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Abstract: In this paper, we present a novel method that utilizes
the accumulation of knowledge in a rule base for solving the nonlin-
ear frictional gripper problem for both the isotropic and orthotropic
cases. The knowledge is discovered and accumulated in a rule base
with the aid of a genetic based machine learning mechanism. This
machine learning mechanism extracts rules for solving the problem
with the help of the Evolutionary Programming (EP) algorithm.
The retrievals are done using the nearest-classifier-algorithm. This
approach provides online solutions for the problem, and establishes
a dynamic and evolving environment that adapts with new and sud-
den changes on the grip specifications or on the external forces. The
resulting grasping forces using the presented method are compared
with grasping forces obtained using other methods, such as the Com-
plementarity Problems. The proposed online method could update
the needed grasping forces to keep firm grip if the configuration of
the forces externally applied to the object is changed. Numerical
examples that illustrate the proposed method are presented.

Keywords: robot gripper, Nonlinear Complementarity Prob-
lem (NCP), Evolutionary Programming (EP), machine learning, near-
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1. Introduction

Two important notions in the literature of multifingered robot grippers are form

and force closure. Under a form closure grasp any externally applied wrench to
the grasped object can be balanced by the grasping forces; whereas under a force

closure grasp a given external wrench applied on the object can be balanced by
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the grasping forces. A great deal of research effort has been directed to find a
form and force closure grasp. Most of the work is concentrated on the modelling
of the object-gripper system interaction, and then the development of algorithms
for generating a secure grasp (see e.g. the excellent survey done by Bicchi, 2000).

The problem of finding form and/or force closure has been investigated
by many researchers (Liu, 1999, 2004; Al-Fahed and Panagiotopoulos, 1992;
Markenscoff, Ni and Papadimitriou, 1990; Salisbury and Roth, 1983; Nguyem,
1989; Cutkosky, 1989). All these works consider predefined contact points.
Ponce and Faverjon (1995) used the polytope projection method to determine
the regions of contact points that yield secure grasp. In Abu-Zitar and Al-
Fahed Nuseirat (2001) a rule-based method that determined the optimum grip
points is proposed. Markenscoff and Papadimitriou (1989) minimize the worst-
case grasping forces needed to balance the externally applied unit force to the
grasped object. Mitrich and Canny (1994) first compute the grasps that best
counteract pure forces, and then select among these grasps the one which best
resists the pure torque. Liu (2004) proposed a heuristic algorithm for searching
a form closure grasp. In this work the algorithm searches for the contact points
that form a form closure grasp among many candidate points distributed on
the object boundary. Lin, Burdick and Rimon (2000) proposed a quality mea-
sure for compliant grasps and fixtures using grasp stiffness matrix. This quality
measure is used to select the best fingers’ configuration that ensure the secure
grasp.

It should be kept in mind that the geometric nonlinearity comes from the
unknown kinematic boundary condition; that is, the finger which will be in con-
tact with the object(or the contact region on the object surface) is not known
a priori, while the material nonlinearity comes from the friction condition. The
inequality restriction on the normal contact forces is introduced by the fact that
the finger and the object can only push on each other and not pull. These kind
of problems are known as unilateral contact problems. Unilateral contact prob-
lems with friction have been studied by many researchers (Panagiotopoulos,
1985; Oden and Martins, 1985; Kwak and Lee, 1991). They lead to quasi-
variational inequality problems or to nonlinear complementarity problems. In
this direction, Al-Fahed Nuseirat and Stavroulakis (2000) suggested a nonlin-
ear complementarity approach (NCP). Han, Trinkle and Li (2000) presented a
linear matrix inequality (LMI) approach. Bicchi (1995) proposed an iterative
solution of nonlinear ordinary differential equations to solve the problem.

The desired goal is to achieve a stable and firm grip of the grasped object.
Hence, the issue of optimizing the grasping forces has been of great importance.
Many applications in robotics require a stable grip before any further opera-
tions of the robot can be done. The grasp forces have to be exactly balanced
against any external wrench. In manipulation the external forces may change
their line of action, so the grasping forces need to be adapted in order to keep
the object firmly grasped by the gripper. The normal forces have to be within
friction cone also. This type of problem may be considered as constraint opti-
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mization problem. If the friction cone may be linearized through approximation
by a polyhedron then the problem can be formulated as Linear Complementar-
ity Problem (LCP). The yielded LCP could be solved using direct algorithms
such as Lemke’s algorithm (Al-Fahed, Stavroulakis and Panagiotopoulos, 1992)
or it could be solved using Neural Network based methods (Abu-Zitar and Al-
Fahed Nuseirat, 2000). This, of course, would be at the expense of accuracy
and optimality of solutions (Al-Fahed Nuseirat and Stavroulakis, 2000). The
NCP approach, on the other hand, provides a numerically solvable set of equa-
tions that lead to better results than that of Linear Complementarity Problem
(LCP) (Al-Fahed Nuseirat and Stavroulakis, 2000). However, all these ana-
lytical formulation methods and the numerical methods associated with them,
have certain degree of accuracy and are affected by the high nonlinearity of the
problem. In assembly task applications accuracy in grasping forces is highly
required. The need arises for techniques that can generate this type of solutions
even at the expense of extra CPU time. This expense is of no importance if
the application of the grasping forces is offline, i.e. the solution is not usually
required right online for a given grasping task. Moreover, the availability of
fast digital computers has diminished the problem of long execution time that
usually accompanies the EP based techniques.

The solutions extracted by the EP are instantaneous solutions for some
known grip configuration and external force. The problem of providing con-
tinuous and online support for the optimum grip in case of new configuration of
the external forces and grasp can be overcome with the aid of a rule base that
can be used to adapt with the grasping forces. The proposed system, therefore,
will be more like a machine learning system that autonomously updates itself to
improve its knowledge-base. With adequate initializations during the learning
phase, the rule base will reach a point where it can provide an online cover for
most of the possible alterations. Once learning reaches saturation, the retrieving
shell is used to select the most appropriate rules for any given initial external
forces and grasp configuration. The EP is a part of this whole system. Its main
job is to extract rules (solutions) that are added to the rule base. The training
phase here is time consuming, since the rule base takes a long time to converge
to saturation. However, the retrieval phase, and that is the most important,
takes little time to find solutions for given grasp configuration. The learning
phase involves updating for the rule weights according to the number of times it
was selected for retrievals. The weight is an indication of the relative importance
of the rule. The selection process involves the usage of some known heuristic
technique called the weighted Euclidean distance classifier method (Pao, 1989)
to pick the rule whose action will define the values of the grasping forces. A rule
base is created for every different grasp configuration that covers a wide range
of the potential space of action of the external forces. The retrievals are very
efficient and the time delay is much smaller than that needed to find solutions
with classical linear programming methods. An efficient search mechanism is
used to select the rules during retrievals. The binary search tree method is used
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to speed up the search for rules in the rule base (Aho, Hopcroft and Ullman,
1994).

The main objective of this work is to present a rule base system to solve a
nonlinear gripper problem. The proposed machine learning approach extracts
rules to solve the problem with the help of Evolutionary Programming (EP) due
to its ability of interfacing with many applications in optimization and machine
learning. The obtained results show that the norm of the grasp forces is better
than those resulting from the NCP approach. The EP technique considered
here is based on algorithms proposed by Fogel (Fogel, 1991). The mechanisms
of real life genetics, such as selection and mutation are simulated in EP. The
survivability-for-the-fittest is applied to a population of initially randomly gen-
erated solutions. The stochastic nature of this technique makes it capable to
escape local minima and keep its search toward global solutions. The nonlin-
earity of the problem is the major motivation for using techniques such as EP.
The EP has the ability to handle such circumstances easily. This is due to the
richness of solutions EP offers and to the high flexibility it accommodates when
dealing with stiff or vague situations.

This paper is organized as follows: in Section 2, the formulation of the
problem is presented, followed by the solution of the problem using EP, in
Section 3. In Section 4, the proposed Machine Learning system is explored,
followed by numerical examples, in Section 5, and finally, in the last section,
discussions and conclusions are presented.

2. Problem statement

In this section the formulation of the equilibrium equations and the unilateral
contact conditions which arise in the gripper-object system are formulated, fol-
lowed by the formulation of the constraints introduced by fingers’ joints and
friction conditions.

2.1. The equilibrium equations and kinematic constraints

For the object of Fig. 1 all external forces and the contact forces should be in
equilibrium. The equilibrium equations of the system can be written in the
following form:

Gr = P, (1)

where r={r1, r2, . . . rn}
T is the vector of the grasping forces, ri ={rni, rti1, rti2}

T

where rni is the normal component of the contact forces and rti are the frictional
components (tangential) of the grasping forces, G∈Rm×3n is the equilibrium
matrix, and P∈Rm is the vector of the external forces applied on the object.
The superscript T denotes transpose of matrix or vector.

It should be noted that we choose to neglect kinematical conditions here
although we assume that the unilateral contact conditions are true. The goal
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Figure 1. An object in multifingered robot gripper

of our work is mostly to find global optimum values of fingers forces. For
further analysis regarding the kinematical conditions see Al-Fahed Nuseirat and
Stavroulakis (2000).

The grasp forces also are subject to constraints introduced by fingers’ kine-
matics and design characteristics. These constraints are defined as follows:

JT
h r ≤ τmax (2)

JT
h r ≥ τmin .

Here

Jh = diag.[HJ1,HJ2, . . . ,HJn]

where τmax and τmin denote the vectors of the maximum and minimum torques
available for the joints of the fingers, Jh is a 3n × nk global Jacobian matrix,
and k is the number of joints in each finger. Moreover, the constraint matrix H

(with dimension equal to 3 × 6) has the following form

H =





1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0



 .

Rewriting inequalities (2) in a compact form, we obtain

JT r ≤ τ (3)

where

J =

[

Jh

−Jh

]

, τ =

[

τmax

−τmin

]

.
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2.2. Friction conditions and the nonlinear optimization problem

In this paper for generality, the following orthotropic friction model is consid-
ered. Let the principal orthotropic axes on the tangent plane at the i-th contact
point be denoted by 1 and 2 and let rti1, rti2 be the components of the friction
forces along these axes. The corresponding friction coefficients are denoted by
µi1 and µi2. In the frictional model the normal component of the grasping force
applied by the i-th finger must satisfy the following relation (Panagiotopoulos,
1985; Micha lowski and Mróz, 1978):

γi = |rni|
2 −

[

(
rti1

µi1

)2 + (
rti2

µi2

)2
]

, γi ≥ 0, i = 1, 2, . . . , n (4)

where |∗| denotes the norm in R3 and γi is the friction cone (domain). The non-
slip of the i-th fingertip can be ensured if strict inequality holds in the previous
equation. Otherwise there exists a non-negative parameter λi (Panagiotopoulos,
1985) such that the slipping values are given by

yti1 = −λi

rti1

µ2
i1

and yti2 = −λi

rti2

µ2
i2

. (5)

The isotropic friction law is a particular case of the above relation, and it is
achieved when µi1 = µi2 = µi. The friction law can be written in a compact
form as follows:

B(r)r ≤ 0 (6)

where

B(r) = diag.[B(r1),B(r2), . . . ,B(rn)]

B(ri) =

[

−rni

rti1

µ2
i1

rti2

µ2
i2

]

.

The optimal grasping forces can be obtained by solving the following non-
linear programming problem:

minimize
1

2
rT r (7)

subject to

Gr = P

Jr ≤ τ

B(r)r ≤ 0

Nr ≤ 0

where N = diag[N1,N2, . . .Nn] and Ni = [−1 0 0] for i = 1, 2, . . . , n.
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3. Solution of the nonlinear gripper problem via the EP

In this section the solution of the Nonlinear Gripper Problem using EP is de-
scribed. To obtain the objective function used by the EP a nonnegative vectors
of slack variables are introduced in order to transform the inequality constraints
in (7) to equality, as follows

minimize
1

2
rT r

subject to

Gr = P

Jr + y = τ

B(r)r + z = 0

Nr + u = 0 (8)

where y = [y2
1 , y

2
2, . . . , y

2
2nk]T , z = [z2

1 , z
2
2 , . . . , z2

n]T , and u = [u2
1, u

2
2, . . . , u

2
n]T .

The objective function (penalty function) can be obtained as follows:

E(r) = k1 ‖ r ‖2 +k2 ‖ Gr− P ‖2 +k3 ‖ Jr + y − τ ‖2

+k4 ‖ B(r)r + z ‖2 +k5 ‖ Nr + u ‖2 (9)

where k1, k2, k3, k4, and k5 are weighting constants.
The EP works on a population of strings. The normal components of the

the grasping forces compose the elements of each string in the population. Con-
sequently, the length of the string is equal to the the number of fingers, which
is assumed to be n. The real values of these elements are initially generated
from the uniform random number generator. The EP starts with a fixed pop-
ulation of strings. However, the proposed EP uses an expanding population
size strategy. This is closer to what happens in real life. When the population
size reaches the maximum allowed limit, half of the members of the population
that are the worst elements, according to the objective function measure, are
eliminated. This EP has also an adaptive operator for mutation. Mutation
is inversely proportional to the fitness of the string. Fitness of the string is
inversely proportional to the value of the objective function. The mutation is
taken from a normal distribution, whose deviation is also inversely proportional
to the fitness of the string being mutated. The equations below show how fitness
is calculated for every string in the population, and how the mutation applied
on a string is also calculated:

Fitness(stringj) = 1 −
E(rnj)

Max{E(rnj)}population
(10)

where Max{E(rnj)}population means maximum E(rnj) in current population.

The mutation added on the string associated with rnj (jth normal force) is
given by:

Mutation(stringj) = N(O, CA(strings)) (11)
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where N denotes the normal distribution function, O means zero mean, C is a
weighting constant, and A(strings) is the standard deviation of normal distrib-
ution N

A(strings) =

Pop
∑

m=Pop−M

Fitness(stringj)
m

M

where Fitness(stringj)
m

is the average fitness of strings of generation m, m is
the generation index, Pop is the current generation index, and M is backward
steps number in generation index. The flowchart for the proposed EP algorithm
is shown in Fig. 2.

Start

Establish initial population
string randomly (   elements)n

Evaluate fitness for each string

Reorder population stochastically

Select off springs from highest
ranked ( ) elements (replacing

lowest ( ) elements)
n/2

n/2

Implement adaptive mutation
operator

Evaluate fitness for new elements

Is average
fitness acceptable?

Yes

End

Figure 2. The flowchart of the EP used
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4. Machine learning with the aid of EP

The suggested approach for constructing a rule base that provides online solu-
tions for different initial cases is shown in Fig. 3. The EP, as described in the

No

Yes

End

Start

Success
indicator
passed

Retrieve rule
extract solution

Initialize a
grip

Find a solution
for that grip
with EP grip

Add the solution
in the form of

condition-action
to a rule base

Match with
existing rule

base

Update the
rule weight

No

Yes

Figure 3. Flowchart of the machine learning system

previous sections plays the major part by extracting solutions for cases with no
existing solutions in the rule base. However, if a rule in the rule base with a
condition closest to the given initial state exists, then it will be selected and its
action will be fired. The weight of the rule is updated to emphasize the relative
importance of this rule.

A rule may have the form:

weight: <condition>: <action>

where all weights initially have similar values and are updated, when selected,
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with a constant value rp. The condition is a real number that is equal to the
externally applied forces. The action is a vector of real numbers in the form r1,
r2, r3,..., rn, where n is the number of fingers.

The selection of rules is done according to the weighted Euclidean distance
method as below:

dm(k) =
(Pm − P k

m)2

(wk)2
. (12)

The Pm stands for the vector of external forces, and P k
m is the condition of the

rule, m is the index of the vector of external forces’ initialization, and k is the
index of the rule. The weight stands for the weight of the kth rule. This equation
measures the weighted closeness (actually: distance) between the external force
and the condition of the rule.

The rule in the rule base with the least value of dm is selected for firing
its action directly through the finger tips. However, according to Fig. 3, if the
distance dm was not within ǫ (minimum preset distance) i.e. no matching, the
process continues by invoking EP and extracting a solution for that external
force and then appending it to the rule base.

5. Numerical examples

In this section numerical examples are provided that illustrate the application of
EP in finding minimal grasping forces as well as the application of the machine
learning technique applied to find the grasping forces in case of changing the
grasp configuration and/or the direction of the externally applied forces. The
first two examples illustrate the application of EP to finding the grasping forces
for fixed grasp configuration as well as fixed external force. These examples cover
both the isotropic friction and the orthotropic friction cases. The three-fingered
grasping problem from Al-Fahed Nuseirat and Stavroulakis (2000) is used to
demonstrate the effectiveness of the proposed method. The configuration of the
example is shown in Fig. 4.

The points of contact with reference to the object coordinate system are

r1 = (0.0, 0.75, 0.75), r2 = (0.75, 0.0, 0.75), r3 = (0.75, 0.75, 0.0)

and the normals to the associated contact surfaces are

n1 = (1.0, 0.0, 0.0), n2 = (0.0, 1.0, 0.0), n3 = (0.0, 0.0, 1.0).

The externally applied force to the object is assumed to be the object weight
acting opposite to the direction of the z-axis and is of magnitude 5. The center
of mass is located at point rc = (0.5, 0.5, 0.5). The friction coefficients are
µ1 = µ2 = 0.6. In Table 1 the contact forces and tangential friction forces
components are shown. The norm of the normal forces obtained from the EP
method was 3.9639 while in Al-Fahed Nuseirat and Stavroulakis (2000) the
obtained norm using NCP (Nonlinear Complementarity Problem) approach was
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Figure 4. Configuration of the first example

4.0494. The same example was solved using the EP approach, but this time with
orthotropic friction coefficients µ1 = (0.5, 0.6, 0.5), µ2 = (0.6, 0.5, 0.5). The
obtained norm of the normal forces was 4.0489 while under the same conditions
the obtained norm using NCP approach was 4.1122 (Al-Fahed Nuseirat and
Stavroulakis, 2000).

Table 1. Normal contact and friction forces for the example of Fig. 4 using EP

Finger Contact Tangential Friction

force component forces

1 1.0496 1 - 0.0958

2 0.6262

2 1.0597 1 -0.0958

2 0.6161

3 3.6577 1 -0.9538

2 -0.9639

As a second example a cube grasped by four fingers (Liu, 1999) was solved
using EP approach and LCP (Linear Complementarity Problem) approach (for
details about this approach see Al-Fahed and Panagiotopoulos, 1992). The con-
figuration of this example is depicted in Figure 5. The used friction coefficients
were µ1 = µ2 = 0.6.
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Figure 5. Configuration of the second example

The points of contact with reference to the object coordinate system are

r1 = (2.0, 0.0, 0.0), r2 = (0.0, 1.5, 0.0), r3 = (0.0, 0.0, 2.0), r4 = (1.2,−2.0, 0.0)

and the normals to the associated contact surfaces are

n1 = (−1.0, 0.0, 0.0), n2 = (0.0,−1.0, 0.0), n3 = (0.0, 0.0,−1.0),
n4 = (0.0, 1.0, 0.0).

with external forces P = (−0.2,−1.0,−2.0,−0.2,−0.3,−0.2)T .

In Tables 2 and 3, the contact forces, tangential friction forces components,
obtained using LCP and EP approaches are shown, respectively. The norms of
the normal forces, for both the LCP and the EP approaches where 1.7072 and
1.6208.

Table 2. Normal contact and friction forces for the example of Fig. 5 using LCP
method

Finger Contact Tangential Friction

force component forces

1 0.1741 1 0.0

2 0.0

2 0.9251 1 -0.2000

2 -0.5128

3 1.4124 1 -0.1949

2 -0.2098

4 0.1349 1 -0.0310

2 0.0748
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Table 3. Normal contact and friction forces for the example of Fig. 5 using EP
method

Finger Contact Tangential Friction

force component forces

1 0.1350 1 -0.0368

2 -0.0751

2 0.9267 1 -0.2098

2 -0.5142

3 1.3141 1 -0.2825

2 -0.1892

4 0.1526 1 0.0076

2 0.0965

The same simulations for both cubes were repeated, but this time with
orthotropic conditions. For the example of Fig. 3 these conditions were µ1 =
(0.5, 0.6, 0.5), µ2 = (0.6, 0.5, 0.5). Table 4 shows the forces values obtained
using EP approach. Table 5 shows the results for the same example using the
LCP method. The obtained norms of the normal contact forces from both
methods were 4.0265 and 4.0489, respectively. The orthotropic conditions used
for the example of Fig. 4 were µ1 = (0.5, 0.8, 0.5, 0.8), µ2 = (0.8, 0.5, 0.8, 0.5).
Tables 6 and 7 show force values for both LCP and EP approaches. The norms
of the normal forces were 1.7918 and 1.7146, respectively.

Table 4. Normal contact and friction forces for the example of Fig. 4 with
orthotropic conditions using EP method

Finger Contact Tangential Friction

force component forces

1 1.0899 1 -0.0570

2 0.6371

2 1.0931 1 -0.0570

2 0.6340

3 3.7189 1 -1.0329

2 -1.0360

A third example is given for the purpose of demonstrating our machine
learning system. We choose a two-dimensional polygon shaped rigid object
grasped by a three-fingered gripper as shown in Fig. 6.

As explained in the previous section, the system used EP in extracting solu-
tions for the different values of external forces. The object edges are assumed to
have different friction coefficient for each edge. In Table 8, the external forces,
the positions of the contact points, and the resulting grasping forces are shown.
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Table 5. Normal contact and friction forces for the example of Fig. 4 with
orthotropic conditions using LCP method

Finger Contact Tangential Friction

force component forces

1 0.9583 1 0.0

2 0.7083

2 1.1400 1 0.0

2 0.5266

3 3.7651 1 -0.9583

2 -1.1400

Table 6. Normal contact and friction forces for the example of Fig. 5 under
orthotropic conditions using EP method

Finger Contact Tangential Friction

force component forces

1 0.1572 1 0.0

2 0.0

2 0.9416 1 -0.1760

2 -0.4350

3 1.5120 1 -0.1818

2 -0.1732

4 0.1148 1 -0.0369

2 0.0530

Table 7. Normal contact and friction forces for the example of Fig. 5 under
orthotropic conditions using EP method

Finger Contact Tangential Friction

force component forces

1 0.0697 1 -0.0043

2 -0.0414

2 0.8744 1 -0.1296

2 -0.4628

3 1.4699 1 -0.2064

2 -0.2212

4 0.0999 1 -0.0535

2 0.0259
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Figure 6. Configuration of the third example

Table 8. Samples of solutions extracted for different cases for the third example

Load P= (-0.2232, 0.4744,4.9724) µ = (0.1,0.4, 0.6)

Finger and its coordinates Normal force Friction forces

1 (x = -4.0000, y = -2.4297) 0.1763 -0.0086

2 (x = -2.8352, y = -3.000) 0.5929 -0.2284

3 (x = 2.9494, y = -0.0999) 0.6956 -0.3556

Load P= (0.8769, 0.8235, 4.8531) µ= (0.1, 0.4, 0.6)

Finger and its coordinates Normal force Friction forces

1 (x = -4.0000, y = -2.5830) 1.1861 0.1171

2 (x = -0.1767, y = -3.0000) 0.0697 0.0117

3 (x = 2.6024, y = -0.7951) 1.5296 -0.0427

Load P= (0.0, 0.0, -5.0) µ = (0.2, 0.3, 0.4)

Finger and its coordinates Normal force Friction forces

1 (x = 2.118, y = 0.8820) 0.3200 0.0334

2 (x = -0.0813, y = 2.9695) 3.1515 -0.2007

3 (x = -3.5164, y = -3.0000) 2.4476 0.9453

Load P= (4.3543, 2.3938, 4.9724) µ = (0.3,0.1, 0.4)

Finger and its coordinates Normal force Friction forces

1 (x = -0.7978, y = 2.7008) 1.1449 0.3160

2 (x = -4.0000, y = -1.5270) 0.6795 0.0580

3 (x = -2.5011, y = -3.000) 0.4495 0.1749
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In a manner similar to the explained technique, a rule base is built by ap-
pending rules for every finger configuration in the form shown in previous sec-
tion. Some solutions (finger force values) were feasible for some external forces
values, other external forces values had no solutions for the same grip and a new
grip (finger configuration) has to be formulated in an attempt to find a solution.
The proposed system starts building rules by combining external forces with fin-
ger forces in condition/action pairs and for different values of external forces.
We assume that there are external forces which are more frequent than others.
Hence, finding solutions for these values is given higher priority when building
the rule base. A prior knowledge of the nature of external forces would help
a lot in building the rule base. However, when an odd value of external force
affects the rigid body, the nearest weighted classifier algorithm chooses the most
appropriate rule and uses its action. This mechanism would help in deferring
the effect of this force momentarily until an exact solution is extracted. Our
system has the ability to dynamically update its rule base for every new external
force it gets subjected to. The more the system is used, the more knowledge it
gains, and the better the quality of solutions it offers.

6. Conclusions and discussions

The goal of the presented work is to provide a system capable of offering quality
solutions for different expected values of external forces (loads). The delays and
the transitions associated with selecting new fingers’ forces to handle changes
in the external forces are minimal, especially if the same existing fingers’ dis-
tributions were used. In some cases when there is no available solution, i.e.
no matched rules or no available rules within the minimum distance, the EP
extracts a solution and that is considered as a momentary switch to the offline
solution. The percentage of offline solutions decreases as the system extracts
more and more rules and appends them to the existing ones. Eventually, wider
regions in the control space are covered and more tolerant and reliable system
is developed. The average number of rules in a rule base for the example in pre-
vious section, assuming that the external forces (loads) cover the whole space is
around 1500 to 2000 rules. As we mentioned earlier, some regions do not have
solutions at all, on the other hand, some regions have larger concentration of
rules than other regions. That actually depends on the sampling during training
and the priori knowledge we have on expected values of external forces. The
search mechanism for the matched rules is done in a manner similar to a binary
search tree method where the Euclidean distance between the values of the ex-
ternal forces (load) and the values of the conditions of rules control the access
of the branches of the search tree. Only branches that lead to less distances are
accessed. In that manner much less search time is spent in selecting the closest-
condition rule before its action is fired. The weakness of this method is that it
is extremely difficult to provide excellent solutions for all types of grips and all
values of external forces. A possible solution for this dilemma is to use the fuzzy
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logic (Cos, 1994). By using fuzzy logic, wider areas in the control space could be
covered by much less rules and the transitions from a state to another state of
the system are expected to be smoother. Future work may include ”fuzzifying”
the rules in our rule base and implementing them in some standard fuzzy rule
system. This system could eventually be integrated with the system we have to
end up with a ”Fuzzy Machine Learning System” used for extracting solutions
for the gripper problem. The biggest problem we have with this type of systems
is the complexity and the larger rule bases that we need, especially if the system
is required to find solutions for arbitrary rigid bodies, arbitrary fingers’ distrib-
utions around the object or grips’ configurations. Luckily, the advancement in
software and hardware nowadays helps in diminishing this problem.

Another goal of this work is to show the capabilities of evolutionary based
methods in finding close to ultimate solutions for the gripper problem. It is
worth mentioning that the EP and NCP methods are nonlinear techniques that
do not need linearization of the problem through the linearization of the friction
law and then finding the solutions. Previous work (Al-Fahed Nuseirat and
Stavroulakis, 2000) showed that linearization of the friction law may result in
solutions that are quite far from the actual optimal solutions. Many applications
are very sensitive to the forces applied by the fingers and may damage the
object. The flexibility of the EP and its ability to “dig” deep into the search
space of the forces enables it to come up with near optimum solutions. The
continuous evolution of the strings pool that is always updated by mutation
and reproduction operators is the main reason for the richness of solutions.Al-
Fahed Nuseirat and Stavroulakis (2000) solved the NCP using PATH algorithm
which is a deterministic nonlinear optimization algorithm (Ferris, Mensier and
More, 1997). Deterministic techniques take one direction to an optimal solution.
Sometimes, due to the numerical nature of the algorithm and the shape of the
search space, the numerical algorithms settle in a region that is not optimal.
The deterministic operators of that algorithm can not allow it to skip that
region. The Tables 1 through 7 show solid evidence of the better solutions
generated by the EP. However, EP is much more computationally costly than
the PATH algorithm when solving the NCP. This is a general problem with all
evolutionary based methods. Fortunately, many gripper applications are off-line
applications. That is, the minimal gripper fingers’ forces are calculated only one
time and then used for the rest of the time. If the external force varies from
time to time, then the rule base is used to find needed adaptation on grasping
forces that maintain the firm grip of the object.

Observing the figures in Tables 1 through 7, we find that in the case with
the cube of the first example three fingers are enough to grasp the cube, and
for both the isotropic and orthotropic cases the EP provided lower values for
the normal contact forces by around 2.5%. In the case of second example of the
cube with four fingers and for both isotropic and orthotropic cases, figures in the
tables show that the EP provided solutions with minimal normal contact forces
by around 5% lower than those provided by the NCP algorithm. As mentioned
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earlier, these savings in minimal forces, although relatively small, can be very
useful from the engineering point of view especially if the grasped object is
crushable. This, consequently, means more savings in energy and better chance
in protecting the grasped body from any possible damage.

Fig. 7 shows the process of evolving solutions by EP. To study this problem
we picked the orthotropic case of the second example. The upper graph in the
figure shows at each point a minimal norm of total forces (normal and tangential)
used by the gripper to grasp the object. The lower graph shows at each point
a minimal norm of only normal forces used by the gripper to grasp the object.
Each point in both graphs is a possible solution. However, the last point in each
graph represents the minimum solution. In general, solutions generated by EP
tend to converge faster at the beginning toward the optimum one. As number
of iterations increases, EP starts to move slower toward the minimal point until
it tends to settle. There, EP hardly moves anywhere else. It is clear from the
graphs also that there is constant difference in value between the norm of total
forces and the norm of normal forces. Solutions at earlier stages have the same
difference between total and normal forces compared to solutions at final stages.
This emphasizes that this difference depends on the properties of the grasped
body itself and not merely on the values of generated forces themselves.
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Figure 7. Minimal grasp forces for orthotropic case of second example
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A. Analysis and proof that objective function of EP has

optimal solution

This appendix is concerned with the solution of the minimization problem stated
by equations (8). The Lagrangian function for this problem can be constructed
as

L(r,y, z,u, λ, η, γ, ̺) =
1

2
rT r + λT (Gr − P) + ηT (Jr + y − τ)

+γT (B(r)r + z) + ̺(Nr + u) (13)

where λ, η , γ, and ̺ are vectors of Lagrangian multipliers.
According to the classical optimization theory (Luenberger, 1984; Murty,

1988), the stationary points of the Lagrangian function can be found by solving
the following equations:

∂L

∂r
= r + GT λ + JT η + (

∂

∂r
(B(r)r))T γ + NT ̺ = 0 (14)

∂L

∂λ
= Gr − P = 0 (15)

∂L

∂η
= Jr + y − τ = 0 (16)

∂L

∂γ
= B(r)r + z = 0 (17)

∂L

∂y
= 2x = 0 (18)

∂L

∂z
= 2v = 0 (19)

∂L

∂u
= 2w = 0 (20)

where x = [η1y1, η2y2, . . . , η2nky2nk]T , v = [γ1z1, γ2z2, . . . , γnzn]T , and
w = [̺1u1, ̺2u2, . . . , ̺nun]T .

Equations (14)-(19) are the necessary conditions that ensure the relative
minimum of our problem. This relative minimum is global minimum since the
cost function is convex (quadratic energy function). Hence, equations (8) have
a minimal solution, and that solution is global optimum.
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