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Abstract: We consider a set of parameterized planar arcs (x(t),
y(t)) (0≤ t≤1), satisfying certain smoothness, regularity and mono-
tonicity conditions (in particuler x(t) is monotone increasing, and
y(t) positive and unimodal), and a functional J (y) involving an ad-
justable weighting function ω(t) and a positive constant α > 1. We
first prove the strict convexity of the functional for α ≥ 2. Under
the less stringent condition α > 1, we derive the stationarity condi-
tion and the formal expression for the Hessian, and prove that if a
point exists at which the functional is stationary w.r.t. variations in
y = y(t), for fixed x = x(t), then it is unique and realizes a global
minimum; the functional is then unimodal. We also observe that
the stationarity condition (Euler-Lagrange equation) is an integral-
differential equation depending only on the arc shape and not on the
parameterization per se, which gives the variational problem a cer-
tain intrinsic character. Then, we solve the inverse problem: given
an admissible parameterized arc, we construct a smooth weighting
function ω(t) for which the stationarity condition is satisfied, thus
making the functional unimodal, and derive certain asymptotics. A
numerical example pertaining to optimum-shape design in aerody-
namics is computed for illustration.

Keywords: Partial-Differential Equations (PDEs), computa-
tional methods, shape optimization, calculus of variations.

1. Motivation

Simple variational problems are proposed as models, mostly for analysis in shape
optimization purposes. In more general and complex settings, the shape would
affect the solution of a physically relevant PDE. Utilizing such models is envis-
aged in future works in particular: (i) to test numerical algorithms for shape
optimization in a simplified computational context bearing the geometrical char-
acteristics of another, more complex problem, as in Bélahcène and Désidéri



166 J.-A. DÉSIDÉRI, J.-P. ZOLÉSIO

(2003), (ii) to adapt a numerical shape-optimization algorithm to a meta model
in order to improve its convergence, as in Karakasis and Désidéri (2002), or
(iii) to construct purely geometrical penalty functions for an inverse-problem
formulation.

2. Variational problem and stationarity condition

Consider a planar arc connecting the origin (0, 0) to the point (1, 0) and admit-
ting the following parameterization:

{

x = x(t)

y = y(t)
(1)

in which the regularity of the functions x(t) and y(t) (0 ≤ t ≤ 1) is momentarily
not made precise. Additionally, y(t) ≥ 0.

The following quantities are introduced:

p =

∫ 1

0

√

x′2(t) + y′2(t)ω(t) dt

A =

∫ 1

0

y(t)x′(t)ω(t) dt

(2)

in which the weighting function ω(t) is positive and adjustable. In the particular
case of ω(t) ≡ 1, the quantities p and A are respectively the arclength and the
area of the region between the arc and the x-axis.

From here on, the function x(t) is fixed, somewhat arbitrarily, say x ∈
C2([0, 1]), x(0) = x(1) − 1 = 0, and the function y(t) is subject to the following
convex condition

y ∈ K :=
{

y ∈ H2(0, 1) , y(0) = y(1) = 0 , y(t) ≥ 0 ∀t
}

(3)

and considered as the argument of the following functional to be minimized:

J (y) =
pα

A
(4)

in which the exponent α is a fixed real positive number, to be chosen later.
The existence of a minimum in the above setting is questionable. Never-

theless, in our development, the necessary condition for optimality is examined,
focusing on the inverse problem for which the regularity of the stationary shape
is known.
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For the purpose of establishing an existence result, we extend the definition
of the functionals p and A to a larger functional space. We set:

M1
ω(0, 1) =

{

(u, v) ∈ L1(0, 1)2

s.t. Sup
g∈B1

∫ 1

0

[

u(t)
(

ω(t)gx(t)
)′

+ v(t)
(

ω(t)gy(t)
)′
]

dt <∞

}

(5)

where g = (gx, gy), and

B1 =
{

g ∈ C1
comp(]0, 1[; R2) , ∀t , ‖ g(t) ‖R2 ≤ 1

}

(6)

where C1
comp(]0, 1[; R2) stands for the subset of functions in C1 with compact

support.
The set M1

ω(0, 1) generalizes the classical Banach space of bounded vector
measures to cases involving a smooth and positive weight ω.

The function x = x(t) being fixed in C2([0, 1]) with x′(t) > 0, we have

A(y) =

∫ 1

0

y(t)x′(t)ω(t) dt = ‖ y x′ ω ‖L1(0,1) (7)

and
p(y) = ‖ (x′, y′) ‖M1

ω(0,1) (8)

and

J (y) =
‖ (x′, y′) ‖α

M1
ω(0,1)

‖ y x′ ω ‖L1(0,1)
. (9)

Finally, we define:

BVω(0, 1) =
{

(x, y) ∈ L1(0, 1)2 s.t. (x′, y′) ∈M1
ω(0, 1)

}

. (10)

Again, this space generalizes the classical definition of the Banach space of
functions with bounded variation to a case involving the weight ω.

As x is fixed, it is clear that the condition (x, y) ∈ BVω(0, 1) is equivalent
to y ∈ BVω(0, 1). Thus, the minimization of the function J (y) w.r.t. (x, y) ∈
BVω(0, 1) is equivalent to the minimization w.r.t. y ∈ BVω(0, 1). Nevertheless,
it is necessary to introduce the equivalent norm in BVω(0, 1) in order to express
the relaxation of the functional J (y).

A basic question which arises is whether the constraint y(t) ≥ 0 may be
saturated at the minimum. To investigate this question, let us suppose that the
function y1(t) realizes a local minimum of J (y), and examine the possibility for
y1(t) to be equal to zero at points other than the limits.

First, consider the eventuality of an isolated zero a (0 < a < 1 ; y1(a) = 0).
Small strictly-positive numbers ε− and ε+ can be defined such that y1(a−ε−) =
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y1(a+ ε+) = δ > 0 and y1(t) < δ for all t in the open interval ]a− ε−, a+ ε+[.
Then define the new function y2(t) by

y2(t) =

{

δ if a− ε− ≤ t ≤ a+ ε+

y1(t) otherwise .
(11)

Then, obviously:

p(y2) < p(y1) , A(y2) > A(y1) (12)

and consequently:

J (y2) < J (y1) (13)

which contradicts the assumption. We conclude that y1(t) cannot be equal to
zero at an isolated point.

Second, consider the eventuality of y1(t) ≡ 0 over a maximal interval [a, b] ⊂
[0, 1]. Then neighborhoods of t = a− and t = b+ exist over which the function
y1(t) is strictly positive because isolated zeros are excluded and [a, b] has the
maximal extent. Then, let ε− and ε+ be strictly-positive numbers chosen such
that a−ε− and b+ε+ belong to these neighborhoods, y1(a−ε−) = y1(b+ε+) =
δ > 0, and y1(t) < δ for all t in the open interval ]a − ε−, b + ε+[. Then, let
y2(t) be defined by:

y2(t) =

{

δ if a− ε− ≤ t ≤ b+ ε+

y1(t) otherwise .
(14)

Then again:

p(y2) < p(y1) , A(y2) > A(y1) (15)

and consequently:

J (y2) < J (y1) (16)

which contradicts the assumption. Therefore, no interval [a, b] exists over which
y1(t) ≡ 0.

Theorem 2.1 If, for fixed x = x1(t), the functional J (y) admits a local mini-
mum for y = y1(t), then y1(t) > 0 everywhere except at endpoints.

This result allows us to treat the problem as an unconstrained minimization.

Lemma 2.1 For fixed x = x1(t), a necessary condition for the functional J (y)
to admit a global minimum achieved for a finite-valued and smooth function
y = y1(t), is α > 1.
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Proof. Assume the existence of such a global minimum and consider the family
of admissible parameterizations

{

xλ(t) = x1(t)

yλ(t) = λy1(t)
(17)

where λ is a positive free parameter, and the function

j(λ) = J
(

yλ(t)
)

. (18)

Note that

p = p
(

yλ(t)
)

=

∫ 1

0

(

x′21 + λ2y′21
)

1

2 ω dt (19)

and

A = A
(

yλ(t)
)

= A1 λ (20)

where A1 = A
(

y1(t)
)

. Consequently,

j(λ) =
λα

A

(p

λ

)α

=
λα−1

A1

(

∫ 1

0

(

x′21
λ2

+ y′21

)
1

2

ω dt

)α

. (21)

From this expression, it appears that the hypothesis α ≤ 1 would imply that
j(λ) be a monotone-decreasing function of λ achieving its global minimum in
the limit λ −→ ∞, and not for λ = 1. The contradiction is removed by rejecting
this hypothesis.

We now establish the stationarity condition. The functional J (y) is station-
ary iff:

α
δp

p
−
δA

A
= 0 (22)

or, equivalently:

αA δp = p δA . (23)

There follows:

δp =

∫ 1

0

1

2
(x′

2
+ y′

2
)−

1

2 2 y′ δy′ ω(t) dt (24)

and since δy′ = (δy)′, an integration by parts yields:

δp =
[

ωy′ (x′
2

+ y′
2
)−

1

2 δy
]1

0
−

∫ 1

0

d

dt

(

ωy′ (x′
2

+ y′
2
)−

1

2

)

δy dt

=

∫ 1

0

[

−(ω′y′ + ωy′′) (x′
2

+ y′
2
)−

1

2

+
ωy′

2
(x′

2
+ y′

2
)−

3

2 (2 x′ x′′ + 2 y′ y′′)
]

δ y dt (25)
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since δy(0) = δy(1) = 0. After simplification, it follows that:

δp =

∫ 1

0

φ δy dt

δA =

∫ 1

0

ψ δy dt

(26)

in which the new symbols are defined as follows:

φ(t) = ω
x′(x′′y′ − x′y′′)

(x′2 + y′2)
3

2

− ω′ y′
√

x′2 + y′2

ψ(t) = ω(t)x′(t)

(27)

The stationarity condition thus writes:

∀ δy ,

∫ 1

0

[αAφ− pψ] δy dt = 0 (28)

and this is equivalent to the differential equation [...] ≡ 0, of the form (Euler-
Lagrange equation):

∀t,
x′′y′ − x′y′′

(x′2 + y′2)
3

2

−
ω′

ω

y′

x′
√

x′2 + y′2
=

p

αA
(= const.) (29)

This integral-differential equation is unsurprinsingly of second order w.r.t.
the unknown function y(t) which is subject to the two homogeneous Dirichlet
conditions y(0) = y(1) = 0. In its expression, one recognizes the local curvature:

1

r
=
dϕ

ds
= −

x′′y′ − x′y′′

(x′2 + y′2)
3

2

(30)

where the sign convention is made classically: the curvilinear arclength s in-
creases as t increases,

ds

dt
= +

(

x′2 + y′2
)

1

2 , (31)

and ϕ denotes the angle made locally by the tangent with the x-axis. Hence,
for a concave shape, r < 0.
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3. Gradient, Hessian, convexity and unimodality

3.1. Convexity of pseudo-perimeter p

For fixed x = x(t) and ω = ω(t), the expression f =
√

x′2 + y′2 ω(t) is convex
in terms of y′, since

∂2f

∂y′2
= ω(t)x′2

(

x′2 + y′2
)− 3

2 ≥ 0 . (32)

Consequently:

Theorem 3.1 For fixed x = x(t), the pseudo-perimeter p is a strictly-convex
functional of y = y(t).

3.2. Convexity of the functional J (y) for α ≥ 2

The raw expression of the functional J (y) implies that:

δJ =
αpα−1

A
δp−

pα

A2
δA . (33)

Differentiating again, it follows that

δ2J =
αpα−1

A
δ2p+

α(α − 1) pα−2

A
(δp)2 −

2αpα−1

A2
δp δA+

2pα

A3
(δA)2 (34)

since δ2A = 0, because the functional A(y) is linear.
Since δ2p > 0 for all nontrivial δy, because the functional p(y) is strictly

convex, a sufficient condition for the functional J (y) to be strictly convex is
that the following quadratic form be positive semi-definite:

q(X,Y ) =
α(α− 1) pα−2

A
X2−

2αpα−1

A2
XY +

2pα

A3
Y 2 = aX2−2bXY+cY 2 (35)

in which the definitions of the constants a, b and c are evident. A sufficient
condition for strict convexity is therefore the following:

ac ≥ b2 (36)

that is:

2α(α− 1) ≥ α2 (37)

or equivalently:

α ≥ 2 . (38)
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Theorem 3.2 For α ≥ 2, the functional J (y), for fixed x = x(t), is strictly
convex.

Values of α less than 2 remain of interest for inverse problems in which α
is not known a priori. To cover such cases, the unimodality of the functional
J (y) is examined in general in the next subsection.

3.3. General case, α > 1; unimodality

Pursuing the analysis further, we first derive explicit expressions for the gradient
and the Hessian of the functional, and establish conditions under which the
functional is unimodal.

Considering again the logarithmic first variation,

δJ

J
= α

δp

p
−
δA

A
(39)

we get the following expressions for the first variation of the functional J (y) for
fixed x = x(t), and the gradient:

δJ = δJ (y, δy) =

∫ 1

0

Gδy dt ; G = G(y) = J

(

α

p
φ−

1

A
ψ

)

. (40)

Again holding x = x(t) fixed and varying y = y(t) result in the following
expression for the second variation:

δ2J = δ2J (y, δy) =

∫ 1

0

δG δy dt (41)

in which:

δG = δG1 + δG2 (42)

where














δG1 = δJ

(

α

p
φ−

1

A
ψ

)

δG2 = J

(

−
αφ

p2
δp+

ψ

A2
δA +

α

p
δφ

)

.

(43)

It follows that
∫ 1

0

δG1 δy dt = δJ

∫ 1

0

(

α

p
φ−

1

A
ψ

)

δy dt

= J

(
∫ 1

0

(

α

p
φ−

1

A
ψ

)

δy dt

)2

.

(44)
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The above term vanishes when the functional J (y) is stationary. For the other
term, we have:

δG2 = J

(

A(t)

∫ 1

0

B(τ) δy(τ) dτ + C(t)

∫ 1

0

D(τ) δy(τ) dτ +
α

p
δφ

)

(45)

in which:

A(t) = −
α

p2
φ(t) , B(τ) = φ(τ) , C(t) =

1

A2
ψ(t) , D(τ) = ψ(τ) . (46)

This yields:

δ2J

J
=

(
∫ 1

0

(

α

p
φ−

1

A
ψ

)

δy dt

)2

+ E +
α

p
Xφ (47)

in which:

E =

∫ 1

0

(

A(t)

∫ 1

0

B(τ) δy(τ) dτ + C(t)

∫ 1

0

D(τ) δy(τ) dτ

)

δy(t) dt

=

∫ 1

0

A(t) δy(t) dt

∫ 1

0

B(t) δy(t) dt +

∫ 1

0

C(t) δy(t) dt

∫ 1

0

D(t) δy(t) dt

= −
α

p2

(
∫ 1

0

φ(t) δy(t) dt

)2

+
1

A2

(
∫ 1

0

ψ(t) δy(t) dt

)2

(48)

and

Xφ =

∫ 1

0

δφ δy dt . (49)

Note that if J (y) is stationary,

φ(t) =
p

αA
ω(t)x′(t) (50)

so that:

E = −
α

p2

(
∫ 1

0

p

αA
ωx′ δy dt

)2

+
1

A2

(
∫ 1

0

ωx′ δy dt

)2

=

(

1 −
1

α

)

1

A2

(
∫ 1

0

ωx′ δy dt

)2

(51)

which is non-negative under the hypothesis α ≥ 1. Otherwise, we retain the
completely general expression (48).

The term Xφ is first split into two:

Xφ = X ′
φ +Xφ” (52)
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where:

X ′
φ =

∫ 1

0

∂φ

∂y′
δy′ δy dt , X ′′

φ =

∫ 1

0

∂φ

∂y′′
δy′′ δy dt . (53)

The term X ′
φ is easily integrated by parts:

X ′
φ =

∫ 1

0

∂φ

∂y′

[

1
2 (δy)2

]′

dt =

[

∂φ

∂y′
1
2 (δy)2

]1

0

− 1
2

∫ 1

0

(

∂φ

∂y′

)′

(δy)2 dt

= − 1
2

∫ 1

0

(

∂φ

∂y′

)′

(δy)
2
dt (54)

since y(t) is subject to Dirichlet conditions.
The integration by parts of the second term, X ′′

φ yields a contribution of
different type:

X ′′
φ =

∫ 1

0

∂φ

∂y′′
δy (δy′)

′
dt =

[

∂φ

∂y′′
δy δy′

]1

0

−

∫ 1

0

(

∂φ

∂y′′
δy

)′

δy′ dt = −Yφ−Zφ

(55)

in which:

Yφ =

∫ 1

0

(

∂φ

∂y′′

)′

δy δy′ dt , Zφ =

∫ 1

0

∂φ

∂y′′
(δy′)

2
dt . (56)

Lastly, the term Yφ is integrated by parts in a way similar to the previous
integration of the term X ′

φ, yielding:

Yφ = − 1
2

∫ 1

0

(

∂φ

∂y′′

)′′

(δy)
2
dt . (57)

As a result

X ′
φ − Yφ = 1

2

∫ 1

0

[

(

∂φ

∂y′′

)′′

−

(

∂φ

∂y′

)′
]

(δy)2 dt . (58)

But, the function φ has been defined in (27). As a result:

∂φ

∂y′
=ωx′x′′(x′2 + y′2)−

3

2 + ωx′(x′′y′ − y′′x′)(−
3

2
)(x′2 + y′2)−

5

2 (2y′)

− ω′(x′2 + y′2)−
1

2 − ω′y′(−
1

2
)(x′2 + y′2)−

3

2 (2y′) (59)

and

∂φ

∂y′′
= −ωx′2(x′2 + y′2)−

3

2 . (60)
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Hence:
(

∂φ

∂y′′

)′

= − ω′x′2(x′2 + y′2)−
3

2 − 2ωx′x′′(x′2 + y′2)−
3

2

− ωx′2(−
3

2
)(x′2 + y′2)−

5

2 (2x′x′′ + 2y′y′′) (61)

and finally:

(

∂φ

∂y′′

)′

−
∂φ

∂y′
≡ 0 . (62)

Hence Xφ reduces to the following positive term:

Xφ = −Zφ =

∫ 1

0

ωx′2

(x′2 + y′2)
3

2

(δy′)
2
dt (63)

and the second variation to:

δ2J

J
=

(
∫ 1

0

(

α

p
φ−

1

A
ψ

)

δy dt

)2

+E+
α

p

∫ 1

0

ωx′2

(x′2 + y′2)
3

2

(δy′)
2
dt (64)

where E is given by (48) in general, or (51) in case of stationarity.
Now, we distinguish two cases. If the functional is stationary (δJ = 0), (29),

(51) and (64) imply that:

δ2J

J
=

(

1 −
1

α

)

1

A2

(
∫ 1

0

ωx′ δy dt

)2

+
α

p

∫ 1

0

ωx′2

(x′2 + y′2)
3

2

(δy′)
2
dt > 0 (65)

that is, strictly-positive provided α ≥ 1 for all nontrivial δy(t) (since these are
such that δy′(t) 6≡ 0 because of the boundary conditions). This permits us to
make the following statement converse to Lemma 2.1:

Lemma 3.1 If the functional J (y) is stationary w.r.t. variations in y = y(t),
for fixed x = x(t), and if α ≥ 1, then it achieves at this point a local minimum.

If, instead, the functional J (y) is not locally stationary, the following ex-
pression is to be used for the second-variation:

δ2J

J
=

(
∫ 1

0

(

α

p
φ−

1

A
ψ

)

δy dt

)2

−
α

p2

(
∫ 1

0

φ δy dt

)2

+
1

A2

(
∫ 1

0

ψ δy dt

)2

+
α

p

∫ 1

0

ωx′2

(x′2 + y′2)
3

2

(δy′)
2
dt .

(66)
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The above developments indicate that if α ≥ 1, all the points at which the
functional is stationary w.r.t. variations in y, correspond to local minima.

In this framework, let us now make the provisional hypothesis of existence
of two distinct stationary points y1 = y1(t) and y2 = y2(t) for the functional
J (y). Let ∆y = y2 − y1, and observe that the following function of the real
variable λ,

J(λ) = J (y1 + λ∆y) (67)

admits local minima at λ = 0 and λ = 1. Thus the maximum of J(λ) (0 ≤ λ ≤ 1)
is not achieved at either limit λ = 0 or λ = 1, but instead at one intermediate
point θ (0 < θ < 1) at least. This can be seen as a trivial expression of the
Mountain-Pass Theorem (Jabri, 2003) for a function of the real variable. But,
J ′(θ) is obtained by substituting y1 +λ∆y to y, and ∆y to δy in the expression
of the first variation, (40):

J ′(θ) = J(θ)

∫ 1

0

(

α

p
φ−

1

A
ψ

)

∆y dt = 0 . (68)

Hence, at this particular point y:

α

p

∫ 1

0

φ∆y dt =
1

A

∫ 1

0

ψ∆y dt (69)

and the same substitution in the second variation, (66), provides the second
derivative:

J ′′(θ)

J(θ)
=

(

1 −
1

α

)

1

A2

(
∫ 1

0

ψ∆y dt

)2

+
α

p

∫ 1

0

ωx′2

(x′2 + y′2)
3

2

(∆y′)
2
dt > 0

(70)

since this expression cannot be equal to zero, because this would require that
∆y′ ≡ 0, implying ∆y(t) ≡ C (a constant), and C = 0 to satisfy the ho-
mogeneous boundary conditions, thus y1 = y2. The strict positivity of J ′′(θ)
contradicts the previous statement according to which λ = θ corresponds to a
local maximum of J(λ). This contradiction is removed by rejecting the above
provisional hypothesis of existence of two distinct stationary points. We thus
conclude by the following

Theorem 3.3 (Uniqueness and unimodality) If α > 1 and if the functional
J (y) admits one point of stationarity w.r.t. variations in y = y(t), for fixed
x = x(t), then such point is unique and it realizes a global minimum of the
functional, which is unimodal.

In view of Lemma 2.1, this theorem can be formulated alternately as follows:
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Corollary 3.1 Equation (29) admits no solutions for α ≤ 1; for α > 1, if a
solution exists, it is unique, and it realizes a global minimum of the functional
J (y), which is unimodal.

Originally, we attempted to establish the unimodality by a more technical
means involving a certain convexity criterion. This route failed to deliver the
full proof, but revealed itself to be somewhat instructive; see Appendix A for
details.

3.4. Functional behavior as α varies

We now examine the behavior of the functional as the exponent α varies, and
for this we momentarily indicate this dependence by a subscript over the func-
tional symbol. At this stage, it is known that the functional is unimodal iff
it admits a stationary point, necessarily unique, and a necessary condition is
α > 1. However this condition is not sufficient in general as the next section will
demonstrate, and we rely on the construction of the inverse problem, Section 5,
to guarantee the existence.

Hence, the functions x(t) and ω(t) being given, assume values of the para-
meter α exist for which the functional Jα(y) is unimodal, and let this parameter
be fixed in what follows, and set

J ∗
α = min

y
Jα(y) (71)

so that:

∀y , Jα(y) ≥ J ∗
α . (72)

Consider another parameter value β > α. We have:

Jβ(y) =
pβ

A
= pβ−α Jα(y) (73)

so that:

∀y , Jβ(y) ≥ pβ−α
min J ∗

α > 0 (74)

where pmin =
∫ 1

0
x′(t)ω(t) dt; hence the infemum

J ∗
β = Inf

y
Jβ(y) (75)

is strictly positive. Thus, let { yn } (n ∈ N) be a minimizing sequence of positive
functions:

lim
n→∞

Jβ(yn) = J ∗
β . (76)
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We have:

A(y) =
p(y)β

Jβ(y)
=
p(y)α

Jα(y)
(77)

so that:

p(y) =

(

Jβ(y)

Jα(y)

)
1

β−α

(78)

and:

A(yn) =
Jβ(yn)

α
β−α

Jα(yn)
β

β−α

. (79)

Now, for sufficiently large n:

Jβ(yn) ≤ 2J ∗
β (80)

so that:

A(yn) ≤

(

2J ∗
β

)
α

β−α

(J ∗
α )

β

β−α

(81)

which proves that the sequence { ynx
′ω } is bounded in L1. Therefore, the norm

‖ (x′, y′n) ‖M1
ω(0,1) is bounded, (x, yn) is bounded in BVω(0, 1), and finally yn

is bounded in the usual BV (0, 1). By virtue of the classical Helly compactness
theorem, we deduce the existence of a subsequence, denoted by the same symbol,
(x, yn) which strongly converges in L1(0, 1) to some (x, y∗) ∈ BVω(0, 1), and
weakly converges (as bounded measures) to (x, y∗). As the M1

ω(0, 1) norm is
lower-semi-continuous w.r.t. the weak convergence, we get:

‖ (x, y∗) ‖M1
ω(0,1) ≤ lim inf ‖ (x, yn) ‖M1

ω(0,1) (82)

and

‖ y∗x′ω ‖L1(0,1) = lim ‖ ynx
′ω ‖L1(0,1) (83)

and, as { yn } is a minimizing sequence:

J (y∗) ≤
lim inf ‖ (x, yn) ‖M1

ω(0,1)

lim ‖ ynx′ω ‖L1(0,1)
= lim

(

‖ (x, yn) ‖M1
ω(0,1)

‖ ynx′ω ‖L1(0,1)

)

= Inf
y∈BV (0,1)

J (y) .

(84)

In conclusion, y∗ realizes the minimum of the functional J (y) in BV (0, 1).
Therefore, the set of values of the parameter α for which the functional is

unimodal is necessarily an interval, and we conclude by the following
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Theorem 3.4 Let x(t) and ω(t) be fixed. If a value of the parameter α exists
for which the functional is unimodal, there also exists α0 ≥ 1 such that:

1. for α < α0, there exists no finite minimizing function of the functional
J (y);

2. for α > α0, the functional J (y) is unimodal.

4. Reference case, ω(t) ≡ 1

It is instructive to examine this fundamental particular case in which the integral-
differential equation simplifies to:

−
1

r
=

p

αA
(85)

and characterizes concave circular arcs of radius |r| = −r, whose centers, ac-
counting for the problem symmetry, are located on the line x = 1

2 . New pa-
rameters h and θ0 are introduced (see Fig. 1), and the following geometrical
relations hold:



















1
2 = |r| cos θ0

h = |r| sin θ0

p = (π − 2θ0)|r|

A = 1
2 (π − 2θ0)r

2 − 1
2h× 1 .

(86)

(0,0) r

h
θ

0

x(1,0)

Figure 1. Optimal arc (notations)

Consequently, (29) first becomes:

1

|r|
=

(π − 2θ0)|r|

α
[

1
2 (π − 2θ0)r2 − r2 sin θ0 cos θ0

] =
γ|r|

1
2α (γ − sin γ) r2

(87)

in which the new definition is made:

γ = π − 2θ0 (88)
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(−π
2 ≤ θ0 ≤ π

2 and 0 ≤ γ ≤ 2π). It follows that

ρ(γ) :=
sin γ

γ
= 1 −

2

α
. (89)

The function ρ(γ) is represented in Fig. 2. Its range is an interval [ρmin, 1],
where the negative value ρmin is achieved at a certain abscissa γmin close and in-
ferior to 3π

2 , solution of the equation ρ′(γmin) = (γmin cosγmin−sinγmin)/γ
2
min =

0; hence, γmin is the fixed point of the iteration γn+1 = tan−1 γn + π, which
easily yields:

γmin ≃ 4.493 , ρmin ≃ −0.217 . (90)

π γmin 2π

ρ = ρmin

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  1  2  3  4  5  6  7  8

Function Rho(gamma)

Figure 2. Variations of the function ρ(γ).

Consequently, equation (89) admits a solution iff:

α ≥ αmin (91)

in which 1 − 2/αmin = ρmin, which gives:

αmin ≃ 1.643 . (92)
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For αmin ≤ α < 2, π < γ ≤ γmin; hence 1
2 (π − γmin) ≤ θ0 < 0 1. In this

case, the vector
−−→
dM/dt0 tangent at the origin to the optimal circular arc points

towards x < 0, and this corresponds to a circle whose center has a strictly
positive ordinate; see Fig. 3. In this configuration, the stationary solution does
not correspond to a graph in the (x, y) plane, and the results of Section 3 do
not apply straightforwardly.

x0 1

y

−−→

dM

dt0

Figure 3. Circular arc satisfying the stationarity condition in the case αmin ≤
α < 2

But a simple argument permits us to conclude directly: since ω(t) ≡ 1, p
and A are the conventional perimeter and area, and if

{

x(t) = xR(t)

y(t) = yR(t)

is a parameterization of the circle of radius R attached to the origin and the
point (1, 0), then as R → ∞:

p (yR) ∼ 2πR , A (yR) ∼ π R2 , J (yR) ∼ 2απα−1Rα−2 −→ 0

for all α < 2. Therefore, the circular arc of Fig. 3 does not realize a global
minimum.

Inversely, for α ≥ 2 we know the problem to be strictly convex (Theorem
3.2). In particular, for α = 2, γ = π; hence θ0 = 0 and |r| = 1

2 . The optimal
circular arc is then the upper half-circle of radius 1

2 , centered at (1
2 , 0); see Fig. 4.

1 1

2
(π − γmin) ≃ −39o
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It follows that

J =
p2

A
=

(π/2)2

1
2 π (1

2 )2
= 2 π . (93)

x

y

0 1

Figure 4. Optimal half-circle corresponding to the case α = 2.

Finally, for α > 2, 0 < γ < π; hence 0 < θ0 <
π
2 . In this case, the vector

−−→
dM/dt0 tangent at the origin to the optimal circular arc points towards x > 0,
and this corresponds to a circle whose center has a strictly negative ordinate;
see Fig. 5.

x

y

0 1

−−→

dM

dt0

Figure 5. Optimal circular arc corresponding to the case α > 2.

5. General case, ω(t) 6≡ 1; inverse problem

Now we turn to the following inverse problem: is it possible, by a judicious
choice of the function ω(t) and the exponent α to guarantee the existence of a
stationary solution, and further to force the solution of the integral-differential
equation (29) to present desirable given geometrical characteristics? For exam-
ple, for application to optimum-shape design in aerodynamics, can it be similar,
or better, identical to a specified airfoil shape?
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Before answering this question, we introduce the following

Definition 5.1 (Admissible parameterization) The planar-arc parameterization
(

x(t), y(t)
)

(0 ≤ t ≤ 1) is said to be admissible iff it satisfies the boundary
conditions:

x(0) = y(0) = x(1) − 1 = y(1) = 0 (94)

and the following hypotheses:
1. smoothness and regularity: x(t) and y(t) are of class C2 (at least) and

x′(t)2 + y′(t)2 > 0 uniformly;
2. piecewise-monotonic variations: x(t) is monotone increasing, and y(t)

unimodal, and at the unique point t = t0 (0 < t0 < 1) at which y(t) is
maximum, the curvature is finite and nonzero (y′(t0) = 0 and y′′(t0) < 0).

(It is understood that to two different such admissible parameterizations corre-
spond two values of t0 that are generally different.)

Evidently, this definition implies the smoothness of the planar arc and the
existence of a (single-valued) function f permitting the shape to be represented
by the equation y = f(x) as in the case of Fig. 4 or Fig. 5, but not Fig. 3;
however, certain derivatives of the function f may be locally infinite, as in
Fig. 4 at the arc endpoints, but also in more general cases.

From here on, the discussion is restricted to admissible parameterizations,
for which applies the following

Theorem 5.1 (Constructive algorithm of the variational problem)
Let (x(t), y(t)) (0 ≤ t ≤ 1) be an admissible parameterization. If the positive
constant C is set equal to the opposite of the curvature at t = t0, t0 being the
parameter value realizing the maximum ordinate y(t),

C =
p

αA
=

(

x′′y′ − x′y′′

(x′2 + y′2)
3

2

)

˛

˛

˛

˛

˛

˛t = t0

=

(

−y′′

x′2

)

˛

˛

˛

˛

˛

˛t = t0

=

(

−
d2y

dx2

)

˛

˛

˛

˛

˛

˛t = t0

> 0 ,

(95)

the function ω(t), deduced by quadrature from (29) with the right-hand side set
equal to C,

lnω(t) =

∫
(

x′′y′ − x′y′′

(x′2 + y′2)
3

2

− C

)

.

(

x′
√

x′2 + y′2

y′

)

dt (ω(0) = 1) (96)

is uniquely defined, of class C1 (at least), and uniformly positive. Additionally,
if the exponent α is calculated from

α =
p

CA
(97)

the functional J (y) is stationary w.r.t. variations in y = y(t), for fixed x = x(t).



184 J.-A. DÉSIDÉRI, J.-P. ZOLÉSIO

Proof. Observe that the specific choice made for the constant C regularizes the
integrand, thus permitting the quadrature to be performed stably. The arbitrary
constant of integration appears as a multiplicative constant in the expression of
the function ω(t); it is therefore irrelevant, and without loss of generality, one
can set ω(0) = 1 for uniqueness. As a result of this quadrature, the function
ω(t) is uniquely defined, of class C1 (at least), and uniformly positive. By this
construction, the stationarity condition (29) is indeed satisfied, provided the
exponent α is calculated according to the above definition.

Remark 5.1 A unique value for the exponent α results from this algorithm,
and at this point, the satisfaction of the condition α > 1, necessary to a global
minimum of the functional J (by virtue of Lemma 2.1), is unclear; we shall see
that this is indeed the case.

Remark 5.2 Using instead the variables s and ϕ, the integral-differential equa-
tion (29) becomes:

−
dϕ

ds
−

1

ω

dω

ds
tanϕ = C . (98)

In the above construction, the value assigned to the positive constant C is the
opposite of the curvature 1/r = dϕ/ds < 0 at the point of maximum ordinate
(ϕ = 0). Therefore, it does not depend on the arc parameterization per se, but
only on the shape itself. Consequently, the equation for stationarity, cast in the
form of (98) is intrinsic.

Remark 5.3 Letting

ω =
σ

sinϕ
(99)

in (98) gives the following more compact expression:

dσ

σ
= −

C

tanϕ
ds . (100)

However, this formula is not necessarily suited for numerical quadrature since
as t −→ t0, ϕ −→ 0, σ −→ 0 (ω −→ ω0, a finite limit), and the above expression
for dσ/dt exhibits a 0/0-type indeterminate form, requiring special treatment.
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We now have the elements to prove that α > 1 is a consequence of the

construction in Theorem 5.1. For this purpose, let
(

x1(t), y1(t)
)

(0 ≤ t ≤ 1) be

a given admissible parameterization, and suppose that the function ω(t) and the
exponent α have been calculated according to this construction with x(t) = x1(t)
and y(t) = y1(t). Hence, this substitution of symbols being made, the Euler-
Lagrange stationarity condition, (29), holds; however, it is not presupposed here
that the function y(t) = y1(t) realizes a global, or even local minimum of the
functional J (y).

Nevertheless, with the same formal definition of the function j(λ), equation
(21) still holds, and implies the following asymptotics:

j(λ) ∼
c1
λ

(as λ −→ 0+) , j(λ) ∼ c2 λ
α−1 (as λ −→ ∞) (101)

where c1 =
(

∫ 1

0
x′1 ω dt

)α

/A1 and c2 =
(

∫ 1

0
|y′1|ω dt

)α

/A1.

Since J (y) is stationary for y(t) = y1(t),

δJ (y1)(δy) = 0 , ∀ δy (102)

so that, by the chain rule

j′(1) = δJ (y1)(y1) = 0 . (103)

Now, compute the logarithmic derivative of j(λ):

j′(λ)

j(λ)
=
α− 1

λ
+ α

∫ 1

0
1
2

(

x′2

1

λ2 + y′21

)−
1

2

(

−
2x′2

1

λ3

)

ω dt

∫ 1

0

(

x′2

1

λ2 + y′21

)
1

2

ω dt

=
α− 1

λ
− α

∫ 1

0

(

x′21 + λ2y′21
)− 1

2 x′2

1

λ2 ω dt
∫ 1

0 (x′21 + λ2y′21 )
1

2 1
λ
ω dt

(104)

so that:

j′(λ) = 0 ⇐⇒ (α− 1)

∫ 1

0

(

x′21 + λ2y′21
)

1

2 ω dt = α

∫ 1

0

x′21

(x′21 + λ2y′21 )
1

2

ω dt .

(105)

This expression can now permit us to prove the following

Theorem 5.2 Let
(

x1(t), y1(t)
)

(0 ≤ t ≤ 1) be an admissible parameterization,

and let the function ω(t) and the exponent α be calculated by the construction
in Theorem 5.1 with x(t) = x1(t) and y(t) = y1(t). Then:
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1. α > 1;
2. the function

j(λ) = J
(

λy1(t)
)

(106)

for fixed x(t) = x1(t), is unimodal; it admits the following asymptotics

j(λ) ∼
c1
λ

(as λ −→ 0+) , j(λ) ∼ c2 λ
α−1 (as λ −→ ∞) (107)

where c1 =
(

∫ 1

0
x′1 ω dt

)α

/A1, c2 =
(

∫ 1

0
|y′1|ω dt

)α

/A1, and

A1 =
∫ 1

0
y1 x

′
1 ω dt, and a unique stationary point, λ1 = 1, realizing

a global minimum.

Proof. Some of the conclusions of the theorem have already been established,
in particular the asymptotics. Additionally, in view of (103), setting λ = 1 in
(105) yields:

1 −
1

α
=

∫ 1

0
x′2

1

(x′2

1
+y′2

1 )
1

2

ω dt

∫ 1

0
(x′21 + y′21 )

1

2 ω dt
> 0 =⇒ α =

∫ 1

0

(

x′21 + y′21
)

1

2 ω dt
∫ 1

0

y′2

1

(x′2

1
+y′2

1 )
1

2

ω dt
> 1 . (108)

Secondly, in the equation stated in (105), the function of λ appearing on the
left-hand side of the equality sign is monotone increasing, whereas inversely,
the function on the right-hand side is monotone decreasing. Therefore, equality
holds for at most one λ, hence uniquely for λ = 1. In summary, the smooth
function j(λ) admits the cited-above asymptotics with α > 1 and a unique
stationary point, λ = 1. Hence, λ = λ1 = 1 realizes a local minimum, which is
also unique and global. The function j(λ) is therefore unimodal.

Considering now variations in an arbitrary admissible direction, we have the
following

Theorem 5.3 With the setting of Theorem 5.2, including the calculation of
the function ω(t) and the exponent α by the construction in Theorem 5.1 with
x(t) = x1(t) and y(t) = y1(t), consider another admissible parameterization
(

x2(t), y2(t)
)

(0 ≤ t ≤ 1). Then, the function

j2(λ) = J
(

λy2(t)
)

(109)

for fixed x(t) = x2(t), is unimodal; it admits the following asymptotics

j2(λ) ∼
c′1
λ

(as λ −→ 0+) , j2(λ) ∼ c′2 λ
α−1 (as λ −→ ∞) (110)

where c′1 =
(

∫ 1

0
x′2 ω dt

)α

/A′
1, c

′
2 =

(

∫ 1

0
|y′2|ω dt

)α

/A′
1, and A′

1 =
∫ 1

0
y2 x

′
2 ω dt,

and a unique stationary point, λ = λ2, realizing a global minimum.
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Proof. The reason for the asymptotics is the same as previously, except that
now we know that α > 1 from Theorem 5.2. Hence, the smooth function j2(λ)
admits a global minimum at which point it is stationary. But an equation sim-
ilar to (105) indicates that such a stationary point, if it exists, is unique. The
remaining follows.

6. Illustrative numerical example involving a known airfoil

shape

The RAE2822 airfoil is a classical geometry in computational aerodynamics,
known for its low-drag performance in the transonic regime. This shape has
been tabulated by the European Project ECARP (Périaux et al., 1998) and is
also available from the KTH Web site “Pablo”:

http://www.nada.kth.se/∼chris/pablo/pablo.html

The corresponding data are used here to test our construction numerically.
This airfoil is represented on top of Fig. 6 on which it is apparent that if the

airfoil’s upper surface is concave, the lower surface is not convex. Therefore,
our construction is not directly applicable to the lower surface for which y(x)
is not unimodal. To overcome this difficulty, it is decided to measure ordinates
w.r.t. to the camberline. This is equivalent to treating the case of a symmetrical
airfoil of identical distribution of thickness along the chord. This new airfoil is
shown on Fig. 6 (bottom).

The symmetrical airfoil upper surface is parameterized first, specifically by
a degree-n Bézier parameterization (Farin, 1990)

P (t) :























x(t) =

n
∑

k=0

(

n

k

)

tk (1 − t)n−k xk

y(t) =

n
∑

k=0

(

n

k

)

tk (1 − t)n−k yk

(111)

where
(

n
k

)

is a binomial coefficient, and

Pk = (xk, yk) (0 ≤ k ≤ n) (112)

is an adjustable set of control points.
Applying a technique described in Désidéri (2203) and Bélahcène and Désidéri

(2003), we have used specifically the data given in Table 1 defining a suitable
control polygon.

This control polygon supports a degree-16 Bézier parameterization and re-

sults from the optimization of the two free parameters x
(4)
2 and x

(4)
3 associated
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-0.04

 0

 0.04

 0.08

 0  0.2  0.4  0.6  0.8  1

RAE2822 AIRFOIL AND CAMBERLINE

RAE2822 AIRFOIL
CAMBERLINE

-0.04

 0

 0.04

 0.08

 0  0.2  0.4  0.6  0.8  1

SYMMETRICAL AIRFOIL, CURVEFIT AND CONTROL POLYGON

SYMMETRIZED RAE2822 AIRFOIL
DEGREE-16 BEZIER CURVEFIT

UPPER SURF. CONTROL POLYGON

Figure 6. RAE2822 airfoil and camberline (top); symmetrical airfoil of iden-
tical distribution of thickness along the chord, superimposed degree-16 Bézier
curvefit, and control polygon (bottom); x : y scale 1:5

with a degree-4 Bézier parameterization. The optimization process can be de-
scribed as follows: given the values for these parameters satisfying the condi-

tions 0 ≤ x
(4)
2 ≤ x

(4)
3 ≤ 1, the support of a degree-4 Bézier parameterization is

constructed by completing the sequence at endpoints by 0’s and 1:

{ x
(4)
k } =

{

0, 0, x
(4)
2 , x

(4)
3 , 1

}

. (113)
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Table 1. Coordinates of control points supporting the degree-16 parameteriza-
tion of the symmetrized RAE2822 airfoil

k xk yk

0 0.00000000 0.00000000

1 0.00000000 0.00901285

2 0.01000000 0.01567691

3 0.02735714 0.02838362

4 0.05013187 0.02125740

5 0.07708791 0.04556686

6 0.10769231 0.04674385

7 0.14211538 0.01152551

8 0.18123077 0.11801427

9 0.22661538 -.01510481

10 0.28054945 0.11016884

11 0.34601648 0.03575430

12 0.42670330 0.09234295

13 0.52700000 0.04909957

14 0.65200000 0.05107346

15 0.80750000 0.01403431

16 1.00000000 0.00000000

Then, the classical degree elevation process (Farin, 1990) is applied 12 times to
obtain a candidate support of a degree-16 Bézier parameterization:

For i = 5, ..., 16 do : x
(i)
0 = 0 ; x

(i)
k =

k

i
x

(i−1)
k−1 +(1−

k

i
)x

(i−1)
k (1 ≤ k ≤ i) .

(114)

At level n = 16, the superscript (16) is omitted hereafter. By this construction,
the sequence {xk} (0 ≤ k ≤ n = 16) and by consequence, the function x(t) are
monotone increasing; additionally x′(0) = 0. For any such sequence, a unique
sequence {yk} is then defined such that the corresponding Bézier arc is a least-
squares approximation of the airfoil tabulated data. Note that dy/dt(0) = ny1;
thus if y1 6= 0, the shape is tangent to the y-axis at the origin, as airfoils
are. Additionally, considering the upper surface, only cases for which y1 > 0
are retained; among all possibilities, the elected parameterization is defined to
be the one associated with the least value of the total variation TV ({yk}) =
∑n

k=1 |yk − yk−1|. By proceeding in this way, excessive variations in the control
polygon P0 P1 ... Pn have been avoided, while enforcing the geometrical and
certain monotonicity constraints.

This cautious construction of the parameterization revealed to be rather ef-
fective to improve the iterative performance of the shape optimization algorithm
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that one possibly applies thereafter (by allowing the yk’s to vary) to minimize
a physical criterion such as drag in aerodynamics (Clarich and Désidéri, 2002;
Tang and Désidéri, 2002). The corresponding curvefit and control polygon are
shown on Fig. 6 (bottom). The differences between the tabulated and parame-
terized data are of the order of 10−6, thus not visible.

Note that P (t) can be computed by the known de Casteljau algorithm:

P j
k = (1 − t)P j−1

k + t P j−1
k+1 j = 1, 2, ..., n ; k = 0, 1, ..., n− j (115)

where P 0
k = Pk; as a result of this algorithm, P (t) = Pn

0 . The merit of this
algorithm resides in its intrinsic numerical stability (Sederberg, 2004), because
it only involves convex combinations of bounded terms. However it is O(n2) in
computing cost, thus not optimal. An alternative is to factor either (1 − t)n if
0 ≤ t ≤ 1

2 , or tn if 1
2 ≤ t ≤ 1,

P (t) = (1 − t)n

n
∑

k=0

(

n

k

)

xk u
k = tn

n
∑

k=0

(

n

k

)

xk v
n−k (116)

where u = t/(1 − t) and v = (1 − t)/t, and to evaluate the finite sum by
the classical Horner factorization algorithm as a polynomial in either u or v.
This process is O(n) in cost. Both factorizations were tested throughout the
entire interval [0,1] and resulted in very close results without apparent excessive
rounding errors. The factorization of tn, more stable near t = 1, was preferred
to avoid instabilities in the region of the domain where the cumulative errors
associated with the quadratures performed numerically from t = 0 could be
critical.

A great advantage of the Bézier parameterization is to provide simple formal
expressions for the successive derivatives. In particular:







































































x′(t) = n
n−1
∑

k=0

(

n− 1

k

)

tk (1 − t)n−1−k (xk+1 − xk)

= ntn−1
n−1
∑

k=0

(

n− 1

k

)

(xk+1 − xk) vn−k

x′′(t) = n(n− 1)

n−2
∑

k=0

(

n− 2

k

)

tk (1 − t)n−2−k (xk+2 − 2xk+1 + xk)

= n(n− 1)tn−2
n−2
∑

k=0

(

n− 2

k

)

(xk+2 − 2xk+1 + xk) vn−k

(117)

and similarly for y′(t) and y′′(t).
A simple program in the MAPLE language was developed to incorporate

the formulas, proceed with both formal and numerical calculations and realize
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plots. The parameterization of the arc being given, the equation

y′(t0) = 0 (118)

is solved first for v0 giving t0 = 1/(v0 + 1), and this permits to compute the
constant C. Then the expression

θ(τ) =

(

x′′(τ)y′(τ) − x′(τ)y′′(τ)

x′2(τ) + y′2(τ)
− C

√

x′2(τ) + y′2(τ)

)

x′(τ)

y′(τ)
(119)

is evaluated and integrated w.r.t. τ from 0 to t to give ω(t) according to (96);
lastly, quadratures are performed to get p and A, and the exponent α, and the
functional value is calculated.

Using first the raw data of Table 1, we obtained the results plotted in Fig. 7,
and certain surprising computed values indicated in the first row of Table 2.

Table 2. Computational parameters as the height ymax of the half, symmetrized
RAE2822 airfoil varies

ymax p A α J ωmax/ωmin

.06051 9.869941199 .2300139269 70.89388551 .1346 10
72 67.77046225

0.1 6.076089363 .2285417055 26.59416394 .3025 10
22 41.40837127

0.2 3.311823172 .2244289935 7.380500871 30709.80236 21.85349498∗

0.3 2.551429236 .2217957704∗ 3.835629629 163.8014309 26.55945639

0.4 2.309646110 .2218169974 2.603863915 39.86832902 37.17292189

0.52 2.293345658∗ .2249660763 2.039436261 24.15669807 55.28979685

0.6 2.411134451 .2315163309 1.736265759 19.90931635 86.18290342

0.7 2.631214442 .2417460867 1.555343812 18.62635869 139.2398221

0.8 2.945983733 .2560226326 1.438764299 18.48559818∗ 231.2135672

0.9 3.360657329 .2748430334 1.359016231 18.89445381 392.1145181

1.0 3.889281952 .2988629959 1.301742056 19.60585095 675.9438667

1.1 4.553612828 .3289261951 1.258903982 20.49786634 1180.163909

2.0 25.74741157 1.168458865 1.102091885 30.70043981 236261.7172

10. .3815 10
10 .3743 10

8 1.019640589 157.2198284 .6542 10
27

1 raw data, case of Fig. 7
2 case of Fig. 8
∗ approximate minimum

Examining more closely these results, several observations can be made.
First, with the Bézier parameterization, the functions x(t) and‘ y(t) are smooth,
and have smooth and bounded derivatives, whereas the curvefit is such that y′(x)
is infinite at the origin, as desirable. However, the results are rather sensitive
to the scaling, and in particular with the raw data, the scales are evidently
inappropriate. The aspect ratio (chord/height) of the RAE2822 airfoil is close
to 20, as typical of standard airfoils. As a result, it appears clearly from Fig. 6,
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(a) x(t) (b) y(t) (c) y(x)
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Figure 7. Output of MAPLE program; raw data for symmetrized RAE2822
airfoil
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and even though the scales have been chosen in a way that reduces the visibility
of this effect, that the curvature at the point of maximum height is very small
compared to the curvature at the origin. As a consequence, the constant C is
small (C = .6052734906), and the function θ(τ) is found to be positive over
a large portion of its domain over which ω(t) is monotone-increasing; ω(x) is
uniformly greater than 1. Although the integrals p and A are not excessively
different from 1 in magnitude, the resulting exponent α is very large (α > 70),
and the functional value explodes. This difficulty can easily be attenuated by
normalizing the initial data to allow y(t) (or y(x)) to vary between 0 and a
specified value ymax. Repeating the experiment with the airfoil coordinates
replaced by normalized data, gives the results indicated in the subsequent rows
of Table 2, for various values of the maximum airfoil ordinate ymax.

The case ymax = 0.5 is in some sense, the closest to the circle; the corre-
sponding data are plotted in Fig. 8. For this case, the constant C = 4.998530508,
that is more than 8 times larger than above, and the function θ(τ) shows a bet-
ter balance of positive and negative values; the function ω(t) decreases before
increasing, and the maximum value of ω′(x) is smaller, although ω(x) still ex-
hibits a boundary-layer-type shape near the trailing edge. Here, the exponent α
resulting from the algorithm is strictly greater than one, which confirms again
the theoretical result, but close to 2. The ratio ωmax/ωmin is a sort of condi-
tion number; it is close to 55 in this case, which allows a tractable numerical
treatment.

The remaining data of Table 2 indicate that the quantities p, A, J and
the condition number ωmax/ωmin are unimodal functions of ymax, but each
quantity achieves a minimum at a different point. In contrast, the exponent α
is monotonic and tends to 1 as ymax −→ ∞. These trends are also shown on
Fig. 9. The condition number ωmax/ωmin, in a logarithmic scale, has an apparent
linear portion, indicative of a power law, before achieving its minimum at an
angular point; no explanation for this is available.

The last experiment is the most fundamental and is meant to demonstrate
that given the function ω(t) (or ω(x)) and the exponent α computed by our
MAPLE program in the case of Fig. 8, the shape can be produced by minimizing
the functional J . This experiment was carried out for the symmetrical airfoil
upper surface. To simplify the experiment, the sequence of abscissas {xk} (0 ≤
k ≤ n = 16) was fixed, and only the corresponding ordinates {yk} have been
computed by numerical minimization of the functional by the Quasi-Newton
Method using the E04JYF procedure of the NAG Library. This computation
was carried with equal success for a number of initial conditions, including the
rather different following two cases:

Test case 1: initial yk = 1

Test case 2: initial yk =
1

10
+

(

k

15

)4 (120)

(1 ≤ k ≤ n− 1 = 15 ; y0 = y16 = 0).
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Figure 8. Output of MAPLE program; normalized data for the symmetrized
RAE2822 airfoil
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Figure 9. Variations of p, A, α, J and ωmax/ωmin with ymax
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The evident convergence of the shape with the black-box iterative procedure
is shown on Fig. 10, which provides the minimum functional value (top), and
the corresponding best-found shape (bottom) in terms of function evaluations.
Additionally, this experiment shows that the rise of the function ω(x) near x = 1
with the employed non-optimal normalization of the ordinates, does not cause
the minimization procedure serious difficulties to converge.

(a) Test case 1: initial yk = 1 (b) Test case 2: initial yk =
1
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Figure 10. Convergence of the shape with the quasi-Newton iteration (top:
minimum functional value; bottom: best-found shape in terms of function eval-
uations)

7. Conclusions

We have established and illustrated the construction of a unimodal shape opti-
mization model, as a problem of calculus of variations. Besides the theoretical
result, we anticipate that the formulation could be more powerful, in inverse
problems, than a more conventional approach consisting in minimizing the L2

(or H1) norm, ‖y − yT ‖ (where yT denotes a target-shape function), by poten-
tially discriminating more the more relevant geometrical elements of the given
shape inherited from the optimization of a physical criterion. In this respect,
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the observed greater numerical sensitivity of the weighting function ω(x) in the
zone just upstream the trailing-edge in the airfoil case, tends to confirm this
expectation.
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A practical unimodality criterion

As a step to prove that the local minimum of the functional was indeed global,
we attempted first to establish the unimodality by application of the criterion
below to a particular case. This route failed to deliver the full proof, but revealed
itself to be instructive, and we describe it here for its own sake.

Lemma 7.1 (Criterion of unimodality) Let f be a strictly-positive, convex and
monotone-increasing function of the real variable, and let:

η(y) = 1 +
J (y) f ′′

(

J (y)
)

f ′

(

J (y)
) . (121)

If the functional J (y) is stationary w.r.t. variations in y = y(t), for fixed
x = x(t), and if the quadratic form

Q(Y ) =η

(
∫ 1

0

(

α

p
φ−

1

A
ψ

)

Y dt

)2

−
α

p2

(
∫ 1

0

φY dt

)2

+
1

A2

(
∫ 1

0

ψ Y dt

)2

+
α

p

∫ 1

0

ωx′2

(x′2 + y′2)
3

2

Y ′2 dt (122)

is positive-definite, then it is unimodal.

Proof. The functionals J (y) and

K(y) = f
(

J (y)
)

(123)

have identical directions of variations. Hence a sufficient condition for the func-
tional J (y) to be unimodal, is that the functional K(y) be convex. But, injecting
the expressions for the first and second variations of the functional J (y), (40)
and (66), in the second variation of the functional K(y),

δ2K = f ′(J ) δ2J + f ′′(J ) (δJ )2 (124)

yields:

δ2K = J f ′(J )

[

δ2J

J
+ (η − 1)

(

δJ

J

)2
]

= J f ′(J )Q(δy) (125)

which is positive-definite iff the stated criterion is satisfied.

Now assume α > 1, which is necessary to the existence of a global minimum,
and examine whether this criterion is satisfied in some region of the functional
space of y(t).
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Since Y stands for a free perturbation, we can equivalently replace it by the
following expression,

Y =
Z

ψ
(126)

and let Z be the new free perturbation. At point y, define the following function
of t :

F = F (y) =
α

p

φ

ψ
−

1

A
(127)

so that:

φ =
pψ

α

(

F +
1

A

)

(128)

and:

Q(Y ) =η

(
∫ 1

0

F Z dt

)2

−
1

α

(
∫ 1

0

(

F +
1

A

)

Z dt

)2

+
1

A2

(
∫ 1

0

Z dt

)2

+
α

p

∫ 1

0

ωx′2

(x′2 + y′2)
3

2

Y ′2 dt

=R(Z) + S(Z) +
α

p

∫ 1

0

ωx′2

(x′2 + y′2)
3

2

Y ′2 dt (129)

where:



















R(Z) =

(

η −
1

α

)(
∫ 1

0

FZdt

)2

−
2

αA

(
∫ 1

0

FZdt

)

=

(

η −
1

α

)

I2 −
2

αA
I

S(Z) =

(

1 −
1

α

)

1

A2

(
∫ 1

0

Zdt

)2

(130)

where I =
∫ 1

0
F Z dt. Evidently, for α ≥ 1:

Q(Y ) ≥ min R(Z) = −
1

α2A2
(

η − 1
α

) ≥ −
1

ηA2
. (131)

Unfortunately, this bound is negative, although arbitrarily small by possible
adjustment of η. For this reason and the difficulty to establish bounds on
the integral involving Y ′ in (129), we have not been able to make a definite
conclusion on the eventual positivity of Q(Y ) itself. Instead, in what follows,
we prove that:

min
Z

(

R(Z) + S(Z)
)

< 0 . (132)
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To achieve this result, we first split the functional space Υ of y = y(t) into two
complementary subsets:

Υ1 = { y = y(t) admissible and such that F (y) = const. (as a function of t) }

(133)

and

Υ2 = Υ − Υ1 (134)

and examine two cases separately.
First, for y ∈ Υ1,

R(Z) + S(Z) =

(

η −
1

α

)

F 2ζ2 −
2

αA
Fζ +

(

1 −
1

α

)

1

A2
ζ2 (135)

where

ζ =

∫ 1

0

Z dt (136)

can assume any value. Consequently,

min
Z

(

R(Z) + S(Z)
)

= min
ζ

[(

η −
1

α

)

F 2ζ2 −
2

αA
Fζ +

(

1 −
1

α

)

1

A2
ζ2

]

= −
F 2

α2
[(

η − 1
α

)

F 2A2 + 1 − 1
α

] . (137)

Regardless of the a priori choice of η (positive and large), this minimum is
strictly negative, except at points of stationarity (F ≡ 0).

Consider now the more general case where y ∈ Υ2, which implies in partic-
ular that F 6≡ 0. Let

K =

∫ 1

0

F dt (138)

and let us examine whether it is possible that

∫ 1

0

F 2 dt = K2 . (139)

If this equation were satisfied, we could first conclude that K 6= 0 (since F 6≡ 0),
and:

∫ 1

0

(F −K)2 dt =

∫ 1

0

F 2 − 2K

∫ 1

0

F dt+K2 = 0 (140)
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and this would be in contradiction with the hypothesis of a nonuniform F .
Therefore (139) is rejected, and we inversely conclude that:

∫ 1

0

F 2 dt 6=

(
∫ 1

0

F dt

)2

= K2 . (141)

Then define the function

F⊥ = 1 − cF (142)

and adjust the constant c to make F⊥ orthogonal to F :

c =

∫ 1

0
F dt

∫ 1

0 F 2 dt
=

K
∫ 1

0 F 2 dt
. (143)

Additionally,

∫ 1

0

F⊥ dt = 1 − c

∫ 1

0

F = 1 −
K2

∫ 1

0 F 2 dt
6= 0 (144)

by virtue of (141). In summary, the function F⊥ which results from this con-
struction satisfies:

∫ 1

0

F F⊥ dt = 0 ,

∫ 1

0

F⊥ dt 6= 0 . (145)

Then let

Z = εF − ε⊥F⊥ (146)

in such a way that

I =

∫ 1

0

F Z dt = ε

∫ 1

0

F 2 dt =
1

αA
(

η − 1
α

) (147)

by appropriate choice of the adjustable constant ε. Then R(Z) achieves its
negative minimum:

R(Z) = −
1

α2A2
(

η − 1
α

) . (148)

Besides, letting

ε⊥ = ε

∫ 1

0 F dt
∫ 1

0
F⊥ dt

(149)
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gives:

∫ 1

0

Z dt = 0 (150)

so that

S(Z) = 0 . (151)

Since S(Z) ≥ 0 in general, this function Z also realizes the minimum of S(Z).
Therefore:

min
Z

(

R(Z) + S(Z)
)

= −
1

α2A2
(

η − 1
α

) < 0 (152)

in this case also.
In conclusion, the test in Lemma 7.1 is not easily applicable to support the

proof of unimodality of the functional J (y), which however, has been established
by another argument. The question of convexity for the functional J (y) as α
varies from 1 to 2, remains unclear.


