ny > nu and 2)
ny ≤ nu and rank(CB) < ny. In fact, in these cases there is So 6= R.

Resulting directly from Theorem 4.3 is

Corollary 4.3 Generically, the considered limiting MS and SS controls are
equivalent for stably right-invertible systems, i.e. for right-invertible minimum
phase systems.

Remark 4.10 This result is valid for the external model description as well.
Also see Åström, Wittenmark (1989), Borisson (1979) for some special cases
(SISO and square MIMO systems).

We can summarize the above results and state quite generally (including
nongeneric solutions) as follows:

Corollary 4.4 Let a system be described by the state space model (5). Then
the considered limiting MS and SS controls are equivalent in all cases where
asymptotically stable perfect regulation is achievable.

Let us now briefly extend the above results to

Control-delayed systems (Latawiec, 1998)

Let a linear discrete-time system be governed by

x(t + 1) = Ax(t) + Bu(t − d + 1) x(0) = xo (12a)

y(t) = Cx(t) (12b)

and the control performance index to be minimized:

Jρ(xo, u) =

∞
∑

t=0

[

‖y(t + d)‖
2

+ ρ ‖u(t)‖
2
]

ρ ≥ 0. (13)

To skip over trivial cases we assume that xo 6= 0 and A is non-nilpotent.
Now, the optimal control law, minimizing (13) as ρ ↓ 0 or ρ = 0, is

u(t) = −(CB)#CAx(t + d − 1|t)

= −(CB)#CA[Ad−1x(t) +

d−1
∑

i=1

Ai−1Bu(t − i)] (14)

and, with obvious modifications to G(z) = z−d+1C(zI − A)−1B and the out-
put zeroing requirement y(t + d) = 0, all the above results concerning perfect
regulation for nondelayed (or rather single-step delayed) systems are valid.
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Remark 4.11 Note that under the assumption that the first nonzero input is
u(0) we have in case of perfect regulation of the system (12)

∞
∑

t=0

‖y(t)‖2 = ‖xo‖
2
S +

∞
∑

t=0

‖y(t + d)‖2 = ‖xo‖
2
S (15)

where S =
d−1
∑

i=0

(Ai)T RAi.

5. Perfect filtering

A dual, perfect filtering problem has also been approached without consider-
ation of control zeros (Braslavsky et al., 1999; Goodwin, Seron, 1997; Seron,
Braslavsky, Goodwin, 1997), thus making the obtained results valid for squares
systems only. Here we briefly present general perfect filtering generalizations
for nonsquare LTI MIMO discrete-time systems.

Consider a stochastic system modeled by

x(t + 1) = Ax(t) + Bu(t) + v1(t), xo = x(0) (16a)

y(t) = Cx(t) + v2(t) (16b)

where v1and v2 are zero-mean, Gaussian, white noise disturbances with inten-
sities R1 = WWT ≥ 0 and σR2 ≥ 0, respectively, and σ is a nonnegative scalar
factor.

It is well known that using the optimal filter/predictor

x̂(t + 1) = Ax̂(t) + Bu(t) + K[y(t) − Cx̂(t)] (17)

we obtain

lim
t↑∞

E[‖e(t)‖
2
] = tr Q (18)

where K = AQCT (σR2 + CQCT )# is the stationary Kalman filter gain, e(t) is
the state estimation error and Q = QT ≥ 0 is the solution of the equation

Q = R1 + AQAT − AQCT (σR2 + CQCT )#CQAT . (19)

Assuming that A is nonsingular and there are no pole-zero cancellations in the
transfer-function matrix Gf (z) = C(zI − A)−1W we can directly utilize the
control/filtering duality concept and state that

lim
σ↓0

Q = R1 . (20)

It is apparent that, unlike for continuous-time systems, the estimation error
cannot be in general reduced to zero by decreasing the measurement noise to
zero.
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Similarly, we can state that the “perfect” filtering requirement

lim
t↑∞

σ↓0

E[‖e(t)‖
2
] = tr R1 (21)

is equivalent to the existence of a stable left-inverse of the transfer-function ma-
trix Gf (z) (compare Francis, 1979). In particular, its minimum phase property
is necessary for perfect filtering. Moreover, this is also critical for the system
detectability and so numerical stability/convergence of the perfect filter.

Equally, the system detectability and left-invertibility of the CW matrix can
be required for perfect filtering.

When the matrix A is singular the statements related with (20) and (21) are
no longer valid. In such cases perfect filtering problems are more complex than
perfect regulation ones and no general solutions are available yet.

6. Infimum-time control

Although rather seldom exploited in control practice (due to the lack of robust-
ness), perfect regulation/control or, in the stochastic case, minimum variance
control have above been shown to constitute a reference for maximally achiev-
able accuracy of optimal controllers. The new maximum-accuracy results have
been derived on a basis of both matrix polynomial and state space models. In
particular, the matrix polynomial approach has in a natural way been based on
calculation of a (deterministic) predictor of the controlled output. The d-step
output predictor y(t + d), d being the plant delay, was designed to reach the
setpoint (in particular, zero), which thus constituted the maximum achievable
speed of the control system (except for some trivial cases). This has raised
the question of possible relationship of such maximum-speed control with fa-
miliar time-optimal control. The relationship is here illustrated on a basis of a
new-introduced concept of “infimum-time control”. Consequently, general con-
ditions for equivalence of maximum-accuracy and maximum-speed controls are
presented, the conditions being apparently related to our control zeros.

Definition 6.1 Discrete-time control is defined as infimum-time output control
iff the system output is driven to the origin in at most d time steps, where d is
the time delay.

The above definition also covers trivial cases of zero initial conditions and
nilpotent matrix A, for which the origin can be reached in less than d time steps.
We will further concentrate on the nontrivial cases of nonzero initial conditions
and non-nilpotent matrix A. In such cases, the infimum possible time for the
output of a time-delayed system to reach zero is just the delay d. Infimum-time
control thus constitutes an upper bound for maximum achievable speed of a
control system. Now, referring to the perfect regulation result of Theorem 3.2
we have immediately
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Theorem 6.1 Let an LTI system be described by the model (1), with A ∈
Rny×ny [z] and B ∈ Rny×nu [z] left-coprime, and let B(z) be stably right-invertible
(that is the system be minimum phase and right-invertible). Then the perfect
regulation law (3) provides infimum-time output control.

Proof. Under the above assumptions, the perfect regulation law (3) drives the
output predictor y(t+d) = Hy(t)+FBu(t), t ∈ {0, 1, 2, ..., } (see Theorem 3.1),
to zero within at most d steps. Accounting for Definition 6.1, the result follows.

Remark 6.1 Again, the minimum phase requirement must be understood pre-
cisely in the sense of the new Definition 2.3 and not any other, in particular not
that of Davison (1983)and Francis (1979). Otherwise, unstable modes related to
undetected control zeros lying outside or on the unit circle might not be taken
into account.

The above theorem is important in that it specifies the general conditions
for the equivalence of (stabilizing) maximum-accuracy and maximum-speed con-
trols for systems described by the model (1).

The infimum-time control problem will be state-space approached now. Fa-
miliar, state space-formulated deadbeat or time-optimal control consists in the
construction of a control sequence to drive the discrete system state to the ori-
gin in a minimum number of time steps. For the state equation as in (5a), this
minimum number ν ≤ n is referred to as the reachability or controllability in-
dex. Various approaches to solve the discrete time-optimal control problem have
been reviewed by O’Reilly (1981). Here we present an extension of the state
space-formulated time-optimal control problem by recalling our new category
of infimum-time control and we demonstrate its close relationship to perfect
regulation. The reason for distinguishing the infimum-time control category
from a class of time-optimal controls is fourfold. Firstly, the minimum number
ν is by no means the infimum number of time steps, in which it is possible
for the system state to reach the origin (even though generically it is). Sec-
ondly, the notion of minimum-time control, which is often used equivalently to
time-optimal control, is by no means related to the infimum number of time
steps to drive the system state to zero (even though generically it is). Thirdly,
although infimum-time control is considered a special case of time-optimal con-
trol, many available time-optimal control algorithms (O’Reilly, 1981) could not
be rearranged so that they would include the infimum-time control solution as a
special case. Last not least, unlike perfect regulation marking an upper bound
for the achievable accuracy of optimal control, there has been no such category
introduced for time-optimal control, which would constitute an upper bound for
the achievable control speed.

We consider a general, control-delayed, controllable and observable system
governed by the model (12), under the standard assumptions on B and C being
of full rank.
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Definition 6.2 Discrete-time control is defined as infimum-time state control
iff the system state, governed by (12a), is driven to the origin in at most d time
steps.

Remark 6.2 Again, infimum-time state control provides an upper bound for
the maximum achievable speed of the state controller.

Lemma 6.1 Let the matrices CB and C be right- and left-invertible, respectively.
Then B(CB)RC = I.

Proof. From right invertibility of CB it follows that C is right invertible. Since C
is also left invertible, C is square and nonsingular. Now, the relation CB(CB)R =
I can be premultiplied by C−1 and postmultiplied by C.

Theorem 6.2 Let the system state be described by the model (12a), with C
(regularly) invertible. Then the (stabilizing) control law (14) provides infimum-
time state control if the matrix CB is right-invertible.

Proof. Assuming that u(t) = 0 for t < 0 and making use of Lemma 6.1 it is
easy to verify that u(0) 6= 0 and u(t) = 0, t = 1, ..., d − 1, as well as x(t) 6= 0,
t = 1, ..., d − 1, and x(t) = 0 for t > d − 1 if CB is right-invertible. In fact,
u(0) = −(CB)RCAAd−1xo and for t > 0 we have u(t) = −(CB)RCA {[I −
B(CB)RC]A}tAd−1xo and x(t + d − 1) = {[I − B(CB)RC]A}tAd−1xo.

Remark 6.3 Notice that possible trivial solutions to the infimum-time state
control problem, involving nilpotent (or zero) matrix A and/or zero initial con-
dition, are also taken into account, both in Definition 6.2 and Theorem 6.2. Also
notice that, in the nongeneric case considered (apart from trivial solutions), the
infimum d can be lower than the reachability index ν.

Apparently, Theorem 6.2 is quite similar to the perfect regulation result of
Theorem 4.1 (with the control law as in the above equation (14)). However, the
additional requirement on invertibility of C makes infimum-time state control
much more restrictive than infimum-time output control. In fact, the latter
does not require the C invertibility to hold, even in the state space formulation
(obviously, the condition is nonexistent in case of the external, matrix poly-
nomial model). Furthermore, the perfect/infimum-time regulation law (14) is
asymptotically stable if the system is minimum phase, with the conditions of
Theorem 4.2 still retained.

Remark 6.4 Note that, again, the right-invertibility condition is only sufficient.

Remark 6.5 Note that a nondelay (or rather unit-delay) system, governed by
equation (12a) with d=1, can be reachable in one time step.

Remark 6.6 Since the matrix C in the state space description is generically not
square and invertible, the infimum-time state control is generically not achiev-
able. This is in contrast to the case of infimum-time output control, where C
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is not required to be invertible. This can be seen from the next result, being
similar to Theorem 4.2.

Theorem 6.3 Let a minimum phase LTI MIMO system be described by the
model (12), with B and C being of full rank, and let CB be right-invertible.
Then the perfect regulation law (14) provides infimum-time output control.

Proof. Immediate.

Remark 6.7 All the above results can be readily extended to nonzero-reference
and stochastic cases. One example involving e.g. the ARX model is related to
familiar minimum variance control (Borisson, 1979).

Remark 6.8 Notice that the immediate solution to the state-zeroing problem,
resulting from equating x(t + d) = Ax(t + d− 1) + Bu(t) = 0 (or, in particular,
x(t + 1) = Ax(t) + Bu(t) = 0), would generically be not feasible since B is,
generically, not right-invertible.

Let us also indicate an interesting relationship of infimum-time control with
a specific case of the limiting Riccati equation solution employed in a deadbeat
control scheme by Leden (1976, 1977).

Theorem 6.4 Let the matrix Riccati recursion associated with the deadbeat
control problem for the system (5) be given by

St = R + AT [St+1 − St+1B(BT St+1B)#BT St+1]A,

with t = N − 1, ..., 0 and SN = R, and let CB be right-invertible. Then the
solution S0 = SN gives rise to infimum-time output control and, with C being
invertible, to infimum-time state control.

Proof. By factorizing St+1 = MT
t+1Mt+1 we arrive at St = R + (Mt+1A)T [I −

Mt+1B(Mt+1B)#]Mt+1A. Since MN = C the result follows.

Infimum-time control presents some extension to time-optimal control, which
accounts for nongeneric cases. However, it is worth mentioning that infimum-
time control is of some theoretical significance only. In fact, it lacks robust-
ness, even as compared with ν-reachable time-optimal control, which is often
in practice replaced by still more robust, “approximate” time-optimal controls
(Marro, Prattichizzo, Zatoni, 2002; Newman, 1990, Pao, 1994; Pao, Franklin,
1993). Nevertheless, a time-optimal cheap control problem has been effectively
approached by Bikdash (1993).

It is worth emphasizing once more that the conditions for infimum-time
state control to achieve are much more restrictive than those for infimum-time
output control, in particular in terms of invertibility of C. Finally, it is worth
mentioning about a certain curiosity in the analysis of the state space-modeled
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perfect/infimum-time regulation system under the control law as in, e.g., equa-
tion (4), with CB right-invertible. The closed-loop stability depends on eigen-
values of the matrix Acl = [I − B(CB)RC]A. The stability condition based on
eigenvalues of that matrix can in no way be related to the (previously defined)
minimum phase property of a system, even for a square system, also single-input
single-output one. (This has caused the necessity to analyze the closed-loop sta-
bility on the basis of the matrix polynomial model instead, see Corollary 4.2 and
Theorem 4.2). Moreover, assuming that the C matrix is invertible we arrive at
the zero matrix Acl, which makes the stability analysis impossible. No such
problems appear in case of the external model analyzed in Section 3. It is an
obvious drawback to operate, in this specific control case, with the state space
description, for which the minimum phase property cannot be clearly evaluated
(unlike for the matrix polynomial model).

7. Conclusions

The newly-defined “control zeros” for possibly nonsquare MIMO systems ade-
quately characterize the stabilizing potential of output-zeroing/perfect/minimum-
variance control, in terms of its sensitivity to the new-redefined nonminimum
phase behavior of a plant to be controlled. Control zeros and inverse systems
give rise to new, simple results concerning generalization and extension of per-
fect regulation/filtering to the case of nonsquare systems. Also, they contribute
to the determination of the equivalence of single-step and multi-step optimal
controls, providing the maximally achievable control accuracy. The conditions
of the minimum phase behavior and right-invertibility of certain matrices play
a crucial role in maximum-accuracy control. Pursuing the tracks of the right-
invertibility condition on the one hand and the relationship of the state/output
predictor with time-optimal control on the other, we have introduced a new
category of time-optimal control, called infimum-time control. The infimum-
time controller provides the shortest achievable time for driving the system
state/output to the origin. We have also shown how this maximum-speed con-
troller can be equivalent to the maximum-accuracy controller, i.e. perfect reg-
ulator. It is essential that the stability of an infimum-time or perfect control
system is conditioned by the minimum phase behavior of a MIMO plant, involv-
ing the control zeros (and, generically, not any other type of multivariable zeros)
right in the same way as “regular” zeros of SISO systems. Perfect regulation
and infimum-time control mark an upper bound for the maximally achievable
accuracy and speed of a control system. We have also pointed out that when
analyzing the specific perfect/infimum-time control problem it is more advanta-
geous to operate with external, rather than state space models. Current research
on control zeros and related problems is focused on extension of the above contri-
butions to continuous-time systems (Hunek, 2003; Latawiec, Hunek, 2002) and
on control-oriented identification of a complex industrial plant (Stanisławski,
2004).
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